EP0051338B1 - Method and means for measuring the position of a railway rail - Google Patents

Method and means for measuring the position of a railway rail Download PDF

Info

Publication number
EP0051338B1
EP0051338B1 EP81201203A EP81201203A EP0051338B1 EP 0051338 B1 EP0051338 B1 EP 0051338B1 EP 81201203 A EP81201203 A EP 81201203A EP 81201203 A EP81201203 A EP 81201203A EP 0051338 B1 EP0051338 B1 EP 0051338B1
Authority
EP
European Patent Office
Prior art keywords
measuring
points
rail
rails
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81201203A
Other languages
German (de)
French (fr)
Other versions
EP0051338A1 (en
Inventor
Jean-Pierre Piantino
Yvan Zeitoun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matisa Materiel Industriel SA
Original Assignee
Matisa Materiel Industriel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matisa Materiel Industriel SA filed Critical Matisa Materiel Industriel SA
Priority to AT81201203T priority Critical patent/ATE8917T1/en
Publication of EP0051338A1 publication Critical patent/EP0051338A1/en
Application granted granted Critical
Publication of EP0051338B1 publication Critical patent/EP0051338B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a method and a device for detecting the position of the rails of a railway track for the purposes of checking, correcting and / or recording, using a mobile measuring or working vehicle. moving on the rails as well as a measurement base which is determined from rail reference points and which defines the theoretical route of the rail, which makes it possible to determine the position of at least one measurement point on the rail relative to the measurement base.
  • the rail reference points are notoriously defined using special measuring instruments which equip the measuring and / or working vehicle, or by means of measuring trolleys rolling on the rails at a determined distance in front of or behind the vehicle.
  • the precise mounting and alignment of the reference elements on, above or below the measuring or working vehicle constitute a source of serious drawbacks, above all because of the space required.
  • the invention aims to solve the problem posed by the realization of a simple method to implement for the measurement of the rails, and in which the need to represent the measurement base defined by means of the reference points of the rails is eliminated. by means of a reference material element or by the use of a light ray or an optical axis of an element, while allowing the execution of simultaneous leveling and alignment measurements, as well as possibly the determination and recording of many other parameters relating to the rails.
  • the method according to the present invention is characterized in that a reference line independent of all reference points on the rails is used, this reference line extending at least approximately in the longitudinal direction of the rails. and being fixed to at least one fixed point of the vehicle so as to constitute a reference system independent of the measurement base and of the measurement point; that the coordinates of the reference points of the rails and of the measurement points are measured in relation to this reference system, and that on the one hand, from the coordinates of the reference points of the rails, the measurement base is calculated and, on the other hand, from the coordinates of the measurement points, their deviation from the measurement base is calculated.
  • the measurement method according to the present invention is particularly flexible, since as a general rule and undoubtedly many arbitrary reference points can be taken into account in that it is necessary to have recourse to a material reference element covering all of these reference points.
  • other parameters can also be determined for checking the track layout.
  • the device for implementing the method is characterized in that the reference line is constituted by a rectilinear reference element which is either an integral part of the chassis of the vehicle, or fixed or tensioned with respect to this chassis, this element being at least one electromagnetic ray emitted by a source of radiation fixed to the chassis of the vehicle, or from an optical axis of an optical instrument fixed to the chassis of the vehicle; that measuring means comprising a pendulum are installed at the measuring and reference points of the rails, and arranged so as to measure the coordinates of all the points of the aforementioned rails in a reference system which is defined across the line of reference and the vertical passing through this reference line, preferably in the vertical plane containing this reference line, and finally an automatic computer is provided for processing all the quantities measured.
  • a rectilinear reference element which is either an integral part of the chassis of the vehicle, or fixed or tensioned with respect to this chassis, this element being at least one electromagnetic ray emitted by a source of radiation fixed to the chassis of the vehicle, or from
  • the reference element can be a stretched wire, a fiber, a string or the like. It is recommended to make sure that the element which constitutes the reference line, or the liminous radius which takes its place, is protected from external atmospheric agents; if a light ray is adopted, it must be protected against weakening or rupture due to fog or humidity.
  • a hollow spar will be used for this, which generally comprises the chassis of the measurement or work vehicle, to surround the reference element or the light ray or rays emitted by a light source.
  • Figure 1 shows the principle of the method according to the invention.
  • a straight reference line is defined which extends in the longitudinal direction of the vehicle 1, or of the rails.
  • a cruex spar 4 is used, oriented in the longitudinal direction and which is generally found on the chassis of a vehicle of this kind, and in this spar the straight line which connects the central points A 'and C 'of the two end faces 5 and 6 of the beam, constitutes the reference line s.
  • a straight line materialized by a taut reference element for example a wire, a fiber or the like, or of an immaterial straight line consisting of an optical axis of an optical device or instrument, or of a light ray or a beam of another type of electromagnetic radiation.
  • a measuring mechanism or chassis comprising measuring wheels or feeler rollers rolling on the rails 2 and 3, and the points of contact with these rails define the reference points A and C of the rails.
  • Another measurement mechanism located at any point in the middle of the vehicle, defines with its measurement wheels rolling on the rails the measurements made at the respective points B on the two rails 2 and 3.
  • a pendulum 30 incorporated in each measurement mechanism is used to measure the inclination of the wheel axis and to define the vertical independently of the momentary orientation of the measuring vehicle 1 or the spar 4.
  • This gives the definition of a three-dimensional reference system thanks to the vertical plane containing the reference line s, as shown in Figure 2.
  • an orthogonal coordinate system the origin of which is for example at point A ', and which has the axes x, y and s shown in Figure 2.
  • the reference line s is only defined through the two points A 'and C' and independently of any other point on the rails.
  • the purpose of a rail survey is to determine the difference between a measurement point B on the rails and a measurement base defined by the reference points A and C of these rails, which represents the theoretical profile of the rails. .
  • the measurement base will naturally be a straight line which passes through the reference point A which is on a track section which has not yet been corrected and by the reference point C which is on the already corrected section of track.
  • respective measuring means have been installed at the end faces of the beam, in planes orthogonal to the reference line s and which contain the points A 'and C' , to measure the triangles AA'A and CC'C which are in these planes. Since we know the distance h between the sides arranged face to face of the annular flange wheels of the mobile measuring mechanism, and consequently the distance AA or CC, therefore the base of the triangle, it is now sufficient to measure the two other triangles a1 and a2 or c1 and c2 using two instruments to measure the lengths.
  • a goniometer the angle a or y at point A 'or C' between the adjacent sides of the triangles and, using an instrument to measure the lengths, those of two adjacent sides of triangles a1 or a2, or c1 or c2.
  • the position of the measurement point B relative to the reference line s results from the measurement of the two triangles which are both in the same transverse plane of the beam 4 which is perpendicular to the reference line s and contains the measurement point B.
  • a triangle is located inside the spar 4 and is defined by its apex B ', which is on the reference line s and by the point of intersection of said plane with the two lower edges of the spar 4, of which the distance from point B 'is designated by the symbols b' 1 and b'2.
  • the other triangle is located under the spar 4 and is defined by the two measurement points B of the rails and the point of intersection B "which is in the middle of the lower side of the spar; the sides of the triangle which are adjacent to this intersection point B "are equal to the width i of the beam 4 and therefore they are known.
  • To measure these interior triangles it is necessary to also provide two length measuring instruments to measure the length of the sides b 'and b'2, or else a single length measuring instrument which measures one of these two sides, as well as a goniometer to measure the angle of intersection f31 at point B '.
  • FIG. 1a shows a variant of the measurement arrangement intended to determine the position of the measurement point B in relation to the reference line s.
  • a square will be measured according to the arrangement of FIG. 1 having a side h, which corresponds to the distance between the flanged measuring wheels of the measuring mechanism, a side i, which corresponds to the width of the spar 4, as well as the sides b "and b" 2, which connect in pairs the end points of the two sides mentioned above.
  • four measuring instruments are required, which measure the length of the two sides b "1 and b" 2 as well as the two angles (33 and (34.
  • FIG. 1 b schematically shows the method according to the invention in the case where it is necessary to have in the uncorrected track section of the new one the reference point A and in the already corrected track section two pairs of reference points C and D located at a known distance between them.
  • Three reference points A, C and D for the construction of a circular arc as a measurement base will be necessary to measure or align a curved track in a curve.
  • the reference point D and the point D ' are in the transverse plane containing the rear end face of the beam 4, while the reference point C and the point C' which are in front of said plane are contained in a transverse plane of the beam 4 which is located between the measurement points B and the reference point D and can be measured with the same accuracy as the measurement points B, in accordance with the explanations given above with reference to FIG. 1 .
  • FIGS. 3 to 10 show a first embodiment for implementing the method according to the invention, in which the reference line s is produced in the form of a wire 7 which extends inside a hollow spar 4 of the vehicle chassis.
  • a wire instead of a wire, one can of course also use a fiber, a string or the like. In what follows we will only refer, in general, and for the sake of clarity, to a thread 7.
  • a tube 8 disposed in the center of the beam 4 and in the longitudinal direction thereof, and along its axis extends a wire 7 representing the reference line s.
  • this tube 8 is held in anchor blocks 9 and 10 fixed and centered near the end faces 5 and 6 of the spar 4 by means of stop screws 11 (FIG. 8) screwed into the wall of the spar, where a reinforcing strip 12 is provided all around the spar.
  • stop screws 11 FIG. 8
  • the end of the wire 7 which emerges from the tube 8 is anchored to a guide pin 13, which passes through an opening provided in the center of the end wall 5 of the spar and abuts with its end adjacent to this end wall 5 against an anchoring block 9.
  • the wire 7 is fixed to the rod 14 of the piston 15 of a hydraulic cylinder 16 which is housed in the extension of the tube 8 in the anchor block 10.
  • the wire 7 is tensioned with a predetermined force.
  • the interior of the tube 8 can be filled, by means of a filling connector 16a shown in FIG. 3, with a liquid having the same density or approximately the same density or density as the reference element 7, if one uses advantageously in this case, for reasons of weight, a textile thread but not a metallic thread. This dampens the wire's oscillations and vibrations.
  • a guide pin 17 which jointly defines the first guide pin 13 at the other end of the beam 4, the axis, outside this beam, of the reference line s.
  • measuring devices provided at points A and C and which, in the illustrated embodiment, consist of two length measuring instruments, intended to measure the length of the sides of triangles a1 and a2 as well as c1 and c2 mentioned above.
  • the two length measuring instruments 20 and 21 are mounted in rotation by means of ball bearings 22 and 23 on the guide pin 17 to measure the distances c1 and c2.
  • the two instruments 18 and 19 for measuring the lengths to measure the distances a 1 and a2.
  • the other ends of the length measuring instruments 18, 19 and 20, 21, also visible in FIGS. 4 are articulated on the wheel axles of the two measuring mechanisms which are located at the reference points A or C, and as shown FIG. 9 for the two length measuring instruments 18 and 19 as well as the axle 24 of the measuring wheels 25, which belong to the measuring mechanism 26 and define the reference points A of the rails.
  • the measuring mechanism 26 comprises a guide system with two rods 27 arranged in a V, which are articulated on a support 26a fixed to the chassis of the vehicle and can, by means of a lifting device 28 acting on a cross member 29 connecting these two rods 27 between them, be raised when the vehicle has to be moved from one zone to another.
  • a lifting device 28 acting on a cross member 29 connecting these two rods 27 between them, be raised when the vehicle has to be moved from one zone to another.
  • On the axle of the wheel 24 is fixed in pendulum 30 to measure the inclination of the measuring mechanism relative to the vertical in a plane oriented perpendicular to the rails.
  • the measuring mechanism located at measuring points C as well as at the measurement points B can be carried out exactly like the measurement mechanism 26.
  • the measuring means shown in Figures 3, 6 and 10 at the measuring point B comprises a measuring system installed under the beam 4 and a measuring system installed inside this beam 4.
  • the lower system consists, in the example shown, of two length measuring instruments 31 and 32 (FIG. 6) which connect point B "according to FIG. 1 with the two measuring points B defined by the corresponding measuring wheels and is used to measure the distances or sides of triangle b1 and b2 according to Figure 1.
  • These length measuring instruments can pivot at their upper end around a pivot represented by point B ", while their lower end is articulated on the axle of the wheels of the mechanism corresponding measure.
  • a goniometer 33 is arranged on the aforementioned axis to measure the angina p according to FIG. 1.
  • the internal measurement system shown diagrammatically in FIG. 10, is mounted inside an anchoring block 34, which is made like the anchor blocks 9 and 10, and keeps the tube 8 correctly centered.
  • the internal measurement system in the area of which the tube 8 has an interruption, also consists in the example shown, of two instruments 35 and 36 for measuring the lengths, the upper ends of which, thanks to an eyelet 37, surround the stretched wire. 7 and whose lower ends are articulated on pivots 38 mounted in the lower corners of the anchor blocks 34.
  • One of the instruments 31 or 32, 18 or 19 as well as 20 or 21 for measuring lengths can also be replaced by a goniometer at points B ′′, A ′ and C ′, as indicated in the description of the process according to l with the invention with reference to Figures 1 and 1 a.
  • several of these stabilizing or damping elements 39 could be provided along the wire 7, and this preferably at each wave belly of the wire 7. Thanks to these measures, the oscillations and vibrations are largely damped wire 7.
  • the interior of the anchor blocks 34, with respect to which sections of the tube 8 are fixed or tightly adjusted, can also be filled with this liquid.
  • FIG. 7 There is shown schematically in Figure 7 the measurement system which is located below the beam 4 in the case of a measurement carried out in accordance with the arrangement of Figure 1a.
  • the upper ends of two instruments 40 and 41 for measuring lengths are articulated on two pins 42 and 43 mounted on external projections of the beam 4.
  • the dimension h between the flanges of the measuring wheels 25 of a measuring mechanism, and therefore the spacing between the two rails have been considered to be constant values.
  • the measuring mechanisms are generally biased by a jack mounted on the vehicle chassis against one of the two rails, so that at all times each of the measuring wheels constantly carries on one side with its annular flange against the corresponding rail. All measurements and corrections therefore have these rails as their basis.
  • the gauge of the track is not exactly constant, and varies slightly from one place to another, which is particularly possible in the case of wooden sleepers whose material works over time, it is in principle preferable to carry out measurements and corrections along the axis of the track, therefore to carry out an alignment along this axis.
  • the dimension h will not be taken as a constant but as a variable and measured using a measuring mechanism whose measuring wheels can slide along the axis of the wheels and are constantly solicited in the direction of distance one on the other by a spring or a jack, so that their tubes bear constantly and simultaneously against the two rails.
  • An instrument 47 for measuring the lengths shown in phantom in Figure 9 and mounted on the axle of the measuring wheels 25, is used to measure the generally variable spacing between the rails 2 and 3. From this measured value of h it is easy to take all the measurements on the axis of the track and therefore carry out a correction along this axis.
  • the reference line s is constituted by a light ray 50 emitted by a light source 51 along the axis of the spar 4, this source being located at A 'on the end face 5 of the spar above the rail reference points A.
  • a transparent optical detector 52 comprising several photoelectric cells, preferably four in number, distributed radially and on the opposite end face 6 of the spar il is provided at C ', above the reference points C of the rails, an optical detector 53 of the same type, but not transparent in this case.
  • optical detectors 52 and 53 of a type known per se and which are fixed to the spar 4, it is possible to determine deviations from the centers of these detectors, which would be due to possible deformations of the spar, according to the direction of the light ray 50.
  • the detectors 52 and 53 may possibly be replaced by instruments operating with light-sensitive CCD matrices.
  • the same measurement means are arranged as those described above with reference to FIGS. 3 to 9, and which are used to measure each position of the track or track points relative to the reference system defined by the light ray 50.
  • the reference line s consists of the light rays 55 and 57 oriented towards one another and emanating from two respective light sources 56 and 58 installed opposite one of the other on the two end faces 5 and 6 of the spar, ie at points A 'and C'.
  • two optical detectors 59 and 60 of the above-mentioned type intended to receive one and the other respectively of the light rays directed towards these detectors so as to allow the position of the beam 4 to be measured in the above-mentioned plane with respect to the reference line thus defined by the light rays, and consequently possible deformations of said beam.
  • FIG. 13 schematically shows an embodiment given by way of example, in which the reference line s is formed by the optical axis 61 of an optical goniometer of known type and which coincides with the axis of the spar 4, this instrument being mounted at A 'on the end face 5 of the spar, above the reference points A of the track.
  • the inside of the spar has been fixed light sources 63, 64 and 65, 66 which emit light rays directed towards the optical angular measurement instrument or goniometer 62. The latter constantly measures the angle formed between the optical axis 61 and these light sources.
  • the value of these angles is known when the beam 4 is not deformed, and they determine the points B 'and C' which are on the optical axis 61 above the points B of measurement of the rails or of the reference points C of the rails in the above-mentioned plane. Deformations of the beam 4 result in corresponding modifications of the angles formed between the optical axis 61 and the light rays and are therefore determined according to the angular value measured.
  • At reference points A and C and at measurement points B there are also provided, as shown in FIGS. 3 to 9, measuring means for reading the respective positions of the track points with respect to the reference system defined according to the optical axis 61.
  • the optical instrument 62 for measuring the angles can be constituted in particular by the apparatus described in patent AT-PS-312,025 for determining the angle of at least two light rays which intersect between them at one point.
  • a so-called almost absolute measurement base is used.
  • a mobile independent measuring carriage 70 which moves at least approximately at the average speed of the vehicle 1, defines a reference point A o situated far ahead and further carries a light source 71.
  • a measuring means 72 which defines the reference line s in any way on this vehicle 1.
  • This means comprises on the one hand a rangefinder operating by electromagnetic radiation in order to determine the distance from the light source 71 and, therefore, the reference point A o , and on the other hand a goniometer, for example of the type described in the aforementioned patent AT- PS 312 025, by which the angle ⁇ , therefore the angular position of the reference point A o with respect to the reference line s on the vehicle 1, can be calculated.
  • the measuring instruments carried by the vehicle 1 at the track points designated in A, B, C, D and E in FIG. 13 can be produced exactly like those of the other embodiments described above.
  • Rail reference points D and E could be embodied by a measuring cart rolling behind the vehicle 1 on the rails, and connected thereto by a control rod, in order to measure the orientation of this measuring cart relative to the vehicle 1 and, therefore, by relative to the beam 4 provided with the reference line.
  • Figures 15 to 18 refer to another embodiment of measuring devices installed at the track points A, B, C and D and possibly at other points located on the track, by means of which the coordinates of these reference points of the rails in a different way compared to what the measuring devices according to Figures 1 to 10 allowed.
  • the distances or angles were measured for the construction of triangles AA'A, etc. (figure 1), so that from these measurement data and using trigonometric functions we can calculate the coordinates of the track points A, B, etc. in a Cartesian coordinate system comprising the reference line s or the points A ', B', etc.
  • the configuration of the measurement means according to FIGS. 15 to 18, on the other hand, makes it possible to directly measure the coordinates necessary in a Cartesian system of coordinates x A , y A ; x e , Y B ; x c , Y c and x a , y D , which, as shown schematically in Figure 15, are obtained in each transverse plane of the spar 4 located at track points A, B, C and D.
  • it is Cartesian systems of relative coordinates which are perpendicular to the axis of the spar 4 and therefore to the reference line s and, as shown in FIG.
  • these coordinates are materialized by a T-shaped part fixed to the longitudinal member 4 and comprising a vertical arm 73 and a cross member 74.
  • the origin of this coordinate system is the point A ', which is on the wire 7 forming the reference line s, which also extends there inside the tube 8 along the axis of the spar 4 .
  • the coordinates y of the reference points A on the rails namely the points of contact between the measuring wheels 25 and the rails 2 and 3, will be measured according to FIG. 16 using two instruments 75 and 76 to measure the distances, which are articulated on the one hand on each end of the cross member 74 at the point of articulation 80 or 81, and on the other hand on the axis 24 of the mobile measuring carriage, near the wheels 25, more precisely at the location of pivots 82 and 83.
  • the x coordinate will be measured using an instrument 77 for measuring the lengths, which is articulated on the one hand on the lower end of the arm 73 at the pivot point 84, and on the other hand to the aforementioned pivot 83 of the length measuring instrument 75.
  • FIG. 15 shows the normal wheels 95 of the measurement vehicle which advances in the direction of the arrow, as well as the measurement wheels 25; the rear reference points D of the track will be defined by the rear wheels of the actual measuring carriage 97 which rolls on the rails and which is fixed by a drawbar 96 to the chassis or the side member 4 of the measuring vehicle, which determines the position of this mobile measuring carriage relative to the beam 4.
  • the coordinates measured in the various coordinate systems, which are therefore determined in each case in the transverse planes of the beam 4 which pass through the points of rails A, B and C, are indicated in FIG. 15.
  • x are the values x e , x b and x c which are determined using the length measuring instrument 77 (FIG.
  • All the measurement means comprise, apart from the pendulum 78 according to FIG. 16, corresponding pendulums with which the angles designated in ⁇ A , 8 B , ⁇ c . or ⁇ D in FIG. 15 will be measured, these angles being formed between on the one hand the longitudinal axis of the arm 73 of FIG. 16 and the other corresponding arm, that is to say each y axis of the different systems coordinates, and on the other hand the vertical. In the event of deformation of the beam 4, all these angles can have different values, in other words, the different relative coordinate systems can have a different orientation between them.
  • FIG. 18 An advantageous arrangement which is suitable for the measurement in question inside the beam 4 is shown in FIG. 18 and includes a measurement system 85 for measuring the displacement in the y direction and a measurement system 86 of exactly the same design but arranged with a angular offset of 90 degrees around the axis of the wire 7 for measuring the displacement in the x direction.
  • the two systems are arranged perpendicular to the direction of the wire 7.
  • This instrument 91 for measuring lengths is of a design known in this technical field, according to which no physical contact is produced between the core 90 and the body of the instrument.
  • the entire measuring system 85, as well as the another measurement system 86 is rigidly fixed by screws 93 to the spar 4 or to the wall of an anchor block fixed inside this spar, according to the arrangement of the blocks 34 of FIG. 10.
  • Each movement of the wire 7 parallel to the rod 87 is transmitted to the instrument 91 and measured by the latter, while a movement in the direction perpendicular to this rod 87 has no effect.
  • each movement of the wire 7 in the x direction will be perceived and transmitted by the cursor of the other system 86.
  • the measurement and reference means are installed on a track straightening machine equipped with roller or roller clamps for leveling and erecting the rails, it may be advantageous if the measuring points B of the track or rails constitute the points of attack of the roller clamps.
  • each measurement or working point B of the rails can serve, immediately after rectification, as a new reference point in the corrected track section for the measurement of the aforementioned parameters which must be recorded, so that it is sufficient provide on the work vehicle, behind the measurement points B or behind the tamping tools, simply two reference points of the rails C and D, arranged one behind the other.
  • the method and the devices according to the invention are also extremely flexible, as demonstrated by the examples of embodiment. tion described and the foregoing explanations, and allow in a rational manner, by means of a suitably programmed automatic computer, to carry out the measurements and / or calculations of all the quantities and of all the necessary parameters.
  • the measuring means can be constituted by measuring instruments known per se, whereby one can use, as apparatus for measuring the lengths, for example instruments operating with electric linear potentiometers.
  • the invention is in no way limited to the exemplary embodiments described, because on the contrary these lend themselves to numerous variants, in particular as regards the construction and the arrangement or realization of the reference lines which define the reference system as well. as the arrangement of the measurement means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

