EP0044845B1 - Process and device for protecting the transmission of vocal signals - Google Patents

Process and device for protecting the transmission of vocal signals Download PDF

Info

Publication number
EP0044845B1
EP0044845B1 EP19810900305 EP81900305A EP0044845B1 EP 0044845 B1 EP0044845 B1 EP 0044845B1 EP 19810900305 EP19810900305 EP 19810900305 EP 81900305 A EP81900305 A EP 81900305A EP 0044845 B1 EP0044845 B1 EP 0044845B1
Authority
EP
European Patent Office
Prior art keywords
speech
stage
transmission
transmitter
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19810900305
Other languages
German (de)
French (fr)
Other versions
EP0044845A1 (en
Inventor
Peter Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patelhold Patenverwertungs and Elektro-Holding AG
Original Assignee
Patelhold Patenverwertungs and Elektro-Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patelhold Patenverwertungs and Elektro-Holding AG filed Critical Patelhold Patenverwertungs and Elektro-Holding AG
Publication of EP0044845A1 publication Critical patent/EP0044845A1/en
Application granted granted Critical
Publication of EP0044845B1 publication Critical patent/EP0044845B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication

Definitions

  • the present invention relates to a method for the secure transmission of voice signals according to the preamble of claim 1 and a circuit arrangement for carrying out the method according to the preamble of claim 6.
  • a method for concealing voice signals according to the preamble of claim 1 is known (DE-B1 No. 2523828).
  • a speech signal limited in bandwidth to 3 kHz is pulse-code modulated and divided into samples controlled by a time scrambler.
  • Image samples are obtained from the samples using an orthogonal matric and their values are successively transmitted in sections from a transmitter to a receiver.
  • the transmission path has been assumed to be ideal in this method; In practice, only a very limited intelligibility can be achieved, since the system limits of a real transmission path (e.g. CCITT voice channel) are not sufficiently taken into account.
  • a real transmission path e.g. CCITT voice channel
  • a vocoder system for concealed transmission of voice signals is known from US-A No. 4064363, in which the input signal is divided into a baseband and an upper band with regard to its frequency spectrum on the transmitter side. Following a discrete Fourier transformation of the signal, all of the Fourier coefficients containing the amplitude and phase information and only quantity-related, derived quantities from the baseband are further processed together in a common time-multiplex frame and transmitted to the receiver side via a modem (not described further). While the conditions of the transmission path are already taken into account here, the security against unauthorized unveiling is still low.
  • the object is achieved in a method and a circuit arrangement of the type mentioned by the features of the characterizing part of claim 1 and claim 6, respectively.
  • the essence of the invention is to take advantage of a known information reduction, which is achieved by omitting certain phase information in a frequency range above about 1 kHz which is insignificant for human hearing, in order to additionally use an image sample obtained by the orthogonal transformation despite a limited bandwidth Secure encryption transmitted and reduce the residual intelligibility by weighting the spectrum.
  • this results in greater protection against unauthorized eavesdropping and, on the other hand, a reduction in the interference sensitivity of the signals in the transmission path.
  • the method according to claim 1 can be implemented relatively easily with the means of modern electronics and has the advantages of high operational and interference immunity and good transmission quality.
  • the advantage of a method expanded according to claim 3 lies in the additional security against eavesdropping achieved.
  • a transmitter according to FIG. 1 essentially has a speech parameterization unit A with a downstream data reduction stage B or 4 and a subsequent coding unit C.
  • a receiver corresponding to the transmitter (FIG. 2) is equipped with a recoding unit C ', a parameter recovery unit B' and a speech signal generator A '.
  • a speech signal S (t) is first supplied in a digitization stage 1 (FIG. 1) in a known manner to a bandpass filter with a pass band from 400 to 2800 Hz.
  • the speech signal is then digitized in a conventional manner using a 12-bit analog / digital converter at a sampling frequency of 6.4 kHz.
  • a resulting speech section (frame), consisting of 128 data points in a time interval of 20 ms, is shown as pulse code-modulated signal s (t) in FIG. 3.
  • the discrete Fourier transformation stage 2 downstream of the digitization stage 1 the complex discrete spectrum of this speech section is obtained, so that a function A (f) according to FIG. 4 arises at one output.
  • the transmitted speech parameter signal f '(t) (transmitted transmitter signal) reaches the input of a demodulator 9, FIG. 2; it is demodulated here so that A (t) has a profile according to FIG. 10.
  • This signal is then fed to a synchronization detector / decoder 10 and appears at its output in the decoded form A (t) according to FIG. 11.
  • the signal curve A (t) according to FIG. 12 is achieved, which is the same Sequence of parameters as that of FIG. 6.
  • This signal is fed to a data converter 12, whereupon the reconstructed Fourier spectrum A (f) shown in FIG. 13 arises.
  • the inverse weighted Fourier spectrum is formed in accordance with FIG. 14.
  • This spectrum A (f) undergoes a reverse transformation in the downstream discrete Fourier re-transformation stage 14 and is subsequently reconstructed into a section boundary adjuster 15 and digital / analog converter 16 (12-bit D / A converter with a low pass filter) connected in series to form a reconstruction Speech signal S '(t), Fig. 15, processed.
  • FIG. 16 shows the speech parameter signals with the arrows s symbolized synchronization information that occurs every 20 ms.
  • the same speech parameters have a time profile according to FIG. 16b after their modulation and a profile according to FIG. 16c after bandpass filtering with a passband of 300 to 3000 Hz (which corresponds to a real transmission path).
  • a pseudo-random number generator 17 is already provided in the exemplary embodiment, FIG. 1, which controls the number N of samples in the speech parameterization stage. Accordingly, the speech sections in the receiver, FIG. 2, are formed by a synchronized pseudo-random generator (18).
  • Fig. 17 provides proof of the quality of the system: Fig. 1 7a represents the original speech signal S (t) and Fig. 17b the reconstructed speech signal S '(t).

