EP0056108B1 - Heating boiler for low temperature heating-systems - Google Patents

Heating boiler for low temperature heating-systems Download PDF

Info

Publication number
EP0056108B1
EP0056108B1 EP81109797A EP81109797A EP0056108B1 EP 0056108 B1 EP0056108 B1 EP 0056108B1 EP 81109797 A EP81109797 A EP 81109797A EP 81109797 A EP81109797 A EP 81109797A EP 0056108 B1 EP0056108 B1 EP 0056108B1
Authority
EP
European Patent Office
Prior art keywords
boiler
thermal conductivity
flue gas
coating
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81109797A
Other languages
German (de)
French (fr)
Other versions
EP0056108A1 (en
Inventor
Gustav Dr. Techn. H.C. Ospelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoval Interliz AG
Original Assignee
Hoval Interliz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6122578&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0056108(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoval Interliz AG filed Critical Hoval Interliz AG
Priority to AT81109797T priority Critical patent/ATE8704T1/en
Publication of EP0056108A1 publication Critical patent/EP0056108A1/en
Application granted granted Critical
Publication of EP0056108B1 publication Critical patent/EP0056108B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/287Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with the fire tubes arranged in line with the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/0036Dispositions against condensation of combustion products

Definitions

  • the invention relates to a boiler for low-temperature heaters with a boiler water jacket surrounding a combustion chamber for burner firing and a downstream flue gas duct.
  • Low-temperature heaters such as ceiling or floor heating
  • a low heating water temperature which is only a maximum of about 50 to 53 ° C, even at low outside temperatures.
  • the aim is to use a boiler for such heating systems, which can also be operated in this low-temperature range, for example in order to reduce the boiler heat losses and to save expensive mixing valve devices and controls.
  • the boiler is now operated with a boiler water temperature that changes according to the outside temperature, and if the boiler water temperature is only between about 25 and 28, especially in the transition season at the so-called heating limit, i.e.
  • the dew point limit is at a wall temperature of around 40 to 45 ° C, which is far below the above-mentioned low boiler water temperature.
  • the invention consists in that the steel sheet walls of the combustion chamber and the flue gas duct, i.e. all boiler parts covered by the burner flame and the flue gases, are provided on the boiler water side with a coating of a poorly heat-conducting material, the thermal conductivity of which is less than 1.
  • the deliberate deterioration of the heat conduction with the water-side coating according to the invention due to the two-layered boiler walls depends on the coefficient of thermal conductivity of the coating material used, on the coating thickness on the boiler water side and on the heat flow going through the boiler walls and can be varied depending on the requirements and by a material with the lowest possible coefficient of thermal conductivity should be such that the desired or required increase in wall temperature on the flue gas side occurs even with a thin coating thickness.
  • the coating can consist of a sufficiently heat-resistant polyamide plastic which has a coefficient of thermal conductivity of 0.3 or less.
  • the coating thickness only needs to be a fraction of a millimeter in order to ensure that at a boiler water temperature of, for example, 25 to 28 ° C and at an average heat flow density (specific heating surface load) for boilers, a flue gas-side wall temperature increase of around 25 ° C occurs , so that the sheet steel wall on the flue gas side assumes a surface temperature of around 50 ° C, which is above the dew point limit when firing with light heating oil.
  • the heat flow density averages around 12300 kcal per square meter and per hour. The heat flow density in the combustion chamber is naturally higher and is on average 26600.
  • the coating is attached to the water side of the boiler walls, it is also absolutely protected against mechanical damage when cleaning the boiler on the flue gas side, so that the coating can also be made of enamel, which, in contrast to the known flue gas side enamel coatings, does not pose any risk of Crack formation is exposed to high flue gas temperature changes, but due to the arrangement on the water side and deterioration of the heat conduction, it is far better prevented that the temperature falls below the dew point and condensation water on the flue gas side of the boiler walls.
  • Enamel is also a relatively poorly heat-conducting material with a coefficient of thermal conductivity less than 1. Since the coefficient of thermal conductivity is approximately 0.9 greater than that of polyamide plastic, the thickness of the enamel coating must also be greater.
  • a water-side enamel coating of 1 mm thickness is sufficient to ensure that a flue gas-side wall temperature increase of around 30 ° C occurs and the wall temperature with around 55 ° C far above the dew point limit.
  • the drawing shows an embodiment of the boiler according to the invention in a vertical longitudinal section.
  • the boiler contains a combustion chamber 1 and a downstream flue gas duct 2, which are surrounded and cooled by a common boiler water jacket 3. All of the water-cooled steel plate walls of the boiler, which are smeared on the flue gas side by the burner flame or the flue gases, are provided on the boiler water side with a coating 4 made of a poorly heat-conducting material which, compared to the heat conductivity number of the steel plate walls of approximately 48, has a thermal conductivity number of less than 1.
  • the coating consists of a commercially available polyamide plastic that has a thermal conductivity of at most 0.3.
  • the layer thickness only needs to be at least about 0.3 mm and at most about 0.5 mm in order to obtain a wall temperature increase of around 25 ° C on the flue gas side, which leads to the dew point limit being exceeded when the boiler is operated in the low temperature range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Spray-Type Burners (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