1. A method of measuring the position of a railway track for checking, correction and/or recording purposes, by using a measuring vehicle travelling on the rails and a measuring base that is determined by rail reference points (A, C, D) and is defining the theoretical course of the rails, whereby the position of at least one measuring point (B) on the rail is determined relative to said measuring base, characterized in that use is made of a reference line (s) independent of any points (A, B, C, D) situated on the rails (2, 3) and extending at least approximately in the longitudinal direction of the rails, said reference line (s) being secured to at least one fixed point (A') of the vehicle (1) and defining a reference system independent of said measuring base and said measuring point (B), the co-ordinates of said rail reference points (A, C, D) and said measuring point (B) relative to said reference system are measured, whereafter on the one hand the measuring base resulting from the co-ordinates of said rail reference points (A, C, D) and on the other hand using the co-ordinates of the measuring points (B) the deviation of these measuring points (B) from said measuring base are calculated.

Description

L'invention a trait à un procédé et un dispositif pour relever la position des rails d'une voie de chemin de fer aux fins de contrôle, de correction et/ou d'enregistrement, en utilisant un véhicule mobile de mesure ou de travail se déplaçant sur les rails ainsi qu'une base de mesure qui est déterminée d'après des points de référence des rails et qui définit le tracé théorique du rail, ce qui permet de déterminer la position d'au moins un point de mesure sur le rail par rapport à la base de mesure.The invention relates to a method and a device for detecting the position of the rails of a railway track for the purposes of checking, correcting and / or recording, using a mobile measuring or working vehicle. moving on the rails as well as a measurement base which is determined from rail reference points and which defines the theoretical route of the rail, which makes it possible to determine the position of at least one measurement point on the rail relative to the measurement base.

Les procédés de dispositifs connus jusqu'à présent dans le domaine du relevé des voies, notamment pour l'exécution de travaux de correction des rails, ont ceci de commun que l'on détermine toujours directement la distance entre un point du rail ou de travail et une base de mesure, celle-ci étant représentée par un élément matériel de référence, soit rectiligne, soit curviligne, sous forme de fils, tiges ou similaires (cf. brevets GB-A-1423574, AT-A-305 333, DE-A-2818405). Ces éléments matériels de référence doivent être agencés et construits de telle sorte qu'ils coïncident aussi exactement que possible avec les points de référence des rails, ou se trouvent constamment à une distance fixe par rapport à ceux-ci. Les points de référence des rails sont notoirement définis à l'aide d'instruments spéciaux de mesure qui équipent le véhicule de mesure et/ou de travail, ou par l'entremise de chariots de mesure roulant sur les rails à une distance déterminée devant ou derrière le véhicule. Dans ce cas, le montage et l'alignement précis des éléments de référence sur, au-dessus ou au-dessous du véhicule de mesure ou de travail, constituent une source de sérieux inconvénients, surtout en raison de l'espace nécessaire. Par ailleurs, en règle générale, il est difficile d'éviter, pendant les opérations de mesure, certains variations dans la position des éléments de référence par rapport aux points de référence des rails qui déterminent la base de mesure.The methods of devices known hitherto in the field of track surveying, in particular for carrying out rail correction works, have the common feature that the distance between a point on the rail or working is always determined directly and a measurement base, the latter being represented by a reference material element, either straight or curvilinear, in the form of wires, rods or the like (cf. patents GB-A-1423574, AT-A-305 333, DE -A-2818405). These reference material elements must be arranged and constructed in such a way that they coincide as exactly as possible with the reference points of the rails, or are constantly at a fixed distance from them. The rail reference points are notoriously defined using special measuring instruments which equip the measuring and / or working vehicle, or by means of measuring trolleys rolling on the rails at a determined distance in front of or behind the vehicle. In this case, the precise mounting and alignment of the reference elements on, above or below the measuring or working vehicle constitute a source of serious drawbacks, above all because of the space required. Furthermore, as a general rule, it is difficult to avoid, during the measurement operations, certain variations in the position of the reference elements relative to the reference points of the rails which determine the measurement base.

Attendu que, pour niveler un rail, il faut une base rectiligne de mesure, et que pour rectifier ou aligner latéralement un rail dans une courbe il faut généralement une base de mesure en forme d'arc de cercle, il fallait jusqu'à présent, pour exécuter ces deux opérations de mesure ou de correction, prévoir respectivement deux bases distinctes de mesure sur le véhicule de mesure ou de travail. Pour définir une ligne droite en tant que base de mesure il faut disposer d'un point de référence sur le rail, dans un tronçon de voie qui n'a pas encore été corrigé, ainsi qu'un point de référence dans un tronçon de voie qui a déjà été corrigé, tandis que pour définir un arc de cercle en tant que base de mesure dans une partie de rail courbe il faut en plus d'un point de référence situé dans un tronçon de voie pas encore corrigé au moins deux points de référence sités dans un tronçon de voie déjà corrigé.Whereas, to level a rail, you need a rectilinear base of measurement, and that to rectify or align laterally a rail in a curve you generally need a measurement base in the shape of an arc of a circle, until now, to carry out these two measurement or correction operations, respectively provide two separate measurement bases on the measurement or work vehicle. To define a straight line as a measurement base, you must have a reference point on the rail, in a section of track which has not yet been corrected, as well as a reference point in a section of track. which has already been corrected, while in order to define an arc of a circle as a measurement base in a curved rail part, in addition to a reference point located in a track section not yet corrected, at least two points of reference sities in a section of track already corrected.

