EP0050247B1 - Process for regulating the evaporation intensity of plants employing solvents - Google Patents

Process for regulating the evaporation intensity of plants employing solvents Download PDF

Info

Publication number
EP0050247B1
EP0050247B1 EP81107847A EP81107847A EP0050247B1 EP 0050247 B1 EP0050247 B1 EP 0050247B1 EP 81107847 A EP81107847 A EP 81107847A EP 81107847 A EP81107847 A EP 81107847A EP 0050247 B1 EP0050247 B1 EP 0050247B1
Authority
EP
European Patent Office
Prior art keywords
cooling medium
heating
cooling
temperature
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81107847A
Other languages
German (de)
French (fr)
Other versions
EP0050247A1 (en
Inventor
Wolfgang Schmidt
Franz Staudinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0050247A1 publication Critical patent/EP0050247A1/en
Application granted granted Critical
Publication of EP0050247B1 publication Critical patent/EP0050247B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/04Apparatus

Definitions

  • the invention is based on a method according to the preamble of the main claim.
  • Plants in which metal parts are preferably cleaned in the vapor of a solvent are used on a large scale in surface technology.
  • steam degreasing is involved.
  • the vast majority of such steam baths are today without a regulation of the steam intensity, i. H. executed without a heating control.
  • the heating energy is constantly supplied according to the maximum material throughput.
  • this has disadvantages in terms of cleaning quality, but on the other hand, a lot of energy is unnecessarily consumed in such systems.
  • With constant, once set energy supply for example by throttling the hot water flow through an orifice or a throttle valve, the throughput and thus the heating output change in the event of pressure fluctuations in the energy supply network.
  • the parts to be cleaned receive only an incomplete or no condensate rinsing, that is, the rinsing when the cold parts are immersed in the steam, with the cleaning agent condensing on the parts and dripping off.
  • Similar effects can e.g. B. occur when a screen is dirty and the associated unnoticed cross-sectional constriction in the energy supply or also due to pollution of heating coils or heat exchangers, the heat transfer and thus the efficiency changes so that the apparently constant energy supply gradually decreases.
  • energy consumption it should be borne in mind that in most of the systems, the condensation time in the bathroom is only approx. 50% of the system cycle time.
  • FR-A-841 366 describes a safety device for steam degreasing systems which is intended to prevent solvent vapor from escaping from the degreasing system. This is done by an electrical or mechanical coupling of heating and cooling during the switch-on phase in the sense that the cooling must first be switched on and only then can the heating be switched on. In addition, the heating should be reduced or even switched off when the cooling water temperature rises.
  • a single thermostatic system in the cooling circuit functions as the transmitter. In accordance with the safety requirement, the heating output is only limited by the temperature of the cooling medium. A regulation of the heating power via the cooling power provided, both upwards and downwards, cannot be found in this document.
  • the method according to the invention with the characterizing features of the main claim has the advantage that the steam level is reliably kept constant at its setpoint, which leads to a high level of safety in cleaning quality, and that the water continuously from the solvent due to the reliable formation of condensate on the cooling coils is removed via the azeotropic mixture. In addition, no more energy is supplied than is necessary to keep the steam level constant, which leads to high energy savings due to the above-mentioned circumstances.
  • FIG. 1 An embodiment of the invention is in shown in the drawing and explained in more detail in the following description.
  • the figure shows schematically an installation for steam degreasing in section, on the basis of which the method according to the invention is to be illustrated.
  • the solvent system e.g. B. for steam degreasing, consists of a container 1, at the upper opening of a cooling system, for. B. in the form of cooling coils 2, is arranged.