1. Boiler for low-temperature heating systems with a boiler water jacket surrounding a combustion chamber for burner firing and a subsequently placed flue gas passage, characterised in that the sheet steel walls of the combustion chamber and of the flue gas passage are provided on the boiler water side with a coating of a material of poor thermal conductivity, the coefficient of thermal conductivity of which is less than 1.

Description

Die Erfindung betrifft einen Heizkessel für Niedertemperatur-Heizungen mit einem eine Brennkammer für Brennerfeuerung und einen nachgeschalteten Rauchgaskanal umgebenden Kesselwassermantel.The invention relates to a boiler for low-temperature heaters with a boiler water jacket surrounding a combustion chamber for burner firing and a downstream flue gas duct.

Niedertemperatur-Heizungen, wie zum Beispiel Decken- oder Bodenheizungen, werden mit einer geringen Heizwassertemperatur betrieben, die selbst bei tiefen Außentemperaturen nur höchstens etwa 50 bis 53 °C beträgt. Man ist bestrebt, für derartige Heizungsanlagen einen Heizkessel anzuwenden, der ebenfalls in diesem Niedertemperaturbereich betrieben werden kann, um zum Beispiel die Kesselwärmeverluste zu verringern und teure Mischventileinrichtungen und -steuerungen einzusparen. Wenn der Heizkessel nun aber mit einer Kesselwassertemperatur betrieben wird, die entsprechend der Außentemperatur gleitend verändert wird, und wenn insbesondere in der Übergangsjahreszeit an der sogenannten Heizgrenze, das heißt bei zum Beispiel plus 15 °C Außentemperatur, die Kesselwassertemperatur nur noch zwischen etwa 25 und 28 °C liegt, entsteht das Problem, daß auf der von der Brennerflamme und den Rauchgasen bestrichenen Seite der Kesselwandungen die Taupunktsgrenze unterschritten wird und Kondensationserscheinungen auftreten mit der Folge von Korrosionen der Kesselstahlbleche durch die schwefelsäurehaItigen Kondensate. Bei der Verfeuerung von Heizöl der Güteklasse « extraleicht » liegt die Taupunktsgrenze bei einer Wandtemperatur von etwa 40 bis 45 °C, die mit einer vorerwähnt niedrigen Kesselwassertemperatur weit unterschritten wird. Es ist mit verschiedenen aufwendigen Maßnahmen versucht worden, diesem Problem der Taupunktsunterschreitung und Korrosionsgefahr bei Niedertemperatur-Heizkessein zu begegnen, beispielsweise durch die Verwendung von korrosionsbeständigen, aber sehr teuren hochlegierten Edelstahlblechen für die Kesselwandungen oder durch die Anwendung eines gegen Schwefelsäure-Korrosionsangriffe schützenden feuerfesten glasartigen Überzuges wie zum Beispiel aus Email auf der Rauchgasseite von normalen Stahlblechwandungen, der sich jedoch wegen der Gefahr von Rißbildungen oder Absplitterungen oder mechanischen Beschädigungen bei der Kesselreinigung als unzuverlässig und nicht für die Praxis geeignet herausgestellt hat.Low-temperature heaters, such as ceiling or floor heating, are operated with a low heating water temperature, which is only a maximum of about 50 to 53 ° C, even at low outside temperatures. The aim is to use a boiler for such heating systems, which can also be operated in this low-temperature range, for example in order to reduce the boiler heat losses and to save expensive mixing valve devices and controls. However, if the boiler is now operated with a boiler water temperature that changes according to the outside temperature, and if the boiler water temperature is only between about 25 and 28, especially in the transition season at the so-called heating limit, i.e. with an outside temperature of 15 ° C, for example ° C, the problem arises that on the side of the boiler walls covered by the burner flame and the flue gases, the temperature falls below the dew point and condensation occurs with the consequence of corrosion of the boiler steel sheets by the sulfuric acid-containing condensates. When burning "extra-light" quality heating oil, the dew point limit is at a wall temperature of around 40 to 45 ° C, which is far below the above-mentioned low boiler water temperature. Various complex measures have been attempted to counter this problem of falling below the dew point and risk of corrosion in the case of low-temperature boilers, for example by using corrosion-resistant but very expensive high-alloy stainless steel sheets for the boiler walls or by using a refractory glass-like coating that protects against sulfuric acid corrosion attacks such as from enamel on the flue gas side of normal sheet steel walls, which, however, has turned out to be unreliable and unsuitable for practical use due to the risk of cracks or chips or mechanical damage during boiler cleaning.