Il est également connu d'utiliser un procédé de mesure dans lequel on opère avec un goniomètre optique qui se trouve au point de mesure et dont l'axe optique sert de ligne de référence, ainsi qu'avec une source de lumière située aux points de référence des rails et dont la position par rapport à l'axe optique est déterminée par mesure angulaire (cf. brevet CH-A-510 171). Dans ce cas, il est indispensable de monter le goniomètre optique soit exactement au point de mesure, soit à une distance constante et connue de ce point.It is also known to use a measurement method in which one operates with an optical goniometer which is located at the measurement point and whose optical axis serves as a reference line, as well as with a light source located at the measurement points. rail reference and whose position relative to the optical axis is determined by angular measurement (see patent CH-A-510,171). In this case, it is essential to mount the optical goniometer either exactly at the measurement point, or at a constant and known distance from this point.

L'invention vise à résoudre le problème que pose la réalisation d'un procédé simple à mettre en oeuvre pout la mesure des rails, et dans lequel on supprime la nécessité de représenter la base de mesure définie par le moyen des points de référence des rails par le truchement d'un élément matériel de référence ou par l'usage d'un rayon lumineux ou d'un axe optique d'un élément, tout en permettant l'exécution des mesures simultanées de nivellement et d'alignement, ainsi qu'éventuellement la détermination et l'enregistrement de nombreux autres paramètres relatifs aux rails.The invention aims to solve the problem posed by the realization of a simple method to implement for the measurement of the rails, and in which the need to represent the measurement base defined by means of the reference points of the rails is eliminated. by means of a reference material element or by the use of a light ray or an optical axis of an element, while allowing the execution of simultaneous leveling and alignment measurements, as well as possibly the determination and recording of many other parameters relating to the rails.

Pour résoudre ce problème, le procédé suivant la présente invention est caractérisé en ce que l'on utilise une ligne de référence indépendante de tous points de référence sur les rails, cette ligne de référence s'étendant au moins approximativement dans le sens longitudinal des rails et étant fixée à au moins un point fixe du véhicule de manière à constituer un système de référence indépendant de la base de mesure et du point de mesure; que l'on mesure les coordonnées des points de référence des rails et des points de mesure par rapport à ce système de référence, et qu'ensuite d'une part à partir des coordonnées des points de référence des rails on calcule la base de mesure et, d'autre part, à partir des coordonnées des points de mesure on calcule leur écart par rapport à la base de mesure.To solve this problem, the method according to the present invention is characterized in that a reference line independent of all reference points on the rails is used, this reference line extending at least approximately in the longitudinal direction of the rails. and being fixed to at least one fixed point of the vehicle so as to constitute a reference system independent of the measurement base and of the measurement point; that the coordinates of the reference points of the rails and of the measurement points are measured in relation to this reference system, and that on the one hand, from the coordinates of the reference points of the rails, the measurement base is calculated and, on the other hand, from the coordinates of the measurement points, their deviation from the measurement base is calculated.

On évite ainsi d'avoir à reproduire la base de mesure par des éléments matériels qui relient concrètement entre eux les points de référence des rails ou d'avoir à les maintenir à une distance fixe par rapport aux points des rails, ce qui est incommode du point de vue du montage et surtout n'assure qu'un positionnement peu précis, et l'on parvient, en utilisant simplement des instruments connus de mesure, surtout des instruments conçus pour mesurer des longueurs et des goniomètre, à déterminer chaque position de tous les points importants le long des rails par rapport à la ligne de référence définie sur le véhicule de mesure ou de travail et qui est indépendante des points de référence sur les rails. Par conséquent, la méthode de mesure suivant la présente invention est particulièrement souple, attendu qu'en règle générale et indubitablement de nombreux points de référence quelconques peuvent être pris en considération dans qu'il soit nécessaire de recourir à un élément matériel de référence couvrant la totalité de ces points de référence. En outre, il est possible, en utilisant une seule et même ligne de référence, d'exécuter simultanément la totalité des opérations de mesure qui sont nécessaires pour mener à bien un processus de mesure de voie et de faire la correction nécessaire des rails, notamment des mesures de nivellement, d'alignement et de relèvement et les paramètres de rails que l'on désire obtenir peuvent être déterminés en utilisant un ordinateur automatique opportunément programmé. En outre, on peut aussi suivant l'invention, après une correction de voie et sans recourir à un moyen auxiliaire quelconque, mesurer et enregistrer directement sous les paramètres qui permettent de contrôler la qualité des travaux exécutés. Cet enregistrement, qui est généralement requis par l'Administration des chemins de fer, nécessitait jusqu'à présente des opérations particulières de mesure et des agencements spéciaux d'instruments particuliers. En général, il s'agit dans ce cas d'enregistrer les six paramètres suivants: la surélévation, la déformation, le relèvement (hauteur de flèche) dans le plan horizontal et dans le plan vertical, ainsi que le soulèvement total et le déplacement latéral total des rails, c'est-à-dire les corrections apportées en déplaçant les rails entre la position qu'ils occupaient avant la correction et celle qu'ils occupent après cette correction. Eventuelle- ment, on peut aussi déterminer d'autres paramètres destinés au contrôle du tracé de la voie.This avoids having to reproduce the measurement base by material elements which concretely connect the reference points of the rails to one another or having to keep them at a fixed distance from the points of the rails, which is inconvenient for the from the point of view of assembly and above all ensures only an imprecise positioning, and one succeeds, by simply using known measuring instruments, especially instruments designed to measure lengths and goniometer, to determine each position of all the important points along the rails with respect to the reference line defined on the measuring or working vehicle and which is independent of the reference points on the rails. Consequently, the measurement method according to the present invention is particularly flexible, since as a general rule and undoubtedly many arbitrary reference points can be taken into account in that it is necessary to have recourse to a material reference element covering all of these reference points. In addition, it is possible, using a single reference line, to simultaneously carry out all the measurement operations which are necessary to carry out a track measurement process and to make the necessary correction of the rails, in particular leveling, alignment and bearing measurements and the desired rail parameters can be determined using a suitably programmed automatic computer. In addition, according to the invention, it is also possible, after a channel correction and without resorting to any auxiliary means, to measure and record directly under the parameters which make it possible to control the quality of the work performed. This registration, which is generally required by the Railway Administration, has hitherto required special measurement operations and special arrangements of particular instruments. In general, this involves recording the following six parameters: elevation, deformation, bearing (boom height) in the horizontal and vertical planes, as well as total lifting and lateral displacement total of the rails, that is to say the corrections made by moving the rails between the position they occupied before the correction and that they occupy after this correction. Optionally, other parameters can also be determined for checking the track layout.

Le dispositif pour la mise en oeuvre du procédé est caractérisé en ce que la ligne de référence est constituée par un élément rectiligne de référence qui est soit une partie intégrante du châssis du véhicule, soit fixé ou tendu par rapport à ce châssis, cet élément étant au moins un rayon électromagnétique émis par une source de rayonnement fixée au châssis du véhicule, ou d'un axe optique d'un instrument optique fixé au châssis du véhicule; que des moyens de mesure comportant un pendule sont installés au niveau des points de mesure et de référence des rails, et agencés de manière à mesurer les coordonnées de tous les points de des rails précités dans un système de référence qui est défini à travers la ligne de référence et la verticale passant par cette ligne de référence, de préférence dans le plan vertical contenant cette ligne de référence, et qu'enfin il est prévu un ordinateur automatique pour exploiter toutes les grandeurs mesurées.The device for implementing the method is characterized in that the reference line is constituted by a rectilinear reference element which is either an integral part of the chassis of the vehicle, or fixed or tensioned with respect to this chassis, this element being at least one electromagnetic ray emitted by a source of radiation fixed to the chassis of the vehicle, or from an optical axis of an optical instrument fixed to the chassis of the vehicle; that measuring means comprising a pendulum are installed at the measuring and reference points of the rails, and arranged so as to measure the coordinates of all the points of the aforementioned rails in a reference system which is defined across the line of reference and the vertical passing through this reference line, preferably in the vertical plane containing this reference line, and finally an automatic computer is provided for processing all the quantities measured.

Dans les autres revendications de brevets on décrit des modes avantageux de réalisation de ces dispositifs. L'élément de référence peut être un fil tendu, une fibre, une ficelle ou un objet similaire. Il est recommandé de faire en sorte que l'élément qui constitute la ligne de référence, ou bien le rayon limineux qui en tient lieu, soit protégé des agents atmosphériques extérieurs; au cas où l'on adopterait un rayon lumineux, il faut le protéger contre l'affaiblissement ou la rupture par suite de brouillard ou d'humidité. De préférence, on utilisera pour cela un longeron creux que comporte généralement le châssis du véhicule de mesure ou de travail, pour entourer l'élément de référence ou le ou les rayons lumineux émis par une source limineuse.In the other patent claims, advantageous embodiments of these devices are described. The reference element can be a stretched wire, a fiber, a string or the like. It is recommended to make sure that the element which constitutes the reference line, or the liminous radius which takes its place, is protected from external atmospheric agents; if a light ray is adopted, it must be protected against weakening or rupture due to fog or humidity. Preferably, a hollow spar will be used for this, which generally comprises the chassis of the measurement or work vehicle, to surround the reference element or the light ray or rays emitted by a light source.

L'invention sera maintenant décrite plus en détail en se référant aux dessins. Sur ceux-ci:

  • La figure 1 est une représentation schématique illustrant le principe du procédé suivant l'invention dans un premier mode de réalisation;
  • la figure 1 a est une variante de procédé de ce mode de réalisation, dans le cas de la mesure d'un point sur le rail;
  • la figure 1 b est une extension du procédé de l'invention dans laquelle on utilise quatre points de référence des rails;
  • la figure 2 est un système de référence défini par la ligne de référence;
  • les figures 3 à 10 montrent des détails relatifs à un dispositif pour la mise en oeuvre pratique du procédé illustré par les figures 1 à 3;
  • les figures 11 et 12 montrent schématiquement des dispositifs opérant avec des rayons lumineux en tant que lignes de référence;
  • la figure 13 montre schématiquement un dispositif dans lequel la ligne de référence est définie par l'axe optique d'un goniomètre optique;
  • la figure 14 montre schématiquement la réalisation d'une base de mesure presque absolue en rapport avec l'invention;
  • la figure 15 montre schématiquement un second mode de réalisation du procédé de l'invention et
  • les figures 16 à 18 montrent des détails relatifs à un dispositif se rapportant à ce second mode de réalisation.
The invention will now be described in more detail with reference to the drawings. On these:
  • Figure 1 is a schematic representation illustrating the principle of the method according to the invention in a first embodiment;
  • FIG. 1a is a variant of the method of this embodiment, in the case of the measurement of a point on the rail;
  • FIG. 1 b is an extension of the method of the invention in which four reference points of the rails are used;
  • Figure 2 is a reference system defined by the reference line;
  • Figures 3 to 10 show details of a device for the practical implementation of the method illustrated in Figures 1 to 3;
  • Figures 11 and 12 schematically show devices operating with light rays as reference lines;
  • FIG. 13 schematically shows a device in which the reference line is defined by the optical axis of an optical goniometer;
  • FIG. 14 schematically shows the production of an almost absolute measurement base in relation to the invention;
  • FIG. 15 schematically shows a second embodiment of the method of the invention and
  • Figures 16 to 18 show details of a device relating to this second embodiment.

La figure 1 montre le principe du procédé suivant l'invention. Sur un véhicule 1 de mesure ou de travail, désigné sans autres détails, et qui roule sur des rails 2 et 3, on définit une ligne droite de référence qui s'étend dans le sens longitudinal du véhicule 1, ou des rails. A cet effet, on utilise un longeron cruex 4, orienté dans le sens longitudinal et que l'on trouve généralement sur le châssis d'un véhicule de ce genre, et dans ce longeron la ligne droite qui relie les points centraux A' et C' des deux faces extrêmes 5 et 6 du longeron, constitue la ligne de référence s. Il peut s'agir pour cela, ainsi qu'on le verra plus en détail par la suite, soit d'une droite matérialisée par un élément tendu de référence, par exemple un fil, une fibre ou similaire, soit d'une droite immatérielle constituée par un axe optique d'un appareil ou instrument optique, ou encore d'un rayon lumineux ou d'un faisceau d'un autre type de rayonnement électromagnétique.Figure 1 shows the principle of the method according to the invention. On a measurement or work vehicle 1, designated without further details, and which rolls on rails 2 and 3, a straight reference line is defined which extends in the longitudinal direction of the vehicle 1, or of the rails. For this purpose, a cruex spar 4 is used, oriented in the longitudinal direction and which is generally found on the chassis of a vehicle of this kind, and in this spar the straight line which connects the central points A 'and C 'of the two end faces 5 and 6 of the beam, constitutes the reference line s. For this, it can be a question, as will be seen in more detail below, either of a straight line materialized by a taut reference element, for example a wire, a fiber or the like, or of an immaterial straight line consisting of an optical axis of an optical device or instrument, or of a light ray or a beam of another type of electromagnetic radiation.

Au-dessous des faces terminales 5 et 6 il est prévu un mécanisme ou châssis de mesure comportant des roues de mesure ou des galets palpeurs roulant sur les rails 2 et 3, et dont les points de contact avec ces rails définissent les points de référence A et C des rails. Les deux points de référence A et le point A', d'une part, et les deux points de référence C et le point C', d'autre part, se trouvent dans un plan orienté perpendiculairement par rapport à la ligne de référence s. Un autre mécanisme de mesure, situé en un point quelconque du milieu du véhicule, définit avec ses roues de mesure roulant sur les rails les mesures effectuées aux points respectifs B sur les deux rails 2 et 3. Un pendule 30 incorporé à chaque mécanisme de mesure sert à mesurer l'inclinaison de l'axe des roues et à définir la verticale indépendamment de l'orientation momentanée du véhicule de mesure 1 ou du longeron 4. On obtient ainsi la définition d'un système tridimensionnel de référence grâce au plan vertical contenant la ligne de référence s, comme le montre la figure 2. Pour plus de simplicité, on choisit naturellement un système de coordonnées orthogonal, dont l'origine se trouve par exemple au point A', et qui possède les axes x, y et s portés sur la figure 2. Ainsi, on peut incliner le véhicule 1 ou le longeron 4 par rapport à la verticle, c'est-à-dire en s'écartant de l'axe y de la figure 2 suivant un angle 8 mesuré par le pendule 30.Below the end faces 5 and 6 there is provided a measuring mechanism or chassis comprising measuring wheels or feeler rollers rolling on the rails 2 and 3, and the points of contact with these rails define the reference points A and C of the rails. The two reference points A and the point A ', on the one hand, and the two reference points C and the point C', on the other hand, lie in a plane oriented perpendicular to the reference line s . Another measurement mechanism, located at any point in the middle of the vehicle, defines with its measurement wheels rolling on the rails the measurements made at the respective points B on the two rails 2 and 3. A pendulum 30 incorporated in each measurement mechanism is used to measure the inclination of the wheel axis and to define the vertical independently of the momentary orientation of the measuring vehicle 1 or the spar 4. This gives the definition of a three-dimensional reference system thanks to the vertical plane containing the reference line s, as shown in Figure 2. For simplicity, we naturally choose an orthogonal coordinate system, the origin of which is for example at point A ', and which has the axes x, y and s shown in Figure 2. Thus, one can tilt the vehicle 1 or the beam 4 relative to the verticle, that is to say by deviating from the y axis of Figure 2 at an angle 8 measured by pendulum 30.

