EP0036557A2 - Method and apparatus for the cross-linking of synthetic lacquers applied to substrates - Google Patents

Method and apparatus for the cross-linking of synthetic lacquers applied to substrates Download PDF

Info

Publication number
EP0036557A2
EP0036557A2 EP81101747A EP81101747A EP0036557A2 EP 0036557 A2 EP0036557 A2 EP 0036557A2 EP 81101747 A EP81101747 A EP 81101747A EP 81101747 A EP81101747 A EP 81101747A EP 0036557 A2 EP0036557 A2 EP 0036557A2
Authority
EP
European Patent Office
Prior art keywords
inert gas
radiation
lock
vacuum
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81101747A
Other languages
German (de)
French (fr)
Other versions
EP0036557B1 (en
EP0036557A3 (en
Inventor
Eberhard Föll
Peter Dr. Holl
Helmut Vetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymer-Physik GmbH and Co KG
Polymer Physik GmbH and Co KG
Original Assignee
Polymer-Physik GmbH and Co KG
Polymer Physik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymer-Physik GmbH and Co KG, Polymer Physik GmbH and Co KG filed Critical Polymer-Physik GmbH and Co KG
Priority to AT81101747T priority Critical patent/ATE5128T1/en
Publication of EP0036557A2 publication Critical patent/EP0036557A2/en
Publication of EP0036557A3 publication Critical patent/EP0036557A3/en
Application granted granted Critical
Publication of EP0036557B1 publication Critical patent/EP0036557B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/068Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using ionising radiations (gamma, X, electrons)

Definitions

  • the present invention relates to a method and a device for crosslinking plastic-based lacquers applied to carrier materials by means of ionizing rays, in particular electron beams, in which the objects to be irradiated are in an inert gas atmosphere.
  • the object is usually covered with a so-called protective gas in order to exclude oxygen molecules.
  • a so-called protective gas Purified nitrogen or a stoichiometric combustion gas which is free of oxygen is mainly used for this. This is necessary because the radicals generated in the paint by the ionizing radiation react faster with the atmospheric oxygen than with unsaturated carbon-carbon bonds.
  • the reaction of atmospheric oxygen with radicals results in a stable connection, i.e. no chain extension occurs at this point, only a slight crosslinking with a relatively low molecular weight of the polymer on the surface occurs.
  • the surface is then not scratch-resistant. A very thin film can be wiped off with solvent.
  • the atmospheric oxygen is sealed off by appropriately introducing high-purity nitrogen into the radiation chamber. It has been shown here that an opposing gas flow before and after the hardening zone, taking into account narrow inlet and outlet gaps for the film or plate material, is sufficient.
  • the irradiation chamber is therefore largely adapted to the outline of the part to be irradiated with the same parts of a series, and nevertheless the costs for the inert gas consumption are the highest operating costs in such an irradiation system.
  • the object of the invention is therefore to provide a method and a device which do not have the disadvantages described above, i.e. which in particular make it possible to reduce the inert gas consumption to a minimum.
  • a vacuum inert gas lock is arranged in front of the radiation chamber, which is evacuated after introduction of the object and flooded with inert gas to normal pressure. The object then passes through a lock gate into the radiation chamber, in which an inert gas atmosphere prevails at normal pressure.
  • the invention thus relates to a process for crosslinking plastic-based paints applied to carrier materials by means of ionizing rays, in particular electron beams, in an inert gas atmosphere, which is intended to prevent the curing reaction from being terminated by reacting the paint with oxygen, which is characterized in that the before the introduction into the radiation chamber filled with inert gas under normal pressure through the lock gate into a vacuum inert gas lock arranged directly in front of the radiation chamber, which is evacuated, flooded with inert gas to normal pressure, and from there through the object the lock gate into the radiation chamber is introduced, irradiated and after irradiation in the filled with inert gas transferred back and vacuum-inert gas lock after closing of an S opens chleusentors the other floodgates and executes the object, and a device for carrying out this method, which essentially consists of an irradiation chamber which can be filled with inert gas and a source of ionizing radiation and is characterized in that a vacuum inert gas lock
  • the coated part is thus placed in a vacuum inert gas lock, the chamber is closed, evacuated to a pressure of 1 mbar, corresponding to a residual oxygen content of 200 ppm (at 0.1 Torr), and then flooded with inert gas, for example nitrogen, to normal pressure.
  • inert gas for example nitrogen
  • the inertized object now enters the radiation chamber via a lock gate, which is under normal pressure and is also filled with inert gas.
  • the paint layer on the molded part is hardened by radiation.
  • the molded part can be rotated and turned in the radiation area, depending on the surface structure, so that all painted surfaces can be hardened.
  • the discharge takes place again via the same vacuum inert gas lock, the pumping process for the inert gas flooded in there being eliminated.
  • the hardened part can be removed from the vacuum chamber as soon as the lock gate between the vacuum inert gas lock and the radiation chamber is closed.
  • FIG. 1 For embodiments according to the invention, the objects run semi-continuously in one direction or are operated in oncoming traffic, but then working with 2 vacuum inert gas locks, i.e. a vacuum inert gas lock is e.g. in front of the radiation chamber and the other behind the radiation chamber.
  • a vacuum inert gas lock is e.g. in front of the radiation chamber and the other behind the radiation chamber.
  • the intermediate process of evacuating the coated part brings the additional advantage of partial oxygen removal from the paint, since the oxygen dissolved in the paint is partially pumped out and is therefore no longer available for saturating radicals. This results in a higher networking density.
  • the incorporation of oxygen in the lacquer layer or the adsorption of oxygen on the lacquer layer can be avoided by the coating process, e.g. Spraying or pouring or rolling the varnish into a room flooded with inert gas.
  • inert gas can of course be used as the spray gas for atomizing the paint.
  • a variant according to the invention is that the spraying process is already relocated to the vacuum inert gas lock flooded with inert gas; here too, of course, using nitrogen or inert gas as pressure medium during the spraying process.
  • all radiation sources known to the person skilled in the art can be used as radiation sources in conjunction with the radiation-curable polymer systems provided for this purpose, for example UV and electron beam sources.
  • the pastes are preferably cold-hardened after application by irradiation with electrons, preferably with electrons with an energy between 140 and 250 keV, in particular with those with an energy of 150 keV.
  • electrons are released in a vacuum from a hot cathode by applying the high acceleration voltage, accelerated and fanned out in a deflection system. After the electrons have passed through a thin metal foil, they can act on the object. Since X-rays are generated when the electrons are braked, the electron accelerator and the inlet and outlet into the system are shielded with lead sheet.
  • the radiation chamber is not designed for vacuum, which would lead to difficulties in connection with the electron exit window. With vacuum pumps in the radiation chamber, the window film would no longer attach itself sufficiently to the cooling and supporting grille and would become too hot.
  • radiation-curable acrylate prepolymers are preferably used as radiation-curable or radiation-crosslinkable coatings.
  • radiation-curable is understood here to mean that the substances can be radiation-polymerized and / or radiation-crosslinkable.
  • the radiation curable acrylate prepolymers used with preference include the prepolymers curable by means of UV and electron beams from the group of polyester acrylates, polyurethane acrylates, polyether acrylates, acrylate-acrylate copolymers and epoxy acrylates.
  • the viscosity of the polymers and prepolymers used can be varied by adding radiation-curable monomers or small amounts of solvents.
  • the radiation-curable polymers, prepolymers and / or mono mers and the methods for radiation curing are known to the person skilled in the art, for example from the article by A. Rosenberg "surface coatings harden with electron radiation” (Schürzburg (1978) page 1249 ff) and the article by Dr. K. Fuhr "The radiation drying of primers and lacquers on wood and wood-based materials” (German color magazine No. 6 + 7 (1977) pages 257 - 264).
  • Such prepolymer systems are sold, for example, by UCB Chemie GmbH.
  • 1 to 3 show a schematic representation of devices according to the invention for carrying out the method according to the invention.
  • This example works with a device as shown schematically in FIG. 1.
  • the part injected under inert gas, with inert gas as pressure medium, e.g. a bumper for automobiles is inserted into the vacuum inert gas lock 2 through the lock gate 1.
  • the pressure is evacuated to a pressure of 1 mbar or below, then flooded with inert gas to normal pressure, the lock gate 7 is opened, the part is transported into the radiation chamber 8, the lock gate 7 is closed, the part is passed under the radiator, turned, again passed under the spotlight, the lock gate 7 opened, the first part passed into the vacuum inert gas lock 2; in this case, the second part, which was introduced during the irradiation, is alternately brought into the irradiation chamber 8 from the vacuum inert gas lock 2.
  • the first part is ejected and the third part is already reinserted as long as the second part is irradiated.
  • the total inert gas consumption is limited to producing an inert gas atmosphere in the radiation chamber 8 by purging the radiation chamber 8 with an amount of inert gas that corresponds to approximately 10 to 20 times the volume of the radiation chamber, and flooding the vacuum inert gas lock 2 after each lock process .
  • This example works with a device as shown schematically in FIG. 2.
  • the pallet with several vehicle fittings comes from the automatic spray gun, where spraying was carried out under an inert gas atmosphere using inert gas as pressure medium, through the lock gate 1 into the vacuum inert gas lock 2.
  • the lock gate 1 is closed. It is evacuated to 10 -2 mbar, then flooded with inert gas to atmospheric pressure, the lock gate 7 is opened and the painted parts are passed at speed under the emitter 9 in the radiation chamber 8, so that the paint is crosslinked with the necessary dose.
  • the lock gate 7 is closed, a second part is introduced, the first part is rotated, the lock gate 7 is opened again after the pumping and flooding process, the second part is irradiated from above, the first part is irradiated from below.
  • the second part is now in the vacuum inert gas lock 2, the first part is in the irradiation room 8.
  • the second part is rotated, the first part is removed and the third part is simultaneously introduced.
  • the inert gas consumption is limited to the one-time inerting of the radiation chamber 8 and the other Consumption on the respective flooding of the vacuum inert gas lock 2 after the parts have been introduced or removed.
  • This example works with a device as shown schematically in FIG. 3, in which the pallet for the radiation material and the lock gate 15 between the vacuum inert gas lock 2 and the radiation chamber 8 are firmly connected to one another.
  • the part coated under an inert gas atmosphere and with inert gas as the pressure medium is fed into the vacuum inert gas lock 2 from above.
  • the lid (not shown in FIG. 3) for the vacuum inert gas lock is closed, the vacuum inert gas lock is set to a vacuum between 1 mbar and 1. 10 -2 mbar evacuated, the vacuum inert gas lock is flooded with inert gas to normal pressure, lock gate 15 and object 4 are moved with the help of the rod 18 at a speed corresponding to the dose to be administered under the emitter 9, in the end position 15 'the object is moved with Using the rod 18 rotated and under the electron gun when irradiating the back again in the vacuum inert gas lock 2 returned. The object is removed from the vacuum inert gas lock, the second object is inserted and the evacuation process starts again.