Abstract

Process and device for protecting the transmission of vocal signals along a limited band-width analog transmission channel (for instance a vocal CCITT channel), protecting against illicite listening. By exploiting the speech information perceived by the human ear, the vocal signal to be transmitted is digitalized and undergoes a corresponding information reduction (A(f)) based on Fourier's transformation. The necessary information protection can thereby be obtained in the subsequent coding, with respect to the transmission distortions and the modulation is optimally adapted to the transmission behaviour. The digital form existing before this coding can be easily digitalized so that the transmitted analog signal is totally incomprehensible and can not be reconstituted even through the modem methods of analysis, while for the authorized listeners a good intelligibility subsists. By this process, through the modern means of the digital signal processing technique, an optimal solution to the safe analog transmission of speech can be achieved.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur gesicherten Übertragung von Sprachsignalen gemäss dem Oberbegriff des Anspruchs 1 sowie eine Schaltungsanordnung zur Durchführung des Verfahrens gemäss dem Oberbegriff des Anspruchs 6.The present invention relates to a method for the secure transmission of voice signals according to the preamble of claim 1 and a circuit arrangement for carrying out the method according to the preamble of claim 6.

Bekanntlich finden bei der nachrichtentechnischen Übertragung von Sprache in zunehmendem Masse Methoden zur Sicherung vor unbefugtem Abhören Anwendung. Die entsprechende Sprachübertragung erfolgt zu diesem Zweck entweder durch: Kodierung oder Parameterisierung mit anschliessender Verschlösselung oder durch Verschleierung. Sprachverschleierungsgeräte lassen sich bis heute in sechs Entwicklungsgenerationen einteilen, wobei die letzte nicht mehr von einer Übertragung des Sprachsignals selber ausgeht, sondern von einer orthogonalen Transformation des Sprachsignals (vgl. u.a. ,,l EEE Transactions on Audio and Electroacoustics", vol. AU-21, Nr. 3, Juni 1973, S. 165-174, und P. Meier, "Secure Speech Communication over a CCITT-Speech Channel", published in "NATO ASI Proceedings on Speech Understanding and Synthesis, "Bonas France, Juli 1979).As is well known, methods of protecting against unauthorized eavesdropping are increasingly being used in the transmission of voice messages. The corresponding voice transmission takes place for this purpose either by: coding or parameterization with subsequent encryption or by concealment. To date, speech concealment devices can be divided into six development generations, the last no longer starting from a transmission of the speech signal itself, but from an orthogonal transformation of the speech signal (cf., inter alia, "I EEE Transactions on Audio and Electroacoustics", vol. AU-21 , No. 3, June 1973, pp. 165-174, and P. Meier, " Secure Speech Communication over a CCITT-Speech Channel", published in " NATO ASI Proceedings on Speech Understanding and Synthesis, " Bonas France, July 1979) .

Es ist ein Verfahren zur Verschleierung von Sprachsignalen gemäss dem Oberbegriff des Anspruchs 1 bekannt (DE-B1 Nr. 2523828). In einer Anordnung zur Durchführung dieses Verfahrens wird ein in seiner Bandbreite auf 3 kHz beschränktes Sprachsignal pulskodemoduliert und durch einen Zeitverwürfler gesteuert in Abtastproben geteilt. Aus den Abtastproben werden mittels einer orthogonalen Matric Bildproben gewonnen und deren Werte abschnittweise nacheinander von einem Sender zu einem Empfänger übertragen.A method for concealing voice signals according to the preamble of claim 1 is known (DE-B1 No. 2523828). In an arrangement for carrying out this method, a speech signal limited in bandwidth to 3 kHz is pulse-code modulated and divided into samples controlled by a time scrambler. Image samples are obtained from the samples using an orthogonal matric and their values are successively transmitted in sections from a transmitter to a receiver.

Theoretisch ist bei diesem Verfahren der Übertragungsweg als ideal angenommen worden; in praxiist nureinesehr beschränkte Verständlichkeit erreichbar, da die Systemgrenzen eines realen Übertragungsweges (z.B. CCITT-Sprachkanal) nicht genügend berücksichtigt sind.In theory, the transmission path has been assumed to be ideal in this method; In practice, only a very limited intelligibility can be achieved, since the system limits of a real transmission path (e.g. CCITT voice channel) are not sufficiently taken into account.