La ligne de référence s n'est définie qu'à travers les deux points A' et C' et indépendamment de n'importe quel autre point sur les rails. Or, le but d'un relevé des rails consiste à déterminer l'écart entre un point de mesure B sur les rails et une base de mesure définie par les points de référence A et C de ces rails, qui représente le profil théorique des rails. Dans le cas d'un nivellement d'un tronçon de voie rectiligne, la base de mesure sera naturellement une droite qui passe par le point de référence A qui se trouve sur un tronçon de voie qui n'a pas encore été corrigé et par le point de référence C qui se trouve sur le tronçon de voie déjà corrigé. Alors que jusqu'à présent la distance entre le point de mesure B et la ligne reliant les points de référence A et C était déterminée directement à l'aide d'un élément de référence représentant cette droite AC, on définit désormais suivant l'invention d'abord les coordonnées des points de référence A et C ainsi que le point de mesure B dans le système défini par la ligne de référence s et indépendant de tous les points de référence des rails. A partir des coordonnées ainsi mesurées on calcule ensuite, à l'aide d'un ordinateur automatique monté sur le véhicule 1, les écarts respectifs des points de mesure B par rapport à la base de mesure définie par les points de référence A et C.The reference line s is only defined through the two points A 'and C' and independently of any other point on the rails. The purpose of a rail survey is to determine the difference between a measurement point B on the rails and a measurement base defined by the reference points A and C of these rails, which represents the theoretical profile of the rails. . In the case of leveling of a straight track section, the measurement base will naturally be a straight line which passes through the reference point A which is on a track section which has not yet been corrected and by the reference point C which is on the already corrected section of track. While up to now the distance between the measurement point B and the line connecting the reference points A and C was determined directly using a reference element representing this straight line AC, we now define according to the invention first the coordinates of the reference points A and C as well as the measurement point B in the system defined by the reference line s and independent of all the reference points of the rails. From the coordinates thus measured, the respective deviations of the measurement points B from the measurement base defined by the reference points A and C are then calculated, using an automatic computer mounted on the vehicle 1.

Pour mesure les coordonnées précitées des points de référence A et C on a installé des moyens respectifs de mesure aux faces d'extrémités du longeron, dans des plans orthogonaux par rapport à la ligne de référence s et qui contiennent les points A' et C', pour permettre de mesurer les triangles AA'A et CC'C qui se trouvent dans ces plans. Etant donné que l'on connaît la distance h entre les côtés disposés face à face des roues à boudin annulaire du mécanisme mobile de mesure, et par conséquent l'écartement AA ou CC, donc la base du triangle, il suffit désormais de mesurer les deux autres triangles a1 et a2 ou c1 et c2 à l'aide de deux instruments pour mesurer les longueurs. Alternativement, on pourrait aussi mesurer à l'aide d'un goniomètre l'angle a ou y au point A' ou C' entre les côtés adjacents des triangles et, à l'aide d'un instrument à mesurer les longueurs, celles des deux côtés adjacents des triangles a1 ou a2, ou c1 ou c2. On obtient ainsi par exemple pour le triangle AA'A les trois grandeurs connues h, a1, a2 ou h, α, a 1, ou encore h, α, a2, à partir desquelles, en se basant sur des rapports trigonométriques connus, en trouve la position des points A' et C' par rapport aux points de référence A ou C, et par conséquent en relation avec les bases usuelles de mesure.To measure the aforementioned coordinates of the reference points A and C, respective measuring means have been installed at the end faces of the beam, in planes orthogonal to the reference line s and which contain the points A 'and C' , to measure the triangles AA'A and CC'C which are in these planes. Since we know the distance h between the sides arranged face to face of the annular flange wheels of the mobile measuring mechanism, and consequently the distance AA or CC, therefore the base of the triangle, it is now sufficient to measure the two other triangles a1 and a2 or c1 and c2 using two instruments to measure the lengths. Alternatively, one could also measure using a goniometer the angle a or y at point A 'or C' between the adjacent sides of the triangles and, using an instrument to measure the lengths, those of two adjacent sides of triangles a1 or a2, or c1 or c2. We thus obtain for example for the triangle AA'A the three known quantities h, a1, a2 or h, α, a 1, or even h, α, a2, from which, based on known trigonometric ratios, in finds the position of points A 'and C' with respect to reference points A or C, and therefore in relation to the usual measurement bases.

La position du point de mesure B par rapport à la ligne de référence s résulte de la mesure des deux triangles qui se trouvent tous deux dans le même plan transversal du longeron 4 qui est perpendiculaire à la ligne de référence s et contient le point de mesure B. Un triangle se trouve à l'intérieur du longeron 4 et se définit par son sommet B', qui se trouve sur la ligne de référence s et par le point d'intersection dudit plan avec les deux arêtes inférieures du longeron 4, dont la distance par rapport au point B', est désignée par les symboles b' 1 et b'2. L'autre triangle se trouve sous le longeron 4 et se définit par les deux points de mesure B des rails et le point d'intersection B" qui se trouve au milieu de côté inférieur du longeron; les côtés du triangle qui sont adjacents à ce point d'intersection B" sont égaux à la largeur i du longeron 4 et par conséquent ils sont connus. Pour mesurer ces triangles intérieurs il est nécessaire de prévoir également deux instruments de mesure des longueurs pour mesurer la longueur des côtés b' et b'2, ou bien un seul instrument de mesure des' longueurs qui mesure l'un de ces deux côtés, ainsi qu'un goniomètre pour mesurer l'angle d'intersection f31 au point B'. D'une façon analogue, on utilise, pour mesurer le triangle inférieur dont la base h est connue, soit deux instruments de mesure des longueurs qui mesurent effectivement les côtés b1 et b2, soit un seul instrument de mesure des longueurs qui mesure l'un de ces deux côtés, ainsi qu'un goniomètre pour mesurer l'angle d'intersection b2 au point B". Attendu que le longeron est plus ou moins incliné par rapport au plan des rails, ou peut également être guachi, on déterminera l'angle , que forme le côté inférieur du longeron avec un côté, par exemple le côté b 1, du triangle inférieur, en utilisant pour cela un autre goniomètre. A partir des données de mesure précitées on obtient par l'intermédiaire de relations trigonométriques on géométriques la position du point de mesure B par rapport à la ligne de référence s 2.The position of the measurement point B relative to the reference line s results from the measurement of the two triangles which are both in the same transverse plane of the beam 4 which is perpendicular to the reference line s and contains the measurement point B. A triangle is located inside the spar 4 and is defined by its apex B ', which is on the reference line s and by the point of intersection of said plane with the two lower edges of the spar 4, of which the distance from point B 'is designated by the symbols b' 1 and b'2. The other triangle is located under the spar 4 and is defined by the two measurement points B of the rails and the point of intersection B "which is in the middle of the lower side of the spar; the sides of the triangle which are adjacent to this intersection point B "are equal to the width i of the beam 4 and therefore they are known. To measure these interior triangles it is necessary to also provide two length measuring instruments to measure the length of the sides b 'and b'2, or else a single length measuring instrument which measures one of these two sides, as well as a goniometer to measure the angle of intersection f31 at point B '. Similarly, to measure the lower triangle whose base h is known, either two length measuring instruments which effectively measure the sides b1 and b2 are used, or a single length measuring instrument which measures one on these two sides, as well as a goniometer to measure the angle of intersection b2 at point B ". Whereas the spar is more or less inclined with respect to the plane of the rails, or can also be chopped, we will determine the angle, formed by the lower side of the side member with one side, for example the side b 1, of the lower triangle, using another goniometer for this purpose. of trigonometric or geometric relations the position of the measurement point B with respect to the reference line s 2.

La figure la a montre une variante de l'agencement de mesure destiné à déterminer la position du point de mesure B en relation avec la ligne de référence s. Au lieu du triangle inférieur BB"B selon la figure 1 on mesurera selon la disposition de la figure 1 un carré ayant un côté h, qui correspond à la distance entre les roues de mesure à boudin du mécanisme de mesure, un côté i, qui correspond à la largeur du longeron 4, ainsi que les côtés b" et b"2, qui relient par paires les points terminaux des deux côtés précités. Pour mesurer ce carré il faut quatre instruments de mesure, qui mesurent la longueur des deux côtés b" 1 et b"2 ainsi que les deux angles (33 et (34.FIG. 1a shows a variant of the measurement arrangement intended to determine the position of the measurement point B in relation to the reference line s. Instead of the lower triangle BB "B according to FIG. 1, a square will be measured according to the arrangement of FIG. 1 having a side h, which corresponds to the distance between the flanged measuring wheels of the measuring mechanism, a side i, which corresponds to the width of the spar 4, as well as the sides b "and b" 2, which connect in pairs the end points of the two sides mentioned above. To measure this square, four measuring instruments are required, which measure the length of the two sides b "1 and b" 2 as well as the two angles (33 and (34.

La figure 1 b montre schématiquement le procédé suivant l'invention au cas où il serait nécessaire d'avoir dans la section de voie non corrigée du nouveau le point de référence A et dans la section de voie déjà corrigée deux paires de points de référence C et D situés à une distance connue entre eux. Trois points de référence A, C et D pour la construction d'un arc de cercle en tant que base de mesure seront nécessaires pour mesurer ou aligner une voie cintrée dans une courbe. Dans ce cas, le point de référence D et le point D' se trouvent dans le plan transversal contenant la face extrême arrière du longeron 4, tandis que le point de référence C et le point C' qui se trouvent en vant dudit plan sont contenus dans un plan transversal du longeron 4 qui se situe entre les points de mesure B et le point de référence D et peuvent être mesurés avec la même précision que les points de mesure B, conformément aux explications données plus haut en se référant à la figure 1.FIG. 1 b schematically shows the method according to the invention in the case where it is necessary to have in the uncorrected track section of the new one the reference point A and in the already corrected track section two pairs of reference points C and D located at a known distance between them. Three reference points A, C and D for the construction of a circular arc as a measurement base will be necessary to measure or align a curved track in a curve. In this case, the reference point D and the point D 'are in the transverse plane containing the rear end face of the beam 4, while the reference point C and the point C' which are in front of said plane are contained in a transverse plane of the beam 4 which is located between the measurement points B and the reference point D and can be measured with the same accuracy as the measurement points B, in accordance with the explanations given above with reference to FIG. 1 .

Les figures 3 à 10 montrent un premier mode de réalisation pour la mise en oeuvre du procédé suivant l'invention, dans lequel la ligne de référence s est réalisée sous forme d'un fil 7 qui s'étend à l'intérieur d'un longeron creux 4 du châssis du véhicule. Au lieu d'un fil, on peut aussi bien entendu utiliser une fibre, une ficelle ou un moyen similaire. Dans ce qui suit on se référera uniquement, en général, et dans un but de clarté, à un fil 7.FIGS. 3 to 10 show a first embodiment for implementing the method according to the invention, in which the reference line s is produced in the form of a wire 7 which extends inside a hollow spar 4 of the vehicle chassis. Instead of a wire, one can of course also use a fiber, a string or the like. In what follows we will only refer, in general, and for the sake of clarity, to a thread 7.

