EP0033363B1 - Process for coating a porous electrode - Google Patents

Process for coating a porous electrode Download PDF

Info

Publication number
EP0033363B1
EP0033363B1 EP80107001A EP80107001A EP0033363B1 EP 0033363 B1 EP0033363 B1 EP 0033363B1 EP 80107001 A EP80107001 A EP 80107001A EP 80107001 A EP80107001 A EP 80107001A EP 0033363 B1 EP0033363 B1 EP 0033363B1
Authority
EP
European Patent Office
Prior art keywords
electrode
compounds
metals
process according
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80107001A
Other languages
German (de)
French (fr)
Other versions
EP0033363A1 (en
Inventor
Günter Dr.rer.nat. Bewer
Hubertus Härle
Dieter Ing.Grad. Lieberoth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigri GmbH
Original Assignee
Sigri GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigri GmbH filed Critical Sigri GmbH
Publication of EP0033363A1 publication Critical patent/EP0033363A1/en
Application granted granted Critical
Publication of EP0033363B1 publication Critical patent/EP0033363B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Definitions

  • the invention relates to a method for coating a porous electrode for electrochemical processes with an activation layer which at least partially covers the electrode surface and contains metals or compounds of metals of the platinum group.
  • Electrodes for electrochemical processes e.g. B. of anodes for chlor-alkali electrotysis, from a resistant to the electrotysis products and a passivation layer forming material under the conditions of electrolysis
  • numerous methods have become known, the purpose of which essentially consists of a platinum metal or platinum metal-containing compounds in an electrochemically effective degree of dispersion anchor the electrode or the electrode core mechanically.
  • DE-B-1155762 it is known to galvanically coat degreased and etched titanium plates with a platinum metal and the plates in a first thermal cycle in an inert atmosphere and in a second cycle in an oxidizing atmosphere up to a temperature of approximately To heat 800 ° C.
  • This treatment gives a firmly adhering activation layer and at the same time improved protection of the electrode material by converting the titanium core, which is exposed in the pores of the activation layer and has a thin barrier layer made of titanium oxide, into rutile.
  • this and other known coating methods are less suitable for porous electrodes, for example for sintered electrodes according to DE-A-23 05 175 or electrodes made of titanium suboxide according to DE-B-24 05 010.
  • the adhesive strength of the activation layers is particularly favorable for porous electrodes and for The large surface area of the electrode is advantageous for numerous electrochemical processes.
  • the invention has for its object to provide a coating method for porous electrodes that does not have the disadvantages described, especially the comparatively large need for activating agents, and results in highly effective activation layers with small amounts of platinum metals.
  • the object is achieved according to the invention with a method of the type mentioned at the outset by coating the electrode surface with a fine-grained compounds of metals of the platinum group and a suspension containing the compounds which dissolve the compounds at an elevated temperature, the fine-grained compounds of the metals having a particle diameter, that only the dispersing agent can get into the pores of the electrode, but not the fine-grained compounds, that the dispersed phase of the suspending agent is dissolved, deposited on the electrode surface by evaporation of the agent and decomposed by heating the electrode to a temperature between 250 and 350 ° C and that the cycle is repeated several times and the electrode is then heated to a temperature between 400 and 600 ° C. in an oxygen-containing atmosphere.
  • the invention is based on the knowledge that particles dispersed in a suspension cannot get into pores which are only accessible through narrow hoses or channels, whereas the dispersing agent fills these pores.
  • the particle diameter must therefore correspond to the pore diameter. If the electrode is heated after coating, the dispersant emerges from the pores and, because of the increasing solubility of the platinum group compounds used according to the invention, dissolves the particles concentrated at the pore entrances.
  • the solution which is in a thin layer, has a relatively high toughness and is distributed evenly over the outer electrode surface and the surface of larger pores accessible from the outer surface without penetrating into narrow channel and tube pores.
  • the compounds deposited by evaporation of the solvent in a uniform layer thickness are then decomposed by heating the electrode to a temperature between 250 and 350 ° C., whereby a fissured, metallic surface coating having a large specific surface is formed.
  • the layer thickness of about 1 ⁇ m required for technical purposes is obtained by repeating the coating cycle several times.
  • the invention provides for the heating of the coated electrode in an oxidizing atmosphere, preferably in air, to a temperature between 400 and 600 ° C.
  • the main purpose of the thermal treatment is to passivate the electrode surface exposed in the pores of the activation layer and to anchor the activation layer on this surface.
  • Partial oxidation of the platinum metals contained in the activation layer is not harmful, since the growth of the metal crystals is inhibited and finely dispersed layers have greater electrochemical activity.
  • the treatment temperature should therefore not fall below or exceed the temperature range of 400 to 600 ° C.
  • the heating time is expediently about 3 to 60 minutes and can be easily determined by simple experiments for each electrode material and each compound used as an activating agent.
  • compounds of non-platinum metals are dispersed in the dispersant in addition to compounds of metals from the platinum group.
  • Suitable non-platinum metals are tantalum, zirconium, niobium, aluminum and especially titanium.
  • the activation layer then contains a finely dispersed mixture of platinum metals, oxides of platinum metals and oxides of non-platinum metals.
  • thermally decomposable complex compounds which contain free acid, in particular compounds from the group oxotato, formiato, tartrato and citrate complexes of metals from the group ruthenium, are used as compounds of metals of the platinum group and of non-platinum metals , Rhodium, palladium, iridium and platinum and analogous compounds of non-platinum metals.
  • the dispersant used according to the invention dissolves the complex compounds at elevated temperature, preferably with the electrode surface, in particular passivating layers, being formed by caustic solutions. Water and optionally aqueous oxalic acid solutions are particularly suitable for this purpose. In this process, the primer is improved without the formation of corrosive and harmful vapors as in the known use of hydrochloric acid platinum metal chloride solutions.
  • electrodes In principle, all electrically conductive metals, alloys and compounds that are stable under the conditions of electrochemical processes are suitable as electrodes.
  • electrodes are preferably used, e.g. B. as an anode for chlor-alkali electrolysis, passivating layers forming metals such as titanium, tantalum, zirconium and niobium and according to the invention preferably electrodes which consist at least in part of titanium suboxide.
  • the electrodes according to the invention have a porosity of about 10 to 50% and are generally produced by sintering moldings from a metal powder or an oxide powder.
  • the anode potential was checked with a Luggin capillary measured the saturated calomel electrode.
  • Composite plates as in Example 2 were treated with a slurry of 66 parts H 2 [Ru (C 2 O 4 ) 2 ] ⁇ 2.5 H 2 O, 70 parts H 2 [Ir (C 2 O 4 ) 3 ], 100 parts Ti 2 (C 2 O 4 ) 3 .10H 2 O coated in 1,000 parts of water and 50 parts of oxalic acid, annealed and the potentials measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Beschichten einer porösen Elektrode für elektrochemische Prozesse mit einer die Elektrodenoberfläche wenigstens zu einem Teil bedeckenden, Metalle oder Verbindungen von Metallen der Platingruppe enthaltenden Aktivierungsschicht.The invention relates to a method for coating a porous electrode for electrochemical processes with an activation layer which at least partially covers the electrode surface and contains metals or compounds of metals of the platinum group.

