EP0043957A1 - Monolithic integrated circuit and application to a pacemaker - Google Patents

Monolithic integrated circuit and application to a pacemaker Download PDF

Info

Publication number
EP0043957A1
EP0043957A1 EP81104931A EP81104931A EP0043957A1 EP 0043957 A1 EP0043957 A1 EP 0043957A1 EP 81104931 A EP81104931 A EP 81104931A EP 81104931 A EP81104931 A EP 81104931A EP 0043957 A1 EP0043957 A1 EP 0043957A1
Authority
EP
European Patent Office
Prior art keywords
substrate
voltage
transistor
supply voltage
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81104931A
Other languages
German (de)
French (fr)
Other versions
EP0043957B1 (en
Inventor
Anders Dr. Lekholm
Hans Strandberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Elema AB
Original Assignee
Siemens AG
Siemens Elema AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Elema AB filed Critical Siemens AG
Priority to AT81104931T priority Critical patent/ATE4615T1/en
Publication of EP0043957A1 publication Critical patent/EP0043957A1/en
Application granted granted Critical
Publication of EP0043957B1 publication Critical patent/EP0043957B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/205Substrate bias-voltage generators

Definitions

  • the invention relates to a monolithically integrated circuit in which components are formed in a doped substrate by differently doped regions and in which the substrate is firmly connected to that pole of a supply voltage source which causes the transition between the components and the substrate to block.
  • a p-doped silicon substrate is used as the substrate.
  • n-doped layers are completely diffused into this substrate, which are completely surrounded by p-doped silicon. Further diffusion phases can, for example, result in the collector-base barrier layer, resistors and finally also the emitter in these n-doped regions.
  • the isolation between the components is carried out by the pn-connection existing between the substrate and the first n-doped diffusion layer, which is biased so that it forms a barrier layer (transistor manual by Jan Hendrik Jansen, Franzis-Verlag, Kunststoff (1980), Page 125).
  • the p-doped substrate is usually connected to the negative pole of the supply voltage source. When the different dopings are reversed, the sign of the supply voltage connection also changes accordingly.
  • the present invention has for its object to ensure the function of a circuit of the type mentioned even when external voltages occur that are outside the supply voltage.
  • the insulation between the individual components of the circuit and between these and the substrate should also be ensured in such a case.
  • This object is achieved in that when a voltage occurs outside the supply voltage in such a way that the transition would become conductive, the substrate is approximately connected to this voltage. If, for example, it is again a monolithic circuit in a p-doped substrate that is initially connected to the negative pole of the supply voltage, the substrate is connected directly to this lower voltage when a pulse voltage occurs that is more negative than the negative supply voltage. The substrate tension always follows the most negative tension. This ensures that the pn connection between the substrate and the components acts as a barrier layer.
  • a simple possibility for realizing this voltage tracking is that the substrate is connected to the pole of the supply voltage source via a resistor and to the external voltage via a switch.
  • a transistor can advantageously be provided as a switch. As long as the switch is open, the substrate is at the same potential as the negative pole of the supply voltage source. If the switch is closed or the transistor is turned on, the potential of the substrate corresponds to that of the external voltage except for a small voltage drop across the transistor. The pn connections between the substrate and the components continue to block. A small leakage current flows only through the resistor, via which the substrate is connected to the pole of the supply voltage source. If this resistance is made correspondingly high-resistance, this leakage current can practically be neglected.
  • This circuit according to the invention can be used particularly advantageously for a pacemaker.
  • a battery is predominantly used as a supply voltage source in pacemakers.
  • the circuit according to the invention makes it possible to achieve stimulation pulses of sufficient amplitude at a low battery voltage by simply doubling the voltage.
  • the positive pole is labeled 3.
  • the external resistance R4 symbolizes the heart.
  • the emitter voltage U E at transistor T32 is more negative than the negative pole of the battery (FIG. 2).
  • the collector voltage is the same as the emitter voltage except for a small voltage drop across the controlled transistor.
  • substrate 9 is connected directly to the emitter of transistor T32. It is therefore almost at the same potential as the collector of the transistor. If its saturation voltage is lower than the forward voltage of the blocking diodes to the substrate 9, no leakage currents flow. The blocking effect of the pn connection between the collector and the substrate is retained.
  • the transistors T32 and T33 and the resistor R6 have been produced in the common p-doped substrate 9 by further diffusion steps.
  • the substrate 9 is connected to the negative pole 2 of the battery via the resistor R6. Furthermore, the substrate is connected to the emitter of transistor T32 via transistor T33. If the external voltage at terminal 7 becomes more negative than the negative pole of the battery and simultaneously control both transistors, then the external voltage is at the collector of transistor T32, but also at substrate 9, if one neglects the small voltage drop across the transistor.
  • the pn connection continues to block. Without this automatic readjustment of the substrate voltage, this pn connection would become conductive and there would be a large leakage current and possibly a malfunction of the monolith circuit.
  • the substrate can also be connected to the negative pole of the battery or to the emitter of transistor T32 via a changeover switch controlled by transistor T34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Electrotherapy Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