Abstract

As in the case of the irradiation of plane materials, the production of an inert atmosphere for the radiation-curable coating plays a decisive role with regard to the operating costs and the quality of the resulting product in the case of the curing of shaped parts. The present invention shows that the production of an inert atmosphere with the aid of a vacuum/inert gas lock with subsequent feeding through the lock into a radiation chamber constitutes an inexpensive means of producing an inert atmosphere for shaped parts, since flushing of the radiation chamber 8 to 10 times before each irradiation operation, as was necessary in the past, is dispensed with.

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Vernetzung von auf Trägermaterialien aufgebrachten Lacken auf Kunststoffbasis mittels ionisierender Strahlen, insbesondere Elektronenstrahlen, bei dem sich die zu bestrahlenden Gegenstände in einer Inertgasatmosphäre befinden.The present invention relates to a method and a device for crosslinking plastic-based lacquers applied to carrier materials by means of ionizing rays, in particular electron beams, in which the objects to be irradiated are in an inert gas atmosphere.

Verfahren zur Aushärtung bzw. Vernetzung von Beschichtungsmaterialien auf Kunststoffbasis mit Hilfe ionisierender Strahlen, z.B. Elektronenstrahlen, gewinnen immer mehr an Bedeutung, da als Lacke vorzugsweise lösungsmittelfreie Systeme oder solche mit nur geringem Gehalt an Lösungsmitteln verwendet werden und für die Vernetzung, die bei Raumtemperatur abläuft, relativ wenig Energie aufgewendet werden muß. Die vernetzten Schichten weisen sehr gute physikalische Eigenschaften auf, wie hohe Abriebfestigkeit, Lösungsmittelbeständigkeit usw. Vorrichtungen, die heute von Rolle zu Rolle arbeiten, zeichnen sich durch hohe Produktionsleistung bei geringem Platzbedarf aus.Processes for curing or crosslinking plastic-based coating materials with the aid of ionizing rays, for example electron beams, are becoming increasingly popular Significance since solvent-free systems or those with only a low solvent content are preferably used as lacquers and relatively little energy has to be used for the crosslinking, which takes place at room temperature. The crosslinked layers have very good physical properties, such as high abrasion resistance, solvent resistance, etc. Devices that work from roll to roll today are characterized by high production output with a small footprint.

Üblicherweise wird bei den heute bestehenden Anlagen zur Elektronenstrahlhärtung von Oberflächen das Objekt mit einem sog. Schutzgas abgedeckt, um Sauerstoffmoleküle auszuschließen. Hierzu wird hauptsächlich nachgereinigter Stickstoff oder ein stöchiometrisches Verbrennungsgas, welches frei von Sauerstoff ist, verwendet. Dies ist notwendig, weil die im Lack durch die ionisierende Strahlung erzeugten Radikale schneller mit dem Luftsauerstoff reagieren, als mit ungesättigten Kohlenstoff-Kohlenstoff-Bindungen. Die Reaktion Luftsauerstoff mit Radikalen ergibt eine stabile Verbindung, d.h. an dieser Stelle tritt keine Kettenverlängerung ein, es entsteht nur eine geringe Vernetzung mit einem relativ niedrigen Molekulargewicht des Polymeren an der Oberfläche. Die Oberfläche ist dann nicht kratzfest. Es kann ein sehr dünner Film mit Lösungsmittel abgewischt werden.In today's systems for electron beam hardening of surfaces, the object is usually covered with a so-called protective gas in order to exclude oxygen molecules. Purified nitrogen or a stoichiometric combustion gas which is free of oxygen is mainly used for this. This is necessary because the radicals generated in the paint by the ionizing radiation react faster with the atmospheric oxygen than with unsaturated carbon-carbon bonds. The reaction of atmospheric oxygen with radicals results in a stable connection, i.e. no chain extension occurs at this point, only a slight crosslinking with a relatively low molecular weight of the polymer on the surface occurs. The surface is then not scratch-resistant. A very thin film can be wiped off with solvent.

Bei zu härtenden Oberflächen lackierter Teile einfacher Form, wie z.B. Türen, Platten, bahnförmiges Material von Rolle zu Rolle, geschieht der Abschluß des Luftsauerstoffes durch geeignetes Einleiten von Stickstoff hoher Reinheit in die Bestrahlungskammer. Hierbei hat es sich gezeigt, daß eine gegenläufige Gasströmung vor und nach der Härtungszone, unter Berücksichtigung enger Ein- und Auslaufsspalte für das Folien- bzw. Plattenmaterial, ausreichend ist.For surfaces of painted parts of simple shape to be hardened, e.g. Doors, panels, sheet-like material from roll to roll, the atmospheric oxygen is sealed off by appropriately introducing high-purity nitrogen into the radiation chamber. It has been shown here that an opposing gas flow before and after the hardening zone, taking into account narrow inlet and outlet gaps for the film or plate material, is sufficient.