Zur Aktivierung von Elektroden für elektrochemische Prozesse, z. B. von Anoden für die Chloralkali-Elektrotyse, aus einem gegen die Elektrotyseprodukte beständigen und unter den Bedingungen der Elektrolyse eine Passivierungsschicht bildenden Werkstoff sind zahlreiche Verfahren bekannt geworden, deren Zweck im wesentlichen darin besteht, ein Platinmetall oder platinmetallhaltige Verbindungen in einem elektrochemisch wirksamen Dispersionsgrad auf der Elektrode bzw. dem Elektrodenkern mechanisch fest zu verankern. Zum Beispiel ist es nach der DE-B-1155762 bekannt, entfettete und geätzte Titanplatten galvanisch mit einem Platinmetall zu beschichten und die Platten in einem ersten thermischen Zyklus in einer inerten Atmosphäre und In einem zweiten Zyklus in einer oxidierenden Atmosphäre bis zu einer Temperatur von etwa 800°C zu erhitzen. Bei dieser Behandlung erhält man eine festhaftende Aktivierungsschicht und zugleich einen verbesserten Schutz des Elektrodenwerkstoffs durch Umsetzung des in den Poren der Aktivierungsschicht freiliegenden, eine dünne Sperrschicht aus Titanoxid aufweisenden Titankerns in Rutil. Dieses und andere bekanntgewordene Beschichtungsverfahren eignen sich jedoch weniger für poröse Elektroden, beispielsweise für gesinterte Elektroden nach DE-A-23 05 175 oder Elektroden aus Titansuboxid nach DE-B-24 05 010. Die Haftfestigkeit der Aktivierungsschichten ist bei porösen Elektroden besonders günstig und für zahlreiche elektrochemische Prozesse ist die große Oberfläche der Elektrode von Vorteil. Beim Beschichten der Elektrode mit einer Aktivierungsschicht entstehen jedoch bei Anwendung der bekannten Verfahren Verluste an dem Aktivierungsmittel, da die Platinmetall bzw. Platinmetallverbindungen zu einem Teil auch in oberflächenfernen Poren der Elektrode abgeschieden werden, deren Oberflächen an den elektrochemischen Reaktionen nicht beteiligt sind. Besonders groß ist der Verlust beim Fällen des Aktivierungsmittels aus Lösungen, weniger groß bei einer galvanischen Abscheidung der Aktivierungsschicht. Galvanisch erzeugte Schichten sind andererseits wegen ihrer dichten Struktur weniger geeignet. Es ist auch vorgeschlagen worden (z. B. DE-B-1671 422), die Metalle oder Metallverbindungen aus felndispersen Suspensionen auf die Elektrodenoberfläche aufzubringen. Wegen der großen Schwierigkeiten eine gleichmäßige Verteilung und eine gute Haftung der aufgebrachten Aktivierungsstoffe zu erreichen, werden im technischen Maßstab die oben beschriebenen Beschichtungsverfahren bevorzugt.To activate electrodes for electrochemical processes, e.g. B. of anodes for chlor-alkali electrotysis, from a resistant to the electrotysis products and a passivation layer forming material under the conditions of electrolysis, numerous methods have become known, the purpose of which essentially consists of a platinum metal or platinum metal-containing compounds in an electrochemically effective degree of dispersion anchor the electrode or the electrode core mechanically. For example, according to DE-B-1155762 it is known to galvanically coat degreased and etched titanium plates with a platinum metal and the plates in a first thermal cycle in an inert atmosphere and in a second cycle in an oxidizing atmosphere up to a temperature of approximately To heat 800 ° C. This treatment gives a firmly adhering activation layer and at the same time improved protection of the electrode material by converting the titanium core, which is exposed in the pores of the activation layer and has a thin barrier layer made of titanium oxide, into rutile. However, this and other known coating methods are less suitable for porous electrodes, for example for sintered electrodes according to DE-A-23 05 175 or electrodes made of titanium suboxide according to DE-B-24 05 010. The adhesive strength of the activation layers is particularly favorable for porous electrodes and for The large surface area of the electrode is advantageous for numerous electrochemical processes. When the electrode is coated with an activation layer, however, losses of the activating agent occur when using the known methods, since some of the platinum metal or platinum metal compounds are also deposited in pores of the electrode which are remote from the surface, the surfaces of which are not involved in the electrochemical reactions. The loss is particularly great when the activating agent is precipitated from solutions, and less when the activating layer is electrodeposited. On the other hand, electroplated layers are less suitable because of their dense structure. It has also been proposed (e.g. DE-B-1671 422) to apply the metals or metal compounds from finely dispersed suspensions to the electrode surface. Because of the great difficulty of achieving a uniform distribution and good adhesion of the activating agents applied, the coating processes described above are preferred on an industrial scale.