Mit der erfindungsgemäßen Problemlösung ist es möglich, praktisch jeden beliebigen Heizkessel im Niedertemperaturbereich mit einer weit unter der Taupunktsgrenze liegenden Kesselwassertemperatur zu betreiben und trotzdem einen kondensfreien und korrosionsfreien Betrieb zu erreichen. Die Erfindung besteht darin, daß die Stahlblechwandungen der Brennkammer und des Rauchgaskanals, das heißt alle von der Brennerflamme und von den Rauchgasen bestrichenen Kesselteile, auf der Kesselwasserseite mit einer Beschichtung aus einem schlecht wärmeleitenden Material versehen sind, dessen Wärmeleitzahl kleiner als 1 ist. Durch die Beschichtung, die nicht der Brennerflamme oder den Rauchgasen ausgesetzt ist und daher nicht feuerfest beschaffen zu sein braucht, wird auf der vom Kesselwasser bestrichenen Seite der Kesselwandungen der Wärmedurchgang von den Gasen durch die Stahlblechwandungen an das Kesselwasser so weit gebremst, daß sich bei einer unter der Taupunktsgrenze liegenden Kesselwassertemperatur die rauchgasseitige Wandtemperatur der Kesselwandungen auf einen die Taupunktsgrenze überschreitenden Betrag erhöht, wodurch in denkbar einfacher und zuverlässiger Weise ein kondensfreier Heizkesselbetrieb im Niedertemperaturbereich gewährleistet wird und eine Korrosionsgefahr an den Kesselstahlblechwandungen mit Sicherheit vermieden wird. Die mit der erfindungsgemäß wasserseitigen Beschichtung bewußt gewollte Wärmeleitungsverschlechterung durch die zweischichtig ausgebildeten Kesselwände hängt von der Wärmeleitzahl des verwendeten Beschichtungsmaterials, von der Beschichtungsdicke auf der Kesselwasserseite und von dem durch die Kesselwandungen gehenden Wärmestrom ab und kann je nach den Erfordernissen variiert werden und durch ein Material mit möglichst niedriger Wärmeleitzahl so hoch bemessen werden, daß selbst mit einer dünnen Beschichtungsdicke die jeweils gewünschte oder benötigte rauchgasseitige Wandtemperaturerhöhung eintritt. Beispielsweise kann die Beschichtung aus einem ausreichend hitzebeständigen Polyamid-Kunststoff bestehen, der eine Wärmeleitzahl von 0,3 oder weniger hat. Hierbei braucht die Beschichtungsdicke nur einen Bruchteil eines Millimeters zu betragen, um zu erreichen, daß bei einer Kesselwassertemperatur von zum Beispiel 25 bis 28 °C und bei einer bei Heizkesseln im Mittelwert üblichen Wärmestromdichte (spezifische Heizflächenbelastung) eine rauchgasseitige Wandtemperaturerhöhung von rund 25 °C eintritt, so daß die Stahlblechwandung auf der Rauchgasseite eine Oberflächentemperatur von rund 50 °C annimmt, die über der Taupunktsgrenze bei der Feuerung mit leichtem Heizöl liegt. In Nachschalt-Rauchgaskanälen von Heizkesseln liegt die Wärmestromdichte durchschnittlich bei etwa 12300 kcal pro Quadratmeter und pro Stunde. In der Brennkammer ist die Wärmestromdichte naturgemäß höher und liegt sie durchschnittlich bei 26600. Beispielsweise bei einer Wärmestromdichte von 26600, einer Kesselwassertemperatur von 25 °C und einer Wärmeleitzahl von 0,25 eines Polyamid-Kunststoffs ergibt sich aus der Formel für die Wärmeleitung durch eine Wand, daß mit einer Beschichtungsdicke von nur 0,3 mm eine Erhöhung der rauchgasseitigen Wandtemperatur um rund 32 °C auf rund 57 °C bewirkt wird und eintritt, die weit über der normalerweise vorkommenden Taupunktsgrenze liegt. Polyamid-Kunststoff kann auf die kesselwasserseitige Oberfläche der Kesselwandungen aufgespritzt werden und härtet anschließend in einem Ofen bei rund 200 °C aus, so daß die Beschichtung den beim Heizkesselbetrieb in den Kesselwandungen vorkommenden Temperaturen, die unter der Sicherheitsgrenze von 150 bis 180 °C für die Temperaturbeständigkeit der Beschichtung liegen, einwandfrei standhält. Ferner ist die Beschichtung, weil sie auf der Wasserseite der Kesselwandungen angebracht ist, auch gegen mechanische Beschädigungen beim rauchgasseitigen Reinigen des Heizkessels absolut geschützt, so daß die Beschichtung auch aus Email bestehen kann, die nicht nur im Gegensatz zu den bekannten rauchgasseitigen Emailüberzügen keiner Gefahr der Rißbildung durch hohe rauchgasseitige Temperaturwechsel ausgesetzt ist, sondern durch die wasserseitige Anordnung und Wärmeleitungsverschlechterung auch weit besser die Taupunktsunterschreitung und Schwitzwasserbildung auf der Rauchgasseite der Kesselwandungen verhindert. Email ist ebenfalls ein relativ schlecht wärmeleitendes Material mit einer Wärmeleitzahl kleiner als 1. Da die Wärmeleitzahl mit etwa 0,9 größer ist als bei Polyamid-Kunststoff, muß auch die Dicke der Emailbeschichtung größer sein. Bei einer Wärmestromdichte von 26600, einer Kesselwassertemperatur von 25 °C und einer Wärmeleitzahl von 0,9 für Email reicht ein wasserseitiger Emailüberzug von 1 mm Dicke aus, um zu gewährleisten, daß eine rauchgasseitige Wandtemperaturerhöhung