Weitherhin ist aus der US-A Nr. 4064363 ein Vocoder-System zur verschleierten Übertragung von Sprachsignalen bekannt, bei dem senderseitig das Eingangssignal bezüglich seines Frequenzspektrums in ein Basisband und ein oberes Band unterteilt wird. Im Anschluss an eine diskrete Fouriertransformation des Signals werden vom Basisband sämtliche, die Amplituden- und Phaseninformation enthaltenden Fourierkoeffizienten und vom oberen Band nur betragsbezogene, abgeleitete Grössen zusammen in einem gemeinsamen Zeit-Multiplex-Rahmen weiterverarbeitet und über ein nicht weiter beschriebenes Modem zur Empfängerseite übertragen. Während hier bereits auf die Gegebenheiten des Übertragungsweges Rücksicht genommen wird, ist dennoch die Sicherheit gegen unbefugtes Entschleiern unverändert gering.Furthermore, a vocoder system for concealed transmission of voice signals is known from US-A No. 4064363, in which the input signal is divided into a baseband and an upper band with regard to its frequency spectrum on the transmitter side. Following a discrete Fourier transformation of the signal, all of the Fourier coefficients containing the amplitude and phase information and only quantity-related, derived quantities from the baseband are further processed together in a common time-multiplex frame and transmitted to the receiver side via a modem (not described further). While the conditions of the transmission path are already taken into account here, the security against unauthorized unveiling is still low.

Es ist daher die Aufgabe der Erfindung, ein Verfahren und eine Schaltungsanordnung zur gesicherten analogen und schmalbandigen Sprachübertragung zu schaffen, welche unter Beibehaltung einer hohen Sprachqualität beim berechtigten Empfänger gleichzeitig eine wesentlich erhöhte Sicherheit gegen unbefugtes Abhören ermöglichen.It is therefore the object of the invention to provide a method and a circuit arrangement for secure analog and narrowband voice transmission which, while maintaining a high voice quality at the authorized recipient, at the same time enable substantially increased security against unauthorized eavesdropping.

Die Aufgabe wird bei einem Verfahren und einer Schaltungsanordnung der eingangs genannten Art durch die Merkmale des kennzeichnenden Teiles des Anspruchs 1 bzw. des Anspruchs 6 gelöst.The object is achieved in a method and a circuit arrangement of the type mentioned by the features of the characterizing part of claim 1 and claim 6, respectively.

Der Kern der Erfindung besteht darin, eine an sich bekannte Informationsreduktion, die durch Weglassen bestimmter Phaseninformationen in einem für das menschliche Gehör unbedeutenden Frequenzbereich oberhalb von etwa 1 kHz erzielt wird, auszunutzen, um die durch die orthogonale Transformation gewonnenen Bildproben trotz beschränkter Bandbreite zusätzlich durch eine Verschlüsselung gesichert zu übertragen und die Restverständlichkeit durch eine Gewichtung des Spektrums weiter zu reduzieren. Dadurch ergibt sich einerseits ein grösserer Schutz vor unbefugtem Abhören und andererseits eine Verringerung der Störempfindlichkeit der Signale im Übertragungsweg.The essence of the invention is to take advantage of a known information reduction, which is achieved by omitting certain phase information in a frequency range above about 1 kHz which is insignificant for human hearing, in order to additionally use an image sample obtained by the orthogonal transformation despite a limited bandwidth Secure encryption transmitted and reduce the residual intelligibility by weighting the spectrum. On the one hand, this results in greater protection against unauthorized eavesdropping and, on the other hand, a reduction in the interference sensitivity of the signals in the transmission path.

Das Verfahren nach Anspruch 1 lässt sich mit den Mitteln der modernen Elektronik relativ einfach realisieren und weist die Vorteile hoher Betriebs- sowie Störsicherheit und guter Übertragungsqualität auf.The method according to claim 1 can be implemented relatively easily with the means of modern electronics and has the advantages of high operational and interference immunity and good transmission quality.

Der Vorteil eines gemäss Anspruch 3 erweiterten Verfahrens liegt in der erzielten zusätzlichen Abhörsicherheit.The advantage of a method expanded according to claim 3 lies in the additional security against eavesdropping achieved.

Nachfolgend werden anhand von Zeichnungen das Verfahren sowie eine bevorzugte Schaltungsanordnung näher erläutert; die nichtder Sicherung von unbefugtem Abhören dienenden Baugruppen des Systems sind der Einfachheit halber nicht näher dargestellt.The method and a preferred circuit arrangement are explained in more detail below with the aid of drawings; The components of the system which are not used to secure unauthorized eavesdropping are not shown in detail for the sake of simplicity.