1. A monolithic integrated circuit, in which components are formed in a doped substrate by differently doped regions, and in which the substrate is firmyl connected to that pole of a supply voltage source which causes the junction between the component and the substrate to be in the blocking state, characterized in that on the occurence of a voltage external to the supply voltage such that the junction would become conductive, the substrate (9) is connected approximately to this voltage.

Description

Die Erfindung betrifft eine monolithisch integrierte Schaltung, bei der in einem dotierten Substrat durch unterschiedlich dotierte Bereiche Bauelemente gebildet sind und bei der das Substrat fest mit demjenigen Pol einer Versorgungsspannungsquelle verbunden ist, der bewirkt, daß der Übergang zwischen den Bauelementen und Substrat sperrt.The invention relates to a monolithically integrated circuit in which components are formed in a doped substrate by differently doped regions and in which the substrate is firmly connected to that pole of a supply voltage source which causes the transition between the components and the substrate to block.

Bei der Erzeugung monolithisch integrierter Schaltungen geht man beispielsweise von einer p-dotierten Siliziumunterlage als Substrat aus. In dieses Substrat werden in den Bereichen, in denen Bauelemente wie Transistoren oder Widerstände entstehen sollen, n-dotierte Schichten eindiffundiert, die vollständig von p-dotiertem Silizium umgeben sind. Durch weitere Diffusionsphasen können in diesen n-dotierten Bereichen beispielsweise die Kollektor-Basis-Sperrschicht, Widerstände und schließlich auch der Emitter entstehen. Die Isolierung zwischen den Bauelementen erfolgt durch die zwischen Substrat und der ersten n-dotierten Diffusionsschicht bestehende pn-Verbindung, die so vorgespannt ist, daß sie eine Sperrschicht bildet (Transistor-Handbuch von Jan Hendrik Jansen, Franzis-Verlag, München (1980), Seite 125). Üblicherweise ist dazu das p-dotierte Substrat mit dem negativen Pol der Versorgungsspannungsquelle verbunden. Bei einer Umkehr der verschiedenen Dotierungen ändert sich entsprechend auch das Vorzeichen des Versorgungsspannungsanschlusses.When producing monolithically integrated circuits, for example, a p-doped silicon substrate is used as the substrate. In the areas in which components such as transistors or resistors are to be formed, n-doped layers are completely diffused into this substrate, which are completely surrounded by p-doped silicon. Further diffusion phases can, for example, result in the collector-base barrier layer, resistors and finally also the emitter in these n-doped regions. The isolation between the components is carried out by the pn-connection existing between the substrate and the first n-doped diffusion layer, which is biased so that it forms a barrier layer (transistor manual by Jan Hendrik Jansen, Franzis-Verlag, Munich (1980), Page 125). For this purpose, the p-doped substrate is usually connected to the negative pole of the supply voltage source. When the different dopings are reversed, the sign of the supply voltage connection also changes accordingly.