D'après la figure 3, on voit qu'il est prévu un tube 8 disposé au centre du longeron 4 et dans le sens longitudinal de celui-ci, et le long de son axe s'étend un fil 7 représentant la ligne de référence s. A ses deux extrémités ce tube 8 est maintenu dans des blocs d'ancrage 9 et 10 fixés et centrés à proximité des faces terminales 5 et 6 du longeron 4 grâce à des vis d'arrêt 11 (figure 8) se vissant dans la paroi du longeron, où une bande de renforcement 12 est prévue tout autour du longeron. A la première extrémité 5 du longeron 4 l'extrémité du fil 7 qui émerge du tube 8 est ancrée à un tourillon de guidage 13, qui traverse une ouverture prévue au centre de la paroi terminale 5 du longeron et vient buter avec son extrémité adjacente à cette paroi terminale 5 contre un bloc d'ancrage 9. A l'autre face extrême 6 du longeron le fil 7, comme le montre la figure 8, est fixé à la tige 14 du piston 15 d'un vérin hydraulique 16 qui est logé dans le prolongement du tube 8 dans le bloc d'ancrage 10. Lorsque le piston 15 est soumis à un fluide sous pression, le fil 7 est tendu avec une force prédéterminée. L'intérieur du tube 8 peut être rempli, grâce à un raccord de remplissage 16a représenté figure 3, avec un liquide ayant la même masse volumique ou approximativement la même masse volumique ou densité que l'élément de référence 7, si l'on utilise avantageusement dans ce cas, pour des raisons de poids un fil textile mais pas un fil métallique. Cela permet d'amortir des oscillations et vibrations du fil. Sur la face externe du cylindre 16 et dans le prolongement du fil 7 est fixé un tourillon de guidage 17 qui définit conjointement au premier tourillon de guidage 13 à l'autre extrémité du longeron 4, l'axe, extérieur à ce longeron, de la ligne de référence s. A ces tourillons de guidage 13 et 17 s'appliquent des dispositifs de mesure prévus aux points A et C et qui, dans l'exemple de réalisation représenté, sont constitués par deux instruments de mesure des longueurs, destinés à mesurer la longueur des côtés de triangles a1 et a2 ainsi que c1 et c2 mentionnées plus haut. Comme le montre la figure 8, les deux instruments de mesure des longueurs 20 et 21 sont montés en rotation grâce à des roulements à billes 22 et 23 sur le tourillon de guidage 17 pour mesurer les distances c1 et c2. D'une manière analogue, sur le tourillon de guidage 13 sont montés également en rotation, grâce à des roulements à billes correspondants, les deux instruments 18 et 19 de mesure des longueurs pour mesurer les distances a 1 et a2. Les autres extrémités des instruments de mesure des longueurs 18, 19 et 20, 21, également visibles figures 4, s'articulent sur les essieux de roue des deux mécanismes de mesure qui se trouvent aux points de référence A ou C, et comme le montre la figure 9 pour les deux instruments 18 et 19 de mesure des longueurs ainsi que l'essieu 24 des roues de mesure 25, qui appartiennent au mécanisme de mesure 26 et définissent les points de référence A des rails. Le mécanisme de mesure 26 comporte un système de guidage à deux tiges 27 disposées en V, qui s'articulent sur un support 26a fixé au châssis du véhicule et peuvent, par l'intermédiaire d'un dispositif élévateur 28 agissant sur une traverse 29 reliant ces deux tiges 27 entre elles, être relevées lorsqu'on doit déplacer le véhicule d'une zone à une autre. Sur l'essieu du roue 24 est fixé en pendule 30 pour mesurer l'inclinaison du mécanisme de mesure par rapport à la verticale dans un plan orienté perpendiculairement aux rails. Le mécanisme de mesure qui se trouve aux points de mesure C ainsi qu'aux points de mesure B peut être réalisé exactement comme le mécanisme de mesure 26.From Figure 3, we see that there is provided a tube 8 disposed in the center of the beam 4 and in the longitudinal direction thereof, and along its axis extends a wire 7 representing the reference line s. At its two ends, this tube 8 is held in anchor blocks 9 and 10 fixed and centered near the end faces 5 and 6 of the spar 4 by means of stop screws 11 (FIG. 8) screwed into the wall of the spar, where a reinforcing strip 12 is provided all around the spar. At the first end 5 of the spar 4 the end of the wire 7 which emerges from the tube 8 is anchored to a guide pin 13, which passes through an opening provided in the center of the end wall 5 of the spar and abuts with its end adjacent to this end wall 5 against an anchoring block 9. At the other end face 6 of the spar, the wire 7, as shown in FIG. 8, is fixed to the rod 14 of the piston 15 of a hydraulic cylinder 16 which is housed in the extension of the tube 8 in the anchor block 10. When the piston 15 is subjected to a pressurized fluid, the wire 7 is tensioned with a predetermined force. The interior of the tube 8 can be filled, by means of a filling connector 16a shown in FIG. 3, with a liquid having the same density or approximately the same density or density as the reference element 7, if one uses advantageously in this case, for reasons of weight, a textile thread but not a metallic thread. This dampens the wire's oscillations and vibrations. On the external face of the cylinder 16 and in the extension of the wire 7 is fixed a guide pin 17 which jointly defines the first guide pin 13 at the other end of the beam 4, the axis, outside this beam, of the reference line s. To these guide pins 13 and 17 are applied measuring devices provided at points A and C and which, in the illustrated embodiment, consist of two length measuring instruments, intended to measure the length of the sides of triangles a1 and a2 as well as c1 and c2 mentioned above. As shown in FIG. 8, the two length measuring instruments 20 and 21 are mounted in rotation by means of ball bearings 22 and 23 on the guide pin 17 to measure the distances c1 and c2. Similarly, on the guide pin 13 are also mounted in rotation, by means of corresponding ball bearings, the two instruments 18 and 19 for measuring the lengths to measure the distances a 1 and a2. The other ends of the length measuring instruments 18, 19 and 20, 21, also visible in FIGS. 4, are articulated on the wheel axles of the two measuring mechanisms which are located at the reference points A or C, and as shown FIG. 9 for the two length measuring instruments 18 and 19 as well as the axle 24 of the measuring wheels 25, which belong to the measuring mechanism 26 and define the reference points A of the rails. The measuring mechanism 26 comprises a guide system with two rods 27 arranged in a V, which are articulated on a support 26a fixed to the chassis of the vehicle and can, by means of a lifting device 28 acting on a cross member 29 connecting these two rods 27 between them, be raised when the vehicle has to be moved from one zone to another. On the axle of the wheel 24 is fixed in pendulum 30 to measure the inclination of the measuring mechanism relative to the vertical in a plane oriented perpendicular to the rails. The measuring mechanism located at measuring points C as well as at the measurement points B can be carried out exactly like the measurement mechanism 26.

Le moyen de mesure représenté figures 3, 6 et 10 au point de mesure B comprend un système de mesure installé sous le longeron 4 et un système de mesure installé à l'intérieur de ce longeron 4. Le système inférieur se compose, dans l'exemple représenté, de deux instruments de mesure de longueur 31 et 32 (figure 6) qui relient le point B" selon la figure 1 avec les deux points de mesure B définis par les roues de mesure correspondantes et sert à mesurer les distances ou côtés de triangle b1 et b2 selon la figure 1. Ces instruments de mesure de longueur peuvent pivoter à leur extrémité supérieure autour d'un pivot représenté par le point B", tandis que leur extrémité inférieure s'articule sur l'essieu des roues du mécanisme de mesure correspondant. En outre, un goniomètre 33 est agencé sur l'axe précité pour mesurer t'angie p selon la figure 1. Le système interne de mesure, représenté schématiquement sur la figure 10, est monté à l'intérieur d'un bloc d'ancrage 34, lequel est réalisé comme les blocs d'ancrage 9 et 10, et maintient le tube 8 correctement centré. Le système interne de mesure, dans la zone duquel le tube 8 présente une interruption, se compose également dans l'exemple représenté, de deux instruments 35 et 36 de mesure des longueurs, dont les extrémités supérieures entourent grâce à un oeillet 37 le fil tendu 7 et dont les extrémités inférieures s'articulent sur des pivots 38 montés dans les coins inférieurs des blocs d'ancrage 34.The measuring means shown in Figures 3, 6 and 10 at the measuring point B comprises a measuring system installed under the beam 4 and a measuring system installed inside this beam 4. The lower system consists, in the example shown, of two length measuring instruments 31 and 32 (FIG. 6) which connect point B "according to FIG. 1 with the two measuring points B defined by the corresponding measuring wheels and is used to measure the distances or sides of triangle b1 and b2 according to Figure 1. These length measuring instruments can pivot at their upper end around a pivot represented by point B ", while their lower end is articulated on the axle of the wheels of the mechanism corresponding measure. In addition, a goniometer 33 is arranged on the aforementioned axis to measure the angina p according to FIG. 1. The internal measurement system, shown diagrammatically in FIG. 10, is mounted inside an anchoring block 34, which is made like the anchor blocks 9 and 10, and keeps the tube 8 correctly centered. The internal measurement system, in the area of which the tube 8 has an interruption, also consists in the example shown, of two instruments 35 and 36 for measuring the lengths, the upper ends of which, thanks to an eyelet 37, surround the stretched wire. 7 and whose lower ends are articulated on pivots 38 mounted in the lower corners of the anchor blocks 34.

Un des instruments 31 ou 32, 18 ou 19 ainsi que 20 ou 21 de mesure de longueurs peut aussi être remplacé par un goniomètre aux points B", A' et C', comme on l'a indiqué dans la description du procédé suivant l'invention en se référant aux figures 1 et 1 a.One of the instruments 31 or 32, 18 or 19 as well as 20 or 21 for measuring lengths can also be replaced by a goniometer at points B ″, A ′ and C ′, as indicated in the description of the process according to l with the invention with reference to Figures 1 and 1 a.

Lorsque le tube 8, comme on l'a vu plus haut, est rempli de liquide, il convient avantageusement de munir le fil 7, qui constitue dans ce cas la ligne de référence s, d'ailettes en croix, comme le montre la figure 10. De préférence, naturellement, on pourrait prévoir plusieurs de ces éléments stabilisateurs ou amortisseurs 39 le long du fil 7, et cela de préférence à chaque ventre d'onde du fil 7. Grâce à ces mesures, on amortit largement les oscillations et vibrations du fil 7. Lorsqu'un liquide est présent dans le tube 8, l'intérieur des blocs d'ancrage 34, par rapport auxquels des sections du tube 8 sont fixées ou ajustées de façon étanche, peut également être rempli avec ce liquide.When the tube 8, as seen above, is filled with liquid, it is advantageous to provide the wire 7, which in this case constitutes the reference line s, with cross fins, as shown in the figure 10. Preferably, of course, several of these stabilizing or damping elements 39 could be provided along the wire 7, and this preferably at each wave belly of the wire 7. Thanks to these measures, the oscillations and vibrations are largely damped wire 7. When a liquid is present in the tube 8, the interior of the anchor blocks 34, with respect to which sections of the tube 8 are fixed or tightly adjusted, can also be filled with this liquid.

Grâce à cette disposition du fil ou fibre 7 et aux différentes dispositions de mesure prévues, on obtient que de possibles déformations du longeron 4, telles que flexions ou torsions, n'exercent pratiquement qu'un effet négligeable sur les mesures effectuées. Ainsi, grâce au montage articulé des instruments 18, 19, 20 et 21 de mesure des longueurs sur des tourillons de guidage 13 et 17, on élimine les effets de la torsion du longeron 4, et grâce au système interne de mesure prévu dans le plan transversal du longeron 4 au point B', on mesure chaque position du longeron 4 par rapport au fil ou fibre 7, laquelle est modifiée par des déformations dudit longeron. Avec les mesures décrites on peut déterminer toutes les coordonnées des points de référence A et C, ainsi que celles des points de mesure B dans le système de référence, qui est défini par l'intermédiaire du fil ou fibre 7, et par conséquent par le plan vertical qui contient la ligne de référence s, qui est le plan xy suivant la figure 2.Thanks to this arrangement of the wire or fiber 7 and to the various planned measurement arrangements, it is obtained that possible deformations of the spar 4, such as bending or twisting, practically have only a negligible effect on the measurements carried out. Thus, thanks to the articulated mounting of the instruments 18, 19, 20 and 21 for measuring the lengths on guide pins 13 and 17, the effects of the torsion of the spar 4 are eliminated, and thanks to the internal measurement system provided in the plane. transverse of the beam 4 at point B ', each position of the beam 4 is measured relative to the wire or fiber 7, which is modified by deformations of said beam. With the measurements described, it is possible to determine all the coordinates of the reference points A and C, as well as those of the measurement points B in the reference system, which is defined by means of the wire or fiber 7, and consequently by the vertical plane which contains the reference line s, which is the xy plane according to figure 2.

On a représenté schématiquement sur la figure 7 le système de mesure qui se trouve au-dessous du longeron 4 dans le cas d'une mesure effectuée conformément à la disposition de la figure 1a. Dans cet exemple, les extrémités supérieures de deux instruments 40 et 41 de mesure des longueurs s'articulent sur deux tourillons 42 et 43 montés sur des saillies extérieures du longeron 4. En outre, il est prévu sur les saillies précitées des instruments de mesure d'angle ou goniomètres 44 et 45 qui servent à mesurer l'angle indiqué en f33 et f34 sur la figure la.There is shown schematically in Figure 7 the measurement system which is located below the beam 4 in the case of a measurement carried out in accordance with the arrangement of Figure 1a. In this example, the upper ends of two instruments 40 and 41 for measuring lengths are articulated on two pins 42 and 43 mounted on external projections of the beam 4. In addition, there are provided on the aforementioned projections measuring instruments d angle or goniometers 44 and 45 which serve to measure the angle indicated at f33 and f34 in FIG.

De préférence, on pourrait prévoir à l'intérieur du longeron 4, comme le montre la figure 3, d'autres éléments de renforcement 46 à orientation radiale. Il est avantageux de réaliser le tube 8 conjointement au fil 7 par le vérin hydraulique 16 incorporé à ce tube sous forme d'un ensemble complet que l'on peut glisser selon la nécessité dans le longeron 4, fixer de façon ajustable dans les blocs d'ancrage et extraire à volonté de ceux-ci.Preferably, one could provide inside the beam 4, as shown in Figure 3, other reinforcing elements 46 with radial orientation. It is advantageous to produce the tube 8 together with the wire 7 by the hydraulic cylinder 16 incorporated in this tube in the form of a complete assembly which can be slid as necessary in the beam 4, fix in an adjustable manner in the blocks d anchor and extract at will from these.

Dans la description donnée jusqu'à présent du procédé de l'invention, la dimension h entre les boudins des roues de mesure 25 d'un mécanisme de mesure, et par conséquent l'écartement entre les deux rails, ont été considérés comme étant des valeurs constantes. Dans ce cas, les mécanismes de mesure sont généralement sollicités par un vérin monté sur le châssis du véhicule contre l'un des deux rails, afin qu'à tout instant chacune des roues de mesure porte constamment sur un côté avec son boudin annulaire contre le rail correspondant. Toutes les mesures et corrections ont par conséquent ces rails pour base. Si cependant, l'écartement de la voie n'est pas exactement constant, et varie faiblement d'un endroit à un autre, ce qui est particulièrement possible dans le cas de traverses en bois dont le matériau travaille avec le temps, il est en principle préférable d'effectuer les mesures et corrections d'après l'axe de la voie, donc d'exécuter un alignement suivant cet axe. Dans ce cas, la dimension h ne sera pas prise en tant que constante mais en tant que variable et mesurée à l'aide d'un mécanisme de mesure dont les roues de mesure peuvent coulisser le long de l'axe des roues et sont constamment sollicitées dans le sens de l'éloignement l'une de l'autre par un ressort ou un vérin, afin que leurs boudins portent constamment et simul- tànément contre les deux rails. Un instrument 47 de mesure des longueurs, représenté en traits mixtes sur la figure 9 et monté sur l'essieu des roues de mesure 25, sert à mesurer l'écartement généralement variable entre les rails 2 et 3. A partir de cette valeur mesurée de h on peut aisément relever toutes les mesures sur l'axe de la voie et par conséquent effectuer une rectification suivant cet axe.In the description given so far of the method of the invention, the dimension h between the flanges of the measuring wheels 25 of a measuring mechanism, and therefore the spacing between the two rails, have been considered to be constant values. In this case, the measuring mechanisms are generally biased by a jack mounted on the vehicle chassis against one of the two rails, so that at all times each of the measuring wheels constantly carries on one side with its annular flange against the corresponding rail. All measurements and corrections therefore have these rails as their basis. If, however, the gauge of the track is not exactly constant, and varies slightly from one place to another, which is particularly possible in the case of wooden sleepers whose material works over time, it is in principle preferable to carry out measurements and corrections along the axis of the track, therefore to carry out an alignment along this axis. In this case, the dimension h will not be taken as a constant but as a variable and measured using a measuring mechanism whose measuring wheels can slide along the axis of the wheels and are constantly solicited in the direction of distance one on the other by a spring or a jack, so that their tubes bear constantly and simultaneously against the two rails. An instrument 47 for measuring the lengths, shown in phantom in Figure 9 and mounted on the axle of the measuring wheels 25, is used to measure the generally variable spacing between the rails 2 and 3. From this measured value of h it is easy to take all the measurements on the axis of the track and therefore carry out a correction along this axis.