Es zeigen

  • Fig. 1 ein Blockschaltbild eines Senders,
  • Fig. 2 ein Blockschaltbild eines Empfängers in einem System zur sicheren Sprachübertragung,
  • Fig. 3 ein abgetastetes, pulskodemoduliertes Sprachsignal von 20 ms Dauer,
  • Fig. 4 das komplexe diskrete Fourierspektrum des Signals gemäss Fig. 3,
  • Fig. 5 das Fourierspektrum gemäss Fig. 4 nach seiner Gewichtung,
  • Fig. 6 eine Darstellung resultierender Sprachparameter nach einer Informationsreduktion und dreifachem Duplizieren,
  • Fig. 7 die Sprachparameter gemäss Fig. 6 nach ihrer Permutation,
  • Fig. 8 die Sprachparameter gemäss Fig. 7 nach ihrer Kodierung,
  • Fig. 9 das übertragene modulierte Sprachparametersignal (Sendersignal f' (t)),
  • Fig. 10 die Sprachsignalparameter nach ihrer Demodulation im Empfänger (vergleichbar mit Fig. 8),
  • Fig. 11 die Sprachsignalparameter nach ihrer Dekodierung (vergleichbar mit Fig. 7),
  • Fig. 12 die Sprachsignalparameter nach ihrer Entschlüsselung (vergleichbar mit Fig. 6),
  • Fig. 13 das rekonstruierte Fourierspektrum (Fourierkoeffizienten gebildet aus Sprachparameter, vergleichbar mit Fig. 4, wobei die verwendete Informationsreduktion erkennbar wird),
  • Fig. 14 das Fourierspektrum nach seiner inversen Gewichtung (vergleichbar mit Fig. 4),
  • Fig. 15 das (vergleichbar mit Fig. 3) rekonstruierte Sprachsignal,
  • Fig. 16a kodierte Sprachparametersignale über einem Intervall von 100 ms (5 Sprachabschnitte zu je 128 Abtastwerten),
  • Fig. 16b die Sprachparametersignale Fig. 16a nach erfolgter Modulation,
  • Fig. 16c den Effekt einer einem CCITT-Sprach-' kanal entsprechenden Bandpassfilterung (des Signals 16b) mit einem Durchlassbereich von 300 bis 3000 Hz, und
  • Fig. 17 einen Qualitätsvergleich zwischen einem Originalsprachsignal Fig. 17a und einem gesichert übertragenen, rekonstruierten Sprachsignal 17b.
Show it
  • 1 is a block diagram of a transmitter,
  • 2 is a block diagram of a receiver in a system for secure voice transmission,
  • 3 shows a sampled, pulse code-modulated speech signal of 20 ms duration,
  • 4 shows the complex discrete Fourier spectrum of the signal according to FIG. 3,
  • 5 shows the Fourier spectrum according to FIG. 4 according to its weighting,
  • 6 shows a representation of resulting speech parameters after information reduction and triple duplication,
  • 7 shows the speech parameters according to FIG. 6 after their permutation,
  • 8 the speech parameters according to FIG. 7 after their coding,
  • 9 shows the transmitted modulated speech parameter signal (transmitter signal f '(t)),
  • 10 shows the speech signal parameters after their demodulation in the receiver (comparable to FIG. 8),
  • 11 shows the speech signal parameters after their decoding (comparable to FIG. 7),
  • 12 shows the speech signal parameters after their decryption (comparable to FIG. 6),
  • 13 shows the reconstructed Fourier spectrum (Fourier coefficients formed from speech parameters, comparable to FIG. 4, the information reduction used being recognizable),
  • 14 shows the Fourier spectrum after its inverse weighting (comparable to FIG. 4),
  • 15 the reconstructed speech signal (comparable to FIG. 3),
  • 16a encoded speech parameter signals over an interval of 100 ms (5 speech sections with 128 samples each),
  • 16b the speech parameter signals FIG. 16a after modulation,
  • 16c shows the effect of a bandpass filtering (of signal 16b) corresponding to a CCITT voice channel with a passband of 300 to 3000 Hz, and
  • 17 shows a quality comparison between an original voice signal FIG. 17a and a securely transmitted, reconstructed voice signal 17b.

Ein Sender gemäss Fig. 1 weist im wesentlichen eine Sprachparameterisierungseinheit A mit nachgeschalteter Datenreduktionsstufe B bzw. 4 und anschliessender Kodiereinheit C auf. Ein dem Sender entsprechender Empfänger (Fig. 2) ist mit einer Rückkodiereinheit C', einer Parameterrückgewinnungseinheit B' und einem Sprachsignalbildner A' ausgerüstet.A transmitter according to FIG. 1 essentially has a speech parameterization unit A with a downstream data reduction stage B or 4 and a subsequent coding unit C. A receiver corresponding to the transmitter (FIG. 2) is equipped with a recoding unit C ', a parameter recovery unit B' and a speech signal generator A '.