Der Erfindung liegt die Aufgabe zugrunde, ein Beschichtungsverfahren für poröse Elektroden zu schaffen, daß die geschilderten Nachteile, besonders den vergleichsweisg großen Bedarf an Aktivierungsmitteln, nicht aufweist und mit kleinen Mengen an Platinmetallen hochwirksame Aktivierungsschichten ergibt.The invention has for its object to provide a coating method for porous electrodes that does not have the disadvantages described, especially the comparatively large need for activating agents, and results in highly effective activation layers with small amounts of platinum metals.

Die Aufgabe wird erfindungsgemäß mit einem Verfahren der eingangs genannten Art dadurch gelöst, daß man die Elektrodenoberfläche mit einer feinkörnige Verbindungen von Metallen der Platingruppe und einem die Verbindungen bei einer erhöhten Temperatur lösenden Dispersionsmittel enthaltenden Suspension beschichtet, wobei die feinkörnigen Verbindungen der Metalle einen Partikeldurchmesser aufweisen, daß nur das Dispersionsmittel in die Poren der Elektrode gelangen kann, nicht jedoch die feinkörnigen Verbindungen, daß man die dispergierte Phase der Suspensionsmittel löst, durch Verdampfen des Mittels auf der Elektrodenfläche abscheidet und durch Erhitzen der Elektrode auf eine Temperatur zwischen 250 und 350 °C zersetzt und daß man den Zyklus mehrfach wiederholt und die Elektrode dann in einer sauerstoffhaltigen Atmosphäre auf eine Temperatur zwischen 400 und 600 °C erhitzt.The object is achieved according to the invention with a method of the type mentioned at the outset by coating the electrode surface with a fine-grained compounds of metals of the platinum group and a suspension containing the compounds which dissolve the compounds at an elevated temperature, the fine-grained compounds of the metals having a particle diameter, that only the dispersing agent can get into the pores of the electrode, but not the fine-grained compounds, that the dispersed phase of the suspending agent is dissolved, deposited on the electrode surface by evaporation of the agent and decomposed by heating the electrode to a temperature between 250 and 350 ° C and that the cycle is repeated several times and the electrode is then heated to a temperature between 400 and 600 ° C. in an oxygen-containing atmosphere.