von rund 30 °C eintritt und die Wandtemperatur mit rund 55 °C weit über der Taupunktsgrenze liegt.With the problem solution according to the invention it is possible to operate practically any boiler in the low temperature range with a boiler water temperature well below the dew point limit and still achieve condensation-free and corrosion-free operation. The invention consists in that the steel sheet walls of the combustion chamber and the flue gas duct, i.e. all boiler parts covered by the burner flame and the flue gases, are provided on the boiler water side with a coating of a poorly heat-conducting material, the thermal conductivity of which is less than 1. Due to the coating, which is not exposed to the burner flame or the flue gases and therefore does not need to be fire-proof, the heat transfer from the gases through the steel plate walls to the boiler water is braked on the side of the boiler walls covered by the boiler water to such an extent that one Boiler water temperature below the dew point limit increases the flue gas side wall temperature of the boiler walls to an amount exceeding the dew point limit, which ensures condensation-free heating boiler operation in the low temperature range in a very simple and reliable manner and a risk of corrosion on the boiler steel sheet walls is avoided with certainty. The deliberate deterioration of the heat conduction with the water-side coating according to the invention due to the two-layered boiler walls depends on the coefficient of thermal conductivity of the coating material used, on the coating thickness on the boiler water side and on the heat flow going through the boiler walls and can be varied depending on the requirements and by a material with the lowest possible coefficient of thermal conductivity should be such that the desired or required increase in wall temperature on the flue gas side occurs even with a thin coating thickness. For example, the coating can consist of a sufficiently heat-resistant polyamide plastic which has a coefficient of thermal conductivity of 0.3 or less. Here, the coating thickness only needs to be a fraction of a millimeter in order to ensure that at a boiler water temperature of, for example, 25 to 28 ° C and at an average heat flow density (specific heating surface load) for boilers, a flue gas-side wall temperature increase of around 25 ° C occurs , so that the sheet steel wall on the flue gas side assumes a surface temperature of around 50 ° C, which is above the dew point limit when firing with light heating oil. In secondary flue gas ducts of boilers, the heat flow density averages around 12300 kcal per square meter and per hour. The heat flow density in the combustion chamber is naturally higher and is on average 26600. For example, with a heat flow density of 26600, a boiler water temperature of 25 ° C and a thermal conductivity of 0.25 of a polyamide plastic, the formula for heat conduction through a wall results that with a coating thickness of only 0.3 mm an increase in the flue gas-side wall temperature of around 32 ° C to around 57 ° C is achieved and occurs, which is far above the normally occurring dew point limit. Polyamide plastic can be sprayed onto the surface of the boiler walls on the boiler water side and then hardens in an oven at around 200 ° C, so that the coating can withstand the temperatures that occur in the boiler walls during boiler operation, which are below the safety limit of 150 to 180 ° C for the Temperature resistance of the coating lie, withstands perfectly. Furthermore, because the coating is attached to the water side of the boiler walls, it is also absolutely protected against mechanical damage when cleaning the boiler on the flue gas side, so that the coating can also be made of enamel, which, in contrast to the known flue gas side enamel coatings, does not pose any risk of Crack formation is exposed to high flue gas temperature changes, but due to the arrangement on the water side and deterioration of the heat conduction, it is far better prevented that the temperature falls below the dew point and condensation water on the flue gas side of the boiler walls. Enamel is also a relatively poorly heat-conducting material with a coefficient of thermal conductivity less than 1. Since the coefficient of thermal conductivity is approximately 0.9 greater than that of polyamide plastic, the thickness of the enamel coating must also be greater. With a heat flow density of 26600, a boiler water temperature of 25 ° C and a thermal conductivity of 0.9 for enamel, a water-side enamel coating of 1 mm thickness is sufficient to ensure that a flue gas-side wall temperature increase of around 30 ° C occurs and the wall temperature with around 55 ° C far above the dew point limit.