Ein Sprachsignal S(t) wird in einer Digitalisierungsstufe 1 (Fig. 1) zuerst in bekannter Weise einem Bandpassfilter mit einem Durchlassbereich von 400 bis 2800 Hz zugeführt. Anschliessend erfolgt auf konventionelle Art eine Digitalisierung des Sprachsignals durch einen 12-bit-Analog/ Digital-Konverter bei einer Abtastfrequenz von 6,4 kHz. Ein daraus resultierender Sprachabschnitt (Frame), bestehend aus 128 Datenpunkten in einem Zeitintervall von 20 ms, ist als pulskodemuduliertes Signal s(t) in Fig. 3 dargestellt. In der der Digitalisierungsstufe 1 nachgeschalteten Diskret-Fouriertransformations-Stufe 2 wird das komplexe diskrete Spektrum dieses Sprachabschnittes gewonnen, so dass an ihrem einen Ausgang eine Funktion A(f) gemäss Fig. 4 entsteht. In einer anschliessenden Spektrumsgewichtungsstufe 3 erfolgt nun eine für höhere Frequenzen linear zunehmende Verstärkung (pre-emphasise), so dass die mittlere Amplitude des Spektrums annähernd konstant wird. Mit dieser Spektrumsgewichtungsstufe 3 (Spectral Flattening) wird der Dynamikbereich des Übertragungskanals (CCITT-Kanal) optimal genutzt. Durch die daraus resultierende geänderte Energieverteilung wird zudem die Restverständlichkeit des Signals drastisch reduziert und folglich die analytische Sicherheit in einem ersten Schritt erhöht.A speech signal S (t) is first supplied in a digitization stage 1 (FIG. 1) in a known manner to a bandpass filter with a pass band from 400 to 2800 Hz. The speech signal is then digitized in a conventional manner using a 12-bit analog / digital converter at a sampling frequency of 6.4 kHz. A resulting speech section (frame), consisting of 128 data points in a time interval of 20 ms, is shown as pulse code-modulated signal s (t) in FIG. 3. In the discrete Fourier transformation stage 2 downstream of the digitization stage 1, the complex discrete spectrum of this speech section is obtained, so that a function A (f) according to FIG. 4 arises at one output. In a subsequent spectrum weighting stage 3 there is now a linear increase (pre-emphasize) for higher frequencies, so that the mean amplitude of the spectrum becomes approximately constant. With this spectrum weighting level 3 (Spectral Flattening) the dynamic range of the transmission channel (CCITT channel) is used optimally. The resulting changed energy distribution also drastically reduces the residual intelligibility of the signal and consequently increases analytical safety in a first step.

Die Systemgrenzen der nachfolgenden Datenreduktionsstufe B basieren auf den physiologischen Eigenschaften des menschlichen Gehörs. Dementsprechend ist ein unteres Frequenzband (lb in den Figuren) von 400 bis 1250 Hz und ein oberes Frequenzband (ub in den Figuren) von 1250 bis 2800 Hz vorgesehen. Wiederum aus physiologischen Gründen werden im unteren Frequenzband sämtliche approximierten positiven betrags- und betrags mal phasenbezogenen Informationen übertragen, während im oberen Frequenzband lediglich über k (= 4) Bildproben approximierte Betragsinformationen verarbeitet werden. Diese Informationen erfahren nun in einem Datenduplizierer 5 ein dreifaches Duplizieren und ergeben ein Signal A(t) gemäss Fig. 6, wobei hier vier Parameter für Synchronisationszwecke reserviert sind. Im anschliessenden Datenverschlüssler 6 erfolgt eine Verschlüsselung, s. Fig. 7 a(t) mit den zu Fig. 6 permutierten Sprachparametern des gleichen Sprachabschnittes (m=1 ). Nun erfolgt in bekannter Weise in einem Datenkoder 7 eine Kodierung, wobei die ℓfach vervielfachten Informationssignale als Einheit alternierend mit wechselndem Vorzeichen summiert werden, die resultierenden laufenden Partialsummen gebildet und ℓfach vervielfacht am Ausgang erscheinen, vgl. Fig. 8 A(t). In einem Modulator 8 erfolgt hierauf eine digitale Modulation, welche der spezifischen Bandbreite des Übertragungskanals, im vorliegenden Fall einem CCITT-Sprachkanal, angepasst ist und nach Umsetzung in einem 12-bit-Digital/Analog-Konverter und Tiefpassfilterung in Form eines analogen Sendersignals f(t) (Fig. 9) in diesen eingespeist wird.The system limits of the subsequent data reduction level B are based on the physiological properties of the human ear. Accordingly, a lower frequency band (Ib in the figures) from 400 to 1250 Hz and an upper frequency band (ub in the figures) from 1250 to 2800 Hz are provided. Again, for physiological reasons, all approximated positive amount and amount times phase-related information is transmitted in the lower frequency band, while in the upper frequency band approximated amount information is processed only via k (= 4) image samples. This information now undergoes a triple duplication in a data duplicator 5 and results in a signal A (t) according to FIG. 6, four parameters being reserved here for synchronization purposes. An encryption takes place in the subsequent data encryptor 6, see FIG. FIG. 7 a (t) with the speech parameters of the same speech section permuted to FIG. 6 (m = 1). Now coding is carried out in a known manner in a data encoder 7, the wobei times multiplied information signals being summed up alternately as a unit with alternating signs, the resulting running partial sums are formed and ℓ times appear at the output, cf. Fig. 8 A (t). A digital modulation is then carried out in a modulator 8, which is adapted to the specific bandwidth of the transmission channel, in the present case a CCITT voice channel, and after implementation in a 12-bit digital / analog converter and low-pass filtering in the form of an analog transmitter signal f ( t) (Fig. 9) is fed into this.