Der Erfindung liegt die Erkenntnis zugrunde, daß in einer Suspension dispergierte Partikel nicht in Poren gelangen können, die nur durch enge Schläuche oder Kanäle zugänglich sind, wohingegen das Dispersionsmittel diese Poren füllt. Der Partikeldurchmesser muß daher mit dem Porendurchmesser korrespondieren. Wird die Elektrode nach dem Beschichten erwärmt, tritt das Dispersionsmittel aus den Poren aus und löst wegen der mit der Temperatur zunehmenden Löslichkeit der erfindungsgemäß verwendeten Verbindungen der Platingruppe die an den Poreneingängen konzentrierten Partikel. Die in einer dünnen Schicht vorliegende Lösung weist eine verhältnismäßig große Zähigkeit auf und verteilt sich ohne in enge Kanal- und Schlauchporen einzudringen, gleichmäßig über die äußere Elektrodenfläche und die Oberfläche größerer von der äußeren Oberfläche her zugänglichen Poren. Die durch Verdampfen des Lösungsmittels in gleichmäßiger Schichtdicke abgeschiedenen Verbindungen werden dann durch Erhitzen der Elektrode auf eine Temperatur zwischen 250 und 350°C zersetzt, wobei eine zerklüftete, eine große spezifische Oberfläche aufweisende metallische AkUvierungsschicht gebildet wird. Die für technische Zwecke nötige Schichtstärke von etwa 1 µm erhält man durch mehrfache Wiederholung des Beschichtungszyklus. Schließlich sieht die Erfindung die ErhitzuDg der beschichteten Elektrode in einer oxidierenden Atmosphäre, vorzugsweise in Luft, auf eine Temperatur zwischen 400 und 600 °C vor. Zweck der thermischen Behandlung ist vor allem die Passivierung der in Poren der Aktivierungsschicht freilie-genden Elektrodenoberfläche und die Verankerung der Aktivierungsschicht auf dieser Fläche. Dabei ist eine teilweise Oxidation der in der Aktivierungsschicht enthaltenen Platinmetalle nicht schädlich, da das Wachsen der Metallkristalle gehemmt wird und feindisperse Schichten eine größere elektrochemische Aktivität aufweisen. Die Behandlungstemperatur soll daher die Temperaturspanne von 400 bis 600 °C weder unter- noch überschreiten. Die Erhitzungsdauer beträgt zweckmäßig etwa 3 bis 60 min und kann im einzelnen für jeden Elektrodenwerkstoff und jede als Aktivierungsmittel verwendete Verbindung durch einfache Versuche leicht bestimmt werden.The invention is based on the knowledge that particles dispersed in a suspension cannot get into pores which are only accessible through narrow hoses or channels, whereas the dispersing agent fills these pores. The particle diameter must therefore correspond to the pore diameter. If the electrode is heated after coating, the dispersant emerges from the pores and, because of the increasing solubility of the platinum group compounds used according to the invention, dissolves the particles concentrated at the pore entrances. The solution, which is in a thin layer, has a relatively high toughness and is distributed evenly over the outer electrode surface and the surface of larger pores accessible from the outer surface without penetrating into narrow channel and tube pores. The compounds deposited by evaporation of the solvent in a uniform layer thickness are then decomposed by heating the electrode to a temperature between 250 and 350 ° C., whereby a fissured, metallic surface coating having a large specific surface is formed. The layer thickness of about 1 µm required for technical purposes is obtained by repeating the coating cycle several times. Finally, the invention provides for the heating of the coated electrode in an oxidizing atmosphere, preferably in air, to a temperature between 400 and 600 ° C. The main purpose of the thermal treatment is to passivate the electrode surface exposed in the pores of the activation layer and to anchor the activation layer on this surface. Partial oxidation of the platinum metals contained in the activation layer is not harmful, since the growth of the metal crystals is inhibited and finely dispersed layers have greater electrochemical activity. The treatment temperature should therefore not fall below or exceed the temperature range of 400 to 600 ° C. The heating time is expediently about 3 to 60 minutes and can be easily determined by simple experiments for each electrode material and each compound used as an activating agent.