  • the water separator 5 has an upper outlet 6 for the water and a lower outlet 7 for the return of the solvent into the container 1.
  • 8 denotes the input of the cooling medium, which has a temperature measuring point T1
  • 9 denotes the outlet of the cooling medium with the temperature measuring point T2.
  • a heater 10 in the form of a heating coil, a heat exchanger or direct or indirect heating is located in the lower part of the container 1. This heater can be controlled via a control valve 11.
  • the parts to be cleaned and a workpiece carrier are designated by 12.
  • the liquid solvent 13 In the lower part of the container there is the liquid solvent 13, the level of which is identified by 14.
  • trichlorethylene, perchlorethylene halogenated benzenes or the like can be used as solvents.
  • a steam level 15 is set at the level of the cooling coils 2.
  • a specific setpoint of the temperature difference T2 minus T1 must now be specified for a defined steam level.
  • the specific heat of the cooling medium can be neglected as a constant.
  • the control not shown in the figure, now causes the valve 11 to be closed when this setpoint is exceeded and the valve to be opened when the setpoint is undershot. It is thereby achieved that the steam level 15 remains approximately at the same level. If the cold parts 12 are now immersed in the steam, the steam first condenses on the parts and the condensate 16 runs back into the liquid solvent 13.
  • a condensate 17 also forms on the cooling coils 2, which is an azeotropic mixture in the presence of water in the solvent. This is collected in the trough 3, passed into the water separator 5 via the line 4, from which the water is collected and processed via the line 6 and the solvent is returned to the container 1 via the line 7.
  • the steam level 15 will first decrease, which has the consequence that the temperature difference T2-T1 drops below the setpoint, whereby the valve 11 is opened and the heating power thus increased until the steam level 15 and the temperature difference T2-T1 have reached the setpoints again and the energy supply can be reduced again.
  • Possible heating media are, for example, hot water, steam, electrical energy and gas heating or secondary heating using thermal oil.
  • the most common cooling medium is water, but any other liquid with a sufficiently high specific heat can also be used.
  • the method can also be applied to existing systems without difficulty by installing the necessary equipment. Limits of use only exist with extremely short cycle times, due to measurement dead times in the actual value acquisition or the actual value processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Verfahren nach der Gattung des Hauptanspruchs. Anlagen, bei denen vorzugsweise Metallteile im Dampf eines Lösemittels gereinigt werden, werden in großem Maßstab in der Oberflächentechnik eingesetzt. Dabei geht es beispielsweise um die sogenannte Dampfentfettung. Der weitaus größte Teil derartiger Dampfbäder wird heute ohne eine Regelung der Dampfintensität, d. h. ohne eine Heizungsregelung ausgeführt. Bei diesen Anlagen wird die Heizenergie entsprechend dem maximalen Materialdurchsatz konstant zugeführt. Dies hat einmal Nachteile bei der Reinigungsqualität, zum anderen wird aber bei derartigen Anlagen noch sehr viel Energie unnötig verbraucht. Bei konstanter, einmal eingestellter Energiezuführung, beispielsweise durch Drosselung des Heißwasserflusses über eine Blende oder ein Drosselventil, ändert sich bei Druckschwankungen im Energieversorgungsnetz der Durchsatz und damit auch die Heizleistung.The invention is based on a method according to the preamble of the main claim. Plants in which metal parts are preferably cleaned in the vapor of a solvent are used on a large scale in surface technology. For example, steam degreasing is involved. The vast majority of such steam baths are today without a regulation of the steam intensity, i. H. executed without a heating control. In these systems, the heating energy is constantly supplied according to the maximum material throughput. On the one hand, this has disadvantages in terms of cleaning quality, but on the other hand, a lot of energy is unnecessarily consumed in such systems. With constant, once set energy supply, for example by throttling the hot water flow through an orifice or a throttle valve, the throughput and thus the heating output change in the event of pressure fluctuations in the energy supply network.