Die Zeichnung zeigt ein Ausführungsbeispiel des erfindungsgemäßen Heizkessels in einem vertikalen Längsschnitt. Der Heizkessel enthält eine Brennkammer 1 und einen nachgeschalteten Rauchgaskanal 2, die von einem gemeinsamen Kesselwassermantel 3 umgeben und gekühlt sind. Alle rauchgasseitig von der Brennerflamme beziehungsweise den Rauchgasen bestrichenen wassergekühlten Stahlblechwandungen des Heizkessels sind auf der Kesselwasserseite mit einer Beschichtung 4 aus einem schlecht wärmeleitenden Material versehen, das gegenüber der Wärmeleitzahl der Stahlblechwandungen von etwa 48 nur eine Wärmeleitzahl keliner als 1 hat. Beispielsweise besteht die Beschichtung aus einem handelsüblichen Polyamid-Kunststoff, der eine Wärmeleitzahl von höchstens 0,3 hat. Die Schichtdicke braucht nur wenigstens etwa 0,3 mm und höchstens etwa 0,5 mm zu betragen, um rauchgasseitig eine Wandtemperaturerhöhung von rund 25 °C zu erhalten, die beim Betrieb des Heizkessels im Niedertemperaturbereich zu einem Überschreiten der Taupunktsgrenze führt.The drawing shows an embodiment of the boiler according to the invention in a vertical longitudinal section. The boiler contains a combustion chamber 1 and a downstream flue gas duct 2, which are surrounded and cooled by a common boiler water jacket 3. All of the water-cooled steel plate walls of the boiler, which are smeared on the flue gas side by the burner flame or the flue gases, are provided on the boiler water side with a coating 4 made of a poorly heat-conducting material which, compared to the heat conductivity number of the steel plate walls of approximately 48, has a thermal conductivity number of less than 1. For example, the coating consists of a commercially available polyamide plastic that has a thermal conductivity of at most 0.3. The layer thickness only needs to be at least about 0.3 mm and at most about 0.5 mm in order to obtain a wall temperature increase of around 25 ° C on the flue gas side, which leads to the dew point limit being exceeded when the boiler is operated in the low temperature range.