Solange bei einer derartigen Schaltung die Spannung an den einzelnen Bauelementen nicht größer wird als die Versorgungsspannung, bilden die pn-Übergänge zwischen Substrat und Bauelementen stets Sperrschichten. Sinkt (steigt) jedoch die äußere Spannung unter (über) die negative (positive) Versorgungsspannung, so kann es vorkommen, daß die zur Isolation zwischen den Bauteilen vorgesehene pn-Verbindung in Durchlaßrichtung betrieben wird. Das würde zu einem großen Leckstrom und damit zu einer Spannungsverfälschung führen. Derartige problematische äußere Spannungen können bei einer monolithisch integrierten Schaltung beispielsweise durch eine Spannungsverdopplung auftreten.As long as the voltage at the individual components does not exceed the supply voltage in such a circuit, the pn junctions between substrate and components always form barrier layers. However, if the external voltage drops (rises) below (above) the negative (positive) supply voltage, it can happen that the pn connection provided for insulation between the components is operated in the forward direction. This would lead to a large leakage current and thus to voltage distortion. Such problematic external voltages can occur in a monolithically integrated circuit, for example by doubling the voltage.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Funktion einer Schaltung der eingangs genannten Art auch dann sicherzustellen, wenn äußere Spannungen auftreten, die außerhalb der Versorgungsspannung liegen. Die Isolation zwischen den einzelnen Bauelementen der Schaltung sowie zwischen diesen und dem Substrat soll auch in einem solchen Fall gewährleistet sein.The present invention has for its object to ensure the function of a circuit of the type mentioned even when external voltages occur that are outside the supply voltage. The insulation between the individual components of the circuit and between these and the substrate should also be ensured in such a case.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß beim Auftreten einer Spannung außerhalb der Versorgungsspannung in der Art, daß der Übergang leitend würde, das Substrat annähernd an diese Spannung angeschlossen ist. Handelt es sich beispielsweise wiederum um eine monolithische Schaltung in einem p-dotierten Substrat, das zunächst mit dem Minuspol der Versorgungsspannung verbunden ist, so wird beim Auftreten einer Impulsspannung, die negativer ist als die negative Versorgungsspannung, das Substrat direkt an diese niedrigere Spannung angeschlossen. Die Substratspannung folgt also immer der negativsten Spannung. Damit ist sichergestellt, daß die pn-Verbindung zwischen Substrat und Bauelementen als Sperrschicht wirkt.This object is achieved in that when a voltage occurs outside the supply voltage in such a way that the transition would become conductive, the substrate is approximately connected to this voltage. If, for example, it is again a monolithic circuit in a p-doped substrate that is initially connected to the negative pole of the supply voltage, the substrate is connected directly to this lower voltage when a pulse voltage occurs that is more negative than the negative supply voltage. The substrate tension always follows the most negative tension. This ensures that the pn connection between the substrate and the components acts as a barrier layer.

Eine einfache Möglichkeit zur Realisierung dieser Spannungsnachführung besteht darin, daß das Substrat über einen Widerstand an den Pol der Versorgungsspannungsquelle und über einen Schalter an die äußere Spannung angeschlossen ist. Als Schalter kann dabei vorteilhaft ein Transistor vorgesehen sein. Solange der Schalter geöffnet ist, liegt das Substrat auf dem gleichen Potential wie der negative Pol der Versorgungsspannungsquelle. Wird der Schalter geschlossen bzw. steuert der Transistor durch, so entspricht das Potential des Substrats bis auf einen geringen Spannungsabfall am Transistor dem der äußeren Spannung. Die pn-Verbindungen zwischen Substrat und den Bauelementen sperren weiterhin. Lediglich über den Widerstand, über den das Substrat an den Pol der Versorgungsspannungsquelle angeschlossen ist, fließt ein kleiner Leckstrom. Macht man diesen Widerstand entsprechend hochohmig, so kann dieser Leckstrom praktisch vernachlässigt werden.A simple possibility for realizing this voltage tracking is that the substrate is connected to the pole of the supply voltage source via a resistor and to the external voltage via a switch. A transistor can advantageously be provided as a switch. As long as the switch is open, the substrate is at the same potential as the negative pole of the supply voltage source. If the switch is closed or the transistor is turned on, the potential of the substrate corresponds to that of the external voltage except for a small voltage drop across the transistor. The pn connections between the substrate and the components continue to block. A small leakage current flows only through the resistor, via which the substrate is connected to the pole of the supply voltage source. If this resistance is made correspondingly high-resistance, this leakage current can practically be neglected.