Nach einer vorteilhaften Ausbildung des erfindungsgemäßen Verfahrens werden in dem Dispersionsmittel neben Verbindungen von Metallen der Platingruppe Verbindungen von Nichtplatinmetallen dispergiert. Geeignete Nichtplatinmetalle sind Tantal, Zirkonium, Niobium, Aluminium und vor allem Titan. Die Aktivierungsschicht enthält dann nach der .oxidierenden Behandlung ein feindisperses Gemisch von Platinmetallen, Oxiden von Platinmetallen und Oxiden von Nichtplatinmetallen. Als Verbindungen von Metallen der Platingruppe und von Nichtplatinmetallen werden nach einer anderen vorteilhaften Ausbildung der Erfindung thermisch zersetzbare Komplexverbindungen verwendet, die freie Säure enthalten, besonders Verbindungen aus der Gruppe Oxotato-, Formiato-, Tartrato- und Citrato-Komplexe von Metallen aus der Gruppe Ruthenium, Rhodium, Palladium, Iridium und Platin und analoge Verbindungen der Nichtplatinmetalle. Das erfindungsgemäß verwendete Dispersionsmittel löst bei erhöhter Temperatur die Komplexverbindungen, wobei vorzugsweise die Elektrodenoberfläche, insbesondere Passivierungsschichten ätzende Lösungen gebildet werden. Besonders geeignet sind für diesen Zweck Wasser und gegebenenfalls wäßrige Oxalsäurelösungen. Bei diesem Verfahren wird der Haftgrund verbessert, ohne daß wie bei der bekannten Verwendung salzsaurer Platinmetallchlorid-Lösungen korrosive und gesundheitsschädliche Dämpfe gebildet werden.According to an advantageous embodiment of the method according to the invention, compounds of non-platinum metals are dispersed in the dispersant in addition to compounds of metals from the platinum group. Suitable non-platinum metals are tantalum, zirconium, niobium, aluminum and especially titanium. After the oxidizing treatment, the activation layer then contains a finely dispersed mixture of platinum metals, oxides of platinum metals and oxides of non-platinum metals. According to another advantageous embodiment of the invention, thermally decomposable complex compounds which contain free acid, in particular compounds from the group oxotato, formiato, tartrato and citrate complexes of metals from the group ruthenium, are used as compounds of metals of the platinum group and of non-platinum metals , Rhodium, palladium, iridium and platinum and analogous compounds of non-platinum metals. The dispersant used according to the invention dissolves the complex compounds at elevated temperature, preferably with the electrode surface, in particular passivating layers, being formed by caustic solutions. Water and optionally aqueous oxalic acid solutions are particularly suitable for this purpose. In this process, the primer is improved without the formation of corrosive and harmful vapors as in the known use of hydrochloric acid platinum metal chloride solutions.

Als Elektrode sind grundsätzlich alle elektrisch leitenden Metalle, Legierungen und Verbindungen geeignet, die unter den Bedingungen elektrochemischer Prozesse stabil sind. Verwendet werden bevorzugt, z. B. als Anode für die Chloralkali-Elektrolyse, Passivierungsschichten bildende Metalle, wie Titan, Tantal, Zirkonium und Niobium und nach der Erfindung bevorzugt Elektroden, die wenigstens zu einem Teil aus Titansuboxid bestehen. Die Elektroden nach der Erfindung weisen eine Porosität von etwa 10 bis 50 % auf und sind im allgemeinen durch Sintern von Formlingen aus einem Metallpulver oder einem Oxidpulver hergestellt.In principle, all electrically conductive metals, alloys and compounds that are stable under the conditions of electrochemical processes are suitable as electrodes. Are preferably used, e.g. B. as an anode for chlor-alkali electrolysis, passivating layers forming metals such as titanium, tantalum, zirconium and niobium and according to the invention preferably electrodes which consist at least in part of titanium suboxide. The electrodes according to the invention have a porosity of about 10 to 50% and are generally produced by sintering moldings from a metal powder or an oxide powder.

Die Vorteile des erfindungsgemäßen Verfahrens zum Herstellen einer Aktivierungsschicht auf einer porösen Elektrode sind im wesentlichen folgende :

  • 1. es wird nur der Teil der Gesamtoberfläche beschichtet, der an den elektrochemischen Reaktionen beteiligt ist,
  • 2. die verwendeten Substanzen sind nicht korrosiv und gesundheitsschädlich,
  • 3. die erzeugte Aktivierungsschicht ist feinkörnig ausgebildet und weist,eine hohe elektrochemische Aktivität auf,
  • 4. die Aktivierungsschicht ist fest in der porösen Elektrode verankert.
The advantages of the method according to the invention for producing an activation layer on a porous electrode are essentially as follows:
  • 1. only that part of the total surface which is involved in the electrochemical reactions is coated,
  • 2. the substances used are not corrosive and harmful to health,
  • 3. the activation layer produced is fine-grained and has high electrochemical activity,
  • 4. the activation layer is firmly anchored in the porous electrode.

Daraus ergibt sich eine bessere Nutzung der teuren und nur begrenzt verfügbaren Platinmetalle.This results in a better use of the expensive and limited availability of platinum metals.