Claims (3)

1. Boiler for low-temperature heating systems with a boiler water jacket surrounding a combustion chamber for burner firing and a subsequently placed flue gas passage, characterised in that the sheet steel walls of the combustion chamber and of the flue gas passage are provided on the boiler water side with a coating of a material of poor thermal conductivity, the coefficient of thermal conductivity of which is less than 1.
2. Boiler according to Claim 1, characterised in that the coating consists of a sufficiently refractory synthetic plastics material having a coefficient of thermal conductivity of 0.3 or less, and has a layer thickness of about 0.2 to about 0.5 mm.
3. Boiler according to Claim 1, characterised in that the coating consists of an enamel coat on the water side with a coefficient of thermal conductivity of 0.9 or less and a thickness of at least about 0.8 to 1 mm.
EP81109797A 1981-01-14 1981-11-20 Heating boiler for low temperature heating-systems Expired EP0056108B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81109797T ATE8704T1 (en) 1981-01-14 1981-11-20 BOILER FOR LOW TEMPERATURE HEATING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3100888 1981-01-14
DE19813100888 DE3100888A1 (en) 1981-01-14 1981-01-14 BOILER FOR LOW TEMPERATURE HEATERS

Publications (2)

Publication Number Publication Date
EP0056108A1 EP0056108A1 (en) 1982-07-21
EP0056108B1 true EP0056108B1 (en) 1984-07-25

Family

ID=6122578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109797A Expired EP0056108B1 (en) 1981-01-14 1981-11-20 Heating boiler for low temperature heating-systems

Country Status (3)