Besonders vorteilhaft läßt sich diese erfindungsgemäße-Schaltung für einen Herzschrittmacher verwenden. Überwiegend wird in Herzschrittmachern als Versorgungsspannungsquelle eine Batterie verwendet. Durch die erfindungsgemäße Schaltung ist es bei niedriger Batteriespannung durch eine einfache Spannungsverdopplung möglich, Stimulierungsimpulse mit ausreichender Amplitude zu erzielen.This circuit according to the invention can be used particularly advantageously for a pacemaker. A battery is predominantly used as a supply voltage source in pacemakers. The circuit according to the invention makes it possible to achieve stimulation pulses of sufficient amplitude at a low battery voltage by simply doubling the voltage.

Im folgenden wird anhand von drei Figuren die erfindungsgemäße Schaltung und ihre Verwendung in einem Herzschrittmacher näher beschrieben und erläutert.

  • Fig. 1 zeigt einen Ausschnitt einer monolithisch integrierten Schaltung für einen Herzimpulsgenerator mit Spannungsverdopplung;
  • Fig. 2 zeigt den zeitlichen Spannungsverlauf am Emitter des Transistors T32 gemäß Fig. 1;
  • Fig. 3 schließlich zeigt in einer schematischen Teildarstellung den Aufbau des Monolithkreises.
The circuit according to the invention and its use in a cardiac pacemaker are described and explained in more detail below with reference to three figures.
  • 1 shows a section of a monolithically integrated circuit for a cardiac pulse generator with voltage doubling;
  • FIG. 2 shows the voltage curve over time at the emitter of transistor T32 according to FIG. 1;
  • 3 shows a schematic partial representation of the structure of the monolithic circle.

Fig. 1 zeigt innerhalb einer strichlierten Fläche 1 den monolithisch integrierten Sdaltungsteil eines Herzimpulsgenerators und außerhalb dieser Fläche die externen Anschlüsse und Elemente. Die Versorgungsspannung von beispielsweise 2,5 V wird von einer nicht dargestellten Batterie geliefert, deren Minuspol 2 auf Masse liegt, d. h. mit dem Körper verbunden ist. Der Pluspol ist mit 3 bezeichnet. Der äußere Widerstand R4 symbolisiert das Herz.1 shows the monolithically integrated circuit part of a heart pulse generator within a dashed area 1 and the external connections and elements outside this area. The supply voltage of 2.5 V, for example, is supplied by a battery, not shown, the negative pole 2 of which is connected to ground, i. H. connected to the body. The positive pole is labeled 3. The external resistance R4 symbolizes the heart.

Der Monolithkreis enthält vier npn-Transistoren T31 bis T34 sowie eine Reihe von Widerständen R1 bis R3, R5 bis R9. Das Substrat 9 ist p-dotiert. An den Ausgang 4 ist ein Kondensator C11 angeschlossen, von dem eine Elektrode 5 zum Herzen, d. h, in der Schaltung zum Widerstand R4, führt. Weiterhin sind der Kollektor des Transistors T31 und der Emitter des Transistors T32 zu Anschlüssen 6 bzw. 7 herausgeführt, zwischen die ein weiterer Kondensator C12 geschaltet ist. Die Basis des Transistors T34 ist zu einem Anschluß 8 herausgeführt, an den eine nicht dargestellte Steuereinrichtung für die Impulsdauer und Impulsfrequenz angeschlossen ist. Die Funktionsweise der Schaltung ist folgende:

  • Solange der Transistor T34 sperrt, sperren auch die übrigen Transistoren. Dann sind die Anschlüsse 4 bzw. 6 über die Widerstände R2 bzw. R1 mit dem Pluspol 3 der Batterie verbunden. Die andere Seite dieser Kondensatoren liegt über die Widerstände R4 bzw. R3 auf Masse. Beide Kondensatoren laden sich auf die Batteriespannung auf. Der über das Herz (Widerstand R4) fließende Ladestrom wird durch Wahl des Widerstandes R2 so klein gewählt, daß eine Anregung des Herzens unterbleibt.
The monolith circuit contains four npn transistors T31 to T34 and a series of resistors R1 to R3, R5 to R9. The substrate 9 is p-doped. A capacitor C11 is connected to the output 4, from which an electrode 5 to the heart, i. h, leads to resistor R4 in the circuit. Furthermore, the collector of transistor T31 and the emitter of transistor T32 are led out to connections 6 and 7, between which a further capacitor C12 is connected. The base of the transistor T34 is led out to a terminal 8 to which a control device (not shown) for the pulse duration and pulse frequency is connected. The circuit works as follows:
  • As long as the transistor T34 blocks, the other transistors also block. Then the connections 4 and 6 are connected via the resistors R2 and R1 to the positive pole 3 of the battery. The other side of these capacitors is connected to ground via the resistors R4 and R3. Both capacitors charge up on the battery voltage. The drawer flowing over the heart (resistor R4) Current is chosen so small by choosing the resistor R2 that there is no excitation of the heart.

Wird an den Anschluß 8 ein positiver Spannungsimpuls gelegt, so steuern der Transistor T34 und damit auch die anderen Transistoren T31 bis T33 durch. Dadurch liegt der Anschluß 6 des Kondensators C12 über den Transistor T31 direkt an Masse. Der Anschluß 7 dieses Kondensators weist ein um die Batteriespannung niedrigeres Potential auf und wird über den Transistor T32 direkt mit dem Ausgang 4 und dem Kondensator C11 verbunden, dessen andere Seite dadurch ein Potential aufweist, das um die doppelte Batteriespannung negativer ist als das Massepotential. Es kommt zu einem stimulierenden Span- , nungsimpuls durch das Herz (Widerstand R4). Die Anfangsamplitude dieses Impulses entspricht zweimal der Batteriespannung.If a positive voltage pulse is applied to the terminal 8, the transistor T34 and thus also the other transistors T31 to T33 control through. As a result, terminal 6 of capacitor C12 is connected directly to ground via transistor T31. The terminal 7 of this capacitor has a lower potential by the battery voltage and is connected via the transistor T32 directly to the output 4 and the capacitor C11, the other side of which has a potential which is more negative than the ground potential by twice the battery voltage. There is a stimulating voltage, voltage pulse through the heart (resistance R4). The initial amplitude of this pulse corresponds to twice the battery voltage.

Während dieses Spannungsimpulses ist die Emitterspannung UE am Transistor T32 negativer als der Minuspol der Batterie (Fig. 2). Die Kollektorspannung ist bis auf einen geringen Spannungsabfall am durchgesteuerten Transistor gleich der Emitterspannung.During this voltage pulse, the emitter voltage U E at transistor T32 is more negative than the negative pole of the battery (FIG. 2). The collector voltage is the same as the emitter voltage except for a small voltage drop across the controlled transistor.

Durch das gleichzeitige Durchsteuern der Transistoren T32 und T33 wird das Substrat 9 direkt mit dem Emitter des Transistors T32 verbunden. Es liegt damit auf fast gleichem Potential wie der Kollektor des Transistors. Wenn seine Sättigungsspannung niedriger ist als die Durchlaßspannung der Sperrdioden zum Substrat 9, fließen keine Leckströme. Die Sperrwirkung der pn-Verbindung zwischen Kollektor und Substrat bleibt erhalten.By simultaneously turning on transistors T32 and T33, substrate 9 is connected directly to the emitter of transistor T32. It is therefore almost at the same potential as the collector of the transistor. If its saturation voltage is lower than the forward voltage of the blocking diodes to the substrate 9, no leakage currents flow. The blocking effect of the pn connection between the collector and the substrate is retained.

In der Fig. 3 sind diese Verhältnisse anhand eines schematischen Ausschnittes aus dem Monolithkreis noch einmal verdeutlicht. Gleiche Teile sind dabei mit gleichen Bezugszeichen versehen.3, these relationships are still based on a schematic section of the monolith circle clarified once. The same parts are provided with the same reference numerals.

In dem gemeinsamen p-dotierten Substrat 9 sind durch weitere Diffusionsschritte die Transistoren T32 und T33 sowie der Widerstand R6 erzeugt'worden. Das Substrat 9 ist über den Widerstand R6 mit dem Minuspol 2 der Batterie verbunden. Weiterhin ist das Substrat über den Transistor T33 mit dem Emitter des Transistors T32 verbunden. Wird die äußere Spannung am Anschluß 7 negativer als der Minuspol der Batterie und steuern gleichzeitig beide Transistoren durch, so liegt die äußere Spannung am Kollektor des Transistors T32, aber auch am Substrat 9, wenn man den geringen Spannungsabfall am Transistor vernachlässigt. Die pn-Verbindung sperrt weiter. Ohne diese automatische Nachregelung der Substratspannung würde diese pn-Verbindung leitend und es käme zu einem großen Leckstrom und möglicherweise zu einer Fehlfunktion des Monolithkreises.The transistors T32 and T33 and the resistor R6 have been produced in the common p-doped substrate 9 by further diffusion steps. The substrate 9 is connected to the negative pole 2 of the battery via the resistor R6. Furthermore, the substrate is connected to the emitter of transistor T32 via transistor T33. If the external voltage at terminal 7 becomes more negative than the negative pole of the battery and simultaneously control both transistors, then the external voltage is at the collector of transistor T32, but also at substrate 9, if one neglects the small voltage drop across the transistor. The pn connection continues to block. Without this automatic readjustment of the substrate voltage, this pn connection would become conductive and there would be a large leakage current and possibly a malfunction of the monolith circuit.

Anhand der drei Figuren wurde ein mögliches Ausführungsbeispiel der Erfindung beschrieben. Weitere Spannungsnachführungen sind denkbar. So kann das Substrat beispielsweise auch über einen durch den Transistor T34 gesteuerten Wechselschalter entweder mit dem Minuspol der Batterie oder mit dem Emitter des Transistors T32 verbunden werden.A possible embodiment of the invention was described with the aid of the three figures. Further voltage adjustments are conceivable. For example, the substrate can also be connected to the negative pole of the battery or to the emitter of transistor T32 via a changeover switch controlled by transistor T34.

Claims (4)

1. Monolithisch integrierte Schaltung, bei der in einem dotierten Substrat durch unterschiedlich dotierte Bereiche Bauelemente gebildet sind und bei der das Substrat fest mit demjenigen Pol einer Versorgungsspannungsquelle verbunden ist, der bewirkt, daß der Übergang zwischen den Bauelementen und Substrat sperrt, dadurch gekennzeichnet , daß beim Auftreten einer Spannung außerhalb der Versorgungsspannung in der Art, daß der Übergang leitend würde, das Substrat (9) annähernd an diese Spannung angeschlossen ist.1. Monolithically integrated circuit, in which components are formed in a doped substrate by differently doped regions and in which the substrate is firmly connected to that pole of a supply voltage source which causes the transition between the components and substrate to block, characterized in that when a voltage occurs outside the supply voltage in such a way that the transition would become conductive, the substrate (9) is approximately connected to this voltage. 2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß das Substrat (9) über einen Widerstand (R6) an den Pol (2) der Versorgungsspannungsquelle und über einen Schalter (T33) an die äußere Spannung angeschlossen ist.2. Circuit according to claim 1, characterized in that the substrate (9) is connected via a resistor (R6) to the pole (2) of the supply voltage source and via a switch (T33) to the external voltage. 3. Schaltung nach Anspruch 2, dadurch gekennzeichnet, daß als Schalter ein Transistor (T33) vorgesehen ist.3. A circuit according to claim 2, characterized in that a transistor (T33) is provided as a switch. 4. Verwendung einer Schaltung nach einem der Ansprüche 1 bis 3 für einen Herzschrittmacher.4. Use of a circuit according to one of claims 1 to 3 for a pacemaker.
EP81104931A 1980-07-10 1981-06-25 Monolithic integrated circuit and application to a pacemaker Expired EP0043957B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81104931T ATE4615T1 (en) 1980-07-10 1981-06-25 MONOLITHIC INTEGRATED CIRCUIT AND ITS USE IN A PACEMAKER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3026233 1980-07-10
DE19803026233 DE3026233A1 (en) 1980-07-10 1980-07-10 MONOLITHICALLY INTEGRATED CIRCUIT AND THEIR USE IN A HEART PACEMAKER

Publications (2)

Publication Number Publication Date
EP0043957A1 true EP0043957A1 (en) 1982-01-20
EP0043957B1 EP0043957B1 (en) 1983-09-07

Family

ID=6106906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104931A Expired EP0043957B1 (en) 1980-07-10 1981-06-25 Monolithic integrated circuit and application to a pacemaker

Country Status (4)

Country Link
EP (1) EP0043957B1 (en)
AT (1) ATE4615T1 (en)
AU (1) AU7270581A (en)
DE (1) DE3026233A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769742A (en) * 2016-08-17 2018-03-06 英飞凌科技股份有限公司 Integrated circuit with amplifier MOSFET

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electronics, Band 50, Nr. 16, August 1977, seiten 103-107 New York, U.S.A. R. PASHLEY et al.: "Speedy RAM Runs Cool with Power-Down Circuitry" * seite 103, Absatz: "Biasing the Chip Substrate", figur 1 * *
IBM Technical Disclosure Bulletin, Band 11, Nr. 10, Marz 1969, seite 1219 New York, U.S.A. H. FRANTZ et al.: "Mosfet Substrate Bias-Voltage Generator" * Insgesamt * *
IBM Technical Disclosure Bulletin, Band 21, Nr. 11, April 1979, seiten 4555-4556 New York, U.S.A. D. AZZIS: "Built-In Negative Bias Voltage Generator for Integrated Circuit Chip" * Insgesamt * *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769742A (en) * 2016-08-17 2018-03-06 英飞凌科技股份有限公司 Integrated circuit with amplifier MOSFET

Also Published As

Publication number Publication date
ATE4615T1 (en) 1983-09-15
AU7270581A (en) 1982-01-14
EP0043957B1 (en) 1983-09-07
DE3026233A1 (en) 1982-02-11

Similar Documents

Publication Publication Date Title
DE69512576T2 (en) Control device for an electric accumulator battery
EP0423885A1 (en) Current supply with inrush current limitation
DE2226790A1 (en) battery charger
EP0010137B1 (en) Substrate polarisation voltage generator circuit
DE2951920A1 (en) CIRCUIT
DE1961125B2 (en) MEMORY CIRCUIT
DE1537176A1 (en) Logical circuits with field effect transistors
DE1952576A1 (en) Switching device for a load circuit
DE60129778T2 (en) ELECTRONIC SWITCH WITH TWO CONNECTORS
DE3741394C2 (en) Circuit arrangement for protection against reverse polarity damage for load circuits with a MOS-FET as switching transistor
DE69200655T2 (en) Circuit for regulating the charging voltage of a battery fed by means of a generator.
DE3445167A1 (en) TOTEM POLE TRANSISTOR OUTPUT SWITCHING
DE2640621B2 (en) Semiconductor switching device
EP0043957B1 (en) Monolithic integrated circuit and application to a pacemaker
DE3604173A1 (en) LATERAL TRANSISTOR
DE1047960B (en) Circuit arrangement for generating a saw-tooth-shaped current in an inductance by means of a transistor
DE3021890C2 (en)
DE1911817C3 (en) Charging device for a motor vehicle battery
DE2539233C3 (en) Circuit arrangement for generating pulsed switching voltages
DE2431523C3 (en) Semiconductor voice path switching arrangement
DE2928452C2 (en)
DE1924826A1 (en) Control circuit
DE2614065B2 (en) Monolithically integrated Darlington pair
DE2055662C3 (en) Monolithically integrated solid-state circuit
DE69306571T2 (en) Reference voltage generator circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811028

AK Designated contracting states

Designated state(s): AT BE FR GB IT NL SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19830907

REF Corresponds to:

Ref document number: 4615

Country of ref document: AT

Date of ref document: 19830915

Kind code of ref document: T

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19840625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19840626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19840630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19840625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81104931.1

Effective date: 19850612