Die Erfindung wird im folgenden beispielhaft erläutert :The invention is explained below by way of example:

Beispiel 1example 1

41,4 Gewichtsteile Titanpulver, Korngröße < 0,06 mm, 38,6 Gewichtsteile Rutilpulver, Korngröße < 0,01 mm wurden nach Zusatz von 5 Gewichtsteilen einer zweiprozentigen wäßrigen Polyvinylalkohollösung in einem Schnellmischer gemischt und das Gemisch wurde auf einer Gesenkpresse mit einem Druck von etwa 50 bar zu Formlingen gepreßt. Die Formlinge wurden getrocknet, in einer Argonatmosphäre auf 1 250°C erhitzt und dann mit einem Backenbrecher zerkleinert und mit einer Schwingmühle auf eine Körnung < 0,06 mm gemahlen. Das spröde, graugußfarbene Pulver hatte eine Zusammensetzung von TiO0,56.41.4 parts by weight of titanium powder, grain size <0.06 mm, 38.6 parts by weight of rutile powder, grain size <0.01 mm were mixed in a high-speed mixer after addition of 5 parts by weight of a two percent aqueous polyvinyl alcohol solution, and the mixture was pressed on a die press with a pressure of about 50 bar pressed to moldings. The moldings were dried, heated to 1,250 ° C. in an argon atmosphere and then comminuted with a jaw crusher and ground to a particle size of <0.06 mm using an oscillating mill. The brittle, gray cast iron powder had a composition of TiO 0.56 .

100 Gewichtsteile Pulver wurden dann mit 5 Gewichtsteilen einer 10 %igen Lösung von Hartparaffin in Toluol versetzt, 5 min in einem Wirbelmischer gemischt und auf einer Gesenkpresse mit einem Druck von 2 kbar zu plattenförmigen Elektroden verpreßt, die in einem Durchstoßofen in einer Argonatmosphäre auf 1 250 °C erhitzt wurden. Die gesinterten Elektrodenplatten, deren Porosität etwa 15 % betrug, wurden mit einer 10 %igen wäßrigen Aufschlämmung von H [Ru(C2O4)2]· 2,5 H2O (hergestellt nach O. E. Zviagintsev und S. M. Starostin, Zh. Neorgan. Khim. 2 (1957) 1281/8) überschichtet, zunächst bei Raumtemperatur und schließlich bei 105 °C getrocknet. Zur Zersetzung des Salzes wurde die Temperatur für 10 min auf 300 °C erhöht. Der Zyklus wurde viermal wiederholt und insgesamt eine Edelmetallmenge von etwa 7 g Ru/m2 abgeschieden. Die beschichtete Elektrode wurde auf 500 °C erhitzt, wobei die Verweilzeit bei dieser Temperatur 5 min betrug.100 parts by weight of powder were then mixed with 5 parts by weight of a 10% strength solution of hard paraffin in toluene, mixed for 5 minutes in a vortex mixer and pressed on a die press with a pressure of 2 kbar to form plate-shaped electrodes which were heated to 1,250 in a piercing furnace in an argon atmosphere ° C were heated. The sintered electrode plates, the porosity of which was approximately 15%, were coated with a 10% aqueous slurry of H [Ru (C 2 O 4 ) 2 ] .2.5 H 2 O (manufactured by OE Zviagintsev and SM Starostin, Zh. Neorgan Khim. 2 (1957) 1281/8), first dried at room temperature and finally at 105 ° C. To decompose the salt, the temperature was raised to 300 ° C. for 10 min. The cycle was repeated four times and a total amount of noble metal of approximately 7 g Ru / m 2 was deposited. The coated electrode was heated to 500 ° C., the residence time at this temperature being 5 minutes.

Die Elektrodenplatte wurde dann als Anode in einer Amalgamtestzelle geprüft. Die Bedingungen waren :

  • Stromdichte 20 kA/m2
  • Temperatur ca. 70 °C
  • Sole ca. 300 g/l NaCI
The electrode plate was then tested as an anode in an amalgam test cell. The conditions were:
  • Current density 20 kA / m 2
  • Temperature approx. 70 ° C
  • Brine approx. 300 g / l NaCI

Nach vorgegebenen Zeitabschnitten wurde das Anodenpotential mit einer Luggin-Kapilare gegen die gesättigte Calomel-Elektrode gemessen.

Figure imgb0001
After predetermined periods of time, the anode potential was checked with a Luggin capillary measured the saturated calomel electrode.
Figure imgb0001