Das übertragene Sprachparametersignal f'(t) (übertragenes Sendersignal) gelangt auf den Eingang eines Demodulators 9, Fig. 2; es wird hier demoduliert, so dass A(t) einen Verlauf gemäss Fig. 10 aufweist. Dieses Signal wird anschliessend einem Synchronisations-Detektor/Dekoder 10 zugeführt und erscheint an dessen Ausgang in der Dekodierten Form A(t) nach Fig. 11. In einem nachgeschalteten Entschlüssler 11 wird der Signalverlauf A(t) gemäss Fig. 12 erzielt, welcher dieselbe Parameterfolge wie derjenige nach Fig. 6 aufweist.The transmitted speech parameter signal f '(t) (transmitted transmitter signal) reaches the input of a demodulator 9, FIG. 2; it is demodulated here so that A (t) has a profile according to FIG. 10. This signal is then fed to a synchronization detector / decoder 10 and appears at its output in the decoded form A (t) according to FIG. 11. In a downstream decoder 11, the signal curve A (t) according to FIG. 12 is achieved, which is the same Sequence of parameters as that of FIG. 6.

Dieses Signal wird einem Datenumformer 12 zugeführt, worauf das in Fig. 13 dargestellte rekonstruierte Fouriersprektrum A(f) entsteht. In der nachfolgenden Invers-Spektrums-Gewichtungs-Stufe 13 wird das invers gewichtete Fourierspektrum entsprechend Fig. 14 gebildet. Dieses Spektrum A(f) erfährt in der nachgeschalteten Diskret-Fourierrücktransformations-Stufe 14 eine Rücktransformation und wird anschliessend in den hintereinander geschalteten Abschnitt-Grenzenanpasser 15 und Digital/Analog-Wandler 16 (12- bit-D-A-Wandler mit Teifpassfilter) zu einem rekonstruierten Sprachsignal S'(t), Fig. 15, aufgearbeitet.This signal is fed to a data converter 12, whereupon the reconstructed Fourier spectrum A (f) shown in FIG. 13 arises. In the subsequent inverse spectrum weighting stage 13, the inverse weighted Fourier spectrum is formed in accordance with FIG. 14. This spectrum A (f) undergoes a reverse transformation in the downstream discrete Fourier re-transformation stage 14 and is subsequently reconstructed into a section boundary adjuster 15 and digital / analog converter 16 (12-bit D / A converter with a low pass filter) connected in series to form a reconstruction Speech signal S '(t), Fig. 15, processed.

Im weiteren hat es sich als vorteilhaft erwiesen, dem Empfänger Fig. 2 eingangsseitig einen Entzerrer vorzuschalten und das Eingangssignal mit der gegenüber dem Sender doppelten Abtastfrequenz von 12,8 kHz abzutasten. Dadurch verbleiben zusätzliche Datenpunkte für die Detektion, Synchronisation und die Rekonstruktion des Sprachsignals.Furthermore, it has proven to be advantageous to connect an equalizer upstream of the receiver in FIG. 2 and to sample the input signal with the sampling frequency of 12.8 kHz, which is double the transmitter. This leaves additional data points for the detection, synchronization and reconstruction of the speech signal.

Aus Fig. 16, einer Darstellung A(t) von kodierten Sprachparametern über 5 Bildproben entsprechend einem Intervall von 100 ms, lassen sich weitere Zusammenhänge erkennen. Fig. 16a zeigt die Sprachparametersignale mit den durch Pfeile s symbolisierten, in Abständen von jeweils 20 ms erfolgenden Synchronisationsinformationen. Die gleichen Sprachparameter weisen nach ihrer Modulation einen Zeitverlauf gemäss Fig. 16b auf sowie nach einer Bandpassfilterung mit einem Durchlassbereich von 300 bis 3000 Hz (was einem realen Übertragungsweg entspricht) einen Verlauf nach Fig. 16c.16, a representation A (t) of coded speech parameters over 5 image samples corresponding to an interval of 100 ms, further relationships can be seen. 16a shows the speech parameter signals with the arrows s symbolized synchronization information that occurs every 20 ms. The same speech parameters have a time profile according to FIG. 16b after their modulation and a profile according to FIG. 16c after bandpass filtering with a passband of 300 to 3000 Hz (which corresponds to a real transmission path).

Das oben dargestellte System kann durch den Fachmann in weiten Grenzen variiert und weiterentwickeltwerden. So ist bereits imAusführungsbeispiel, Fig. 1, ein Pseudo-Zufallszahlengenerator 17 vorgesehen, welcher die Anzahl N der Abtastproben in der Sprachparameterisierungsstufe steuert. Dementsprechend erfolgt die Bildung der Sprachabschnitte im Empfänger, Fig. 2, durch einen synchronisierten Pseudo-Zufallsgenerator (18).The system shown above can be varied and further developed by the person skilled in the art within wide limits. A pseudo-random number generator 17 is already provided in the exemplary embodiment, FIG. 1, which controls the number N of samples in the speech parameterization stage. Accordingly, the speech sections in the receiver, FIG. 2, are formed by a synchronized pseudo-random generator (18).