Derartige Verfahren sind daher vom technischen Aufwand her und kostenmäßig nur bei flachen Teilen, wie Platten, Türen und Material von Rolle zu Rolle gerade noch vertretbar, zumal - insbesondere bei bahnförmigem Material - durch geeignete Konstruktionen des Bestrahlungsraumes beträchtliche Mengen an Inertgas eingespart werden können.Such methods are therefore technically and cost-justifiable only for flat parts such as plates, doors and material from roll to roll, especially since considerable constructions of the irradiation space can be saved by suitable constructions of the radiation chamber, particularly in the case of web-shaped material.

Die Inertisierung komplizierter Formteile wie Kfz-Armaturen, Deckel, Verschlüsse, Kästen, Stoßstangen, Rohre, Felgen und ganz allgemein alle Hohlkörper bereitet dagegen enorme Schwierigkeiten, da trotz vielfachem Gasaustausch durch Spülen in der Bestrahlungskammer Restsauerstoff aus den Öffnungen diffundiert und somit eine einwandfreie Spülung mit Schutzgas enorm teuer und zeitaufwendig, oder in vielen Fällen sogar unmöglich ist. Hierbei ist zu beachten, daß das einströmende Gas bei hoher Gasmenge möglichst eine niedrige Geschwindigkeit haben soll, um Sogbildung - und somit das Einströmen von Luft in die Bestrahlungskammer - zu vermeiden. Außerdem muß für ungehinderten Gasaustritt aus der Bestrahlungskammer, ohne Rückströmung von Luft, gesorgt werden. Erfahrungsgemäß reicht nur eine Spülung mit der 8 bis 15-fachen Inertgasmenge des Kammervolumens aus. Um Inertgas zu sparen wird deshalb bei gleichbleibenden Teilen einer Serie die Bestrahlungskammer weitgehend den Umrissen des zu bestrahlenden Teiles angepaßt und trotzdem sind auch bei einer solchen Bestrahlungsanlage die Kosten für den Inertgasverbrauch die höchsten Betriebskosten.The inertization of complicated molded parts such as automotive fittings, lids, closures, boxes, bumpers, pipes, rims and, in general, all hollow bodies presents enormous difficulties, because despite multiple gas exchange by purging in the radiation chamber, residual oxygen diffuses out of the openings and thus ensures perfect purging Shielding gas is enormously expensive and time-consuming, or in many cases even impossible. It should be noted here that the inflowing gas should have as low a speed as possible with a large amount of gas in order to avoid suction formation - and thus the inflow of air into the radiation chamber. In addition, unimpeded gas leakage from the radiation chamber, without backflow of air, must be ensured. Experience has shown that a purge with 8 to 15 times the inert gas volume of the chamber volume is sufficient. In order to save inert gas, the irradiation chamber is therefore largely adapted to the outline of the part to be irradiated with the same parts of a series, and nevertheless the costs for the inert gas consumption are the highest operating costs in such an irradiation system.

Aufgabe der Erfindung ist es daher, ein Verfahren und eine Vorrichtung zur Verfügung zu stellen, die die vorstehend geschilderten Nachteile nicht aufweisen, d.h. die insbesondere ermöglichen, den Inertgasverbrauch auf ein Mindestmaß herabzusetzen.The object of the invention is therefore to provide a method and a device which do not have the disadvantages described above, i.e. which in particular make it possible to reduce the inert gas consumption to a minimum.

Gelöst wird diese Aufgabe gemäß der Erfindung dadurch, daß man vor der Bestrahlungskammer eine Vakuum-Inertgasschleuse anordnet, die nach Einbringen des Gegenstandes evakuiert und mit Inertgas auf Normaldruck geflutet wird. Durch ein Schleusentor gelangt dann der Gegenstand in die Bestrahlungskammer, in der eine Inertgasatmosphäre bei Normaldruck herrscht.This object is achieved according to the invention in that a vacuum inert gas lock is arranged in front of the radiation chamber, which is evacuated after introduction of the object and flooded with inert gas to normal pressure. The object then passes through a lock gate into the radiation chamber, in which an inert gas atmosphere prevails at normal pressure.

Gegenstand der Erfindung ist somit ein Verfahren zur Vernetzung von auf Trägermaterialien aufgebrachten Lacken auf Kunststoffbasis mittels ionisierender Strahlen, insbesondere Elektronenstrahlen, in einer Inertgasatmosphäre, die einen Abbruch der Härtungsreaktion durch Umsetzung des Lackes mit Sauerstoff verhindern soll, das dadurch gekennzeichnet ist, daß man den zu bestrahlenden, mit einer strahlenverhärtbaren Beschichtung versehenen Gegenstand vor dem Einbringen in die mit Inertgas unter Normaldruck gefüllte Bestrahlungskammer durch das Schleusentor in eine direkt vor der Bestrahlungskammer angeordnete Vakuum-Inertgasschleuse einbringt, diese evakuiert, mit Inertgas auf Normaldruck flutet, und von dort aus den Gegenstand durch das Schleusentor in die Bestrahlungskammer einbringt, bestrahlt und nach der Bestrahlung in die mit Inertgas gefüllte Vakuum-Inertgasschleuse rücküberführt und nach Schließen des einen Schleusentors das andere Schleusentor öffnet und den Gegenstand ausführt, sowie eine Vorrichtung zur Durchführung dieses Verfahrens, die im wesentlichen aus einer mit Inertgas befüllbaren Bestrahlungskammer und einer Quelle für ionisierende Strahlen besteht und dadurch gekennzeichnet ist, daß direkt vor der Bestrahlungskammer eine Vakuum-Inertgasschleuse angeordnet ist, die gegebenenfalls zusätzlich mit Spritzeinrichtungen zum Auftrag der strahlungshärtbaren Beschichtung versehen ist.The invention thus relates to a process for crosslinking plastic-based paints applied to carrier materials by means of ionizing rays, in particular electron beams, in an inert gas atmosphere, which is intended to prevent the curing reaction from being terminated by reacting the paint with oxygen, which is characterized in that the before the introduction into the radiation chamber filled with inert gas under normal pressure through the lock gate into a vacuum inert gas lock arranged directly in front of the radiation chamber, which is evacuated, flooded with inert gas to normal pressure, and from there through the object the lock gate into the radiation chamber is introduced, irradiated and after irradiation in the filled with inert gas transferred back and vacuum-inert gas lock after closing of an S opens chleusentors the other floodgates and executes the object, and a device for carrying out this method, which essentially consists of an irradiation chamber which can be filled with inert gas and a source of ionizing radiation and is characterized in that a vacuum inert gas lock is arranged directly in front of the irradiation chamber, which optionally also has spray devices for applying the radiation-curable ones Coating is provided.

Gemäß der Erfindung wird somit das beschichtete Teil in eine Vakuum-Inertgasschleuse gebracht, die Kammer geschlossen, evakuiert auf einen Druck von 1 mbar, entsprechend einem Restsauerstoffgehalt von 200 ppm (bei O,1 Torr 20 ppm), und dann mit Inertgas, z.B. Stickstoff, auf Normaldruck geflutet. Über ein Schleusentor kommt jetzt der inertisierte Gegenstand in den Bestrahlungsraum, welcher unter Normaldruck steht und ebenfalls mit Inertgas gefüllt ist. Hier wird die Lackschicht auf dem Formteil durch Bestrahlung gehärtet. Dabei kann das Formteil im Strahlungsbereich, je nach Oberflächenstruktur gedreht und gewendet werden, so daß alle lackierten Flächen gehärtet werden können. Die Ausschleusung erfolgt beim diskontinuierlichen Betrieb wieder zurück über die gleiche Vakuum-Inertgasschleuse,wobei der Pumpprozeß für das dort eingeflutete Inertgas entfällt. Das gehärtete Teil kann aus der Vakuumkammer herausgenommen werden, sobald das Schleusentor zwischen Vakuum-Inertgasschleuse und Bestrahlungsraum geschlossen ist. Bevorzugt wird man aber, zur optimalen Ausnutzung des Schleusenprozesses, das Aus- und Einschleusen der Teile miteinander kombinieren, so daß eine möglichst hohe Durchsatzrate erreicht werden kann.According to the invention, the coated part is thus placed in a vacuum inert gas lock, the chamber is closed, evacuated to a pressure of 1 mbar, corresponding to a residual oxygen content of 200 ppm (at 0.1 Torr), and then flooded with inert gas, for example nitrogen, to normal pressure. The inertized object now enters the radiation chamber via a lock gate, which is under normal pressure and is also filled with inert gas. Here the paint layer on the molded part is hardened by radiation. The molded part can be rotated and turned in the radiation area, depending on the surface structure, so that all painted surfaces can be hardened. In discontinuous operation, the discharge takes place again via the same vacuum inert gas lock, the pumping process for the inert gas flooded in there being eliminated. The hardened part can be removed from the vacuum chamber as soon as the lock gate between the vacuum inert gas lock and the radiation chamber is closed. However, preference is given to combining the removal and introduction of the parts with one another, in order to make optimum use of the lock process, so that the highest possible throughput rate can be achieved.

Weitere Ausführungsformen gemäß der Erfindung bestehen darin, daß die Gegenstände halbkontinuierlich in einer Richtung laufen oder in Gegenverkehr betrieben werden, wobei dann aber mit 2 Vakuum-Inertgasschleusen gearbeitet wird, d.h. eine Vakuum-Inertgasschleuse befindet sich z.B. vor der Bestrahlungskammer und die andere hinter der Bestrahlungskammer.Further embodiments according to the invention consist in that the objects run semi-continuously in one direction or are operated in oncoming traffic, but then working with 2 vacuum inert gas locks, i.e. a vacuum inert gas lock is e.g. in front of the radiation chamber and the other behind the radiation chamber.

Versuche haben ferner gezeigt, daß bei Verwendung der heute zur Verfügung stehenden Lacke die Blasenbildung durch das Austreten von Chemikalien niedrigen Dampfdruckes und gelösten Gasen im Lack auf die Ausbildung der Lackoberfläche keine negativen Einflüsse hat. Nach dem Belüften der Vakuumkammer, z.B. mit Stickstoff,bildet sich sofort wieder die ursprünglich durch den Beschichtungsvorgang erhaltene Oberfläche aus. Dasselbe gilt auch bei der Grundierungsbeschichtung von Teilen aus mit Glasfasern verstärkten Kunststoffen, welche ja bekanntlich keine ganz geschlossene Oberfläche besitzen und deshalb mit einer durch kalte Strahlungshärtung hergestellten Grundierungsschicht versehen werden.Experiments have also shown that when using the paints available today, the formation of bubbles by the escape of chemicals of low vapor pressure and dissolved gases in the paint has no negative effects on the formation of the paint surface. After venting the vacuum chamber, for example with nitrogen, the surface originally obtained by the coating process is immediately formed again. The same also applies to the primer coating of parts made of plastics reinforced with glass fibers, which, as is well known, do not have a completely closed surface and are therefore provided with a primer layer produced by cold radiation curing.

Der Zwischenprozeß der Evakuierung des beschichteten Teiles bringt den zusätzlichen Vorteil der teilweisen Sauerstoffentfernung aus dem Lack, da der im Lack gelöste Sauerstoff teilweise abgepumpt wird und somit zur Absättigung von Radikalen nicht mehr zur Verfügung steht. Es resultiert daraus eine höhere Vernetzungsdichte.The intermediate process of evacuating the coated part brings the additional advantage of partial oxygen removal from the paint, since the oxygen dissolved in the paint is partially pumped out and is therefore no longer available for saturating radicals. This results in a higher networking density.

Weiterhin kann der Einbau von Sauerstoff in die Lackschicht bzw. die Adsorption von Sauerstoff auf der Lackschicht dadurch vermieden werden, daß der Beschichtungsprozeß, z.B. Spritzen oder Gießen oder Walzen des Lackes, in einen mit Inertgas gefluteten Raum verlegt wird. Beim Spritzen kommt noch hinzu, daß statt Luft selbstverständlich ein Inertgas als Spritzgas zum Zerstäuben des Lackes verwendet werden kann.Furthermore, the incorporation of oxygen in the lacquer layer or the adsorption of oxygen on the lacquer layer can be avoided by the coating process, e.g. Spraying or pouring or rolling the varnish into a room flooded with inert gas. When spraying there is also the fact that instead of air, an inert gas can of course be used as the spray gas for atomizing the paint.

Eine Variante gemäß der Erfindung besteht darin, daß bereits der Spritzvorgang in die mit Inertgas geflutete Vakuum-Inertgasschleuse verlegt wird; natürlich auch hier unter Verwendung von Stickstoff bzw. Inertgas als Druckmittel beim Spritzvorgang.A variant according to the invention is that the spraying process is already relocated to the vacuum inert gas lock flooded with inert gas; here too, of course, using nitrogen or inert gas as pressure medium during the spraying process.

Als Strahlenquellen können gemäß der Erfindung alle dem Fachmann bekannten Strahlenquellen in Verbindung mit den dafür vorgesehenen strahlenhärtbaren Polymer-Systemen eingesetzt werden, z.B. UV- und Elektronenstrahlquellen. Vorzugsweise werden die Pasten nach Aufbringen durch Bestrahlung mittels Elektronen kalt ausgehärtet, vorzugsweise mittels Elektronen mit einer Energie zwischen 140 und 250 keV, insbesondere mit solchen mit einer Energie von 150 keV.According to the invention, all radiation sources known to the person skilled in the art can be used as radiation sources in conjunction with the radiation-curable polymer systems provided for this purpose, for example UV and electron beam sources. The pastes are preferably cold-hardened after application by irradiation with electrons, preferably with electrons with an energy between 140 and 250 keV, in particular with those with an energy of 150 keV.

Bei der Elektronenstrahlhärtung werden im Vakuum aus einer Glühkathode durch Anlegen der Beschleunigungshochspannung Elektronen ausgelöst, beschleunigt und in einem Ablenksystem aufgefächert. Nach Durchtritt der Elektronen durch eine dünne Metallfolie können sie auf das Objekt einwirken. Da beim Abbremsen der Elektronen Röntgenstrahlung entsteht, sind der Elektronenbeschleuniger sowie Ein- und Auslauf in die Anlage mit Bleiblech abgeschirmt.In electron beam curing, electrons are released in a vacuum from a hot cathode by applying the high acceleration voltage, accelerated and fanned out in a deflection system. After the electrons have passed through a thin metal foil, they can act on the object. Since X-rays are generated when the electrons are braked, the electron accelerator and the inlet and outlet into the system are shielded with lead sheet.

Besonders wichtig ist bei der Anwendung von Elektronenstrahlen, daß die Bestrahlungskammer nicht für Vakuum ausgelegt wird, was in Verbindung mit dem Elektronenaustrittsfenster zu Schwierigkeiten führen würde. Beim Vakuumpumpen in der Bestrahlungskammer würde sich nämlich die Fensterfolie nicht mehr genügend an das Kühl- und Stützgitter anlegen und zu heiß werden.It is particularly important when using electron beams that the radiation chamber is not designed for vacuum, which would lead to difficulties in connection with the electron exit window. With vacuum pumps in the radiation chamber, the window film would no longer attach itself sufficiently to the cooling and supporting grille and would become too hot.

Als strahlenhärtbare bzw. strahlenvernetzbare Beschichtungen werden gemäß der Erfindung vorzugsweise strahlenhärtbare Acrylatprepolymere, gegebenenfalls im Gemisch mit strahlenhärtbaren Acrylatmonomeren, eingesetzt. Unter dem Ausdruck strahlenhärtbar wird hier verstanden, daß die Substanzen strahlenpolymerisierbar und/oder strahlenvernetzbar sind. Zu den bevorzugt eingesetzten strahlenhärtbaren Acrylatprepolymeren gehören die mittels UV- und Elektronenstrahlen härtbaren Prepolymeren aus der Gruppe der Polyesteracrylate, der Polyurethanacrylate, der Polyätheracrylate, der Acrylat-Acrylat-Copolymere und der Epoxyacrylate.According to the invention, radiation-curable acrylate prepolymers, optionally in a mixture with radiation-curable acrylate monomers, are preferably used as radiation-curable or radiation-crosslinkable coatings. The term radiation-curable is understood here to mean that the substances can be radiation-polymerized and / or radiation-crosslinkable. The radiation curable acrylate prepolymers used with preference include the prepolymers curable by means of UV and electron beams from the group of polyester acrylates, polyurethane acrylates, polyether acrylates, acrylate-acrylate copolymers and epoxy acrylates.

Die Viskosität der eingesetzten Polymeren und Prepolymeren läßt sich durch den Zusatz von strahlenhärtbaren Monomeren oder geringen Mengen an Lösungsmitteln variieren.The viscosity of the polymers and prepolymers used can be varied by adding radiation-curable monomers or small amounts of solvents.

Die strahlenhärtbaren Polymeren, Prepolymeren und/oder Monomeren und die Verfahren zur Strahlenhärtung sind dem Fachmann bekannt, beispielsweise aus dem Artikel von A. Rosenberg "Oberflächenbeschichtungen härten mit Elektronenstrahlung" (Maschinenmarkt, Würzburg (1978) Seite 1249 ff) und dem Artikel von Dr. K. Fuhr "Die Strahlungstrocknung von Grundierungen und Lacken auf Holz und Holzwerkstoffen" (Deutsche Farbenzeitschrift Nr. 6 + 7 (1977) Seiten 257 - 264). Vertrieben werden derartige Prepolymer-Systeme beispielsweise von der Firma UCB Chemie GmbH.The radiation-curable polymers, prepolymers and / or mono mers and the methods for radiation curing are known to the person skilled in the art, for example from the article by A. Rosenberg "surface coatings harden with electron radiation" (Maschinenmarkt, Würzburg (1978) page 1249 ff) and the article by Dr. K. Fuhr "The radiation drying of primers and lacquers on wood and wood-based materials" (German color magazine No. 6 + 7 (1977) pages 257 - 264). Such prepolymer systems are sold, for example, by UCB Chemie GmbH.

Nachfolgend wird die Erfindung anhand der Beispiele 1 bis 3 in Verbindung mit den Fig. 1 bis 3, die gemäß der Erfindung besonders bevorzugte Ausführungsformen darstellen, erläutert, ohne sie jedoch darauf einzuschränken. Alle nicht in der Beschreibung und den Beispielen erwähnten, aber aus den Zeichnungen ersichtlichen Details gehören mit zur Offenbarung der Erfindung.The invention is explained below with the aid of Examples 1 to 3 in conjunction with FIGS. 1 to 3, which represent particularly preferred embodiments according to the invention, but is not restricted to them. All details not mentioned in the description and the examples, but which can be seen from the drawings belong to the disclosure of the invention.

Fig. 1 bis 3 zeigen in schematischer Darstellung erfindungsgemäße Vorrichtungen zur Durchführung des erfindungsgemäßen Verfahrens.1 to 3 show a schematic representation of devices according to the invention for carrying out the method according to the invention.

In den Fig. 1 bis 3 haben.die Bezugszeichen .folgende Bedeutung:

  • 1 Schleusentor mit integrierter Röntgenstrahlabschirmung
  • 2 Vakuum-Inertgasschleuse
  • 3 Vakuumpumpenanschluß
  • 4 Objektoberseite
  • 5 Objektunterseite
  • 6 Inertgaseinlaß
  • 7 Schleusentor zur Bestrahlungskammer mit integrierter Röntgenstrahlabschirmung
  • 8 Bestrahlungskammer
  • 9 Strahlungsquelle
  • 10 Drehvorrichtung für Bestrahlungsgut
  • 11 Bewegungsrichtung für das Bestrahlungsgut
  • 12 Röntgenstrahlabschirmung
  • 13 Inertgasauffüllung
  • 14 Entlüftung der Vakuum-Inertgasschleuse
  • 15 in der Bestrahlungskammer 8 verschiebbares Schleusentor
  • 15' verschiebbares Schleusentor 15 in Stellung "Ende" des 1. Bestrahlungsvorganges
  • 16 Dichtung zwischen Vakuum-Inertgasschleuse und Bestrahlungskammer
  • 17 Dichtung für Bewegungsvorrichtung für Objekt und Schleusentor zwischen Vakuum-Inertgasschleuse und Bestrahlungskammer
  • 18 Führung für Objekttisch und Schleusentor zwischen Vakuum-Inertgasschleuse und Bestrahlungskammer
1 to 3, the reference symbols have the following meaning:
  • 1 lock gate with integrated X-ray shielding
  • 2 vacuum inert gas lock
  • 3 vacuum pump connection
  • 4 object top
  • 5 underside of object
  • 6 Inert gas inlet
  • 7 lock gate to the radiation chamber with integrated X-ray shielding
  • 8 radiation chamber
  • 9 radiation source
  • 10 device for irradiation
  • 11 Direction of movement for the radiation material
  • 12 X-ray shielding
  • 13 Inert gas filling
  • 14 Venting the vacuum inert gas lock
  • 15 slidable gate in the radiation chamber 8
  • 15 'sliding lock gate 15 in the "end" position of the 1st irradiation process
  • 16 Seal between vacuum inert gas lock and radiation chamber
  • 17 Seal for movement device for object and lock gate between vacuum inert gas lock and radiation chamber
  • 18 Guide for stage and lock gate between vacuum inert gas lock and radiation chamber

Beispiel 1example 1

Dieses Beispiel arbeitet mit einer Vorrichtung, wie sie in Fig. 1 schematisch dargestellt ist.This example works with a device as shown schematically in FIG. 1.

Das unter Inertgas, mit Inertgas als Druckmittel, gespritzte Teil, z.B. ein Stoßfänger für Automobile, wird in die Vakuum-Inertgasschleuse 2 durch das Schleusentor 1 eingelegt. Nach Schließen des Schleusentors 1 wird auf einen Druck von 1 mbar oder darunter evakuiert, anschließend mit Inertgas auf Normaldruck geflutet, das Schleusentor 7 geöffnet, das Teil in die Bestrahlungskammer 8 transportiert, das Schleusentor 7 geschlossen, das Teil unter dem Strahler hindurchgeführt, gewendet, wieder unter dem Strahler hindurchgeführt, das Schleusentor 7 geöffnet, das 1. Teil in die Vakuum-Inertgasschleuse 2 geschleust; hierbei wird bereits das 2. Teil, das während der Bestrahlung eingeschleust wurde, im Wechsel von der Vakuum-Inertgasschleuse 2 in die Bestrahlungskammer 8 gebracht. Das 1. Teil wird ausgeschleust und dabei bereits das 3. Teil wieder eingeschleust, solange das 2. Teil bestrahlt wird.The part injected under inert gas, with inert gas as pressure medium, e.g. a bumper for automobiles is inserted into the vacuum inert gas lock 2 through the lock gate 1. After the lock gate 1 is closed, the pressure is evacuated to a pressure of 1 mbar or below, then flooded with inert gas to normal pressure, the lock gate 7 is opened, the part is transported into the radiation chamber 8, the lock gate 7 is closed, the part is passed under the radiator, turned, again passed under the spotlight, the lock gate 7 opened, the first part passed into the vacuum inert gas lock 2; in this case, the second part, which was introduced during the irradiation, is alternately brought into the irradiation chamber 8 from the vacuum inert gas lock 2. The first part is ejected and the third part is already reinserted as long as the second part is irradiated.

Der gesamte Inertgasverbrauch beschränkt sich dabei auf das Herstellen einer Inertgasatmosphäre in der Bestrahlungskammer 8 durch ein Spülen der Bestrahlungskammer 8 mit einer Inertgasmenge, die ca. dem 10- bis 20-fachen des Bestrahlungskammervolumens entspricht, sowie dem Fluten der Vakuum-Inertgasschleuse 2 nach jedem Schleusenvorgang.The total inert gas consumption is limited to producing an inert gas atmosphere in the radiation chamber 8 by purging the radiation chamber 8 with an amount of inert gas that corresponds to approximately 10 to 20 times the volume of the radiation chamber, and flooding the vacuum inert gas lock 2 after each lock process .

Bei dieser Arbeitsweise, d.h. unter Verwendung einer Vakuum-Inertgasschleuse 2 und doppelter Bestrahlungskammer 8 ergeben sich folgende Taktzeiten:

Figure imgb0001
With this mode of operation, ie using a vacuum inert gas lock 2 and double radiation chamber 8, the following cycle times result:
Figure imgb0001

Beispiel 2Example 2

Dieses Beispiel arbeitet mit einer Vorrichtung, wie sie in Fig. 2 schematisch dargestellt ist.This example works with a device as shown schematically in FIG. 2.

Die mit mehreren Kfz-Armaturen belegte Palette kommt aus dem Spritzautomaten, wo unter Inertgasatmosphäre mit Inertgas als Druckmittel gespritzt wurde, durch das Schleusentor 1 in die Vakuum-Inertgasschleuse 2. Das Schleusentor 1 wird geschlossen. Es wird auf 10-2 mbar evakuiert, anschließend mit Inertgas auf Normaldruck geflutet, das Schleusentor 7 geöffnet und mit den lackierten Teilen in der Geschwindigkeit unter dem Strahler 9 in der Bestrahlungskammer 8 hindurchgefahren, so daß der Lack mit der nötigen Dosis vernetzt wird. Das Schleusentor 7 wird geschlossen, ein 2. Teil wird eingeschleust, das 1. Teil wird gedreht, das Schleusentor 7 wird nach Pump- und Flutvorgang wieder geöffnet, das 2. Teil von oben bestrahlt, das 1. Teil von unten bestrahlt. Das 2. Teil befindet sich jetzt in der Vakuum-Inertgasschleuse 2, das 1. Teil befindet sich im Bestrahlungsraum 8. Das 2. Teil wird gedreht, das 1. Teil wird ausgeschleust und gleichzeitig das 3. Teil eingeschleust.The pallet with several vehicle fittings comes from the automatic spray gun, where spraying was carried out under an inert gas atmosphere using inert gas as pressure medium, through the lock gate 1 into the vacuum inert gas lock 2. The lock gate 1 is closed. It is evacuated to 10 -2 mbar, then flooded with inert gas to atmospheric pressure, the lock gate 7 is opened and the painted parts are passed at speed under the emitter 9 in the radiation chamber 8, so that the paint is crosslinked with the necessary dose. The lock gate 7 is closed, a second part is introduced, the first part is rotated, the lock gate 7 is opened again after the pumping and flooding process, the second part is irradiated from above, the first part is irradiated from below. The second part is now in the vacuum inert gas lock 2, the first part is in the irradiation room 8. The second part is rotated, the first part is removed and the third part is simultaneously introduced.

Auch hier beschränkt sich der Inertgasverbrauch auf das einmalige Inertisieren der Bestrahlungskammer 8 und der weitere Verbrauch auf das jeweilige Fluten der Vakuum-Inertgasschleuse 2 nach dem Ein- bzw. Ausschleusen der Teile.Here, too, the inert gas consumption is limited to the one-time inerting of the radiation chamber 8 and the other Consumption on the respective flooding of the vacuum inert gas lock 2 after the parts have been introduced or removed.

Bei dieser Arbeitsweise, d.h. unter Verwendung einer Vakuum-Inertgasschleuse 2 und einer einfachen Bestrahlungskammer 8 ergeben sich folgende Taktzeiten:

Figure imgb0002
With this mode of operation, ie using a vacuum inert gas lock 2 and a simple radiation chamber 8, the following cycle times result:
Figure imgb0002

Beispiel 3Example 3

Dieses Beispiel arbeitet mit einer Vorrichtung, wie sie in Fig. 3 schematisch dargestellt ist, bei der die Palette für das Bestrahlungsgut und das Schleusentor 15 zwischen Vakuum-Inertgasschleuse 2 und Bestrahlungskammer 8 fest miteinander verbunden sind.This example works with a device as shown schematically in FIG. 3, in which the pallet for the radiation material and the lock gate 15 between the vacuum inert gas lock 2 and the radiation chamber 8 are firmly connected to one another.

Das unter Inertgasatmosphäre und mit Inertgas als Druckmittel beschichtete Teil wird von oben in die Vakuum-Inertgasschleuse 2 eingegeben. Der Deckel (nicht dargestellt in Fig. 3) zur Vakuum-Inertgasschleuse wird geschlossen, die Vakuum-Inertgasschleuse wird auf ein Vakuum zwischen 1 mbar und 1 . 10-2 mbar evakuiert, die Vakuum-Inertgasschleuse wird mit Inertgas auf Normaldruck geflutet, Schleusentor 15 und Objekt 4 werden mit Hilfe der Stange 18 in einer Geschwindigkeit entsprechend der zu applizierenden Dosis unter dem Strahler 9 bewegt, in Endstellung 15' wird das Objekt mit Hilfe der Stange 18 gedreht und unter dem Elektronenstrahler bei der Bestrahlung der Rückseite wieder in die Vakuum-Inertgasschleuse 2 zurückgeführt. Das Objekt wird aus der Vakuum-Inertgasschleuse herausgenommen, das 2. Objekt eingelegt und der Evakuierungsvorgang beginnt wieder von Neuem.The part coated under an inert gas atmosphere and with inert gas as the pressure medium is fed into the vacuum inert gas lock 2 from above. The lid (not shown in FIG. 3) for the vacuum inert gas lock is closed, the vacuum inert gas lock is set to a vacuum between 1 mbar and 1. 10 -2 mbar evacuated, the vacuum inert gas lock is flooded with inert gas to normal pressure, lock gate 15 and object 4 are moved with the help of the rod 18 at a speed corresponding to the dose to be administered under the emitter 9, in the end position 15 'the object is moved with Using the rod 18 rotated and under the electron gun when irradiating the back again in the vacuum inert gas lock 2 returned. The object is removed from the vacuum inert gas lock, the second object is inserted and the evacuation process starts again.

Wenn auch die Erfindung am Beispiel von Stoßstangen erläutert wurde, so bezieht sie sich auch auf Kleinteile, welche auf Paletten zusammengefaßt werden können. Beispielsweise werden Kfz-Armaturen und Felgen (Scheibenräder) analog den Stoßstangen bestrahlt. Rohre und Profile mit großen Längen werden analog in Vakuum-Inertgasschleuse und Bestrahlungskammer eingeschleust, wobei zur Reduzierung der Volumina Rohre für die Kammerwandungen verwendet werden können.Although the invention was explained using the example of bumpers, it also relates to small parts which can be combined on pallets. For example, automotive fittings and rims (disc wheels) are irradiated analogously to the bumpers. Pipes and profiles with long lengths are introduced analogously into the vacuum inert gas lock and radiation chamber, whereby tubes for the chamber walls can be used to reduce the volumes.

Claims (6)

1. Verfahren zur Vernetzung von auf Trägermaterialien aufgebrachten Lacken auf Kunststoffbasis mittels ionisierender Strahlen, insbesondere Elektronenstrahlen, in einer Inertgasatmosphäre, die einen Abbruch der Härtungsreaktion durch Umsetzung des Lackes mit Sauerstoff verhindern soll, dadurch gekennzeichnet, daß man den zu bestrahlenden, mit einer strahlenhärtbaren Beschichtung versehenen Gegenstand vor dem Einbringen in die mit Inertgas unter Normaldruck gefüllte Bestrahlungskammer (8) durch das Schleusentor (1) in eine direkt vor der Bestrahlungskammer (8) angeordnete Vakuum-Inertgasschleuse (2) einbringt, diese evakuiert, mit Inertgas auf Normaldruck, flutet, und von dort aus den Gegenstand durch das Schleusentor (7) in die Bestrahlungskammer (8) einbringt, bestrahlt und nach der Bestrahlung in die mit Inertgas gefüllte Vakuum-Inertgasschleuse rücküberführt und nach Schließen des Schleusentors (7) das Schleusentor (1) öffnet und den Gegenstand ausführt.1. A process for crosslinking plastic-based paints applied to carrier materials by means of ionizing rays, in particular electron beams, in an inert gas atmosphere which is intended to prevent the curing reaction from being terminated by reacting the paint with oxygen, characterized in that the radiation to be irradiated is coated with a radiation-curable coating before the introduction into the radiation chamber (8) filled with inert gas under normal pressure through the lock gate (1) into a vacuum inert gas lock (2) arranged directly in front of the radiation chamber (8), which is evacuated, flooded with inert gas to normal pressure, and from there introduces the object through the lock gate (7) into the radiation chamber (8), irradiates it and after the irradiation returns it to the vacuum inert gas lock filled with inert gas and, after closing the lock gate (7), opens the lock gate (1) and opens it Object executes. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die strahlenvernetzbare Beschichtung erst in der Vakuum-Inertgasschleuse (2) nach dem Fluten mit Inertgas auf den Gegenstand aufspritzt, wobei man als Spritzgas ein Inertgas einsetzt.2. The method according to claim 1, characterized in that the radiation-crosslinkable coating is sprayed onto the object only in the vacuum inert gas lock (2) after flooding with inert gas, an inert gas being used as the spray gas. 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man als Inertgas Stickstoff einsetzt.3. The method according to claim 1 and 2, characterized in that nitrogen is used as the inert gas. 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß man die Vakuum-Inertgasschleuse auf Vakuum von 1 mbar oder darunter evakuiert.4. The method according to claim 1 to 3, characterized in that the vacuum inert gas lock is evacuated to a vacuum of 1 mbar or below. 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man den mit der strahlenhärtbaren Beschichtung versehenen Gegenstand mit niederenergetischen Elektronenstrahlen von 150 bis 400 keV bestrahlt.5. The method according to claim 1 to 4, characterized in that the object provided with the radiation-curable coating is irradiated with low-energy electron beams of 150 to 400 keV. 6. Vorrichtung zur Durchführung des Verfahrens gemäß Anspruch 1 bis 5, bestehend im wesentlichen aus einer mit Inertgas befüllbaren Bestrahlungskammer und einer Quelle für ionisierende Strahlen, dadurch gekennzeichnet, daß direkt vor der Bestrahlungskammer eine Vakuum-Inertgasschleuse (2) angeordnet ist, die gegebenenfalls zusätzlich mit Spritzeinrichtungen zum Auftrag der strahlenhärtbaren Beschichtung versehen ist.6. Apparatus for carrying out the method according to claim 1 to 5, consisting essentially of an irradiation chamber which can be filled with inert gas and a source of ionizing radiation, characterized in that a vacuum inert gas lock (2) is arranged directly in front of the irradiation chamber, which if appropriate additionally is provided with spray devices for applying the radiation-curable coating.
EP81101747A 1980-03-21 1981-03-10 Method and apparatus for the cross-linking of synthetic lacquers applied to substrates Expired EP0036557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81101747T ATE5128T1 (en) 1980-03-21 1981-03-10 METHOD AND DEVICE FOR CROSSLINKING PLASTIC-BASED PAINTS APPLIED TO SUPPORT MATERIALS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3010821A DE3010821A1 (en) 1980-03-21 1980-03-21 METHOD AND DEVICE FOR CROSSLINKING VARNISH-BASED PAINTS APPLIED ON CARRIER MATERIALS
DE3010821 1980-03-21

Publications (3)

Publication Number Publication Date
EP0036557A2 true EP0036557A2 (en) 1981-09-30
EP0036557A3 EP0036557A3 (en) 1981-10-14
EP0036557B1 EP0036557B1 (en) 1983-10-26

Family

ID=6097838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81101747A Expired EP0036557B1 (en) 1980-03-21 1981-03-10 Method and apparatus for the cross-linking of synthetic lacquers applied to substrates

Country Status (7)

Country Link
US (1) US4508750A (en)
EP (1) EP0036557B1 (en)
JP (1) JPS5715867A (en)
AT (1) ATE5128T1 (en)
DD (1) DD157244A5 (en)
DE (1) DE3010821A1 (en)
SU (1) SU1026642A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559500A1 (en) * 1992-03-06 1993-09-08 Osaka Sanso Kogyo Limited Apparatus for forming resin coating on surface of article having three-dimensional structure

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3314729C2 (en) * 1983-04-22 1996-06-05 Polymer Physik Gmbh Self-adhesive plastic film with an adhesive-repellent protective layer on the non-adhesive side, as well as its production and use as a water-proofing film for covering body parts
LU84911A1 (en) * 1983-07-14 1985-04-17 Cockerill Sambre Sa METHOD AND INSTALLATION FOR COOKING AN ORGANIC COATING APPLIED TO A SUPPORT
JPS60206444A (en) * 1984-03-23 1985-10-18 住友重機械工業株式会社 Electron beam reaction chamber
US4612444A (en) * 1985-07-31 1986-09-16 Ragusa Vincent J Apparatus for curing bonding material of artificial nail tips
DE3914502A1 (en) * 1989-05-02 1990-11-15 Goldschmidt Ag Th METHOD FOR OBTAINING AND MAINTAINING A LOW-OXYGEN, INERT ATMOSPHERES IN A TREATMENT CHAMBER, AND DEVICE FOR IMPLEMENTING THE METHOD
US6375786B1 (en) * 1996-03-04 2002-04-23 Awi Licensing Company Surface covering having a precoated, E-beam cured wearlayer coated film and process of making the same
DE19828266C1 (en) * 1998-06-25 2000-03-30 Michael Bisges Ultra-violet light drying system for paint, lacquer, adhesives and printing ink has air flow pattern preventing particle deposition on mirror reflectors
FR2787235B1 (en) * 1998-12-11 2001-01-19 Becton Dickinson France DEVICE FOR CONNECTING DOORS BETWEEN TWO ENCLOSURES ISOLATED FROM THE EXTERNAL ENVIRONMENT
US6333076B1 (en) 1999-07-28 2001-12-25 Armstrong World Industries, Inc. Composition and method for manufacturing a surface covering product having a controlled gloss surface coated wearlayer
DE60014794T2 (en) 1999-07-28 2006-03-09 Armstrong World Industries, Inc. Composition and method for a gloss-controlled, abrasion-resistant coating on product surfaces
US6908663B1 (en) 2000-11-15 2005-06-21 Awi Licensing Company Pigmented radiation cured wear layer
DE20203303U1 (en) * 2001-12-21 2003-02-27 Hoenle Ag Dr Objects within CO2 atmosphere are exposed to UV emission within a sealed housing
DE20120720U1 (en) * 2001-12-21 2003-03-06 Hoenle Ag Dr Assembly for treating workpiece objects with UV radiation in quasi-continuous process, has shrouding housings, filled with carbon dioxide, around each workpiece, whilst moving through radiation zone
DE20120718U1 (en) * 2001-12-21 2003-03-06 Hoenle Ag Dr UV radiation assembly, to treat workpiece surfaces, has radiation chamber totally filled with inert carbon dioxide gas, and initial ante-chamber in movement path to exclude oxygen
DE10257350A1 (en) * 2002-12-06 2004-06-24 Forschungszentrum Jülich GmbH Process for supplying gas to a double-walled follia chamber
KR101284943B1 (en) * 2006-06-30 2013-07-10 엘지디스플레이 주식회사 Method for fabricating mold
DE102007015150A1 (en) * 2007-03-02 2008-09-04 Wurster, Gerd Paint spraying plant with booth, has separate air conditioning equipment for coating zone and air supplies for auxiliary zones on either side
DE102007012000A1 (en) 2007-03-10 2008-09-11 Alexander Kuhn Method and device for producing a coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6605924A (en) * 1965-05-04 1966-11-07 Radiation Res Corp
DE2046653A1 (en) * 1969-09-23 1971-04-08 The British Iron and Steel Research As sociation, London Process for the production of sheets or metal strips provided with a protective coating
US3607355A (en) * 1967-03-06 1971-09-21 Iso Nuclear Corp Method of making fused veneer-plastic product
DE2054662A1 (en) * 1970-11-06 1972-05-25 Badische Anilin & Soda Fabrik AG, 6700 Ludwigshafen System hardened by ionizing radiation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676673A (en) * 1969-08-18 1972-07-11 Ppg Industries Inc Apparatus for irradiation in a controlled atmosphere
US3807052A (en) * 1972-06-26 1974-04-30 Union Carbide Corp Apparatus for irradiation of a moving product in an inert atmosphere
JPS5125252B2 (en) * 1973-05-04 1976-07-29
JPS586612B2 (en) * 1975-04-23 1983-02-05 関西ペイント株式会社 Plastic plant
US4135098A (en) * 1976-11-05 1979-01-16 Union Carbide Corporation Method and apparatus for curing coating materials
US4118873A (en) * 1976-12-13 1978-10-10 Airco, Inc. Method and apparatus for inerting the atmosphere above a moving product surface
JPS548378A (en) * 1977-06-22 1979-01-22 Tsubakimoto Chain Co Moving and placing device
DE2801396A1 (en) * 1978-01-13 1979-07-19 Sued West Chemie Gmbh THU-PLASTIC RESIN LOADED CARRIER MATERIALS, A PROCESS FOR THEIR PRODUCTION AND THEIR USE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6605924A (en) * 1965-05-04 1966-11-07 Radiation Res Corp
US3607355A (en) * 1967-03-06 1971-09-21 Iso Nuclear Corp Method of making fused veneer-plastic product
DE2046653A1 (en) * 1969-09-23 1971-04-08 The British Iron and Steel Research As sociation, London Process for the production of sheets or metal strips provided with a protective coating
DE2054662A1 (en) * 1970-11-06 1972-05-25 Badische Anilin & Soda Fabrik AG, 6700 Ludwigshafen System hardened by ionizing radiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559500A1 (en) * 1992-03-06 1993-09-08 Osaka Sanso Kogyo Limited Apparatus for forming resin coating on surface of article having three-dimensional structure
US5385611A (en) * 1992-03-06 1995-01-31 Osaka Sanso Kogyo Ltd. Apparatus for forming resin coating on surface of article having three-dimensional structure

Also Published As

Publication number Publication date
SU1026642A3 (en) 1983-06-30
JPH0159028B2 (en) 1989-12-14
ATE5128T1 (en) 1983-11-15
DD157244A5 (en) 1982-10-27
DE3010821A1 (en) 1981-10-01
DE3010821C2 (en) 1987-10-08
EP0036557B1 (en) 1983-10-26
JPS5715867A (en) 1982-01-27
EP0036557A3 (en) 1981-10-14
US4508750A (en) 1985-04-02

Similar Documents

Publication Publication Date Title
EP0036557B1 (en) Method and apparatus for the cross-linking of synthetic lacquers applied to substrates
EP1497045B1 (en) Method and device for hardening a coating
DE10043405C1 (en) Process for the production of color and / or effect coatings
EP2198981B1 (en) Method and apparatus for direct radiation-induced polymerisation and integration of acrylates and methacrylates
EP0540884B1 (en) Process for making multilayer coatings using a radially or cationnically polymerisable clear coat
DE10009822C1 (en) Process for the production of coatings, adhesive layers or seals for primed or unprimed substrates and substrates
DE3112631A1 (en) THREADED PARTS FOR SELF-LOCKING SCREW CONNECTIONS AND METHOD FOR THEIR PRODUCTION
WO2005121674A1 (en) Method for curing radically curable compounds in a protective atmosphere and device for carrying out said method
DE2626963A1 (en) UV RADIATION SYSTEM
DE4219446C3 (en) Process for applying a decorative layer to a substrate
EP0701487A1 (en) Device for lacquering or coating plates or panels
EP1060029A1 (en) Method for multi-layer varnishing with radiation hardenable coating agents
EP1135267A1 (en) Method for decoratively shaping a painted substrate surface
DE3346048A1 (en) MIRROR, METHOD FOR THE PRODUCTION THEREOF AND MEANS FOR IMPLEMENTING THE METHOD
WO2022242960A1 (en) Method and device for printing directly onto containers for filling products
DE19857941C2 (en) Process for multi-layer painting
DE102007053543B4 (en) Device for irradiating elements with UV light and method for their operation
DE102012105525A1 (en) MULTI-STAGE PROCESS FOR FULLY COLORED COMPONENTS
DE19707921C2 (en) Method and device for dimensionally accurate coating of rotationally symmetrical bodies with radiation-curable flowable or spreadable monomer / oligomer systems
DE2949710A1 (en) Crosslinking process for paints - uses protective layer of water pref. containing surface-active ingredient
DD266044A1 (en) DEVICE FOR APPLYING AND HARDENING LACQUER ON PLATE MATERIAL
DE102009048824A1 (en) Radiation curing device for workpieces in automobile industry, has flow mechanism arranged in line such that gas in cycle is led in section of pipe, where cycle is connected with supply mechanism, so that inert gas is formed in cycle
CH685983A5 (en) Optical film web coating
DE1942861A1 (en) Process for the production of polymer coatings, especially on metal surfaces
DE102008007964A1 (en) Producing a coated element made of wood or plywood, useful as doors, panels, prefinished floors and consecutively produced planar components, comprises curing radiation curable coating material with radiation-permeable foil, by radiation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

17P Request for examination filed

Effective date: 19811027

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 5128

Country of ref document: AT

Date of ref document: 19831115

Kind code of ref document: T

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840208

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840330

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840331

Year of fee payment: 4

Ref country code: BE

Payment date: 19840331

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850212

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19850331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850331

Year of fee payment: 5

BERE Be: lapsed

Owner name: POLYMER-PHYSIK G.M.B.H. & CO. K.G.

Effective date: 19850310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19860331

Ref country code: CH

Effective date: 19860331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19861001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19861128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940224

Year of fee payment: 14

EUG Se: european patent has lapsed

Ref document number: 81101747.4

Effective date: 19860128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950310

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950310