Beispiel 2Example 2

In einem Gesenk wurden 100 Teile Titanschwamm mit einer Korngröße < 2 mm mit 20 Teilen TiO0.58-Pulver - dessen Herstellung in Beispiel 1 beschrieben ist - überschichtet und mit einem Druck von etwa 2 kbar zu Verbundplatten verpreßt, die wie in Beispiel 1 gesintert wurden. Die Titansuboxid-Seite der Platten wurde mit einer Aufschlämmung von 66 Teilen H [Ru(C2O4)2]· 2,5 H2O und 100 Teilen . Ti2(C2O4)3 · 10 H2O (hergestellt nach A. Stähler, Ber. 38 (1905) 2619/29) in 1 000 Teilen Wasser, in dem 25 Teile Oxalsäure gelöst waren, beschichtet. Die thermische Behandlung entsprach Beispiel 1, ausgenommen das oxidierende Tempern bei 550 °C und einer Haltezeit von 15 min.In a die, 100 parts of titanium sponge with a grain size of <2 mm were overlaid with 20 parts of TiO 0.58 powder - the production of which is described in Example 1 - and pressed at a pressure of about 2 kbar to form composite plates which were sintered as in Example 1. The titanium suboxide side of the plates was slurried with 66 parts of H [Ru (C 2 O 4 ) 2 ] · 2.5 H 2 O and 100 parts. Ti 2 (C 2 O 4 ) 3 .10 H 2 O (manufactured according to A. Stähler, Ber. 38 (1905) 2619/29) in 1,000 parts of water in which 25 parts of oxalic acid were dissolved. The thermal treatment corresponded to Example 1, except for the oxidizing annealing at 550 ° C. and a holding time of 15 min.

Es wurden folgende Potentiale gemessen :

Figure imgb0002
The following potentials were measured:
Figure imgb0002

Beispiel 3Example 3

Verbundplatten wie in Beispiel 2 wurden mit einer Aufschlämmung von 66 Teilen H2 [Ru (C2O4)2]· 2,5 H2O, 70 Teilen H2 [Ir(C2O4)3],100 Teilen Ti2(C2O4)3·10H2O in 1 000 Teilen Wasser und 50 Teilen Oxalsäure beschichtet, getempert und die Potentiale gemessen.

Figure imgb0003
Composite plates as in Example 2 were treated with a slurry of 66 parts H 2 [Ru (C 2 O 4 ) 2 ] · 2.5 H 2 O, 70 parts H 2 [Ir (C 2 O 4 ) 3 ], 100 parts Ti 2 (C 2 O 4 ) 3 .10H 2 O coated in 1,000 parts of water and 50 parts of oxalic acid, annealed and the potentials measured.
Figure imgb0003

Claims (7)

1. Process for the coating of a porous electrode for electro chemical processes with an activation layer containing metals and compounds of metals of the platinum group at least partially covering the electrode surface, characterised in that the electrode surface is coated with a suspension containing finely particulate compounds of metals of the platinum group and with a dispersing means dissolving the compounds at an elevated temperature, the finely particulate compounds of the metals possessing such a particle diameter that only the dispersion means can extend into the pores of the electrode, not however the finely particulate compounds, that the disperse phase of the suspension is dissolved in the dispersion means by warming the coated electrode, is deposited on the electrode surface by evaporation of the means and decomposed by heating of the electrode to a temperature between 250 and 350 °C, that the cycle is repeated several times and the electrode is then heated in an oxygen containing atmosphere to a temperature between 400 and 600 °C.
2. Process according to claim 1, characterised in that compounds of metals of the platinum group and a compound of non-platinum metals are dispersed in the dispersion means.
3. Process according to claims 1 and 2, characterised in that there is used a dispersion means forming a solution etching the electrode surface at an elevated temperature with the compounds of metals of the platinum group.
4. Process according to claims 1 to 3, characterised in that there are used compounds from the group of oxalato-, formato-, tartrato- and citrato-complexes at least of a metal from the group of ruthenium, rhodium, palladium, iridium and platinum.
5. Process according to claims 1 to 4, characterised in that water is used as dispersion means.
6. Process according to claims 1 to 5, characterised in that an aqueous oxalic acid solution is used as dispersion means.
7. Process according to claims 1 to 6, characterised in that there is used an electrode consisting at least partly of titanium sub-oxide.
EP80107001A 1980-02-05 1980-11-13 Process for coating a porous electrode Expired EP0033363B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3004080 1980-02-05
DE3004080A DE3004080C2 (en) 1980-02-05 1980-02-05 Method for coating a porous electrode

Publications (2)

Publication Number Publication Date
EP0033363A1 EP0033363A1 (en) 1981-08-12
EP0033363B1 true EP0033363B1 (en) 1983-08-24

Family

ID=6093754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107001A Expired EP0033363B1 (en) 1980-02-05 1980-11-13 Process for coating a porous electrode

Country Status (3)