Dadurch erhalten die zu reinigenden Teile eine nur unvollständige oder gar keine Kondensatspülung, das ist die Spülung beim Eintauchen der kalten Teile in den Dampf, wobei sich das Reinigungsmittel an den Teilen kondensiert und abtropft. Ähnliche Effekte können z. B. auftreten bei Verschmutzung einer Blende und der damit verbundenen unbemerkten Querschnittsverengung in der Energiezuführung oder auch durch Verschmutzung von Heizschlangen bzw. Wärmetauschern, wobei sich der Wärmeübergang und damit der Wirkungsgrad ändert so daß die scheinbar konstante Energiezuführung allmählich abnimmt. Bezüglich des Energieverbrauchs ist zu bedenken, daß bei einem Großteil der Anlagen die Kondenszeit im Bad nur ca. 50 % der Anlagentaktzeit beträgt. Während der restlichen Zeit wird das Teil weitertransportiert, so daß die während dieser Zeit unnötig zugeführte Wärmeenergie wiederabgeführt werden muß. Das gleiche gilt für die Pausen, wie sie beispielsweise in der Mittagszeit oder durch eine nicht vollkommene Auslastung der Anlagen auftreten. Man kann überschlagen, daß hier durch eine bessere Ausnutzung der Energie unter Umständen mehr als 50 % der Heizenergie eingespart werden können.As a result, the parts to be cleaned receive only an incomplete or no condensate rinsing, that is, the rinsing when the cold parts are immersed in the steam, with the cleaning agent condensing on the parts and dripping off. Similar effects can e.g. B. occur when a screen is dirty and the associated unnoticed cross-sectional constriction in the energy supply or also due to pollution of heating coils or heat exchangers, the heat transfer and thus the efficiency changes so that the apparently constant energy supply gradually decreases. With regard to energy consumption, it should be borne in mind that in most of the systems, the condensation time in the bathroom is only approx. 50% of the system cycle time. During the rest of the time, the part is transported further, so that the thermal energy that was unnecessarily supplied during this time must be removed again. The same applies to breaks, such as those that occur at lunchtime or when the systems are not fully utilized. It can be overruled that better utilization of the energy can save more than 50% of the heating energy.

Bei einem sehr geringen Anteil derartiger Dampfbäder wird eine Dampfniveauregelung über eine Temperaturmessung auf der Soll-Dampfhöhe durchgeführt. Hierdurch kann jedoch nicht sichergestellt werden, ob die gemessene Temperatur tatsächlich die Dampftemperatur ist oder ob nur die darüberlagernde heiße Luft gemessen wird. Das hat zur Folge, daß es an den Kühlschlangen nicht zu einer Kondensatbildung kommt, so daß in das Bad über die Teile oder über die Luftfeuchtigkeit eingeschlepptes Wasser nicht eliminiert werden kann. Dies geschieht nämlich dadurch, daß das Wasser in einem azeotropen Gemisch mit dem Lösemittel verdampft und sich zusammen mit diesem an den Kühlschlangen niederschlägt, wo das Kondensat über eine Rinne einem Wasserabscheider zugeführt wird, in welchem Wasser und Lösemittel getrennt werden und das Lösemittel wieder in die Anlage zurückgeführt wird.With a very small proportion of such steam baths, a steam level control is carried out via a temperature measurement at the desired steam level. However, this cannot ensure whether the measured temperature is actually the steam temperature or whether only the hot air overlying it is measured. The consequence of this is that there is no condensation on the cooling coils, so that water which has been introduced into the bath via the parts or via the atmospheric humidity cannot be eliminated. This is because the water evaporates in an azeotropic mixture with the solvent and is deposited together with the latter on the cooling coils, where the condensate is fed to a water separator via a trough, in which water and solvent are separated and the solvent is returned to the Plant is returned.