Dans l'exemple représenté figure 11 la ligne de référence s est constituée par un rayon lumineux 50 émis par une source de lumière 51 le long de l'axe du longeron 4, cette source étant située en A' sur la face terminale 5 du longeron au-dessus des points A de référence des rails. Dans un plan orienté perpendiculairement à ce rayon lumineux 50 et passant par le point de mesure B il est prévu un détecteur optique transparent 52 comportant plusieurs cellules photoélectriques, de préférence au nombre de quatre, réparties radialement et sur la face terminale opposée 6 du longeron il est prévu en C', au-dessus des points de référence C des rails, un détecteur optique 53 de même type, mais non transparent dans ce cas. Grâce à ces détecteurs optiques 52 et 53 d'un genre connu en soi et qui sont fixés au longeron 4, on peut déterminer des écarts des centres de ces détecteurs, qui seraient dûs à d'éventuelles déformations du longeron, d'après la direction réelle du rayon lumineux 50. Les détecteurs 52 et 53 peuvent éventuellement être remplacés par des instruments opérant avec des matrices CCD sensibles à la lumière. Aux points de référence A et C, de même que, sous le longeron 4, aux points de mesure B, sont agencés les mêmes moyens de mesure que ceux décrits plus haut en se référant aux figures 3 à 9, et qui servent à mesurer chaque position des points de rails ou de voie par rapport au système de référence défini par le rayon lumineux 50.In the example shown in Figure 11 the reference line s is constituted by a light ray 50 emitted by a light source 51 along the axis of the spar 4, this source being located at A 'on the end face 5 of the spar above the rail reference points A. In a plane oriented perpendicular to this light ray 50 and passing through the measurement point B there is provided a transparent optical detector 52 comprising several photoelectric cells, preferably four in number, distributed radially and on the opposite end face 6 of the spar il is provided at C ', above the reference points C of the rails, an optical detector 53 of the same type, but not transparent in this case. Thanks to these optical detectors 52 and 53 of a type known per se and which are fixed to the spar 4, it is possible to determine deviations from the centers of these detectors, which would be due to possible deformations of the spar, according to the direction of the light ray 50. The detectors 52 and 53 may possibly be replaced by instruments operating with light-sensitive CCD matrices. At the reference points A and C, as well as, under the spar 4, at the measurement points B, the same measurement means are arranged as those described above with reference to FIGS. 3 to 9, and which are used to measure each position of the track or track points relative to the reference system defined by the light ray 50.

Dans l'exemple suivant la figure 12, la ligne de référence s est constituée par les rayons lumineux 55 et 57 orientés l'un vers l'autre et émanant de deux sources lumineuses respectives 56 et 58 installées en regard l'une de l'autre sur les deux faces extrêmes 5 et 6 du longeron, soit aux points A' et C'. Dans ce cas, dans le plan perpendiculaire aux rayons lumineux et contenant les points de mesure B sont installés en B', deux détecteurs optiques 59 et 60 du type sus-indiqué, destinés à recevoir respectivement l'un et l'autre des rayons lumineux dirigés vers ces détecteurs de façon à permettre de mesurer la position du longeron 4 dans le plan précité par rapport à la ligne de référence ainsi définie par les rayons lumineux, et par conséquent d'éventuelles déformations dudit longeron.In the example according to FIG. 12, the reference line s consists of the light rays 55 and 57 oriented towards one another and emanating from two respective light sources 56 and 58 installed opposite one of the other on the two end faces 5 and 6 of the spar, ie at points A 'and C'. In this case, in the plane perpendicular to the light rays and containing the measurement points B are installed at B ', two optical detectors 59 and 60 of the above-mentioned type, intended to receive one and the other respectively of the light rays directed towards these detectors so as to allow the position of the beam 4 to be measured in the above-mentioned plane with respect to the reference line thus defined by the light rays, and consequently possible deformations of said beam.

La figure 13 montre schématiquement un mode de réalisation donné à titre d'exemple, dans lequel la ligne de référence s est formée par l'axe optique 61 d'un goniomètre optique de type connu et qui coïncide avec l'axe du longeron 4, cet instrument étant monté en A' sur la face terminale 5 du longeron, au-dessus des points de référence A de la voie. Dans des plans orthogonaux par rapport à l'axe optique 61 et qui contiennent d'une part les points de mesure B de la voie et d'autre part les points de référence C de la voie, on a fixé à l'intérieur du longeron des sources lumineuses 63, 64 et 65, 66 qui émettent des rayons lumineux dirigés vers l'instrument optique de mesure angulaire ou goniomètre 62. Ce dernier mesure constamment l'angle formé entre l'axe optique 61 et ces sources lumineuses. Pour un agencement déterminé des sources lumineuses on connaît la valeur de ces angles lorsque le longeron 4 n'est pas déformé, et ils déterminent les points B' et C' qui se trouvent sur l'axe optique 61 au-dessus des points B de mesure des rails ou des points C de référence des rails dans le plan précité. Des déformations du longeron 4 ont pour conséquence des modifications correspondantes des angles formés entre t'axe optique 61 et les rayons lumineux et se déterminent par conséquent d'après la valeur angulaire mesurée. Aux points de référence A et C et aux points de mesure B on a également prévu, comme le montrent les figures 3 à 9, des moyens de mesure pour relever les positions respectives des points de voie par rapport au système de référence défini d'après l'axe optique 61. L'instrument optique 62 pour la mesure des angles peut être constitué notamment par l'appareil décrit dans le brevet AT-PS-312 025 pour déterminer l'angle d'au moins deux rayons lumineux qui s'intersectent entre eux en un point.FIG. 13 schematically shows an embodiment given by way of example, in which the reference line s is formed by the optical axis 61 of an optical goniometer of known type and which coincides with the axis of the spar 4, this instrument being mounted at A 'on the end face 5 of the spar, above the reference points A of the track. In planes orthogonal to the optical axis 61 and which contain on the one hand the measurement points B of the track and on the other hand the reference points C of the track, the inside of the spar has been fixed light sources 63, 64 and 65, 66 which emit light rays directed towards the optical angular measurement instrument or goniometer 62. The latter constantly measures the angle formed between the optical axis 61 and these light sources. For a determined arrangement of the light sources, the value of these angles is known when the beam 4 is not deformed, and they determine the points B 'and C' which are on the optical axis 61 above the points B of measurement of the rails or of the reference points C of the rails in the above-mentioned plane. Deformations of the beam 4 result in corresponding modifications of the angles formed between the optical axis 61 and the light rays and are therefore determined according to the angular value measured. At reference points A and C and at measurement points B, there are also provided, as shown in FIGS. 3 to 9, measuring means for reading the respective positions of the track points with respect to the reference system defined according to the optical axis 61. The optical instrument 62 for measuring the angles can be constituted in particular by the apparatus described in patent AT-PS-312,025 for determining the angle of at least two light rays which intersect between them at one point.

Dans l'exemple selon la figure 14, on utilise une base de mesure dite presque absolue. A cet effet on prévoit, à une distance quelconque du véhicule de mesure ou de travail proprement dit 1, un chariot mobile de mesure indépendant 70 qui se déplace au moins approximativement à la vitesse moyenne du véhicule 1, définit un point de référence Ao situé loin en avant et porte en outre une source lumineuse 71. Sur la face avant du véhicule 1 est prévu un moyen de mesure 72 qui définit la ligne de référence s d'une façon quelconque sur ce véhicule 1. Ce moyen comprend d'une part un télémètre fonctionnant par rayonnement électromagnétique afin de déterminer l'éloignement de la source de lumière 71 et, de ce fait, le point de référence Ao, et d'autre part un goniomètre, par exemple du type décrit dans le brevet précité AT-PS 312 025, par lequel l'angle ε, donc la position angulaire du point de référence Ao par rapport à la ligne de référence s sur le véhicule 1, peut être calculé. Les instruments de mesure portés par le véhicule 1 aux points de voie désignés en A, B, C, D et E sur la figure 13 peuvent être réalisés exactement comme ceux des autres modes de réalisation décrits plus haut. Les points de référence D et E des rails pourraient être concrétisés par un chariot de mesure roulant derrière le véhicule 1 sur les rails, et relié à celui-ci par un timon de commande, afin de mesurer l'orientation de ce chariot de mesure par rapport au véhicule 1 et, partant, par rapport au longeron 4 muni de la ligne de référence.In the example according to FIG. 14, a so-called almost absolute measurement base is used. For this purpose there is provided, at any distance from the actual measuring or working vehicle 1, a mobile independent measuring carriage 70 which moves at least approximately at the average speed of the vehicle 1, defines a reference point A o situated far ahead and further carries a light source 71. On the front face of the vehicle 1 is provided a measuring means 72 which defines the reference line s in any way on this vehicle 1. This means comprises on the one hand a rangefinder operating by electromagnetic radiation in order to determine the distance from the light source 71 and, therefore, the reference point A o , and on the other hand a goniometer, for example of the type described in the aforementioned patent AT- PS 312 025, by which the angle ε, therefore the angular position of the reference point A o with respect to the reference line s on the vehicle 1, can be calculated. The measuring instruments carried by the vehicle 1 at the track points designated in A, B, C, D and E in FIG. 13 can be produced exactly like those of the other embodiments described above. Rail reference points D and E could be embodied by a measuring cart rolling behind the vehicle 1 on the rails, and connected thereto by a control rod, in order to measure the orientation of this measuring cart relative to the vehicle 1 and, therefore, by relative to the beam 4 provided with the reference line.

Les figures 15 à 18 se réfèrent à un autre mode de réalisation d'appareils de mesure installés aux points de voie A, B, C et D et éventuellement à d'autres points situés sur la voie, grâce auxquels on peut déterminer les coordonnées de ces points de référence des rails d'une façon différente par rapport à ce que permettaient les appareils de mesure suivant les figures 1 à 10. Avec des appareils suivant les figures 1 à 10, on procédait à la mesure de distances ou d'angles pour la construction de triangles AA'A, etc. (figure 1 ), afin qu'à partir de ces données de mesure et à l'aide de fonctions trigonométriques l'on puisse calculer les coordonnées des points de voie A, B, etc. dans un système cartésien de coordonnées comportant la ligne de référence s ou les points A', B', etc.Figures 15 to 18 refer to another embodiment of measuring devices installed at the track points A, B, C and D and possibly at other points located on the track, by means of which the coordinates of these reference points of the rails in a different way compared to what the measuring devices according to Figures 1 to 10 allowed. With devices according to Figures 1 to 10, the distances or angles were measured for the construction of triangles AA'A, etc. (figure 1), so that from these measurement data and using trigonometric functions we can calculate the coordinates of the track points A, B, etc. in a Cartesian coordinate system comprising the reference line s or the points A ', B', etc.

La configuration des moyens de mesure selon les figures 15 à 18 permet en revanche de mesurer directement les coordonnées nécessaires dans un système cartésien de coordonnées x A, y A; xe, YB; xc, Yc et xa, yD, lesquelles, comme le montre schématiquement la figure 15, sont obtenues dans chaque plan transversal du longeron 4 situé aux points de voie A, B, C et D. Il s'agit ici de systèmes cartésiens de coordonnées relatives qui sont perpendiculaires à l'axe du longeron 4 et par conséquent à la ligne de référence s et, comme le montre la figure 16 pour les moyens de mesure aux points A de référence de la voie, ces coordonnées sont matérialisées par une pièce en forme de T fixée au longeron 4 et comprenant un bras vertical 73 et une traverse 74. Le sens longitudinal de la traverse 74 norma!e-ment disposée à l'horizontale définit l'axe ou la direction x, tandis que le bras normalement vertical 73, qui est perpendiculaire à ladite traverse, désigne la direction y. L'origine de ce système de coordonnées est le point A', qui se trouve sur le fil 7 formant la ligne de référence s, qui s'étend là aussi à l'intérieur du tube 8 le long de l'axe du longeron 4.The configuration of the measurement means according to FIGS. 15 to 18, on the other hand, makes it possible to directly measure the coordinates necessary in a Cartesian system of coordinates x A , y A ; x e , Y B ; x c , Y c and x a , y D , which, as shown schematically in Figure 15, are obtained in each transverse plane of the spar 4 located at track points A, B, C and D. Here it is Cartesian systems of relative coordinates which are perpendicular to the axis of the spar 4 and therefore to the reference line s and, as shown in FIG. 16 for the measurement means at reference points A of the track, these coordinates are materialized by a T-shaped part fixed to the longitudinal member 4 and comprising a vertical arm 73 and a cross member 74. The longitudinal direction of the cross member 74 norma! e-ment arranged horizontally defines the axis or the direction x, while the normally vertical arm 73, which is perpendicular to said cross member, designates the direction y. The origin of this coordinate system is the point A ', which is on the wire 7 forming the reference line s, which also extends there inside the tube 8 along the axis of the spar 4 .

Les coordonnées y des points de référence A sur les rails, à savoir les points de contact entre les roues de mesure 25 et les rails 2 et 3, seront mesurées selon la figure 16 à l'aide de deux instruments 75 et 76 pour mesurer les distances, qui s'articulent d'une part sur chaque extrémité de la traverse 74 au point d'articulation 80 ou 81, et d'autre part sur l'axe 24 du chariot mobile de mesure, à proximité des roues 25, plus précisément à l'endroit des pivots 82 et 83. La coordonnée x sera mesurée à l'aide d'un instrument 77 pour la mesure des longueurs, qui s'articule d'une part sur l'extrémité inférieure du bras 73 au point de pivotement 84, et d'autre part au pivot précité 83 de l'instrument 75 de mesure des longueurs. Attendu que le système de coordonnées tourne avec le longeron 4 autour de l'axe de ce dernier, si par exemple il se produit une déformation ou une torsion de ce longeron 4 sa position angulaire par rapport à la verticale sera déterminée à l'aide d'un pendule 78 agencé au point A', ce qui permet de mesurer les coordonnées des points A dans le système de référence défini par le fil précité 7 et le plan vertical qui contient ce fil 7.The coordinates y of the reference points A on the rails, namely the points of contact between the measuring wheels 25 and the rails 2 and 3, will be measured according to FIG. 16 using two instruments 75 and 76 to measure the distances, which are articulated on the one hand on each end of the cross member 74 at the point of articulation 80 or 81, and on the other hand on the axis 24 of the mobile measuring carriage, near the wheels 25, more precisely at the location of pivots 82 and 83. The x coordinate will be measured using an instrument 77 for measuring the lengths, which is articulated on the one hand on the lower end of the arm 73 at the pivot point 84, and on the other hand to the aforementioned pivot 83 of the length measuring instrument 75. Whereas the coordinate system rotates with the spar 4 around the latter's axis, if for example there is a deformation or a torsion of this spar 4 its angular position relative to the vertical will be determined using 'a pendulum 78 arranged at point A', which makes it possible to measure the coordinates of points A in the reference system defined by the above-mentioned wire 7 and the vertical plane which contains this wire 7.

Sur la figure 15 on a représenté les roues normales 95 du véhicule de mesure qui avance dans le sens de la flèche, ainsi que les roues de mesure 25; les points de référence arrière D de la voie seront définis par les roues arrière du chariot de mesure proprement dit 97 qui roule sur les rails et qui est fixé par un timon de commande 96 au châssis ou au longeron 4 du véhicule de mesure, ce qui détermine la position de ce chariot mobile de mesure par rapport au longeron 4. Les coordonnées mesurées dans les différents systèmes de coordonnées, qui sont par conséquent déterminées dans chaque cas dans les plans transversaux du longeron 4 qui passent par les points de rails A, B et C, sont indiqués sur la figure 15. Dans chaque direction x se trouvent les valeurs xe, xb et xc que l'on détermine à l'aide de l'instrument 77 de mesure des longueurs (figure 16) ou des instruments analogiques de mesure des autres systèmes de mesure. Dans les directions y se trouvent les valeurs ya1, yb1 et yc1, pour la roue de mesure gauche (dans le sens de marche) sur le rail 2, et les valeurs yar; ybr et ycr pour la roue droite (toujours dans le sens de marche) sur le rail 3. Ces coordonnées seront mesurées par les instruments 75 et 76 de mesure des longueurs, ainsi que par les instruments de mesure analogique des autres moyens de mesure.FIG. 15 shows the normal wheels 95 of the measurement vehicle which advances in the direction of the arrow, as well as the measurement wheels 25; the rear reference points D of the track will be defined by the rear wheels of the actual measuring carriage 97 which rolls on the rails and which is fixed by a drawbar 96 to the chassis or the side member 4 of the measuring vehicle, which determines the position of this mobile measuring carriage relative to the beam 4. The coordinates measured in the various coordinate systems, which are therefore determined in each case in the transverse planes of the beam 4 which pass through the points of rails A, B and C, are indicated in FIG. 15. In each direction x are the values x e , x b and x c which are determined using the length measuring instrument 77 (FIG. 16) or the analog measuring instruments of other measuring systems. In the directions y are the values y a1 , y b1 and y c1 , for the left measuring wheel (in the direction of travel) on rail 2, and the values y ar ; y br and y cr for the right wheel (always in the running direction) on rail 3. These coordinates will be measured by the length measuring instruments 75 and 76, as well as by the analog measuring instruments of the other measuring means .

Tous les moyens de mesure comportent, en dehors du pendule 78 selon la figure 16, des pendules correspondants avec lesquels les angles désignésen δA, 8B, δc. ou δD sur la figure 15 seront mesurés, ces angles étant formés entre d'une part l'axe longitudinal du bras 73 de la figure 16 et l'autre bras correspondant, c'est-à-dire chaque axe y des différents systèmes de coordonnées, et d'autre part la verticale. En cas de déformation du longeron 4, tous ces angles peuvent avoir des valeurs différentes, autrement dit, les différents systèmes de coordonnées relatives peuvent avoir une orientation différente entre eux.All the measurement means comprise, apart from the pendulum 78 according to FIG. 16, corresponding pendulums with which the angles designated in δ A , 8 B , δ c . or δ D in FIG. 15 will be measured, these angles being formed between on the one hand the longitudinal axis of the arm 73 of FIG. 16 and the other corresponding arm, that is to say each y axis of the different systems coordinates, and on the other hand the vertical. In the event of deformation of the beam 4, all these angles can have different values, in other words, the different relative coordinate systems can have a different orientation between them.

En cas d'écarts importants entre les points relevés sur les rails et les valeurs normales, que peuvent atteindre ces points dans leur système de coordonnées, par conséquent et par exemple en cas de glissement important des points de référence A des voies suivant la figure 16, une modification des coordonnées x, donc de l'instrument de mesure des longueurs 77, risque d'engendrer une erreu dans les coordonnées y mesurées, et inversement. Pour éviter cet inconvénient, une extrémité de chacun des instruments de mesure des longueurs suivant la figure 16 et des instruments de mesure de longueur 75, 76 et 77, au lieu de s'articuler simplement sur un axe d'articulation, est montée coulissante le long de la courbe d'une came de correction 79, contre laquelle cette extrémité de l'instrument de mesure concerné vient buter. Cette courbe est une cardioïde.In the event of significant deviations between the points noted on the rails and the normal values, which these points can reach in their coordinate system, consequently and for example in the event of significant sliding of the reference points A of the tracks according to figure 16 , a modification of the x coordinates, therefore of the length measuring instrument 77, risks generating an error in the y coordinates measured, and vice versa. To avoid this inconvenience, one end of each of the length measuring instruments according to FIG. 16 and of the length measuring instruments 75, 76 and 77, instead of being articulated simply on an articulation axis, is slidably mounted along the curve of a cam correction 79, against which this end of the measuring instrument concerned abuts. This curve is a cardioid.

Dans le plan transversal du longeron 4 qui contient le point de mesure B de la voie on mesurera de nouveau sa flexion par rapport au fil 7, et pour cela il est préférable de mesurer le glissement relatif entre le longeron 4 et le fil 7 dans le même système de coordonnées relatives xe, YB (figure 15), ainsi qu'il a été exposé plus haut. Une disposition avantageuse qui convient pour la mesure en question à l'intérieur du longeron 4 est représentée figure 18 et comprend un système de mesure 85 pour mesurer le déplacement dans le sens y et un système de mesure 86 exactement de même conception mais disposé avec un décalage angulaire de 90 degrés autour de l'axe du fil 7 pour la mesure du déplacement dans le sens x. Les deux systèmes sont disposés perpendiculairement au sens du fil 7. La description qui suit ne se réfère qu'au système de mesure 85 dont les composants sont désignés par des chiffres de référence sur la figure 18. Une tige de guidage rectiligne 87 orientée dans le sens y, montée à coulissement libre dans des paliers 88, est rendue solidaire à ses extrémités par des plaquettes 84 et 89 du noyau mobile 90 d'un instrument 91 de mesure des longueurs qui est donc disposé parallèlement à la tige de guidage 87. Cet instrument 91 de mesure des longueurs est d'une conception connue dans ce domaine technique, suivant lequel aucun contact physique n'est produit entre le noyau 90 et le corps de l'instrument. Un curseur 92 solidaire de la tige de guidage 87, qui s'étend perpendiculairement à celle-ci, donc dans le sens x, entoure de ses deux bras le fil 7. L'ensemble du système de mesure 85, de même que l'autre système de mesure 86, est rigidement fixé par des vis 93 au longeron 4 ou à la paroi d'un bloc d'ancrage fixé à l'intérieur de ce longeron, selon la disposition des blocs 34 de la figure 10. Chaque déplacement du fil 7 parallèlement à la tige 87 est transmis à l'instrument 91 et mesuré par celui-ci, tandis qu'un déplacement dans le sens perpendiculaire à cette tige 87 ne produit aucun effet. D'une manière analogue, chaque déplacement du fil 7 dans le sens x sera perçu et transmis par le curseur de l'autre système 86.In the transverse plane of the spar 4 which contains the measurement point B of the track, its bending will again be measured relative to the wire 7, and for this it is preferable to measure the relative slip between the spar 4 and the wire 7 in the same system of relative coordinates x e , YB (Figure 15), as discussed above. An advantageous arrangement which is suitable for the measurement in question inside the beam 4 is shown in FIG. 18 and includes a measurement system 85 for measuring the displacement in the y direction and a measurement system 86 of exactly the same design but arranged with a angular offset of 90 degrees around the axis of the wire 7 for measuring the displacement in the x direction. The two systems are arranged perpendicular to the direction of the wire 7. The description which follows only refers to the measuring system 85, the components of which are designated by reference numbers in FIG. 18. A straight guide rod 87 oriented in the direction y, mounted to slide freely in bearings 88, is made integral at its ends by plates 84 and 89 of the movable core 90 of an instrument 91 for measuring lengths which is therefore arranged parallel to the guide rod 87. This instrument 91 for measuring lengths is of a design known in this technical field, according to which no physical contact is produced between the core 90 and the body of the instrument. A cursor 92 integral with the guide rod 87, which extends perpendicularly to the latter, therefore in the x direction, surrounds the wire 7 with its two arms. The entire measuring system 85, as well as the another measurement system 86 is rigidly fixed by screws 93 to the spar 4 or to the wall of an anchor block fixed inside this spar, according to the arrangement of the blocks 34 of FIG. 10. Each movement of the wire 7 parallel to the rod 87 is transmitted to the instrument 91 and measured by the latter, while a movement in the direction perpendicular to this rod 87 has no effect. Similarly, each movement of the wire 7 in the x direction will be perceived and transmitted by the cursor of the other system 86.

Lorsqu'on utilise le procédé de l'invention pour des travaux de correction de voie et que, par conséquent, les moyens de mesure et de référence sont installés sur une machine à rectifier les voies équipée de pinces à galets ou à rouleaux pour niveler et dresser les rails, il peut être avantageux que les points B de mesure de la voie ou des rails constituent les points d'attaque des pinces à galets. Une autre possibilité avantageuse, en ce qui concerne le choix des points B de mesure de la voie dans le cas d'un véhicule de travail ou d'une machine à rectifier les voies équipée d'un dispositif de bourrage du ballast, réside dans le fait que les points de mesure des rails, situés juste en avant et en arrière du dispositif de bourrage qui peut comporter un ou plusieurs ensembles de pioches de bourrage, peuvent être constitués par des roues ou palpeurs de mesure et que les coordonnées mesurées d'après ces points de mesure de la voie peuvent être utilisées pour calculer un point moyen de mesure des rails situé entre ces points et qui coïnciderait ou presque avec l'emplacement des outils de bourrage. Cette solution est commode car il est évident, pour des raisons pratiques, qu'il est impossible d'utiliser les outils de bourrage eux- mêmes pour définir les points de mesure des rails.When the method of the invention is used for track correction work and, consequently, the measurement and reference means are installed on a track straightening machine equipped with roller or roller clamps for leveling and erecting the rails, it may be advantageous if the measuring points B of the track or rails constitute the points of attack of the roller clamps. Another advantageous possibility, with regard to the choice of track measurement points B in the case of a working vehicle or a track straightening machine equipped with a ballast tamping device, lies in the fact that the measurement points of the rails, located just in front and behind the tamping device which may include one or more sets of tamping picks, can be constituted by measuring wheels or probes and that the coordinates measured according to these track measurement points can be used to calculate an average rail measurement point between these points that would almost coincide with the location of the tamping tools. This solution is convenient because it is obvious, for practical reasons, that it is impossible to use the tamping tools themselves to define the measurement points of the rails.

En règle générale il est requis par l'administration, dans les travaux de rectification des voies, dans le bus de contrôler la qualité des corrections effectuées, d'enregistrer les six paramètres énoncés plus haut qu'il fallait jusqu'à présent déterminer par des mesures distinctes et en général par des moyens spéciaux de mesure après l'achèvement des travaux de correction ou de rectification. Suivant la présente invention, ces six paramètres peuvent être déterminés et enregistrés directement par les mêmes équipements installés sur le véhicule de travail, donc par les mêmes systèmes de référence et les mêmes moyens de mesure, et en adoptant les mêmes procédés de mesure que ceux utilisés pour les grandeurs nécessaires pour la correction, de telle sorte que cet enregistrement s'effectue chaque fois immédiatement après l'exécution d'une opération de rectification. Il faut pour cela au moins trois points de référence de voie, disposés les uns à la suite des autres dans la section de voie rectifiée, qui peuvent être les points de référence C, D et E de la figure 14. Il est cependant également possible d'opérer uniquement avec les deux points de référence arrière C et D qui sont nécessaires pour le calcul de la rectification de voie, le troisième point de référence utilisé étant le point de mesure de voie B situé immédiatement après la correction, considéré avant que le véhicule de travail avance. De cette façon, chaque point de mesure ou de travail B des rails peut servir, immédiatement après la rectification, de nouveau point de référence dans la section de voie corrigée pour la mesure des paramètres précités qui doivent être enregistrés, afin qu'il soit suffisant de prévoir sur le véhicule de travail, derrière les points de mesure B ou derrière les outils de bourrage, simplement deux points de référence des rails C et D, disposés l'un derrière l'autre.As a general rule, it is required by the administration, in the work of rectifying the tracks, in the bus to control the quality of the corrections made, to record the six parameters set out above which until now had to be determined separate measurements and in general by special means of measurement after the completion of correction or rectification work. According to the present invention, these six parameters can be determined and recorded directly by the same equipment installed on the work vehicle, therefore by the same reference systems and the same measurement means, and by adopting the same measurement methods as those used. for the quantities necessary for the correction, so that this recording is carried out each time immediately after the execution of a rectification operation. This requires at least three track reference points, arranged one after the other in the rectified track section, which can be the reference points C, D and E in Figure 14. It is however also possible to operate only with the two rear reference points C and D which are necessary for the calculation of the channel correction, the third reference point used being the measurement point B located immediately after the correction, considered before the work vehicle moving forward. In this way, each measurement or working point B of the rails can serve, immediately after rectification, as a new reference point in the corrected track section for the measurement of the aforementioned parameters which must be recorded, so that it is sufficient provide on the work vehicle, behind the measurement points B or behind the tamping tools, simply two reference points of the rails C and D, arranged one behind the other.

Le procédé et les dispositifs suivant l'invention sont également extrêmement souples, comme le démontrent les exemples de réalisation décrits et les explications qui précèdent, et permettent d'une manière rationnelle, par l'intermédiaire d'un ordinateur automatique convenablement programmé, d'effectuer les mesures et/ou les calculs de toutes les grandeurs et de tous paramètres nécessaires. A cet effet, les moyens de mesure peuvent être constitués par des instruments de mesure connus en soi, par quoi on peut utiliser, en tant qu'appareils pour mesurer les longueurs, par exemple des instruments fonctionnant avec des potentiomètres linéaires électriques. L'invention n'est nullement limitée aux exemples de réalisation décrits, car au contraire ceux-ci se prêtent à de nombreuses variantes notamment en ce qui concerne la construction et la disposition ou la réalisation des lignes de référence qui définissent le système de référence ainsi que l'agencement des moyens de mesure.The method and the devices according to the invention are also extremely flexible, as demonstrated by the examples of embodiment. tion described and the foregoing explanations, and allow in a rational manner, by means of a suitably programmed automatic computer, to carry out the measurements and / or calculations of all the quantities and of all the necessary parameters. For this purpose, the measuring means can be constituted by measuring instruments known per se, whereby one can use, as apparatus for measuring the lengths, for example instruments operating with electric linear potentiometers. The invention is in no way limited to the exemplary embodiments described, because on the contrary these lend themselves to numerous variants, in particular as regards the construction and the arrangement or realization of the reference lines which define the reference system as well. as the arrangement of the measurement means.