Ebenfalls kann beispielsweise die Restverständlichkeit im Übertragungsweg praktisch auf Null reduziert werden durch eine Permutation der Sprachparameter über mehrere Sprachabschnitte oder durch zeitlich variierende Sprachabschnitte, vgl. Fig. 7 mit m=1.Likewise, for example, the residual intelligibility in the transmission path can be reduced to practically zero by permutation of the speech parameters over several speech sections or through time-varying speech sections, cf. 7 with m = 1.

Die Fig. 17 liefert einen Qualitätsbeweis für das System: Fig. 1 7a stellt dabei das Original-Sprachsignal S(t) und Fig. 17b das rekonstruierte Sprachsignal S'(t) dar.Fig. 17 provides proof of the quality of the system: Fig. 1 7a represents the original speech signal S (t) and Fig. 17b the reconstructed speech signal S '(t).

Weitere Nachweise über die hohe Übertragungsqualität konnten durch entsprechende Spektrogramme der Sprachsignale S(t) und S'(t) erbracht werden, welche jedoch hier aus zeichentechnischen Gründen nicht dargestellt sind.Further evidence of the high transmission quality could be provided by corresponding spectrograms of the speech signals S (t) and S '(t), which are not shown here for drawing reasons.

Claims (7)

1. A method for the secure transmission of speech signals on an analog transmission path which is formed by a transmitter and a receiver and which has a limited band width, pulse-code modulated speech signals being generated in the transmitter and divided into individual sections consisting of N scanning samples, subjected to orthogonal transformation, encoded and subsequently transmitted, and in the receiver, which is operated in synchronism with the transmitter, returned to a speech signal by being transformed back, characterised in that, at the transmitter side-
- in a first step of the method, the discrete complex spectrum of the respective section is calculated and amplified in such a manner that the individual spectra have a constant mean amplitude;
- this amplified speech spectrum is divided into an upper and a lower frequency band, the upper frequency band, on the one hand, being provided for items of quantity information approximated from k complex, averaged image samples and, on the other hand, the lower frequency band being provided for approximated, positive quantity- and phase-related information, and
- in a second step of the method, the resultant information signals are individually muItipIiedℓ times and, within a range of m speech sections, are exchanged in a pseudo-random manner as a unit and/or encoded in groups and are transmitted.
2. A method according to Claim 1, characterised in that a lower frequency band of 400 to 1250 Hz and an upper frequency band of 1250 to 2800 Hz are used.
3. A method according to one of Claims 1 or 2, characterised in that the positive information signals, which have been multiplied I times and exchanged in a pseudo-random manner within a range of m speech sections, are summed as a unit alternating with changing sign, the resultant current partial sums are formed, multiplied I times, matched by digital modulation to the band width of the transmission channel and, supplemented by a synchronising signal, are transmitted.
4. A method according to one of Claims 1 to 3, characterised in that the number N of the scanning samples is varied in a pseudo-random manner during the parametrisation of the speech signals. 5, A method according to one of Claims 1 to 4, characterised in that, at the input of the receiver, the received signal is first equalised and then sampled with a sampling frequency which is twice that of the transmitter.
6. A circuit arrangement for carrying out a method according to Claim 1, which, at the transmitter, consists of a series circuits of a speech parametrisation unit (A) provided with a digitising stage (1), a discrete Fourier transformation stage (2), a data reduction stage (B) and an encoding unit (C) having a data duplicator (5), data coder (7) and modulator (8) and, at the receiver, comprises a return coding unit (C') having a demodulator (9) and synchronisation detector/ decoder (10), a parameter recovery unit (B') having a data converter (12), and a speech signal former (A') having a discrete Fourier retransforma- tion stage (14), a section limit matching stage (15) and a digital/analog converter (16), characterised in that-
- at the transmitter, in the speech parametrisation unit (A), the discrete Fourier transformation stage (2) is followed by a spectrum weighting stage (3) and, in the encoding unit (C), the data duplicator (5) is followed by a data encrypting stage (6), and
- at the receiver, in the return encoding unit (C'), the synchronisation detector/decoder (10) is followed by a deciphering stage (11) and, in the parameter recovery unit (B'), the data converter (12) is followed by an inverse spectrum weighting stage (13).
7. A circuit arrangement according to Claim 6, characterised in that the speech parametrisation unit (A) is preceded in the circuit by a first pseudo-random number generator (17), the output of which controls the number N of samples, and in that the formation of sections in the receiver is controlled by a second pseudo-random generator (18) which runs in synchronism with the first such generator.
EP19810900305 1980-02-01 1981-01-30 Process and device for protecting the transmission of vocal signals Expired EP0044845B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH817/80 1980-02-01
CH81780A CH649181A5 (en) 1980-02-01 1980-02-01 METHOD AND CIRCUIT FOR SECURED transmitting voice signals.

Publications (2)

Publication Number Publication Date
EP0044845A1 EP0044845A1 (en) 1982-02-03
EP0044845B1 true EP0044845B1 (en) 1984-07-11

Family

ID=4195882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810900305 Expired EP0044845B1 (en) 1980-02-01 1981-01-30 Process and device for protecting the transmission of vocal signals

Country Status (5)

Country Link
EP (1) EP0044845B1 (en)
JP (1) JPS57500089A (en)
CH (1) CH649181A5 (en)
DE (1) DE3164634D1 (en)
WO (1) WO1981002234A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393276A (en) * 1981-03-19 1983-07-12 Bell Telephone Laboratories, Incorporated Fourier masking analog signal secure communication system
DE3506912A1 (en) * 1985-02-27 1986-08-28 Telefunken Fernseh Und Rundfunk Gmbh, 3000 Hannover METHOD FOR TRANSMITTING AN AUDIO SIGNAL
EP0313029A1 (en) * 1987-10-21 1989-04-26 Siemens Aktiengesellschaft Österreich Apparatus for scrambled transmission of analog signals
GB8914880D0 (en) * 1989-06-29 1989-08-23 Indep Broadcasting Authority Video scrambling in the frequency domain
WO1991013464A1 (en) * 1990-02-26 1991-09-05 Cray Research, Inc. Reduced capacitance chip carrier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944745A (en) * 1945-05-10 1976-03-16 Bell Telephone Laboratories, Incorporated Secret signaling system with means for preventing key disclosure
US4179586A (en) * 1972-08-02 1979-12-18 The United States Of America As Represented By The Secretary Of The Army System of encoded speech transmission and reception
US4064363A (en) * 1974-07-25 1977-12-20 Northrop Corporation Vocoder systems providing wave form analysis and synthesis using fourier transform representative signals
DE2523828C2 (en) * 1975-05-30 1982-08-12 TE KA DE Felten & Guilleaume Fernmeldeanlagen GmbH, 8500 Nürnberg Method for obfuscating speech signals with the aid of orthogonal matrices

Also Published As

Publication number Publication date
JPS57500089A (en) 1982-01-14
DE3164634D1 (en) 1984-08-16
EP0044845A1 (en) 1982-02-03
WO1981002234A1 (en) 1981-08-06
CH649181A5 (en) 1985-04-30

Similar Documents

Publication Publication Date Title
DE2648273C2 (en) Single sideband method for information transmission and device for carrying out the method
EP0729678B1 (en) Process and device for speech scrambling and unscrambling in speech transmission
DE3642982A1 (en) TRANSMISSION SYSTEM
DE19640814C2 (en) Coding method for introducing an inaudible data signal into an audio signal and method for decoding a data signal contained inaudibly in an audio signal
DE69029658T3 (en) Method and device for compressing a communication signal
EP0044845B1 (en) Process and device for protecting the transmission of vocal signals
DE2534854A1 (en) DIGITAL TRANSMISSION SYSTEM FOR TRANSMISSION OF TALK SIGNALS WITH A LOW PULSE FREQUENCY (BIT SPEED) AND TRANSMITTER FOR USE IN SUCH A SYSTEM
DE2335513A1 (en) PROCEDURE AND SYSTEM FOR DISCREWED TRANSMISSION OF SPOKEN INFORMATION VIA A TELEPHONIC CHANNEL
DE2609297C3 (en) Transmission system for voice signals
EP0670648B1 (en) Method and apparatus for transmitting digital signals
EP0075888B1 (en) Method for transmitting bandlimited speech signals with protection against eavesdropping
DE1537274B2 (en) SIGNAL TRANSMISSION SYSTEM WITH PULSE DELTAMODULATION, AS WELL AS TRANSMITTERS AND RECEIVERS TO BE USED IN THIS SYSTEM
DE1227525B (en) Monitoring device for PCM time division multiplex systems
DE3539818A1 (en) METHOD FOR DIGITAL TRANSFER OF DATA AND LANGUAGE
DE3730399A1 (en) Method and device for transmitting a digital signal
DE2539769C3 (en) Digital pulse modulation with dynamic limitation
EP1116356A1 (en) Device and method for regulating the sampling rate in a data transfer system
DE2318489C3 (en) Method and arrangement for the disguised transmission of spoken information over a telephony channel
EP0104313A1 (en) Method and apparatus for narrow band voice transmission
DE1762445C (en) Method and circuit arrangement for the simultaneous transmission of several voice signals over a common communication line
DE3440615C1 (en) Method for transmitting and storing audio signals and device to carry out the method
EP0058318B1 (en) Sub-band permutation method
DE1537274C3 (en) Signal transmission system with pulse delta modulation, as well as transmitters and receivers to be used in this system
EP0184811B1 (en) Method for the analogous radio transmission of speech
DE3245244C1 (en) Method for simultaneous transmission of binary data and telephone speech signals within the speech band of a telephone transmission channel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810605

AK Designated contracting states

Designated state(s): DE FR GB NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL SE

REF Corresponds to:

Ref document number: 3164634

Country of ref document: DE

Date of ref document: 19840816

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19890131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890131

Year of fee payment: 9

Ref country code: NL

Payment date: 19890131

Year of fee payment: 11

Ref country code: GB

Payment date: 19890131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890320

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901002

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81900305.4

Effective date: 19901106