Die FR-A-841 366 beschreibt eine Sicherheitseinrichtung für Dampfentfettungsanlagen, die verhindern soll, daß Lösungsmitteldampf aus der Entfettungsanlage austritt. Dies geschieht durch eine elektrische oder mechanische Kopplung von Heizung und Kühlung während der Einschaltphase in dem Sinne, daß zunächst die Kühlung eingeschaltet werden muß und dann erst die Heizung eingeschaltet werden kann. Darüber hinaus soll die Heizung reduziert oder gar abgeschaltet werden, wenn die Kühlwassertemperatur steigt. Als Geber fungiert hier ein einziges thermostatisches System im Kühlkreislauf. Der Sicherheitsforderung entsprechend wird die Heizleistung lediglich über die Temperatur des Kühlmediums nach oben begrenzt. Eine Regelung der Heizleistung über die erbrachte Kühlleistung, sowohl nach oben als auch nach unten, ist dieser Druckschrift nicht zu entnehmen.FR-A-841 366 describes a safety device for steam degreasing systems which is intended to prevent solvent vapor from escaping from the degreasing system. This is done by an electrical or mechanical coupling of heating and cooling during the switch-on phase in the sense that the cooling must first be switched on and only then can the heating be switched on. In addition, the heating should be reduced or even switched off when the cooling water temperature rises. A single thermostatic system in the cooling circuit functions as the transmitter. In accordance with the safety requirement, the heating output is only limited by the temperature of the cooling medium. A regulation of the heating power via the cooling power provided, both upwards and downwards, cannot be found in this document.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß das Dampfniveau sicher konstant auf seinem Sollwert gehalten wird, was zu einer hohen Sicherheit in der Reinigungsqualität führt, und daß das Wasser durch die sichere Kondensatbildung an den Kühlschlangen kontinuierlich aus dem Lösemittel über das azeotrope Gemisch entfernt wird. Außerdem wird nicht mehr Energie zugeführt als zur Konstanthaltung des Dampfniveaus notwendig ist, was durch die obengenannten Umstände zu einer hohen Energieeinsparung führt.The method according to the invention with the characterizing features of the main claim has the advantage that the steam level is reliably kept constant at its setpoint, which leads to a high level of safety in cleaning quality, and that the water continuously from the solvent due to the reliable formation of condensate on the cooling coils is removed via the azeotropic mixture. In addition, no more energy is supplied than is necessary to keep the steam level constant, which leads to high energy savings due to the above-mentioned circumstances.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich. Besonders vorteilhaft ist es, wenn sowohl die Durchflußmenge als auch die Eintrittstemperatur des Kühlmediums konstantgehalten werden, da die Heizleistung dann nur noch in Abhängigkeit von der Austrittstemperatur des Kühlmediums geregelt zu werden braucht, was eine Vereinfachung der Regelvorrichtung bedeutet. Der Einsatz der Regelgeräte bzw. Reglertypen ist lediglich abhängig von der gewünschten Regelgenauigkeit bzw. den auftretenden Störgrößen.Advantageous further developments and improvements of the method specified in the main claim are possible through the measures listed in the subclaims. It is particularly advantageous if both the flow rate and the inlet temperature of the cooling medium are kept constant, since the heating output then only has to be regulated as a function of the outlet temperature of the cooling medium, which means a simplification of the control device. The use of control devices or controller types is only dependent on the desired control accuracy or the disturbance variables that occur.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die Figur zeigt schematisch eine Anlage zur Dampfentfettung im Schnitt, anhand deren das erfindungsgemäße Verfahren dargestellt werden soll.An embodiment of the invention is in shown in the drawing and explained in more detail in the following description. The figure shows schematically an installation for steam degreasing in section, on the basis of which the method according to the invention is to be illustrated.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Die Lösemittelanlage, z. B. zur Dampfentfettung, besteht aus einem Behälter 1, an dessen oberer Öffnung ein Kühlsystem, z. B. in Form von Kühlschlangen 2, angeordnet ist.The solvent system, e.g. B. for steam degreasing, consists of a container 1, at the upper opening of a cooling system, for. B. in the form of cooling coils 2, is arranged.

Unter den Kühlschlangen befindet sich eine Rinne 3, an die ein Ablauf 4 zu einem Wasserabscheider 5 angeschlossen ist. Der Wasserabscheider 5 weist einen oberen Ablauf 6 für das Wasser sowie einen tieferliegenden Ablauf 7 für den Rücklauf des Lösemittels in den Behälter 1 auf. Mit 8 ist der Eingang des Kühlmediums bezeichnet, der eine Temperaturmeßstelle T1 aufweist, während mit 9 der Ausgang des Kühlmediums mit der Temperaturmeßstelle T2 bezeichnet ist. Eine Heizung 10 in Form einer Heizschlange, eines Wärmetauschers oder einer Direkt- bzw. Indirektbeheizung befindet sich im unteren Teil des Behälters 1. Diese Heizung kann über ein Regelventil 11 geregelt werden. Die zu reinigenden Teile sowie ein Werkstückträger sind mit 12 bezeichnet. Im unteren Teil des Behälters befindet sich das flüssige Lösemittel 13, dessen Niveau mit 14 gekennzeichnet ist. Als Lösemittel können beispielsweise Trichlorethylen, Perchlorethylen halogenierte Benzole o. ä. verwendet werden.Under the cooling coils there is a channel 3, to which an outlet 4 to a water separator 5 is connected. The water separator 5 has an upper outlet 6 for the water and a lower outlet 7 for the return of the solvent into the container 1. 8 denotes the input of the cooling medium, which has a temperature measuring point T1, while 9 denotes the outlet of the cooling medium with the temperature measuring point T2. A heater 10 in the form of a heating coil, a heat exchanger or direct or indirect heating is located in the lower part of the container 1. This heater can be controlled via a control valve 11. The parts to be cleaned and a workpiece carrier are designated by 12. In the lower part of the container there is the liquid solvent 13, the level of which is identified by 14. For example, trichlorethylene, perchlorethylene halogenated benzenes or the like can be used as solvents.

Schaltet man nun die Heizung 10 ein, so beginnt das Lösemittel 13 zu verdampfen und es stellt sich in der Höhe der Kühlschlangen 2 ein Dampfniveau 15 ein. Unter der Voraussetzung einer konstanten durchströmenden Menge des Kühlmediums muß nun für ein festgelegtes Dampfniveau ein bestimmter Sollwert der Temperaturdifferenz T2 minus T1 festgelegt werden. Die spezifische Wärme des Kühlmediums kann dabei als Konstante vernachlässigt werden. Die in der Figur nicht dargestellte Regelung bewirkt nun, daß bei Überschreiten dieses Sollwerts das Ventil 11 geschlossen und bei Unterschreiten des Sollwerts das Ventil geöffnet wird. Dadurch wird erreicht, daß das Dampfniveau 15 etwa in der gleichen Höhe bleibt. Taucht man nun die kalten Teile 12 in den Dampf ein, so kondensiert sich zunächst der Dampf an den Teilen und das Kondensat 16 läuft in das flüssige Lösemittel 13 zurück. Auch an den Kühlschlangen 2 bildet sich ein Kondensat 17, das im Falle der Anwesenheit von Wasser im Lösemittel ein azeotropes Gemisch darstellt. Dieses wird in der Rinne 3 gesammelt, in den Wasserabscheider 5 über die Leitung 4 geleitet, aus dem das Wasser über die Leitung 6 gesammelt und aufbereitet und das Lösemittel über die Leitung 7 in den Behälter 1 zurückgeführt wird.If the heater 10 is now switched on, the solvent 13 begins to evaporate and a steam level 15 is set at the level of the cooling coils 2. Assuming a constant flow of the cooling medium, a specific setpoint of the temperature difference T2 minus T1 must now be specified for a defined steam level. The specific heat of the cooling medium can be neglected as a constant. The control, not shown in the figure, now causes the valve 11 to be closed when this setpoint is exceeded and the valve to be opened when the setpoint is undershot. It is thereby achieved that the steam level 15 remains approximately at the same level. If the cold parts 12 are now immersed in the steam, the steam first condenses on the parts and the condensate 16 runs back into the liquid solvent 13. A condensate 17 also forms on the cooling coils 2, which is an azeotropic mixture in the presence of water in the solvent. This is collected in the trough 3, passed into the water separator 5 via the line 4, from which the water is collected and processed via the line 6 and the solvent is returned to the container 1 via the line 7.

Bringt man beispielsweise große Teile mit einer hohen Wärmekapazität in das Dampfbad ein, so wird sich zunächst das Dampfniveau 15 absinken, was zur Folge hat, daß die Temperaturdifferenz T2-T1 unter den Sollwert sinkt, wodurch das Ventil 11 solange geöffnet und die Heizleistung damit erhöht wird, bis das Dampfniveau 15 sowie die Temperaturdifferenz T2-T1 die Sollwerte wieder erreicht hat und die Energiezufuhr damit wieder gedrosselt werden kann.If, for example, large parts with a high heat capacity are brought into the steam bath, the steam level 15 will first decrease, which has the consequence that the temperature difference T2-T1 drops below the setpoint, whereby the valve 11 is opened and the heating power thus increased until the steam level 15 and the temperature difference T2-T1 have reached the setpoints again and the energy supply can be reduced again.

Es ist schließlich auch möglich, nicht nur die Durchflußmenge, sondern auch die Eintrittstemperatur T1 des Kühlmediums bei 8 konstantzuhalten, so daß in die Regelung nur noch die Temperatur T2 eingeht.Finally, it is also possible to keep not only the flow rate, but also the inlet temperature T1 of the cooling medium at 8, so that only the temperature T2 is included in the control.

Als Heizmedien kommen beispielsweise Heißwasser, Dampf, elektrische Energie sowie eine Gasbeheizung oder eine Sekundärbeheizung über Thermoöl in Betracht. Das gängigste Kühlmedium ist Wasser, es kann jedoch auch jede andere Flüssigkeit mit genügend hoher spezifischer Wärme verwendet werden.Possible heating media are, for example, hot water, steam, electrical energy and gas heating or secondary heating using thermal oil. The most common cooling medium is water, but any other liquid with a sufficiently high specific heat can also be used.

Das Verfahren kann auch bei vorhandenen Anlagen durch Einbau der notwendigen Geräte ohne Schwierigkeiten angewendet werden. Einsatzgrenzen gibt es nur bei extrem kurzen Taktzeiten, bedingt durch meßtechnische Totzeiten in der Istwerterfassung bzw. der Istwertverarbeitung.The method can also be applied to existing systems without difficulty by installing the necessary equipment. Limits of use only exist with extremely short cycle times, due to measurement dead times in the actual value acquisition or the actual value processing.

Claims (3)

1. Process for regulating the vapour intensity in solvent systems consisting of a vessel, in the lower part of which is located a liquid solvent, into which a heating device for evaporating the latter penetrates, and which has above the liquid solvent a vapour space in which a cooling system with a flowing cooling medium is provided at the top end of the vessel, characterised in that the heating power is regulated via the cooling power provided, by throttling the heating energy when the product of the difference between the outflow temperature and inflow temperature of the cooling medium and the flow rate of the cooling medium increases, and the heating energy is increased when this product diminishes.
2. Process according to Claim 1, characterised in that the flow rate of the cooling medium is kept constant, and the heating power is regulated solely as a function of the difference between the outflow temperature and the inflow temperature of the cooling medium.
3. Process according to Claim 1 or 2, characterised in that both the flow rate and the inflow temperature of the cooling medium are kept constant, .and the heating power is regulated solely as a function of the outflow temperature of the cooling medium.
EP81107847A 1980-10-18 1981-10-02 Process for regulating the evaporation intensity of plants employing solvents Expired EP0050247B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3039407 1980-10-18
DE19803039407 DE3039407A1 (en) 1980-10-18 1980-10-18 METHOD FOR REGULATING STEAM INTENSITY IN SOLVENT PLANTS

Publications (2)

Publication Number Publication Date
EP0050247A1 EP0050247A1 (en) 1982-04-28
EP0050247B1 true EP0050247B1 (en) 1985-01-30

Family

ID=6114687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107847A Expired EP0050247B1 (en) 1980-10-18 1981-10-02 Process for regulating the evaporation intensity of plants employing solvents

Country Status (2)

Country Link
EP (1) EP0050247B1 (en)
DE (2) DE3039407A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3335889A1 (en) * 1983-10-03 1985-04-11 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR STEAM DEGREASING FROM WORKPIECES
GB2158465B (en) * 1984-05-03 1988-05-11 Kerry Ultrasonics Solvent vapour cleaning apparatus
US4788043A (en) * 1985-04-17 1988-11-29 Tokuyama Soda Kabushiki Kaisha Process for washing semiconductor substrate with organic solvent
DE4128699A1 (en) * 1991-08-29 1993-03-04 Peter Warthmann Process and equipment for solvent degreasing and cleaning - by solvent evapn. and condensn. on goods due to temp. differential, with continuous multistage treatment at increasing solvent pressure and temp.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR841366A (en) * 1938-01-20 1939-05-17 Stylomine Sa Des Ets Safety device for degreasing machines using volatile products
GB683948A (en) * 1949-06-24 1952-12-10 Joseph Lenard Robinson Improvements in or relating to metal degreasing apparatus
US2700645A (en) * 1952-05-27 1955-01-25 Detrex Corp Degreasing apparatus
US2722593A (en) * 1953-05-25 1955-11-01 Ben W Sager Vapor degreasing apparatus
US2783975A (en) * 1953-10-26 1957-03-05 Metalwash Machinery Co Degreaser

Also Published As

Publication number Publication date
DE3039407A1 (en) 1982-06-03
DE3168653D1 (en) 1985-03-14
EP0050247A1 (en) 1982-04-28

Similar Documents

Publication Publication Date Title
DE2208290A1 (en) Liquid cooling system
DE60027784T2 (en) DEVICE AND METHOD FOR REGULATING INCOMPATIBILITIES
DE2756889A1 (en) METHOD AND DEVICE FOR CONTROLLING A HEAT PUMP
EP0149002B1 (en) Process-variable regulating device for a flowing medium
EP0050247B1 (en) Process for regulating the evaporation intensity of plants employing solvents
DE19836331A1 (en) Multi-mode gas system control method
EP0038318B1 (en) Control system for controlling the heating of domestic water for a storage tank
AT393330B (en) DEVICE FOR REGULATING THE PROPORTIONAL SUPPLY OF VARIOUS TEMPERATURE HOT WATER FLOW RATES
AT395776B (en) METHOD AND DEVICE FOR MONITORING THE HEATING WATER CIRCUIT IN A GAS WATER HEATER
DE2544799B2 (en) Gas-heated steam generator
DE2055584A1 (en) Device for keeping the temperature of the impression cylinders of multicolor printing machines constant
DE3307594A1 (en) Steam boiler with electrical resistance heating
EP0476449A2 (en) Method and apparatus for drying natural gas and for the recycling of the water solvent used for this
DE3526024A1 (en) High-pressure cleaning device
AT411632B (en) METHOD FOR REGULATING THE TAKE-OUT TEMPERATURE OF HOT WATER
EP0065033A2 (en) Heating installation for a distant heating system
DE912984C (en) Process for obtaining heating steam using an electrode steam generator
CH641888A5 (en) Method of extracting gases from containers
DE1519706A1 (en) Method and device for the automatic regulation of a continuous distillation process
DE959099C (en) Device for operating a comparison heating surface in boilers or heated heat consumers, in particular forced flow boilers
EP2339247A2 (en) Method for heating service water
DE1119875B (en) Device for regulating the pressure of a coolant which exits a nuclear reactor and which can be vaporized and which is guided in a circulation system via a heat exchanger
DE861546C (en) still
DE2403285A1 (en) Heating sub-cooled ammonia - using ammonia-water mixture as heat transfer agent to avoid freezing heater
DE1504436B2 (en) METHOD AND DEVICE FOR HEATING CALANDER ROLLS, PREFERABLY FOR PLASTIC DRAWING CALENDARS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811002

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3168653

Country of ref document: DE

Date of ref document: 19850314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891019

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891031

Ref country code: CH

Effective date: 19891031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891219

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 19901031

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702