Country Link
EP (1) EP0056108B1 (en)
AT (1) ATE8704T1 (en)
DE (1) DE3100888A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103063A3 (en) * 1982-08-12 1984-09-12 Buderus Aktiengesellschaft Cast iron central heating boiler
AT399934B (en) * 1991-06-03 1995-08-25 Vaillant Gmbh COMBUSTION CHAMBER
DE19715918A1 (en) * 1997-04-16 1998-10-22 Andreas P Rosteuscher Device for heating heat carrier e.g. at vessel wall

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT127506B (en) * 1931-03-20 1932-03-25 Richard Ing Herrmann Device to prevent the formation of sweat water in gas-heated hot water generators.
DE705267C (en) * 1934-11-27 1941-04-22 Junkers & Co Heat exchanger for water heater
DE1889560U (en) * 1963-11-23 1964-03-19 Gebrueder Wagner STANDING BOILER FOR HOT WATER GENERATION.
AU4138068A (en) * 1968-07-29 1970-02-05 MRS) FREDA McPHERSON Hot water storage tank and/or boiler
DE2427219A1 (en) * 1974-06-05 1975-12-18 Broetje Fa August Device to minimise condensate formation - on hot gas side of gas fired installations has plastics insert in form of collar over the heat exchange channel orifice
CH628134A5 (en) * 1978-03-28 1982-02-15 Ygnis Sa FLUE GAS FLOWED HEAT EXCHANGER.

Also Published As

Publication number Publication date
ATE8704T1 (en) 1984-08-15
DE3100888A1 (en) 1982-09-02
DE3100888C2 (en) 1991-05-29
EP0056108A1 (en) 1982-07-21

Similar Documents

Publication Publication Date Title
DE3315010A1 (en) Gas-fired water heater
DE1551773B2 (en) Radiant element for surface combustion of a gas-air mixture
EP0056108B1 (en) Heating boiler for low temperature heating-systems
DE3911276C1 (en) Device for recovering (reclaiming) heat from the exhaust gases of firing units (installations, systems)
EP0663563B1 (en) Method of combustion in combustion apparatuses and combustion apparatus
DE8100612U1 (en) BOILER FOR LOW TEMPERATURE HEATERS
DE3445319A1 (en) Gas outflow device
DE60207084T2 (en) ATMOSPHERIC GAS BURNER MADE FROM BIOLOUS AND GELCAST CERAMIC FIBERS
DE3331340A1 (en) Central heating boiler
DE2653973C3 (en) Flue gas heated water heater
DE719944C (en) Heating element for stoves
AT246380B (en) Gas stove for space heating
DE675536C (en) Covering compound to protect heat exchange surfaces
DE1087788B (en) Heat exchanger for gas water heater
DE3343301A1 (en) Central heating boiler for flowing fuels
DE811865C (en) Gas-fired boiler
DE567176C (en) Air heater working with cross flow
AT224301B (en) Heating system with a dome-like tile jacket that is closed on all sides and heated with hot air as a radiator
EP0031571B1 (en) Boiler
DE3720421C1 (en) Fuel-oil burner for a furnace
AT377353B (en) AIR RADIATOR
DE7528615U (en) WATER HEATER WITH AN ATMOSPHERIC BURNER FOR GAS OR LIQUID FUELS
AT220564B (en) Multi-level steam oven
AT411102B (en) Heater esp. calorific value heater with housing in which heat cell is arranged which has prim. heat exchanger and internal exhaust gas pipe also includes burner and gas-air combination
DE3508117A1 (en) BOILER FOR A LOW TEMPERATURE HEATING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB IT

17P Request for examination filed

Effective date: 19821214

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB IT LI

REF Corresponds to:

Ref document number: 8704

Country of ref document: AT

Date of ref document: 19840815

Kind code of ref document: T

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: JOH. VAILLANT GMBH U. CO

Effective date: 19841130

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19860127

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920925

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920929

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921029

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921116

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931120

Ref country code: AT

Effective date: 19931120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST