EP0034552A1 - Method and device for multipole magnetization of a sheet material - Google Patents

Method and device for multipole magnetization of a sheet material Download PDF

Info

Publication number
EP0034552A1
EP0034552A1 EP81420014A EP81420014A EP0034552A1 EP 0034552 A1 EP0034552 A1 EP 0034552A1 EP 81420014 A EP81420014 A EP 81420014A EP 81420014 A EP81420014 A EP 81420014A EP 0034552 A1 EP0034552 A1 EP 0034552A1
Authority
EP
European Patent Office
Prior art keywords
strip
magnets
magnetization
stack
pole pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81420014A
Other languages
German (de)
French (fr)
Other versions
EP0034552B1 (en
Inventor
Claude Bouchara
Robert Henaff
Pierre Jacob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aimants Ugimac SA
Ugimag SA
Original Assignee
Aimants Ugimac SA
Ugimag SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aimants Ugimac SA, Ugimag SA filed Critical Aimants Ugimac SA
Priority to AT81420014T priority Critical patent/ATE5750T1/en
Publication of EP0034552A1 publication Critical patent/EP0034552A1/en
Application granted granted Critical
Publication of EP0034552B1 publication Critical patent/EP0034552B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising

Definitions

  • the present invention relates to a device for carrying out the multipolar magnetization of a magnetizable material in the form of sheets or strips, more particularly flexible strips of relatively small thickness of the magnetic rubber type.
  • production rates are often limited to a strip speed of less than 1 m / min, and even much less in the case of double-sided multipolar magnetization.
  • the object of the present invention relates to a device for magnetizing sheet or strip materials which eliminates all the drawbacks mentioned above, in which the magnetic field is created by permanent magnets capable of magnetizing at technical saturation.
  • highly coercive materials to make a mul t ipo- lar magnetization of greatly varying shape and allow a scroll speed of the high band, for example several tens of meters per minute.
  • the multipolar magnetization device of a strip material on one face or on two faces, object of the present invention consists in producing one or two stacks on their large parallel faces, of flat prismatic elements, these elements being alternately permanent magnets with high coercive force, referred to herein as "main magnets" and polar material in Magnemite parts q uement soft, the direction of magnetization of the main magnets having a nerpendi vide component to the large faces of the elements in opposite directions for the two magnets principal adjacent to the same pole piece; to magnetize a strip, it is scrolled in the immediate vicinity or against a stack or, in the same way, in an air gap between two stacks, preferably in a direction substantially parallel to the large faces of the flat elements and the plane of the strip being generally in a plane perpendicular to the large faces of the elements.
  • the magnetically soft material used for the pole pieces is preferably soft iron or an iron-cobalt alloy, but it is also possible to use permalloy, iron-nickel alloys, silicon or carbon steels, soft ferrites, according to the required magnetic permeability.
  • the strip is passed through the air gap defined by two stacks placed face to face.
  • a non-traversing magnetization it suffices to use a single stack or to replace the second with a block of soft iron (or other ferromagnetic material) or any other non-magnetic device ensuring for example the displacement and the guiding of the strip or sheet.
  • the flat elements are delimited by two large parallel faces and the stacking takes place on these large faces.
  • the strip runs in the air gap or in the vicinity of the active part of the magnetizer, it is generally in a plane perpendicular to these large faces and it advances in a direction called the running axis, which is substantially parallel in terms of the large faces.
  • the term “plane of the strip” and “axis of travel” respectively mean the tangent plane to the strip on the generatrix of the strip closest to the magnetizer and the tangent to the advance curve of a point of the strip located in the previous tangent plane.
  • the direction of magnetization of the main magnets is not parallel to the large faces of these magnets and of the adjacent pole pieces.
  • the directions of magnetization NS are opposite.
  • the pole pieces used to channel towards the air gap or the surface of the magnetizer the magnetic flux produced by the opposing magnets we have, at the outlet of the pole pieces on the surface of the magnetizer, an alternation of the North and South poles separated by zones neutral, located on the same width of the strip.
  • the two stacks are placed facing each other, so that the elements of the same nature of each stack are facing each other and that the directions of magnetization NS of two facing main magnets are in opposite directions.
  • the device according to the invention may include several non-limiting variants of the scope of the invention.
  • the stacked flat elements have a lateral surface which narrows in the vicinity of the strip, for example a trapezoidal section whose small base is located on the side of the strip, so as to orient and concentrate the magnetic flux towards this one.
  • These sections do not necessarily determine a prismatic lateral surface of the stack.
  • the stacked pole pieces have the shape of circular discs, having a cylindrical outer surface of revolution, movable around a non-ferromagnetic axis, which eliminates any sliding of the strip relative to the magnet when these discs rotate at an appropriate speed; the main magnets then have a base inscribed in (or equal to) the base of the pole pieces.
  • these discs can be driven and / or mounted idly on their axis.
  • the inside diameter of the pole pieces be greater than the inside diameter of the main magnets.
  • the invention also relates to an improved device compared to the previous device, characterized in that the pieces of the stack are brought, in addition, into contact with one or or several permanent magnets, called field magnets, located at the periphery of the stack and whose direction of magnetization NS is parallel to the running axis of the strip and in the same direction. Therefore, the direction of magnetization of the field magnets is parallel to the plane of the large faces of the stack and perpendicular to the direction of magnetization of the permanent magnets of the stack.
  • the pole pieces have a larger section than that of the main magnets and they enclose them completely; they alone are in contact with the field magnets and have a general form of "comb".
  • the main magnets which then play the role of anti-leakage magnets, work mainly in the third quadrant of the hysteresis cycle, which makes it possible to increase the magnetomotor force which they generate and, consequently, the field of the air gap (or near the poles).
  • the comb system can also consist of a stack of discs and be rotatable about an axis, but in this case, only the main magnets and the ends of the combs located between the main magnets, are mobile, the field magnets and the contiguous polar part remaining fixed and as close as possible to the mobile parts.
  • the field obtained in the air gap can be further increased by inserting between two main magnets adjacent to the same pole piece and replacing a part of said pole piece, an intermediate magnet attached to these two main magnets and located alternately at the before and at the rear of the stack in the direction of the axis of travel of the strip, the direction of magnetization NS of these intermediate magnets being parallel to the axis of travel of the strip and in the opposite direction.
  • Figures 1 and 2 show in cross section a magnetic strip respectively through and non-through magnetization.
  • Figures 3 and 4 show respectively in section, along aa '- (fig.4) and bb' (fig.3), a through magnetization device with simple stack of trapezoidal contour elements.
  • Figures 5 and 6 respectively show a sectional view, along cc '(fig. 6) and dd' (fig.5), of a through magnetization device with simple stack of elements in the form of circular discs.
  • Figure 7 shows a side view and in partial section, along cc '(fig.9), a non-through magnetization device with combs.
  • FIG. 8 represents the lower part of a comb device for through magnetization comprising a movable stack in the vicinity of the strip, seen in section.
  • FIG. 9 is a plan view of the device shown in FIG. 7.
  • a strip of magnetizable material has a through magnetization as shown in Figure 1 when it has on the two faces in the width direction a succession of South poles and alternating North poles separated by neutral zones; when this arrangement is periodic, the distance between two neighboring poles defines the polar pitch of the magnetization.
  • the field lines cross the thickness of the strip, being approximately perpendicular to the faces.
  • the magnetization is not overall length, as shown in Figure 2, when on the same width of the strip and on one of the faces, there is a p alternating succession oles North and South separated by neutral zones, lines field closing on this face and not practically not crossing the thickness of the strip.
  • the device represented in FIGS. 3 and 4 comprises two stacks on their large faces, of flat elements which are alternately permanent magnets (1), for example made of cobalt-rare earth alloy, with high coercive field and ferromagnetic pole pieces (2 ), for example in iron-cobalt alloy with 35X cobalt.
  • the large faces of these flat elements have a profile which, in the vicinity of the strip (3) is trapezoidal as it appears in FIG. 4, the small base (4) of the trapezium facing the strip (3).
  • Each of the stacks is held by supports (5) made of soft iron or any other magnetically soft material.
  • Two magnets (1) located on either side of the same pole piece (2) have overall magnetization directions preferably perpendicular to the plane of the large faces of the stack and in opposite directions.
  • the strip (3) runs in a plane substantially perpendicular to the large faces of the stack and in a direction (or running axis) substantially parallel to the small bases (4) of the trapezoidal flat elements.
  • the two stacks delimit an air gap (6).
  • Each main magnet (1) and each pole piece (2) of one of the stacks is respectively located opposite a magnet and of a pole piece of the other similar stack.
  • the magnetization directions are in opposite directions. One thus obtains in the air gap to the right of the pole pieces, a succession of field lines and alternating directions, represented by the arrows which will print on the width of the strip (3) running in the air gap (6), a alternating succession of North and South poles separated by neutral zones.
  • the stacks are formed of flat elements, main magnets (1) and pole pieces (2), in the form of circular discs, movable around an axis (7) and having a surface single right cylindrical lateral and rotating at a speed such that any slippage of the strip relative to the magnet is eliminated.
  • the pole pieces (2) have a larger section than that of the magnets (1) and extend beyond the stack, completely surrounding the magnets (1) to form a sort of comb. These pole pieces (2) are in contact with field magnets (8) which give them a certain magnetic potential.
  • the direction of magnetization of these field magnets (8) is parallel to the running axis (11) of the strip (3), that is to say also parallel to the large faces of the stack and to the plane of the strip and, therefore, perpendicular to the magnetization directions of the magnets (I), as shown in Figure 9.
  • the presence of the field magnets (8) makes it possible to increase the magnetomotive force generated by the magnets (1) and, therefore, the field of the air gap.
  • the flux created by the field magnets (8) is forced, because of the presence of the main magnets (1), to pass through the strip (3).
  • the active part of this system can be in the form of a stack of circular discs rotating around an axis, but the field magnets (8) and the adjacent polar part remain fixed, as shown diagrammatically in FIG. 8.
  • an intermediate magnet (9) part of the pole piece located between two main magnets (1) is replaced by an intermediate magnet (9).
  • This intermediate magnet has the form of a bar perpendicular to the plane of the strip (3), attached to the two main magnets (1) and located, relative to the axis of travel of the strip, alternately at the front and at the back of the stack. As shown in FIG. 9, one thus obtains an S-shaped succession of main magnets (1) and intermediate magnets (9), the latter being arranged staggered at the ends of the adjacent magnets (1).
  • a magnetizer comprising two similar stacks located one opposite the other and delimiting an air gap in which the strip (3) runs.
  • the main magnets (1) of each of the stacks face each other, as do the pole pieces, and the directions of magnetization of two magnets face to face on either side of the air gap are not parallel to the faces. and their results are in opposite directions.
  • To obtain a non-crossing magnetization only half of the magnet is used, the other half being removed or replaced by a soft iron roller, or by a non-magnetic device ensuring the movement and guiding of the sheet. or tape.
  • a stack of fixed magnets made of SmCo 5 alloy 2.5 mm thick and pole pieces made of Fe-Co alloy 2 mm thick is produced.
  • An induction of 0.4 Tesla (4000 Gauss) is obtained in the air gap with a thickness of 3 mm. non-through magnetization and 0.65 Tesla (6500 Gauss) through magnetization for a flexible strip 3 mm thick.
  • a stack of 20 mm diameter discs is made, movable around of an axis, these discs being alternately SmCo 5 magnets of thickness 1.3 mm and pole pieces of Fe-Co alloy of thickness 1.2 mm.
  • Such a device makes it possible to magnetize at saturation a magnetic rubber band with barium ferrite of thickness less than or equal to 1 mm in through or non-through magnetization.
  • the value of the field in the air gap (in the air) is 380 kA / m for a distance of 4 mm and reaches 1000 kA / m for a distance of 0.8 mm.
  • a comb system with intermediate magnets is produced, having the same characteristics as the simple stack system of example l.
  • the field in the air gap is then increased by 10%.

Abstract

L'invention est relative à un dispositif permettant d'aimanter des matériaux sous forme de feuilles ou bandes telles que du caoutchouc magnétique. Ce dispositif est constitué d'un (ou deux) empilement(s) formé(s) d'aimants principaux plats (1) adjacents à des pièces polaires ferromagnétiques (2) au voisinage duquel (ou entre lesquels) défile la bande à aimanter (3). Les aimants principaux adjacents à une même pièce polaire ont des aimantations opposées ainsi que les aimants situés face à face dans chacun des empilements. Le dispositif peut être complété par des aimants de champ (8) et des aimants intermédiaires (9).The invention relates to a device for magnetizing materials in the form of sheets or strips such as magnetic rubber. This device consists of one (or two) stack (s) formed of flat main magnets (1) adjacent to ferromagnetic pole pieces (2) in the vicinity of which (or between which) the strip to be magnetized ( 3). The main magnets adjacent to the same pole piece have opposite magnetizations as well as the magnets located face to face in each of the stacks. The device can be supplemented by field magnets (8) and intermediate magnets (9).

Description

La présente invention est relative à un dispositif pour réaliser l'aimantation multipolaire d'un matériau aimantable sous forme de feuilles ou de bandes, plus particulièrement de bandes souples d'épaisseur relativement faible du type caoutchouc magnétique.The present invention relates to a device for carrying out the multipolar magnetization of a magnetizable material in the form of sheets or strips, more particularly flexible strips of relatively small thickness of the magnetic rubber type.

Il est connu d'imprimer à la surface d'une bande à aimanter des pôles magnétiques à polarité alternante en faisant défiler la bande de matériau à aimanter au voisinage immédiat de la partie active d'un appareil aimanteur, ou dans l'entrefer d'un tel appareil produisant un champ magnétique suffisant. L'aimantation multipolaire obtenue peut être traversante; ce qui signifie que les deux faces de la: bande ou de la feuille exercent une attraction magnétique sensiblement de même valeur. Elle peut être, au contraire, non traversante, et, dans ce cas, seule l'une des faces de la feuille ou de la bande exerce principalement l'attraction magnétique, l'autre face étant réservée à d'autres usages et pouvant recevoir par exemple un décor, une peinture ou un adhésif, ou encore une feuille de matériau magnétique doux.It is known to print alternating polarity magnetic poles on the surface of a magnet strip by passing the strip of material to be magnetized in the immediate vicinity of the active part of a magnetizing device, or in the air gap of such an apparatus producing a sufficient magnetic field. The multipolar magnetization obtained can be through; which means that the two faces of the strip or of the sheet exert a magnetic attraction of substantially the same value. On the contrary, it can be non-traversing, and, in this case, only one of the faces of the sheet or of the strip mainly exerts magnetic attraction, the other face being reserved for other uses and able to receive for example a decoration, a paint or an adhesive, or a sheet of soft magnetic material.

Pour aimanter un matériau, il faut lui appliquer un champ magnétique adéquat;: dont l'intensité dépend du champ coercitif intrinsèque du matériau et dont la direction dépend des lignes de champ qu'on veut imprimer dans ce matériau.To magnetize a material, you must apply an adequate magnetic field to it: the intensity of which depends on the intrinsic coercive field of the material and the direction of which depends on the field lines that you want to print in this material.

Dans les procédés connus d'aimantation (voir par exemple "Permanent Ma- gnets and Magnetism" édité par D. HADFIELD, Iliffe Books 1962, Londres, chapitre 9) ce champ magnétique peut être engendré de deux manières :In known magnetization processes (see for example "Permanent Magnets and Magnetism" edited by D. HADFIELD, Iliffe Books 1962, London, chapter 9) this magnetic field can be generated in two ways:

1°) ou bien le champ est produit par des courants électriques continus, éventuellement impulsifs, en utilisant par exemple des électro-aimants, des bobines (solénoides), ou la décharge de condensateurs. De tels dispositifs spécifiques à l'aimantation de feuilles ou de bandes sont décrits dans les brevets français 1.471.725, 2.106.213 ou 2.211.731 ou US 3.127.544.1 °) or the field is produced by direct electric currents, possibly impulsive, using for example electromagnets, coils (solenoids), or the discharge of capacitors. Such specific devices for magnetizing sheets or strips are described in French patents 1,471,725, 2,106,213 or 2,211,731 or US 3,127,544.

Cependant, ces systèmes sont essentiellement destinés à l'aimantation une face (sauf US 3.127.544). Mais ils sont coûteux car complexes, souvent fragiles, sujets à des échauffements et gros consommateurs d'énergie et éventuellement, dangereux.However, these systems are essentially intended for one-side magnetization (except US 3,127,544). But they are expensive because they are complex, often fragile, subject to overheating and large consumers of energy. and possibly dangerous.

Ils sont aussi limités en nombre de pôles et en surfaces actives possibles par suite des problèmes d'isolements des conducteurs et des efforts électro-magnétiques qui leur sont appliqués.They are also limited in number of poles and possible active surfaces due to the problems of insulation of the conductors and the electromagnetic forces which are applied to them.

De plus, les cadences de production sont souvent limitées à une vitesse de bande inférieure à 1 m/min, et même beaucoup moins en cas d'aimantation multipolaire double face.In addition, production rates are often limited to a strip speed of less than 1 m / min, and even much less in the case of double-sided multipolar magnetization.

2°) Ou bien le champ magnétique est produit par des aimants permanents ; dans ce cas, on bénéficie :

  • - d'une très faible consommation énergétique limitée à l'énergie mécanique nécessaire à l'extraction de là bande de l'appareil,
  • - d'une grande fiabilité de fonctionnement,
  • - d'une grande sécurité d'emploi (absence de haute tension),
  • - de la suppression des efforts internes à l'appareillage.
2 °) Or the magnetic field is produced by permanent magnets; in this case, we benefit:
  • - very low energy consumption limited to the mechanical energy required to extract the strip from the device,
  • - high operating reliability,
  • - great job security (absence of high voltage),
  • - the elimination of internal forces in the apparatus.

Cependant, les principaux inconvénients des systèmes à aimants permanents type Alnico ou ferrite sont :

  • - la production d'un champ magnétique relativement faible, donc la difficulté d'obtenir une aimantation des matériaux fortement coercitifs,
  • - la difficulté d'obtention d'aimantation multipolaire de matériaux magnétiques sous forme de feuille,tels.que décrits ci-dessus.
However, the main drawbacks of permanent magnet systems like Alnico or ferrite are:
  • - the production of a relatively weak magnetic field, therefore the difficulty of obtaining a magnetization of strongly coercive materials,
  • - The difficulty of obtaining multipolar magnetization of magnetic materials in the form of a sheet, as described above.

Le but de la présente invention est relatif à un dispositif d'aimantation de matériaux en feuilles ou en bandes qui supprime tous les inconvénients mentionnés ci-dessus, dans lequel le champ magnétique est créé par des aimants permanents capables d'aimanter à saturation technique ' des matériaux fortement coercitifs, de réaliser une aimantation multipo- laire de forme très variable et de permettre une vitesse de défilement de la bande très élevée, par exemple plusieurs dizaines de mètres à la minute.The object of the present invention relates to a device for magnetizing sheet or strip materials which eliminates all the drawbacks mentioned above, in which the magnetic field is created by permanent magnets capable of magnetizing at technical saturation. highly coercive materials to make a mul t ipo- lar magnetization of greatly varying shape and allow a scroll speed of the high band, for example several tens of meters per minute.

Le dispositif d'aimantation multipolaire d'un matériau en bande sur une face ou sur deux faces, objet de la présente invention, consiste à réaliser un ou deux empilements sur leurs grandes faces parallèles, d'éléments prismatiques plats, ces éléments étant alternativement des aimants permanents à champ coercitif élevé, appelés ici "aimants principaux" et des pièces polaires en matériau magnétiquement doux, la direction d'aimantation des aimants principaux ayant une composante nerpendiculaire aux grandes faces des éléments et de sens opposés pour les deux aimants principaux adjacents à une même pièce polaire ; pour aimanter une bande, on la fait défiler au voisinage immédiat ou contre un empilement ou, de la même manière, dans un entrefer entre deux empilements, de préférence dans une direction sensiblement parallèle aux grandes faces des éléments plats et le plan de la bande étant en général dans un plan perpendiculaire aux grandes faces des éléments.The multipolar magnetization device of a strip material on one face or on two faces, object of the present invention, consists in producing one or two stacks on their large parallel faces, of flat prismatic elements, these elements being alternately permanent magnets with high coercive force, referred to herein as "main magnets" and polar material in Magnemite parts q uement soft, the direction of magnetization of the main magnets having a nerpendiculaire component to the large faces of the elements in opposite directions for the two magnets principal adjacent to the same pole piece; to magnetize a strip, it is scrolled in the immediate vicinity or against a stack or, in the same way, in an air gap between two stacks, preferably in a direction substantially parallel to the large faces of the flat elements and the plane of the strip being generally in a plane perpendicular to the large faces of the elements.

Comme aimants principaux, on choisit, de préférence, des aimants en alliage cobalt-terres rares tels que le samarium-cobalt Sm CoS; le matériau magnétiquement doux utilisé pour les pièces polaires est, de préférence, du fer doux ou un alliage fer-cobalt, mais on peut aussi utiliser du permalloy, des alliages fer-nickel, des aciers au silicium ou au carbone, des ferrites doux, selon la perméabilité magnétique requise.As main magnets, preference is given to magnets made of cobalt-rare earth alloys such as the samarium-cobalt Sm CoS; the magnetically soft material used for the pole pieces is preferably soft iron or an iron-cobalt alloy, but it is also possible to use permalloy, iron-nickel alloys, silicon or carbon steels, soft ferrites, according to the required magnetic permeability.

Pour obtenir une aimantation traversante, on fait défiler la bande dans l'entrefer délimité par deux empilements placés face à face. Par contre, pour obtenir une aimantation non traversante, il suffit d'utiliser un seul empilement ou de remplacer le second par un bloc de fer doux (ou autre matériau ferromagnétique) ou tout autre dispositif non magnétique assurant par exemple le déplacement et le guidage de la bande ou de la feuille.To obtain a through magnetization, the strip is passed through the air gap defined by two stacks placed face to face. On the other hand, to obtain a non-traversing magnetization, it suffices to use a single stack or to replace the second with a block of soft iron (or other ferromagnetic material) or any other non-magnetic device ensuring for example the displacement and the guiding of the strip or sheet.

Les éléments plats sont délimités par deux grandes faces parallèles et l'empilement se fait sur ces grandes faces. Lorsque la bande défile dans l'entrefer ou au voisinage de la partie active de l'aimanteur, elle se trouve, en général, dans un plan perpendiculaire à ces grandes faces et elle avance dans une direction appelée axe de défilement, qui est sensiblement parallèle au plan des grandes faces. Dans le cas où la bande présente, au voisinage immédiat de l'aimanteur ou dans l'entrefer, une certaine courbure, dans le sens longitudinal, on entend alors par "plan de la bande" et "axe de défilement" respectivement le plan tangent à la bande sur la génératrice de la bande la plus proche de l'aimanteur et la tangente à la courbe d'avance d'un point de la bande située dans le plan tangent précédent.The flat elements are delimited by two large parallel faces and the stacking takes place on these large faces. When the strip runs in the air gap or in the vicinity of the active part of the magnetizer, it is generally in a plane perpendicular to these large faces and it advances in a direction called the running axis, which is substantially parallel in terms of the large faces. In the case where the strip has, in the immediate vicinity of the magnetizer or in the air gap, a certain curvature, in the longitudinal direction, the term “plane of the strip” and “axis of travel” respectively mean the tangent plane to the strip on the generatrix of the strip closest to the magnetizer and the tangent to the advance curve of a point of the strip located in the previous tangent plane.

La direction d'aimantation des aimants principaux est non parallèle aux grandes faces de ces aimants et des pièces polaires adjacentes. Pour deux aimants principaux situés de part et d'autre d'une même pièce polaire, les sens d'aimantation N-S sont opposés. Les pièces polaires servant à canaliser vers l'entrefer ou la surface de l'aimanteur le flux magnétique produit par les aimants en opposition, on a, au débouché des pièces polaires à la surface de l'aimanteur, une alternance des pôles Nord et Sud séparés par des zones neutres, situés sur une même largeur de la bande.The direction of magnetization of the main magnets is not parallel to the large faces of these magnets and of the adjacent pole pieces. For two main magnets located on either side of the same pole piece, the directions of magnetization NS are opposite. The pole pieces used to channel towards the air gap or the surface of the magnetizer the magnetic flux produced by the opposing magnets, we have, at the outlet of the pole pieces on the surface of the magnetizer, an alternation of the North and South poles separated by zones neutral, located on the same width of the strip.

Dans le cas où on souhaite obtenir une aimantation traversante, on place les deux empilements face à face, de .telle sorte que les éléments de même nature de chaque empilement soient les uns au regard des autres et que les directions d'aimantation N-S de deux aimants principaux en regard soient de sens opposés.In the case where it is desired to obtain a through magnetization, the two stacks are placed facing each other, so that the elements of the same nature of each stack are facing each other and that the directions of magnetization NS of two facing main magnets are in opposite directions.

Le dispositif suivant l'invention peut comporter plusieurs variantes non limitatives de la portée de l'invention.The device according to the invention may include several non-limiting variants of the scope of the invention.

Dans une première variante, les éléments plats empilés ont une surface latérale qui se rétrécit au voisinage de la bande, par exemple une section trapézoïdale dont la petite base est située du côté de la,bande, de manière à orienter et à concentrer le flux magnétique vers celle-ci. Ces sections ne déterminent pas forcément une surface latérale prismatique de l'empilement.In a first variant, the stacked flat elements have a lateral surface which narrows in the vicinity of the strip, for example a trapezoidal section whose small base is located on the side of the strip, so as to orient and concentrate the magnetic flux towards this one. These sections do not necessarily determine a prismatic lateral surface of the stack.

Dans une seconde variante, les pièces polaires empilées ont la forme de disques circulaires, présentant une surface extérieure cylindrique de révolution, mobiles autour d'un axe non ferromagnétique, ce qui supprime tout glissement de la bande par rapport à l'aimanteur lorsque ces disques tournent à une vitesse appropriée ; les aimants principaux ont alors une base inscrite dans (ou égale à) la base des pièces polaires. Suivant le cas, ces disques peuvent être moteurs et/ou montés fous sur leur axe. Afin de limiter le champ de fuite dans l'empilement, il est préférable que le diamètre intérieur des pièces polaires soit supérieur au diamètre intérieur des aimants principaux.In a second variant, the stacked pole pieces have the shape of circular discs, having a cylindrical outer surface of revolution, movable around a non-ferromagnetic axis, which eliminates any sliding of the strip relative to the magnet when these discs rotate at an appropriate speed; the main magnets then have a base inscribed in (or equal to) the base of the pole pieces. Depending on the case, these discs can be driven and / or mounted idly on their axis. In order to limit the leakage field in the stack, it is preferable that the inside diameter of the pole pieces be greater than the inside diameter of the main magnets.

Il est possible que, malgré le champ coercitif élevé des aimants de l'empilement, le champ disponible à la surface (ou dans l'entrefer) de l'aimanteur soit encore insuffisant et qu'il faille l'augmenter. Dans une troisième variante, l'invention a également pour objet un dispositif perfectionné par rapport au dispositif précédent, caractérisé en ce que les pièces de l'empilement sont mises, en outre, au contact d'un ou ou plusieurs aimants permanents, appelés aimants de champ, situés à la périphérie de l'empilement et dont la direction d'aimantation N-S est parallèle à l'axe de défilement de la bande et de même sens. De ce fait, la direction d'aimantation des aimants à champ est parallèle au plan des grandes faces de l'empilement et perpendiculaire à la direction d'aimantation des aimants permanents de l'empilement.It is possible that, despite the high coercive field of the magnets of the stack, the field available on the surface (or in the air gap) of the magnetizer is still insufficient and that it should be increased. In a third variant, the invention also relates to an improved device compared to the previous device, characterized in that the pieces of the stack are brought, in addition, into contact with one or or several permanent magnets, called field magnets, located at the periphery of the stack and whose direction of magnetization NS is parallel to the running axis of the strip and in the same direction. Therefore, the direction of magnetization of the field magnets is parallel to the plane of the large faces of the stack and perpendicular to the direction of magnetization of the permanent magnets of the stack.

Dans ce cas, les pièces polaires ont une section plus grande que celle des aimants principaux et elles les enserrent complètement ; elles seules sont au contact des aimants de champ et présentent une forme générale de "peigne".In this case, the pole pieces have a larger section than that of the main magnets and they enclose them completely; they alone are in contact with the field magnets and have a general form of "comb".

Grâce aux aimants de champ, les aimants principaux, qui jouent alors le rôle d'aimants antifuite, travaillent principalement dans le troisième quadrant du cycle d'hystérésis, ce qui permet d'augmenter la force magnétomotrice qu'ils engendrent et, par conséquent, le champ de l'entrefer (ou au vôisinage des pôles).Thanks to the field magnets, the main magnets, which then play the role of anti-leakage magnets, work mainly in the third quadrant of the hysteresis cycle, which makes it possible to increase the magnetomotor force which they generate and, consequently, the field of the air gap (or near the poles).

Comme pour l'empilement simple, le système à peignes peut également se composer d'un empilement de disques et être rotatif autour d'un axe, mais dans ce cas, seuls les aimants principaux et les extrémités des peignes situées entre les aimants principaux, sont mobiles, les aimants de champ et la partie polaire contigüe restant fixes et aussi voisins que possible des parties mobiles.As for simple stacking, the comb system can also consist of a stack of discs and be rotatable about an axis, but in this case, only the main magnets and the ends of the combs located between the main magnets, are mobile, the field magnets and the contiguous polar part remaining fixed and as close as possible to the mobile parts.

On peut augmenter encore le champ obtenu dans l'entrefer en insérant entre deux aimants principaux adjacents à une même pièce polaire et en remplacement d'une partie de ladite pièce polaire, un aimant intermédiaire accolé à ces deux aimants principaux et situé alternativement à l'avant et à l'arrière de l'empilement dans le sens de l'axe de défilement de la bande, la direction d'aimantation N-S de ces aimants intermédiaires étant parallèle à l'axe'de défilement de la bande et de sens opposé.The field obtained in the air gap can be further increased by inserting between two main magnets adjacent to the same pole piece and replacing a part of said pole piece, an intermediate magnet attached to these two main magnets and located alternately at the before and at the rear of the stack in the direction of the axis of travel of the strip, the direction of magnetization NS of these intermediate magnets being parallel to the axis of travel of the strip and in the opposite direction.

Lorsque tous les aimants principaux ont la même épaisseur (a) et toutes les pièces polaires ont la même épaisseur (b), sauf éventuellement les aimants principaux d'extrémité, on appelle "pas polaire" la valeur (p= a+b). Mais, on peut construire également très facilement des systèmes à pas polaire variable. L'intérêt de conserver des zones neutres non aimantées est de faire se refermer les lignes de champ à distance de la feuille, donc de disposer d'une force d'attraction non négligeable pour des entrefers de travail non nuls.When all the main magnets have the same thickness (a) and all the pole pieces have the same thickness (b), except possibly the main end magnets, the value (p = a + b) is called "not polar". However, it is also very easy to construct systems with variable polar pitch. The advantage of keeping neutral zones not magnetized is to close the field lines at a distance from the sheet, therefore to have a significant attraction force for non-zero work gaps.

L'invention sera mieux comprise grâce aux dessins annexés qui ne représentent que des modes de réalisation particuliers non limitatifs.The invention will be better understood thanks to the appended drawings which only represent specific non-limiting embodiments.

Les figures 1 et 2 représentent en coupe transversale une bande aimantée respectivement en aimantation traversante et non-traversante.Figures 1 and 2 show in cross section a magnetic strip respectively through and non-through magnetization.

Les figures 3 et 4 représentent respectivement en coupe, suivant aa' - (fig.4) et bb' (fig.3), un dispositif d'aimantation traversante à empilement simple d'éléments à contour trapézoïdal.Figures 3 and 4 show respectively in section, along aa '- (fig.4) and bb' (fig.3), a through magnetization device with simple stack of trapezoidal contour elements.

Les figures 5 et 6 représentent respectivement une vue en coupe, suivant cc' (fig. 6) et dd' (fig.5), d'un dispositif d'aimantation traversante à empilement simple d'éléments en forme de disques circulaires.Figures 5 and 6 respectively show a sectional view, along cc '(fig. 6) and dd' (fig.5), of a through magnetization device with simple stack of elements in the form of circular discs.

La figure 7 représente en vue de côté et en coupe partielle, suivant cc' (fig.9), un dispositif d'aimantation non traversante à peignes.Figure 7 shows a side view and in partial section, along cc '(fig.9), a non-through magnetization device with combs.

La figure 8 représente la partie inférieure d'un dispositif à peigne pour aimantation traversante comportant un empilage mobile au voisinage de la bande, vu en coupe.FIG. 8 represents the lower part of a comb device for through magnetization comprising a movable stack in the vicinity of the strip, seen in section.

La figure 9 est une vue en plan du dispositif représenté à la figure 7.FIG. 9 is a plan view of the device shown in FIG. 7.

Une bande d'un matériau aimantable possède une aimantation traversante comme représenté à la figure 1 lorsqu'elle présente sur les deux faces dans le sens de la largeur une succession de pôles Sud et de pôles Nord alternés séparés par des zones neutres ; lorsque cette disposition est périodique, la distance entre deux pôles voisins définit le pas polaire de l'aimantation. Dans ce cas, les lignes de champ traversent l'épaisseur de la bande, en étant approximativement perpendiculaire aux faces.A strip of magnetizable material has a through magnetization as shown in Figure 1 when it has on the two faces in the width direction a succession of South poles and alternating North poles separated by neutral zones; when this arrangement is periodic, the distance between two neighboring poles defines the polar pitch of the magnetization. In this case, the field lines cross the thickness of the strip, being approximately perpendicular to the faces.

Par contre, l'aimantation est non traversante, comme représenté en figure 2, lorsque sur cette même largeur de la bande et sur une seule des faces, on a une succession alternée de pôles Nord et Sud séparés par des zones neutres, les lignes de champ se refermant sur cette face et ne traversant pratiquement pas l'épaisseur de la bande.For against, the magnetization is not overall length, as shown in Figure 2, when on the same width of the strip and on one of the faces, there is a p alternating succession oles North and South separated by neutral zones, lines field closing on this face and not practically not crossing the thickness of the strip.

Le dispositif représenté aux figures 3 et 4 comporte deux empilements sur leurs grandes faces, d'éléments plats qui sont alternativement des aimants permanents (1), par exemple en alliage cobalt-terres rares, à champ coercitif élevé et des pièces polaires ferromagnétiques (2), par exemple en alliage fer-cobalt à 35X de cobalt. Les grandes faces de ces éléments plats ont un profil qui, au voisinage de la bande (3) est tra- pézoidal comme cela apparaît sur la figure 4, la petite base (4) du trapèze faisant face à la bande (3). Chacun des empilements est maintenu par des supports (5) en fer doux ou en tout autre matériau magnétiquement doux. Deux aimants (1) situés de part et d'autre d'une même pièce polaire (2) ont des directions d'aimantation globale de préférence perpendiculaire au plan des grandes faces de l'empilement et de sens opposé. La bande (3) défile dans un plan sensiblement perpendiculaire aux grandes faces de l'empilement et dans une direction (ou axe de défilement) sensiblement parallèle aux petites bases (4) des éléments plats trapézoïdaux. Les deux empilements délimitent un entrefer (6). Chaque aimant principal (1) et chaque pièce polaire (2) de l'un des empilements est respectivement situé en regard d'un aimant et d'une pièce polaire de l'autre empilement similaire. De plus, pour deux aimants en regard de part et d'autre de l'entrefer (6), les directions d'aimantation sont de sens opposé. On obtient ainsi dans l'entrefer au droit des pièces polaires, une succession de lignes de champ et de sens alternés, représentées par les flèches qui vont imprimer sur la largeur de la bande (3) défilant dans l'entrefer (6), une succession alternée de pôles Nord et Sud séparés par des zones neutres.The device represented in FIGS. 3 and 4 comprises two stacks on their large faces, of flat elements which are alternately permanent magnets (1), for example made of cobalt-rare earth alloy, with high coercive field and ferromagnetic pole pieces (2 ), for example in iron-cobalt alloy with 35X cobalt. The large faces of these flat elements have a profile which, in the vicinity of the strip (3) is trapezoidal as it appears in FIG. 4, the small base (4) of the trapezium facing the strip (3). Each of the stacks is held by supports (5) made of soft iron or any other magnetically soft material. Two magnets (1) located on either side of the same pole piece (2) have overall magnetization directions preferably perpendicular to the plane of the large faces of the stack and in opposite directions. The strip (3) runs in a plane substantially perpendicular to the large faces of the stack and in a direction (or running axis) substantially parallel to the small bases (4) of the trapezoidal flat elements. The two stacks delimit an air gap (6). Each main magnet (1) and each pole piece (2) of one of the stacks is respectively located opposite a magnet and of a pole piece of the other similar stack. In addition, for two magnets facing each other on the air gap (6), the magnetization directions are in opposite directions. One thus obtains in the air gap to the right of the pole pieces, a succession of field lines and alternating directions, represented by the arrows which will print on the width of the strip (3) running in the air gap (6), a alternating succession of North and South poles separated by neutral zones.

Pour obtenir une aimantation non traversante, il suffit de n'utiliser qu'une moitié de l'aimanteur, c'est-à-dire un seul empilement, l'autre moitié étant soit supprimée, soit remplacée par un bloc de fer doux ou autre matériau magnétiquement doux, soit par un dispositif non magnétique assurant par exemple le déplacement et le guidage de la feuille ou de la bande.To obtain a non-traversing magnetization, it suffices to use only one half of the magnetizer, that is to say a single stack, the other half being either removed or replaced by a block of soft iron or other magnetically soft material, either by a non-magnetic device ensuring for example the movement and the guiding of the sheet or the strip.

Dans la variante représentée aux figures 5 et 6, les empilements sont formés d'éléments plats, aimants principaux (1) et pièces polaires (2), en forme de disques circulaires, mobiles autour d'un axe (7) et présentant une surface latérale cylindrique droite unique et tournant à une vitesse telle qu'on supprime tout glissement de la bande par rapport à l'aimanteur.In the variant shown in Figures 5 and 6, the stacks are formed of flat elements, main magnets (1) and pole pieces (2), in the form of circular discs, movable around an axis (7) and having a surface single right cylindrical lateral and rotating at a speed such that any slippage of the strip relative to the magnet is eliminated.

Dans le dispositif à peignes représenté aux figures 7, 8 et 9, on a un empilement d'aimants principaux (1) et de pièces polaires (2) de forma trapézoïdale au voisinage de la bande (3), la netite base (4) du trapèze étant au regard de la bande.In the comb device shown in Figures 7, 8 and 9, there is a stack of main magnets (1) and pole pieces (2) of trapezoidal shape in the vicinity of the strip (3), the netite base (4) of the trapezoid facing the strip.

Les pièces polaires (2) ont une section plus grande que celle des aimants (1) et débordent de l'empilement en entourant complètement les aimants (1) pour former une sorte de peigne. Ces pièces polaires (2) sont au contact d'aimants de champ (8) qui leur confèrent un certain potentiel magnétique.The pole pieces (2) have a larger section than that of the magnets (1) and extend beyond the stack, completely surrounding the magnets (1) to form a sort of comb. These pole pieces (2) are in contact with field magnets (8) which give them a certain magnetic potential.

La direction d'aimantation de ces aimants de champ (8) est parallèle à l'axe de défilement (11) de la bande (3), c'est-à-dire aussi parallèle aux grandes faces de l'empilement et au plan de la bande et, donc, perpendiculaire aux directions d'aimantation des aimants (I), comme cela apparaît sur la figure 9.The direction of magnetization of these field magnets (8) is parallel to the running axis (11) of the strip (3), that is to say also parallel to the large faces of the stack and to the plane of the strip and, therefore, perpendicular to the magnetization directions of the magnets (I), as shown in Figure 9.

La présence des aimants de champ (8) permet d'augmenter la force magnétomotrice engendrée par les aimants (1) et, donc, le champ de l'entrefer. De plus, le flux créé par les aimants de champ (8) est obligé, à cause de la présence des aimants principaux (1), de passer à travers la bande (3).The presence of the field magnets (8) makes it possible to increase the magnetomotive force generated by the magnets (1) and, therefore, the field of the air gap. In addition, the flux created by the field magnets (8) is forced, because of the presence of the main magnets (1), to pass through the strip (3).

La partie active de ce système peut se présenter sous forme d'un empilement de disques circulaires en rotation autour d'un axe, mais les aimants de champ (8) et la partie polaire contigue restent fixes, tel que schématisé à la figure 8.The active part of this system can be in the form of a stack of circular discs rotating around an axis, but the field magnets (8) and the adjacent polar part remain fixed, as shown diagrammatically in FIG. 8.

Pour diminuer encore les fuites entre les deux peignes, on remplace une partie de la pièce polaire située entre deux aimants principaux (1) par un aimant intermédiaire (9). Cet aimant intermédiaire a la forme d'un barreau perpendiculaire au plan de la bande (3), accolé aux deux aimants principaux (1) et situé, par rapport à l'axe de défilement de la bande, alternativement à l'avant et à l'arrière de l'empilement. On obtient ainsi comme on le voit à la figure 9, une succession en S d'aimants principaux (1) et d'aimants intermédiaires (9), ces derniers étant disposés en quinconce aux extrémités des aimants (1) adjacents.To further reduce leakage between the two combs, part of the pole piece located between two main magnets (1) is replaced by an intermediate magnet (9). This intermediate magnet has the form of a bar perpendicular to the plane of the strip (3), attached to the two main magnets (1) and located, relative to the axis of travel of the strip, alternately at the front and at the back of the stack. As shown in FIG. 9, one thus obtains an S-shaped succession of main magnets (1) and intermediate magnets (9), the latter being arranged staggered at the ends of the adjacent magnets (1).

La direction d'aimantation de ces aimants intermédiaires (9) est parallèle à celle des aimants de champ (8) mais de sens opposé ou encore parallèle et de sens contraire à l'axe de défilement (11) de la bande (3). On obtient ainsi une concentration du flux magnétique dans les parties des pièces polaires situées au centre de l'empilement, ce flux étant dirigé par les pièces polaires vers la petite base (4) du contour trapézoïdal au voisinage de la bande.The direction of magnetization of these intermediate magnets (9) is parallel to that of the field magnets (8) but in the opposite direction or even parallel and in the opposite direction to the running axis (11) of the strip (3). A concentration of the magnetic flux is thus obtained in the parts of the pole pieces located in the center of the stack, this flux being directed by the pole pieces towards the small base (4) of the trapezoidal contour in the vicinity of the strip.

Dans un plan parallèle au plan de la bande, on a alternativement, au centre des pièces polaires de l'empilement, une concentration de pôles Nord et Sud dans les zones (10).In a plane parallel to the plane of the strip, there is alternately, at the center of the pole pieces of the stack, a concentration of North and South poles in the zones (10).

Pour obtenir une aimantation traversante, on utilise un aimanteur comprenant deux empilements similaires situés l'un en face de l'autre et délimitant un entrefer dans lequel défile la bande (3). Là encore, les aimants principaux (1) de chacun des empilements se font face, ainsi que les pièces polaires, et les directions d'aimantation de deux aimants face à face de part et d'autre de l'entrefer sont non parallèles aux faces et leurs résultantes sont de sens opposés. Pour obtenir une aimantation non traversante, on n'utilise qu'une moitié de l'aimanteur, l'autre moitié étant supprimée ou remplacée par un rouleu de fer doux, ou par un dispositif non magnétique assurant le déplacement et le guidage de la feuille ou de la bande.To obtain a through magnetization, a magnetizer is used comprising two similar stacks located one opposite the other and delimiting an air gap in which the strip (3) runs. Here again, the main magnets (1) of each of the stacks face each other, as do the pole pieces, and the directions of magnetization of two magnets face to face on either side of the air gap are not parallel to the faces. and their results are in opposite directions. To obtain a non-crossing magnetization, only half of the magnet is used, the other half being removed or replaced by a soft iron roller, or by a non-magnetic device ensuring the movement and guiding of the sheet. or tape.

Les résultats obtenus à l'aide du procédé et du dispositif selon l'invention sont illustrés par les exemples suivants :The results obtained using the method and the device according to the invention are illustrated by the following examples:

Exemple ! : :Example! ::

On réalise un empilement d'aimants fixes en alliage SmCo5, d'épaisseur 2,5 mm et de pièces polaires en alliage Fe-Co d'épaisseur 2 mm. On obtient dans l'entrefer d'une épaisseur de 3 mm une induction de 0,4 Tesla (4000 Gauss) en. aimantation non traversante et de 0,65 Tesla (6500 Gauss) en aimantation traversante pour une bande souple de 3 mm d'épaisseur.A stack of fixed magnets made of SmCo 5 alloy 2.5 mm thick and pole pieces made of Fe-Co alloy 2 mm thick is produced. An induction of 0.4 Tesla (4000 Gauss) is obtained in the air gap with a thickness of 3 mm. non-through magnetization and 0.65 Tesla (6500 Gauss) through magnetization for a flexible strip 3 mm thick.

Exemple 2 :Example 2:

On réalise un empilement de disques de diamètre 20 mm, mobiles autour d'un axe, ces disques étant alternativement des aimants SmCo5 d'épaisseur 1,3 mm et des pièces polaires en alliage Fe-Co d'épaisseur 1,2 mm. Un tel dispositif permet d'aimanter à saturation une bande de caoutchouc magnétique à ferrite de baryum d'épaisseur inférieure ou égale à 1 mm en aimantation traversante ou non traversante.A stack of 20 mm diameter discs is made, movable around of an axis, these discs being alternately SmCo 5 magnets of thickness 1.3 mm and pole pieces of Fe-Co alloy of thickness 1.2 mm. Such a device makes it possible to magnetize at saturation a magnetic rubber band with barium ferrite of thickness less than or equal to 1 mm in through or non-through magnetization.

La valeur du champ dans l'entrefer (dans l'air) est de 380 kA/m pour une distance de 4 mm et atteint 1000 kA/m pour une distance de 0,8 mm.The value of the field in the air gap (in the air) is 380 kA / m for a distance of 4 mm and reaches 1000 kA / m for a distance of 0.8 mm.

Exemple 3 :Example 3:

Un aimanteur est constitué de deux cylindres comportant des aimants "CO-RAMAG (structure SmCoS) de 4 mm d'épaisseur et des pièces polaires en acier doux de 6,25 mm d'épaisseur (soit un pas polaire de 10,25 mm). Le dispositif a été utilisé pour aimanter une bande de "FERRIFLEX 3"* de 55,0 mm de largeur et de 2 mm d'épaisseur, suivant la configuration reportée à la figure 10 à la vitesse de 30 m/mn, qui n'est d'ailleurs caractéristique que du système d'entraînement de la bande, le dispositif d'aimantation ne constituant pas une limite. La force d'attraction mesurée sur une touche à contact magnétique placée dans un trou de cette bande, - en fonction de la distance de la tête de celle-ci à la bande aimantée

  • est de : 1,2 N à une distance nulle
  • 0,75 N à une distance de 1 mm
  • 0,35 N à une distance de 2 mm

* marques déposées de la Société AIMANTS UGIMAG SAA magnetizer is made up of two cylinders comprising CO-RAMAG magnets (SmCo S structure) 4 mm thick and mild steel pole pieces 6.25 mm thick (a pole pitch of 10.25 mm The device was used to magnetize a strip of "FERRIFLEX 3" * 55.0 mm wide and 2 mm thick, according to the configuration shown in FIG. 10 at the speed of 30 m / min, which is moreover only characteristic of the belt drive system, the magnetization device not constituting a limit The force of attraction measured on a magnetic contact key placed in a hole in this band, - in function of the distance from the head of the latter to the magnetic strip
  • is: 1.2 N at zero distance
  • 0.75 N at a distance of 1 mm
  • 0.35 N at a distance of 2 mm

* trademarks of AIMANTS UGIMAG SA

ce qui est au moins égal à des valeurs obtenues sur une bande de même épaisseur aimantée sur un dispositif électromagnétique dont le pas polaire était de 11,5 mm, mais à une vitesse de défilement considérablement moindre (V = 1 m/mn), limitée par la recharge du banc de condensateurs et les efforts auxquels le saturateur électromagnétique est soumis.which is at least equal to values obtained on a strip of the same thickness magnetized on an electromagnetic device whose pole pitch was 11.5 mm, but at a considerably lower speed of travel (V = 1 m / min), limited by recharging the capacitor bank and the forces to which the electromagnetic saturator is subjected.

Exemple 4 :Example 4:

On réalise un système à peignes avec aimants intermédiaires, présentant les mêmes caractéristiques que le système à empilement simple de l'exemple l. Le champ dans l'entrefer est alors augmenté de 10 %. Dans tous les exemples précédents, il est possible d'aimanter de façon "traversante" une bande constituée essentiellement de ferrite de Ba, Sr et/ou Pb sur une épaisseur voisine de celle de la hauteur des pièces polaires (b), lorsque leur diamètre est largement supérieur à leur hauteur. A comb system with intermediate magnets is produced, having the same characteristics as the simple stack system of example l. The field in the air gap is then increased by 10%. In all of the previous examples, it is possible to magnetize "through" a strip essentially consisting of ferrite of Ba, Sr and / or Pb over a thickness close to that of the height of the pole pieces (b), when their diameter is much higher than their height.

Claims (12)

1. Procédé pour aimantation multipolaire d'un matériau magnétique dur sous forme de bande ou de feuille (3) caractérisé en ce qu'on la fait défiler dans la direction (11) au voisinage immédiat d'au moins un empilement constitué d'éléments plats reposant sur leurs grandes bases parallèles, ces éléments étant alternativement des aimants permanents principaux (1) à champ coercitif élevé et des pièces polaires en matériau magnétique doux (2), les aimants permanents possédant une composante d'aimantation perpendiculaire aux grandes bases, ces composantes étant de sens opposés pour deux aimants principaux adjacents à une même pièce polaire (2).1. Method for multipolar magnetization of a hard magnetic material in the form of a strip or sheet (3) characterized in that it is scrolled in the direction (11) in the immediate vicinity of at least one stack consisting of elements dishes resting on their large parallel bases, these elements being alternately main permanent magnets (1) with high coercive field and pole pieces made of soft magnetic material (2), the permanent magnets having a magnetization component perpendicular to the large bases, these components having opposite directions for two main magnets adjacent to the same pole piece (2). 2. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce qu'il est constitué de deux empilements séparés par un entrefer (6) dans lequel se déplace la bande (ou la feuille) (3), les éléments de même nature -aimant (1) ou pièce polaire (2)- de chaque empilement étant situés les uns en regard des autres, et en ce que les composantes de l'aimantation sur une perpendiculaire aux grandes bases de deux aimants principaux (1) en regard, sont de sens opposé.2. Device for implementing the method according to claim 1, characterized in that it consists of two stacks separated by an air gap (6) in which the strip (or the sheet) (3) moves, the elements of the same nature - magnet (1) or pole piece (2) - of each stack being located opposite each other, and in that the components of the magnetization on a perpendicular to the large bases of two main magnets (1) opposite, are of opposite direction. 3. Dispositif suivant la revendication 2, caractérisé en ce que les aimants principaux (1) sont en alliage type cobalt-terres rares.3. Device according to claim 2, characterized in that the main magnets (1) are made of a cobalt-rare earth type alloy. 4. Dispositif selon l'une des revendications 2 ou 3, caractérisé en ce que les pièces polaires (2) sont en fer doux ou en alliage fer-cobalt.4. Device according to one of claims 2 or 3, characterized in that the pole pieces (2) are made of soft iron or an iron-cobalt alloy. 5. Dispositif selon l'une des revendications 2 à 4, caractérisé en ce que tout ou partie des éléments plats empilés ont une surface latérale qui se rétrécit au voisinage de la bande (3).5. Device according to one of claims 2 to 4, characterized in that all or part of the stacked flat elements have a lateral surface which tapers in the vicinity of the strip (3). 6. Dispositif selon la revendication 5, caractérisé en ce que la base des éléments plats est trapézoïdale, la petite base du trapèze (4) étant au voisinage de la bande (3).6. Device according to claim 5, characterized in that the base of the flat elements is trapezoidal, the small base of the trapezoid (4) being in the vicinity of the strip (3). 7. Dispositif selon la revendication 5, caractérisé en ce que la base des éléments plats est circulaire et que ceux-ci sont mobiles autour de leur axe (7).7. Device according to claim 5, characterized in that the base of the flat elements is circular and that these are movable about their axis (7). 8. Dispositif selon la revendication 7, caractérisé en ce que tous les éléments plats ont une même surface latérale cylindrique.8. Device according to claim 7, characterized in that all of the flat elements have the same cylindrical lateral surface. 9. Dispositif suivant l'une des revendications 7 ou 8, caractérisé en ce que le diamètre intérieur des pièces polaires est supérieur à celui du diamètre intérieur des aimants principaux.9. Device according to one of claims 7 or 8, characterized in that the inside diameter of the pole pieces is greater than that of the inside diameter of the main magnets. 10. Dispositif suivant l'une des revendications 2 à 9, caractérisé en ce que les pièces polaires sont mises en liaison par l'intermédiaire d'un matériau magnétiquement doux (ou directement en contact) avec au moins un aimant permanent de champ (8) situé à la périphérie de l'empilement et dont la direction d'aimantation a une composante de même sens que l'axe de défilement de la bande (11).10. Device according to one of claims 2 to 9, characterized in that the pole pieces are connected by means of a magnetically soft material (or directly in contact) with at least one permanent field magnet (8 ) located at the periphery of the stack and the direction of magnetization of which has a component in the same direction as the axis of travel of the strip (11). 11. Dispositif suivant la revendication 10, caractérisé en ce que le (ou les) empilement(s) est (sont) mobile(s) autour d'un axe (7).11. Device according to claim 10, characterized in that the (or) stack (s) is (are) movable (s) about an axis (7). 12. Dispositif suivant la revendication 10, caractérisé en ce qu'une partie de chaque pièce polaire fixe est remplacée par un aimant intermédiaire (9) accolé à deux aimants principaux (1), celui-ci étant placé alternativement à l'avant et à l'arrière de l'empilement dans le sens de défilement de la bande (17), la direction d'aimantation de ces aimants intermédiaires ayant une composante de sens opposé à l'axe de défilement de la bande (11).12. Device according to claim 10, characterized in that a part of each fixed pole piece is replaced by an intermediate magnet (9) attached to two main magnets (1), the latter being placed alternately at the front and at the rear of the stack in the direction of travel of the strip (17), the direction of magnetization of these intermediate magnets having a component of direction opposite to the travel axis of the strip (11).
EP81420014A 1980-02-15 1981-02-12 Method and device for multipole magnetization of a sheet material Expired EP0034552B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81420014T ATE5750T1 (en) 1980-02-15 1981-02-12 METHOD AND DEVICE FOR THE MULTIPOLAR MAGNETIZATION OF A STRIP-FORM MATERIAL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8003758A FR2476375A1 (en) 1980-02-15 1980-02-15 DEVICE FOR THE MULTIPOLAR MAGNET OF BAND MATERIAL
FR8003758 1980-02-15

Publications (2)

Publication Number Publication Date
EP0034552A1 true EP0034552A1 (en) 1981-08-26
EP0034552B1 EP0034552B1 (en) 1983-12-28

Family

ID=9238778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81420014A Expired EP0034552B1 (en) 1980-02-15 1981-02-12 Method and device for multipole magnetization of a sheet material

Country Status (17)

Country Link
US (1) US4379276A (en)
EP (1) EP0034552B1 (en)
JP (1) JPS56131909A (en)
AT (1) ATE5750T1 (en)
BE (1) BE887520A (en)
BR (1) BR8100871A (en)
CA (1) CA1163673A (en)
CH (1) CH642764A5 (en)
DE (1) DE3161723D1 (en)
DK (1) DK62481A (en)
FR (1) FR2476375A1 (en)
IE (1) IE50917B1 (en)
IN (1) IN153578B (en)
IT (1) IT1135431B (en)
LU (1) LU83131A1 (en)
MX (1) MX150049A (en)
NO (1) NO156738C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571173A1 (en) * 1984-09-28 1986-04-04 Elzett Muevek MAGNET DEVICE, IN PARTICULAR FOR KEY MAGNETS AND MAGNETIC SAFETY LOCKS
DE4301771A1 (en) * 1993-01-23 1994-07-28 Steingroever Magnet Physik Permanent magnet foil magnetising device
EP0639292A1 (en) * 1992-05-08 1995-02-22 Electrodyne Co Magnetization of permanent magnet strip materials.
DE4442917A1 (en) * 1994-12-01 1996-06-05 Wst Steuerungstechnik Gmbh Method of applying magnet markings to magnetisable strip element esp. transport- and/or drive-element
US9208934B1 (en) 2007-03-16 2015-12-08 Magnum Magnetics Corporation Material magnetizer systems
CN111341520A (en) * 2020-03-23 2020-06-26 东莞市融贤实业有限公司 Method for simultaneously magnetizing main magnet and auxiliary magnet of loudspeaker at one time

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3533968C2 (en) * 1985-09-24 1995-06-08 Weinsheim Chemie Device for magnetizing layers containing magnetizable material
WO1991011537A1 (en) * 1990-01-30 1991-08-08 Ufimsky Neftyanoi Institut Method and device for thermomagnetic treatment of articles
CA2117796C (en) * 1992-04-14 2000-08-15 Raymond C. Srail Magnetized material having enhanced magnetic pull strength and a process and apparatus for the multipolar magnetization of the material
EP0715300A3 (en) 1994-11-30 1997-02-05 Eastman Kodak Co Very high field magnetic roller recorder
US6233407B1 (en) 1995-11-20 2001-05-15 Eastman Kodak Company Camera with magnetic roller recorder for repetitively recording information along magnetic track on filmstrip
US6134821A (en) * 1998-01-16 2000-10-24 Magnum Magnetics Magnetic signage systems and processes related thereto
US6954128B2 (en) * 2001-11-30 2005-10-11 The Regents Of The University Of California High performance hybrid magnetic structure for biotechnology applications
US7148778B2 (en) * 2001-11-30 2006-12-12 The Regents Of The University Of California High performance hybrid magnetic structure for biotechnology applications
US7501921B2 (en) * 2005-05-13 2009-03-10 Magnetnotes, Ltd. Temperature controlled magnetic roller
US8115583B2 (en) * 2006-11-15 2012-02-14 Vasily Lensky Generation of multipolar electromagnetic energy
CN103282280B (en) 2010-10-27 2016-02-10 洲际大品牌有限责任公司 The accommodating packaging of the closeable product of magnetic
US8866572B2 (en) * 2011-02-19 2014-10-21 A. Todd McMullen Special random magnetization apparatus and process for thin sheet magnetic sheets and rolls
US9455078B2 (en) * 2014-07-29 2016-09-27 Magnum Magnetics Corporation Non-linear multi-pole magnetization of flexible magnetic sheets
US11509203B2 (en) 2018-07-25 2022-11-22 Moog Inc. Claw-pole motor with rotor flux concentrators and poles and stator with solenoid coil and alternating stator teeth
JP7444855B2 (en) 2018-08-30 2024-03-06 ムーグ インコーポレーテッド Claw pole motor with ring coil and serpentine coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1564140A (en) * 1967-04-07 1969-04-18

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2501615A (en) * 1946-03-07 1950-03-21 Western Electric Co Method of forming magnetic field patterns
ES221304A1 (en) * 1954-04-22 1955-06-01 Philips Nv Magnet system comprising two structurally identical parts
US3127544A (en) * 1960-11-18 1964-03-31 Leyman Corp Apparatus for magnetizing permanent magnet materials to form band-like poles thereon
US3671893A (en) * 1970-11-18 1972-06-20 Gen Electric Magnetic latch and switch using cobalt-rare earth permanent magnets
US3879754A (en) * 1973-11-29 1975-04-22 Honeywell Inc Magnetic field producing apparatus
FR2273749A1 (en) * 1974-06-10 1976-01-02 Inst Manipulacnich Dopravnich Magnetic load lifter without slinging operation - has permanent magnet with rotating actuating block and pole pieces
US4292261A (en) * 1976-06-30 1981-09-29 Japan Synthetic Rubber Company Limited Pressure sensitive conductor and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1564140A (en) * 1967-04-07 1969-04-18

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571173A1 (en) * 1984-09-28 1986-04-04 Elzett Muevek MAGNET DEVICE, IN PARTICULAR FOR KEY MAGNETS AND MAGNETIC SAFETY LOCKS
EP0639292A1 (en) * 1992-05-08 1995-02-22 Electrodyne Co Magnetization of permanent magnet strip materials.
EP0639292A4 (en) * 1992-05-08 1995-03-08 The Electrodyne Company Magnetization of permanent magnet strip materials.
DE4301771A1 (en) * 1993-01-23 1994-07-28 Steingroever Magnet Physik Permanent magnet foil magnetising device
DE4442917A1 (en) * 1994-12-01 1996-06-05 Wst Steuerungstechnik Gmbh Method of applying magnet markings to magnetisable strip element esp. transport- and/or drive-element
DE4442917C2 (en) * 1994-12-01 1998-12-03 Wst Steuerungstechnik Gmbh Method of applying magnetic marks
US9208934B1 (en) 2007-03-16 2015-12-08 Magnum Magnetics Corporation Material magnetizer systems
CN111341520A (en) * 2020-03-23 2020-06-26 东莞市融贤实业有限公司 Method for simultaneously magnetizing main magnet and auxiliary magnet of loudspeaker at one time

Also Published As

Publication number Publication date
FR2476375A1 (en) 1981-08-21
NO810487L (en) 1981-08-17
CH642764A5 (en) 1984-04-30
US4379276A (en) 1983-04-05
IT1135431B (en) 1986-08-20
IE810288L (en) 1981-08-15
BE887520A (en) 1981-08-13
LU83131A1 (en) 1981-09-11
BR8100871A (en) 1981-08-25
DK62481A (en) 1981-08-16
ATE5750T1 (en) 1984-01-15
CA1163673A (en) 1984-03-13
JPS56131909A (en) 1981-10-15
DE3161723D1 (en) 1984-02-02
IN153578B (en) 1984-07-28
NO156738B (en) 1987-08-03
IE50917B1 (en) 1986-08-20
FR2476375B1 (en) 1983-10-07
EP0034552B1 (en) 1983-12-28
MX150049A (en) 1984-03-05
JPS6137766B2 (en) 1986-08-26
NO156738C (en) 1987-11-11
IT8119681A0 (en) 1981-02-12

Similar Documents

Publication Publication Date Title
EP0034552B1 (en) Method and device for multipole magnetization of a sheet material
CA1067954A (en) Permanent and electro-permanent magnets magnetic plate
EP0974185A1 (en) Improved linear actuator
EP0636272B1 (en) Magnetized material having enhanced magnetic pull strength and a process and apparatus for the multipolar magnetization of the material
FR2533361A1 (en) PERMANENT MULTIPOLAR MAGNET WITH ADJUSTABLE FIELD INTENSITY
FR2651367A1 (en) METHOD AND APPARATUS FOR FORMING MAGNETIZED AREAS ON A MAGNETISABLE BODY.
WO2016062844A1 (en) Polyphase motor having an alternation of permanent magnets and salient poles
FR2551302A1 (en) FERROMAGNETIC STRUCTURE OF AN ION SOURCE CREATED BY PERMANENT MAGNETS AND SOLENOIDS
FR2941106A1 (en) ROTATING ELECTRICAL MACHINE WITH HIGHLIGHTS
WO1994027303A1 (en) Monophase, short travel, electromagnetic actuator having a good electric power/force ratio
EP1727998A1 (en) Active magnetic bearing with automatic detection of the position thereof
EP0268619B1 (en) Electromagnetic actuation device
EP1581991B1 (en) Hybrid single-phase bistable rotary actuator
FR3062947A1 (en) MAGNET METHOD, MAGNET DEVICE AND MAGNET FOR MAGNETIC ENCODER
EP3652845B1 (en) Electromagnetic energy converter
FR2571173A1 (en) MAGNET DEVICE, IN PARTICULAR FOR KEY MAGNETS AND MAGNETIC SAFETY LOCKS
CH459368A (en) Method of magnetization of magnetic wheels for magnetic gear and device for carrying out the method
KR840002384B1 (en) The multipolar magentization of a material in strips
FR2648058A1 (en) METHOD FOR ELECTRODYNAMIC SEPARATION OF CURRENT CONDUCTIVE NON-FERROMAGNETIC PARTICLES AND DEVICE FOR CARRYING OUT SAID METHOD
EP0639839A1 (en) Device for magnetising or demagnetising metal workpieces
WO2003098783A1 (en) Linear motor
BE489740A (en)
FR2462805A1 (en) Field magnet for axial air-gap DC machine - has solid or laminated ring contg. polar masses each completely surrounded by ferrite magnet
FR2702592A1 (en) Permanent magnet structure with high efficiency and low leakage.
FR2473803A1 (en) Small motor permanent magnet rotor - has alternately stacked discs of trapezoidal cross-section magnetic material and permanent magnet discs(BR 27.7.81)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE GB NL SE

17P Request for examination filed

Effective date: 19810901

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE GB NL SE

REF Corresponds to:

Ref document number: 5750

Country of ref document: AT

Date of ref document: 19840115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3161723

Country of ref document: DE

Date of ref document: 19840202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840331

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850111

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19870119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19881101

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81420014.3

Effective date: 19880927