Claims (18)

1. A method of measuring the position of a railway track for checking, correction and/or recording purposes, by using a measuring vehicle travelling on the rails and a measuring base that is determined by rail reference points (A, C, D) and is defining the theoretical course of the rails, whereby the position of at least one measuring point (B) on the rail is determined relative to said measuring base, characterized in that use is made of a reference line (s) independent of any points (A, B, C, D) situated on the rails (2, 3) and extending at least approximately in the longitudinal direction of the rails, said reference line (s) being secured to at least one fixed point (A') of the vehicle (1) and defining a reference system independent of said measuring base and said measuring point (B), the co-ordinates of said rail reference points (A, C, D) and said measuring point (B) relative to said reference system are measured, whereafter on the one hand the measuring base resulting from the co-ordinates of said rail reference points (A, C, D) and on the other hand using the co-ordinates of the measuring points (B) the deviation of these measuring points (B) from said measuring base are calculated.
2. A method according to claim 1, characterized in that a single and same reference system defined through said reference line (s) is used for simultaneously carrying out the measurements necessary on the one hand for levelling and on the other hand lining the rails, and in addition, subsequent to the correction operations, for measuring and recording all important rail parameters for checking the quality of the corrections.
3. A device for carrying out the method according to any of claim 1 or 2, characterized in that said reference line (s) consists of a rectilinear element (7) which is either an integral part of the vehicle chassis, or fastened or tensioned thereon, of either at least one electromagnetic ray (50, 55, 57) emitted from at least one radiation source fastened to the vehicle chassis, notably a light source (51, 56, 58), or of an optical axis (61) of an optical apparatus (62) secured to the vehicle chassis, in that measuring means including a pendulum (30, 78) being mounted at the level of all the rail reference and measuring points (A, B, C, D), and arranged such that the co-ordinates of all the aforesaid rail points (A, B, C, D) included in a reference system are measured which is defined by said reference line (s) and the vertical given by said pendulum (30, 78), preferably the vertical plane containing said reference line (s), and in that the assembly comprises an automatic computer for calculating all the measured magnitudes.
4. A device according to claim 3, comprising a measuring or working vehicle of which the chassis comprises at least one longitudinally oriented hollow beam, characterized in that said reference line (s) extends within said beam (4).
5. A device according to claim 4, characterized in that said reference line (s) consists of a reference element (7) in the form of a yarn, fibre or the like secured to and tensioned at either transverse end face (5, 6) of said beam (4), in that below both end faces (5, 6) rail measuring wheels (25) defining reference points (A, C) rest on the rails (2, 3), in that each end face (5, 6) of the beam (4) has fitted thereto one of said measuring means (18, 19, 20, 21; 75, 76, 77) and in that in at least one cross-sectional plane of the beam (4) containing the measuring points (B) and being located between said end faces (5, 6) of the beam (4) measuring means are disposed comprising measuring instruments (31, 32, 33; 35, 36; 85, 86) installed externally and internally of said beam (4), and so arranged as to measure in said cross-sectional plane of the beam (4) on the one hand the position of the beam (4) relative to the measuring points (B) and on the other hand the position of said reference element (7) relative to said beam (4).
6. A device according to claim 5, characterized in that the measuring means provided at the end faces (5, 6) of said beam are each pivotally mounted to a pivot guide pin (13, 17) axially aligned to said tensioned reference element (7) and rotary in a plane perpendicular to said reference element (7) and containing the rail reference points (A, C) so as to measure the distance between said guide pins (13, 17) and said rail reference points (A, C), in that the internal measuring means (35, 36) disposed in the cross-sectional plane of said beam (4) and passing through said rail measuring points (B) are so arranged as to measure the distance between the reference element (7) and two points located inside said beam, and in that said external measuring means (31, 32, 33; 40, 41, 44, 45) disposed in said last-mentioned cross-sectional plane are so arranged as to measure the distance between at least one point of said beam (4) and said rail measuring points (B).
7. A device according to claim 5, characterized in that all the measuring means comprise only instruments for measuring lengths (75, 76, 77, 91) so mounted and oriented as to measure directly the co-ordinates of the rail points (A, B, C, D) in a relative cartesian coordinate system (XA, YA; Xe, YB; ... such a system being fixed on said beam (14) in each one of its cross-sectional planes passing through said rail points.
8. A device according to any of claims 5 to 7, characterized in that the reference element (7) extends along the axis of a tube (8) held in a centered position within said beam (4) by means of a plurality of anchoring blocks (9, 10, 34).
9. A device according to any of claims 5 to 8, characterized in that said reference element (7) has one end fastened to a piston (14, 15) of a pressure-fluid actuated cylinder (16) and being in that way subjected to a predetermined constant pulling force.
10. A device according to any of claims 8 or 9, characterized in that the inner space of said tube (8) is filled with a liquid for damping out any oscillation of the reference element (7), said fluid having at least approximately the same specific weight as said element (7).
11. A device according to claim 10, characterized in that said reference element (7) is provided with at least one radial oscillation- damping fin (39).
12. A device according to any of claims 8 or 9, characterized in that said tube (8) constitutes an interchangeable unit incorporating said reference element (7) tensioned therein, and possibly said pressure-fluid actuated cylinder (16), said unit being adapted to be interchangeably introduced into or removed from said beam (4).
13. A device according to claim 4, characterized in that the reference line (s) consists of a light ray (50) emitted from a light source (51) installed at one end face (5) of said beam and in that a transparent optical detector (52), for example composed of several radially distributed photocells or of a CCD-Matrix is disposed in a plane orthogonal to said light ray (50), and another optical detector (53) of same type is disposed at the opposite end face (6) of said beam.
14. A device according to claim 4, characterized in that said reference line (s) consists of the light rays (55, 57) emitted from two light sources (56, 58) directed towards each other and fitted in face-to-face relative arrangement at the two end faces (5, 6) of said beam, respectively, and in that two optical detectors (59, 60) intended for one light ray and for the other light ray, respectively, are disposed in a plane orthogonal to said light rays and containing said measuring points (B), said detectors being adapted for example through a plurality of radially distributed photocells or through CCD-Matrix, to measure the position of said beam (4) in said plane relative to the reference line (s) defined by said light rays.
15. A device according to claim 4, characterized in that the reference line (s) consists of the optical axis (61) of an optical goniometer (62) fitted to one of the end faces (5) of said beam, two light sources (63, 64, 65, 66) being secured to said beam (4) above said measuring point (B) and to the opposite end face (6) of said beam, respectively, in such a way that their light rays are directed towards said goniometer, respectively.
16. A device according to any of claims 3 to 15, characterized in that it comprises - in order to provide a nearly absolute measuring base - an independent movable measuring carriage (70) rolling on the track rails (2, 3) at any suitable distance from the main measuring or working vehicle proper (1), said carriage defining a front reference point (Ao), and in that a special measuring arrangement (72) being installed on said main measuring or working vehicle (1) and so arranged as to be capable of measuring the position of a characteristic point, notably a light source (71), disposed on said measuring carraige (70), in relation to the reference system defined by said reference element (s), and comprising preferably a telemeter operating by electromagnetic radiation and an optical goniometer, for measuring the distance to said light point (71) of said measuring carriage (70) and its angular position relative to said reference line (s).
17. A device according to any of claims 3 to 16, disposed on a track correcting machine provided with roller tongs for levelling and lining the rails, characterized in that said rail measuring points (B) are the operating points of said roller tongs.
18. A device according to any claims 3 to 16, mounted on a working vehicle equipped with at least one track tamper, characterized in that the rail measuring points (B) are provided just ahead and behind the tamper and in that the measured co-ordinates are utilized for calculating an average rail measuring point located therebetween.
EP81201203A 1980-11-04 1981-10-29 Method and means for measuring the position of a railway rail Expired EP0051338B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81201203T ATE8917T1 (en) 1980-11-04 1981-10-29 METHOD AND DEVICE FOR MEASURING THE POSITION OF A RAILWAY TRACK.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8199/80A CH657881A5 (en) 1980-11-04 1980-11-04 METHOD AND DEVICE FOR MEASURING THE POSITION OF A RAILWAY TRACK.
CH8199/80 1980-11-04

Publications (2)

Publication Number Publication Date
EP0051338A1 EP0051338A1 (en) 1982-05-12
EP0051338B1 true EP0051338B1 (en) 1984-08-08

Family

ID=4336680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81201203A Expired EP0051338B1 (en) 1980-11-04 1981-10-29 Method and means for measuring the position of a railway rail

Country Status (4)

Country Link
EP (1) EP0051338B1 (en)
AT (1) ATE8917T1 (en)
CH (1) CH657881A5 (en)
DE (1) DE3165434D1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH683109A5 (en) * 1991-06-10 1994-01-14 Matisa Materiel Ind Sa Measuring device for track construction machines.
DE10045468B4 (en) * 2000-09-14 2007-04-05 Rte Technologie Gmbh Gleismeßeinrichtung
DE10303177A1 (en) * 2003-01-27 2004-07-29 Max Bögl Bauunternehmung GmbH & Co. KG Alignment of prefabricated parts in rigid roadway or track, especially for railway slab track permanent way, whereby a moving device with a tacheometer is used to measure target points and compare actual and set positions
CN103983224B (en) * 2014-05-29 2016-12-07 上海飞机制造有限公司 A kind of large scale parts actual measurement pose approximating method
ES2646607T3 (en) 2014-06-27 2017-12-14 Hp3 Real Gmbh Railroad measuring device
CN113340181B (en) * 2021-05-31 2023-04-07 广州文冲船舶修造有限公司 Method for searching extension line of shaft center line
FR3141474A1 (en) * 2022-10-27 2024-05-03 Tso Catenaires Measuring trolley for a railway track including a slope correction device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389469A (en) * 1965-07-05 1968-06-25 Plasser Franz Mobile track correction apparatus
AT305333B (en) * 1967-06-05 1973-02-26 Plasser Bahnbaumasch Franz Device for aligning a track
AT311403B (en) * 1969-01-22 1973-11-12 Plasser Bahnbaumasch Franz Device on track processing machines to monitor the correction of the position of a track to be processed
CH510171A (en) * 1969-12-26 1971-07-15 Matisa Materiel Ind Sa Method for controlling and / or rectifying a railway track and device for implementing this method
CH529655A (en) * 1970-02-25 1972-10-31 Mini Verkehrswesen Procedure for checking and evaluating the track position
AT323787B (en) * 1972-03-14 1975-07-25 Plasser Bahnbaumasch Franz ARRANGEMENT FOR CORRECTING POSITIONAL ERRORS IN TRACKS
AT359110B (en) * 1977-08-16 1980-10-27 Plasser Bahnbaumasch Franz SELF-DRIVE TRACKING MACHINE ARRANGEMENT

Also Published As

Publication number Publication date
EP0051338A1 (en) 1982-05-12
CH657881A5 (en) 1986-09-30
DE3165434D1 (en) 1984-09-13
ATE8917T1 (en) 1984-08-15

Similar Documents

Publication Publication Date Title
EP1083106B1 (en) Vehicle for measuring the geometric condition of a railway track
EP0461628B1 (en) Rail vehicle for measuring geometric parameters of the track
EP3162958B1 (en) Method for measuring and assessing the geometry of a railway track
EP0051338B1 (en) Method and means for measuring the position of a railway rail
FR2475721A1 (en) MEASURING VEHICLE AND METHOD FOR MEASURING THE TRACE OF THE LONGITUDINAL PROFILE OF TUNNELS
EP0647829B1 (en) Process and device for the geometrical control of a vehicle
EP0053065B1 (en) Vehicle wheel geometry control device
FR2606503A1 (en) METHOD AND APPARATUS FOR CONTROLLING THE ORIENTATION OF THE WHEELS OF A VEHICLE
FR2670884A1 (en) METHOD AND APPARATUS FOR MEASURING ANGLES OF AUTOMOTIVE DIRECTIONS.
FR2808082A1 (en) Method and equipment for acquisition of geometric data concerning the parallelism of the front wheels of vehicle, comprises bay equipped with projectors of parallel light rays and matrix cameras
EP0564308B1 (en) Device for automatically measuring residual stresses in the wheel rim of a wheel set for railway-use
EP0207197A1 (en) Method for the renewing or laying of a railway track
FR2713010A1 (en) Device and method for controlling the guide elements of a guide tube of the upper internal equipment of a pressurized water nuclear reactor.
FR2770859A1 (en) RAILWAY CONSTRUCTION MACHINE WITH A REFERENCE SYSTEM FOR CONTROLLING A WORKING APPARATUS AND METHOD FOR DETECTING TRACK MEASUREMENT VALUES
FR2481443A1 (en) APPARATUS FOR CONTROLLING THE ACCURACY OF DIMENSIONS OF LARGE OBJECTS
FR2506114A1 (en) Correction servo for trench cutting machine - uses pendular detector to drive jack controlling cutter in vertical plane
EP0841465B1 (en) Drill verticality measuring device
EP0646771B1 (en) Apparatus to measure the deformation of a roadway
EP0089702A1 (en) Method of guiding a track-positioning device, and apparatus for that purpose
FR3037085B1 (en) DEVICE FOR MEASURING THE LEVELING OR TRAINING OF A RAILWAY
EP1697693B1 (en) Device for controlling a bench used to measure, adjust and/or control a chassis of a motor vehicle
FR2843453A1 (en) Method for determining wheel diameter involves application of two feelers a known distance apart, determination of length of parallel chord and determination of chord separation, and wheel diameter
EP0293015B1 (en) Device for the command of a railway track levelling and aligning machine
EP0329918B1 (en) Method for the restoration of a railroad track
FR2735861A1 (en) Vehicle wheel trains geometry measuring device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB

17P Request for examination filed

Effective date: 19821021

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATISA MATERIEL INDUSTRIEL S.A.

AK Designated contracting states

Designated state(s): AT DE FR GB

REF Corresponds to:

Ref document number: 8917

Country of ref document: AT

Date of ref document: 19840815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3165434

Country of ref document: DE

Date of ref document: 19840913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841030

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861028

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871029

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001017

Year of fee payment: 20