Country Link
US (1) US4431686A (en)
EP (1) EP0033363B1 (en)
DE (1) DE3004080C2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530742A (en) * 1983-01-26 1985-07-23 Ppg Industries, Inc. Electrode and method of preparing same
EP0137911B1 (en) * 1983-06-28 1988-07-27 BBC Brown Boveri AG Process for manufacturing a depassivating layer and depassivating layer on an electrode for an electrochemical cell
JPS60159185A (en) * 1984-01-31 1985-08-20 Permelec Electrode Ltd Manufacture of electrode
DE3516523A1 (en) * 1985-05-08 1986-11-13 Sigri GmbH, 8901 Meitingen ANODE FOR ELECTROCHEMICAL PROCESSES
US4912286A (en) * 1988-08-16 1990-03-27 Ebonex Technologies Inc. Electrical conductors formed of sub-oxides of titanium
DE69528423T2 (en) * 1994-08-11 2003-06-26 Canon Kk Use of a solution for manufacturing an electro-emitting device and method for manufacturing electro-emitting devices
JPH11111273A (en) * 1997-09-29 1999-04-23 Furukawa Battery Co Ltd:The Manufacture of plate for lithium secondary battery and lithium secondary battery
US20060255692A1 (en) * 2005-03-22 2006-11-16 Motohiro Yasui Piezoelectric Actuator, Ink-Jet Head, Method Of Producing Piezoelectric Actuator, And Method Of Producing Ink-Jet Head
US20140161972A1 (en) * 2012-12-09 2014-06-12 National Sun Yat-Sen University Method for forming conductive film at room temperature

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US28820A (en) * 1860-06-19 wright
BE590159A (en) * 1959-04-27
AT223209B (en) * 1959-04-27 1962-09-10 Ici Ltd Process for the production of a composite body consisting of a support body made of titanium and a coating made of platinum metals
USRE28820E (en) 1965-05-12 1976-05-18 Chemnor Corporation Method of making an electrode having a coating containing a platinum metal oxide thereon
US3778307A (en) * 1967-02-10 1973-12-11 Chemnor Corp Electrode and coating therefor
GB1195871A (en) * 1967-02-10 1970-06-24 Chemnor Ag Improvements in or relating to the Manufacture of Electrodes.
US3562008A (en) * 1968-10-14 1971-02-09 Ppg Industries Inc Method for producing a ruthenium coated titanium electrode
US4070504A (en) * 1968-10-29 1978-01-24 Diamond Shamrock Technologies, S.A. Method of producing a valve metal electrode with valve metal oxide semi-conductor face and methods of manufacture and use
LU60168A1 (en) * 1970-01-09 1971-09-22
US3684543A (en) * 1970-11-19 1972-08-15 Patricia J Barbato Recoating of electrodes
US3924025A (en) * 1972-02-02 1975-12-02 Electronor Corp Method of making an electrode having a coating of cobalt metatitanate thereon
US4032427A (en) * 1975-11-03 1977-06-28 Olin Corporation Porous anode separator
JPS5393179A (en) * 1977-01-27 1978-08-15 Tdk Corp Electrode for electrolysis and its manufacture

Also Published As

Publication number Publication date
DE3004080A1 (en) 1981-08-13
DE3004080C2 (en) 1986-03-20
EP0033363A1 (en) 1981-08-12
US4431686A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
DE1571721C3 (en) Electrode for use in electrolytic processes
DE2300422C3 (en) Method of making an electrode
DE2113795C3 (en) Electrode for electrolytic processes as an oxygen anode
DE2063238C3 (en) Method of manufacturing an electrode for use in electrolytic processes
DE2636447C2 (en) Manganese dioxide electrodes
EP0141142B1 (en) Gas diffusion electrode with a hydrophylic coating layer, and method for its production
DE2403573A1 (en) NEW ELECTRODES AND METHODS FOR MAKING THEM
DE2405010C3 (en) Sintered electrode for electrochemical processes and methods of manufacturing the electrode
DE2729272A1 (en) ANODE MATERIAL FOR ELECTROLYTIC CELLS AND METHOD FOR PRODUCING ANODES
DE2331949B2 (en) Method of making an electrode
DE2650325A1 (en) ANODE SEPARATOR
DE2752875C2 (en) Electrode for electrochemical processes and processes for their production
DE3001946A1 (en) NICKEL MOLYBDAEN CATHODE
EP0033363B1 (en) Process for coating a porous electrode
DE2652152A1 (en) Electrodes for electrolytic devices - comprising conductive substrate, electrolyte-resistant coating with occlusions to improve electrode activity
DE2909593C2 (en)
DD153397A5 (en) ELECTRODE WITH AN ELECTROCATALYTIC COVER
DE2645414C2 (en) Titanium anodes for the electrolytic production of manganese dioxide, as well as a process for the production of these anodes
EP0205631B1 (en) Process for coating a porous electrode
DE2338549B2 (en)
DE2852136C2 (en)
DE2710802C3 (en) Process for the production of electrodes for electrolytic cells
DE2844558A1 (en) ELECTRODE FOR USE IN AN ELECTROLYTIC METHOD
EP0245201B1 (en) Anode for electrolyses
DE2714605A1 (en) Lead di:oxide electrode having sub:oxide-coated titanium support - used in fuel and galvanic cells, for electrochemical reactions and for anticorrosion purposes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19810911

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR GB IT SE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 80107001.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981015

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981023

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981130

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991113

EUG Se: european patent has lapsed

Ref document number: 80107001.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST