EP0032295B1 - 1-olefin polymerization and catalyst for 1-olefin polymerization - Google Patents
1-olefin polymerization and catalyst for 1-olefin polymerization Download PDFInfo
- Publication number
- EP0032295B1 EP0032295B1 EP19800304438 EP80304438A EP0032295B1 EP 0032295 B1 EP0032295 B1 EP 0032295B1 EP 19800304438 EP19800304438 EP 19800304438 EP 80304438 A EP80304438 A EP 80304438A EP 0032295 B1 EP0032295 B1 EP 0032295B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ester
- catalyst
- halosilane
- mole ratio
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006116 polymerization reaction Methods 0.000 title claims description 26
- 239000003054 catalyst Substances 0.000 title claims description 22
- -1 titanium halide Chemical class 0.000 claims description 39
- 239000010936 titanium Substances 0.000 claims description 25
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- 150000002148 esters Chemical class 0.000 claims description 18
- 239000011777 magnesium Substances 0.000 claims description 18
- 239000012190 activator Substances 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- FHUODBDRWMIBQP-UHFFFAOYSA-N Ethyl p-anisate Chemical compound CCOC(=O)C1=CC=C(OC)C=C1 FHUODBDRWMIBQP-UHFFFAOYSA-N 0.000 claims description 11
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical group CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000000460 chlorine Substances 0.000 claims description 9
- 125000005907 alkyl ester group Chemical group 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 5
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical group Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims description 5
- 239000005052 trichlorosilane Substances 0.000 claims description 5
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical group CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 4
- 239000011949 solid catalyst Substances 0.000 claims description 4
- NWPWRAWAUYIELB-UHFFFAOYSA-N ethyl 4-methylbenzoate Chemical compound CCOC(=O)C1=CC=C(C)C=C1 NWPWRAWAUYIELB-UHFFFAOYSA-N 0.000 claims description 3
- QSSJZLPUHJDYKF-UHFFFAOYSA-N methyl 4-methylbenzoate Chemical compound COC(=O)C1=CC=C(C)C=C1 QSSJZLPUHJDYKF-UHFFFAOYSA-N 0.000 claims description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 87
- 229920000642 polymer Polymers 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 17
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 14
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- 239000002002 slurry Substances 0.000 description 12
- 239000004743 Polypropylene Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 229920001155 polypropylene Polymers 0.000 description 11
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000003085 diluting agent Substances 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- XCTNDJAFNBCVOM-UHFFFAOYSA-N 1h-imidazo[4,5-b]pyridin-2-ylmethanamine Chemical compound C1=CC=C2NC(CN)=NC2=N1 XCTNDJAFNBCVOM-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical compound C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 description 2
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 2
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 239000005048 methyldichlorosilane Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- NKJOXAZJBOMXID-UHFFFAOYSA-N 1,1'-Oxybisoctane Chemical compound CCCCCCCCOCCCCCCCC NKJOXAZJBOMXID-UHFFFAOYSA-N 0.000 description 1
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 1
- DUAYDERMVQWIJD-UHFFFAOYSA-N 2-n,2-n,6-trimethyl-1,3,5-triazine-2,4-diamine Chemical compound CN(C)C1=NC(C)=NC(N)=N1 DUAYDERMVQWIJD-UHFFFAOYSA-N 0.000 description 1
- ZEYHEAKUIGZSGI-UHFFFAOYSA-M 4-methoxybenzoate Chemical compound COC1=CC=C(C([O-])=O)C=C1 ZEYHEAKUIGZSGI-UHFFFAOYSA-M 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- KYZHGEFMXZOSJN-UHFFFAOYSA-N benzoic acid isobutyl ester Natural products CC(C)COC(=O)C1=CC=CC=C1 KYZHGEFMXZOSJN-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- YPOWJPHSOHGSTI-UHFFFAOYSA-N bromo(chloro)silane Chemical compound Cl[SiH2]Br YPOWJPHSOHGSTI-UHFFFAOYSA-N 0.000 description 1
- YBFJZDDPQHRNPH-UHFFFAOYSA-N bromo(dichloro)silane Chemical compound Cl[SiH](Cl)Br YBFJZDDPQHRNPH-UHFFFAOYSA-N 0.000 description 1
- VQPFDLRNOCQMSN-UHFFFAOYSA-N bromosilane Chemical class Br[SiH3] VQPFDLRNOCQMSN-UHFFFAOYSA-N 0.000 description 1
- DBKNQKMXXOSIOX-UHFFFAOYSA-N butyl(dichloro)silane Chemical compound CCCC[SiH](Cl)Cl DBKNQKMXXOSIOX-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- YGHUUVGIRWMJGE-UHFFFAOYSA-N chlorodimethylsilane Chemical compound C[SiH](C)Cl YGHUUVGIRWMJGE-UHFFFAOYSA-N 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- PFMKUUJQLUQKHT-UHFFFAOYSA-N dichloro(ethyl)silicon Chemical compound CC[Si](Cl)Cl PFMKUUJQLUQKHT-UHFFFAOYSA-N 0.000 description 1
- SJTARAZFCVDEIM-UHFFFAOYSA-N dichloro(propyl)silane Chemical compound CCC[SiH](Cl)Cl SJTARAZFCVDEIM-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- FNODWEPAWIJGPM-UHFFFAOYSA-N ethyl 2-methoxybenzoate Chemical compound CCOC(=O)C1=CC=CC=C1OC FNODWEPAWIJGPM-UHFFFAOYSA-N 0.000 description 1
- IPFKZMAWSWCPGJ-UHFFFAOYSA-N ethyl 4-decylbenzoate Chemical compound CCCCCCCCCCC1=CC=C(C(=O)OCC)C=C1 IPFKZMAWSWCPGJ-UHFFFAOYSA-N 0.000 description 1
- SBDHLOUYLJFYNQ-UHFFFAOYSA-N ethyl 4-hexadecoxybenzoate Chemical compound CCCCCCCCCCCCCCCCOC1=CC=C(C(=O)OCC)C=C1 SBDHLOUYLJFYNQ-UHFFFAOYSA-N 0.000 description 1
- WTUGYLJZZPRJCL-UHFFFAOYSA-N ethyl 4-nonoxybenzoate Chemical compound CCCCCCCCCOC1=CC=C(C(=O)OCC)C=C1 WTUGYLJZZPRJCL-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052740 iodine Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- KJJBSBKRXUVBMX-UHFFFAOYSA-N magnesium;butane Chemical compound [Mg+2].CCC[CH2-].CCC[CH2-] KJJBSBKRXUVBMX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- OKENUZUGNVCOMC-UHFFFAOYSA-K methanolate titanium(4+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].CO[Ti+3] OKENUZUGNVCOMC-UHFFFAOYSA-K 0.000 description 1
- QAFJIJWLEBLXHH-UHFFFAOYSA-N methyl 2-fluorobenzoate Chemical compound COC(=O)C1=CC=CC=C1F QAFJIJWLEBLXHH-UHFFFAOYSA-N 0.000 description 1
- XRDRKVPNHIWTBX-UHFFFAOYSA-N methyl 3-chlorobenzoate Chemical compound COC(=O)C1=CC=CC(Cl)=C1 XRDRKVPNHIWTBX-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical class CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- ZOYFEXPFPVDYIS-UHFFFAOYSA-N trichloro(ethyl)silane Chemical compound CC[Si](Cl)(Cl)Cl ZOYFEXPFPVDYIS-UHFFFAOYSA-N 0.000 description 1
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- AKQNYQDSIDKVJZ-UHFFFAOYSA-N triphenylsilane Chemical compound C1=CC=CC=C1[SiH](C=1C=CC=CC=1)C1=CC=CC=C1 AKQNYQDSIDKVJZ-UHFFFAOYSA-N 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical compound CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- USJZIJNMRRNDPO-UHFFFAOYSA-N tris-decylalumane Chemical compound CCCCCCCCCC[Al](CCCCCCCCCC)CCCCCCCCCC USJZIJNMRRNDPO-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
Definitions
- This invention relates to the polymerization of 1-olefins using an improved catalyst. More particularly, it relates to an improved trialkylaluminum activator composition and the process of using it. This composition provides for increased productivity of the catalyst when used as a catalyst component in the polymerization of 1-olefins.
- a flask was charged with 30 mmols of diisoamyl ether (DIAE) and 60 mmols of dibutylmagnesium, and hexane was added to a total volume of approximately 120 ml.
- the flask was cooled to -65°C. and 180 mmols of ethylaluminum dichloride was added dropwise over two hours with stirring at a speed of 250 r.p.m. The final volume was approximately 225 ml.
- the mixture was stirred an additional hour at -65°C., then allowed to warm to room temperature over one-half hour and stirred for another hour.
- Polymerizations were conducted in magnetically stirred vessels of 800 milliliters volume. The vessels were charged with 400 ml. of purified hexane, which was free of air and water, under argon. The values given in the first three columns of Table I are the millimoles of reagents added to the vessel at room temperature. The argon was replaced by propylene, and the solid catalyst was injected by syringe as a slurry in hexane. [The amount of Ti listed in the fourth column of Table I is calculated from the analysis of the polypropylene product for p.p.m. Ti].
- Example 1 The procedure of Example 1 was followed except to carry out the polymerization at 60°C. and to substitute 0.64 mmol of methyldichlorosilane (CH 3 SiHCl z ) for the 0.64 mmol of trichlorosilane of (e) of Example 1.
- the amount of polymer product insoluble in hexane was 91.0%
- the amount of decahydronaphthalene solubles was 13.8%
- the mileage was 9800
- the rate was 1240 and the bulk density was 0.32 g./cc.
- the corresponding values for the control (no silane) were 89.4%, 14.0%, 5300, 676 and 0.31 g./cc.
- the corresponding polymerization run as a control provided 92.2% hexane-insoluble polymer, 8.2% decahydronaphthalene solubles, a mileage of 5560, a rate of 641, a bulk density of 0.35 g./cc. and an actual rate, when the polymerization was interrupted, of 20% of the initial rate of polymerization.
- a 1000 ml., four-necked reaction vessel was equipped with a mechanical stirrer, two pressure- equalized dropping funnels, a thermometer, an argon inlet, an argon outlet and a bubbler. All components of the apparatus were dried and purged with argon. An argon atmosphere was provided throughout the reaction.
- the flask was charged with 100 ml. of hexane.
- One dropping funnel was charged with 113 ml.
- the resulting finely-divided white slurry of magnesium chloride was divided into two portions, one portion of which, containing 16 millimoles of magnesium, was washed free of unadsorbed aluminum compounds by centrifuging, decanting and resuspending the slurry five times using 75-ml. portions of toluene. After the final wash, the solid particles were resuspended in hexane to provide a slurry having a total volume of 100 ml.
- the resulting slurry (16 millimoles of magnesium) was agitated with 3.8 ml. of a 0.1 molar solution of ethyl benzoate (0.38 millimole) in hexane for one hour at room temperature.
- To the slurry then was added 2.5 ml. of a 0.3 molar solution of titanium tetrachloride (0.75 millimole) in hexane and the reaction mixture was agitated for one hour at 35°C.
- the resulting slurry was treated with 0.71 ml. of di-n-butyl ether (4.2 millimoles) for one hour at 35°C. and then was centrifuged, the solvent decanted and the solid washed four times using 75 ml. of hexane each time.
- the slurry was resuspended to 50 ml. with hexane.
- An 800 ml. glass polymerization vessel was charged with 400 ml. of hexane and, after sparging the vessel with argon, the hexane was sparged with propylene at room temperature and atmospheric pressure. The total pressure was then adjusted to 1.4 bars with propylene while 0.35 millimole of triethylaluminum, 0.1 millimole of ethyl-p-anisate and 0.64 millimole of trichlorosilane were added to the polymerization vessel, followed by 3.5 mi. of the catalyst (0.0062 millimole of titanium) prepared as above. After a prepolymerization period of 15 minutes, the temperature was raised to 60°C.
- the white powdery polypropylene product was filtered while hot, washed once with 150 ml. of fresh hexane which was at room temperature, and dried. It was determined that the polypropylene product was obtained at an average rate of 1010 g. of diluent insoluble polypropylene per millimole of titanium per atmosphere of polypropylene per hour. The mileage was 8000 g. of diluent insoluble polypropylene per millimole of titanium.
- the polymer product contained 92.9% of diluent insoluble polymer and the latter contained 7.5% of decahydronaphthalene solubles as determined by recrystallization of the diluent insoluble polymer from decahydronaphthalene.
- the polymer product had a bulk density of 0.31 g./cc.
- the particle size distribution of the product was:
- the improved activator component of the Ziegler-Natta catalyst system used in the polymerization of 1-olefins in accordance with this invention is composed of a trialkylaluminum, an alkyl ester of an aromatic carboxylic acid and a halosilane having the formula ASiHX 2 .
- Each of these is a necessary ingredient, and the amounts thereof are very important in obtaining the desired polypropylene products and the desired improvement in productivity.
- trialkylaluminums used in accordance with this invention are those trialkylaluminums in which each alkyl group contains from one to ten carbon atoms.
- Representative compounds are trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, triisohexylaluminum, tri-n-decylaluminum and mixtures thereof.
- alkyl esters of aromatic carboxylic acids used in the activator component of this invention are those alkyl esters, preferably the alkyl (C 1 -C 4 ) esters, of aromatic carboxylic acids wherein the esters contain a total of eight to twenty-six carbon atoms, preferably eight to sixteen carbon atoms.
- esters are methyl benzoate, ethyl benzoate, isobutyl benzoate, ethyl p-anisate, ethyl o-anisate, ethyl p-toluate, methyl p-toluate, methyl m-chlorobenzoate, methyl o-fluorobenzoate, ethyl p-decylbenzoate, ethyl p-nonyloxybenzoate, ethyl p-hexadecyloxybenzoate and mixtures thereof.
- the p-anisate and p-toluate esters are somewhat preferred to the benzoate esters in that the former generally provide a smaller amount of diluent soluble polymer in the polymer product.
- halosilanes used in the activator component in accordance with this invention have, as mentioned above, the general formula ASiHX z .
- A may be a hydrogen atom, an alkyl (C 1 -G 4 ) group or X, and X may be a chlorine or bromine atom.
- halosilanes of this invention may be dichlorosilane, trichlorosilane, methyldichlorosilane, ethyldichlorosilane, propyldichlorosilane, butyldichlorosilane, the corresponding bromosilanes, those compounds of the above formula containing both chlorine and bromine atoms, such as bromochlorosilane and bromodichlorosilane, and mixtures thereof.
- the operability of these particular halosilanes was not predictable.
- Halosilanes wherein A was other than C 1 -C 4 alkyl, for example, phenyl showed essentially no activity.
- halosilanes of this invention may be combined with the other activator components either before or after the catalyst component is added to the polymerization system.
- the mole ratio of trialkylaluminum (R 3 AI) to the ester in the activator component used in accordance with this invention is very important. More specifically, the mole ratio of aluminum to ester should be at least 3:1 and no more than 4:1, and preferably is from 3.2:1 to 3.5:1. When this ratio is as low as 2.5:1, for example, the yield of polymer is low and, when the ratio reaches 4:1, the proportion of the polymer product that is diluent soluble may be as much as 30% of the total polymer produced. With regard to the halosilane, the mole ratio of silicon to aluminum should be at least 0.3:1, since smaller amounts of the halosilane relative to the trialkylaluminum may not provide a substantial increase in mileage.
- the mole ratio of silicon to aluminum may be as high as 10:1, but ordinarily will be no more than 2:1.
- the maximum improvement in mileage usually is obtained at ratios from 1.4:1 to 1.8:1. It is significant that, concurrent with the increase in mileage brought about by use of the halosilanes in accordance with this invention, there is essentially no decrease in the percentage of diluent-insoluble polymer in the product. As a matter of fact, small increases in the percentage of diluent-insoluble polymer are often observed. This is contrary to many other Ziegler-Natta catalyst systems, which, although effecting an increase in mileage, also lead to a decrease in the percentage of diluent-insoluble polymer in the product.
- the solid catalyst component which is used in accordance with this invention, it is composed of a titanium halide deposited on essentially anhydrous, magnesium halide support particles, and the preparation of representative catalyst components has been shown in the examples.
- other methods of preparing the magnesium halide support particles may be used and are known in the art.
- Also known in the art are procedures for depositing the titanium halide on solid supports.
- the titanium halides preferably used in accordance with this invention are, for example, titanium tetrachloride, methoxytitanium trichloride, titanium tetrabromide and titanium tetraiodide. More generally, the titanium halides may be characterized by the formula TiX n (OR) 4-n , wherein R is a C 1 -C 20 alkyl group, X is a chlorine, bromine or iodine atom and n is 1, 2, 3 or 4. Titanium tetrachloride is preferred.
- the amount of the tetravalent titanium halide added to the support is preferably such that the magnesium to titanium mole ratio is in the range of from 200:1 to 1:1, more preferably from 80:1 to 5:1.
- the support particles In conjunction with depositing the titanium halide on the magnesium halide support, it may be desirable to treat the support particles with an electron donor, more specifically, an alkyl ester of an aromatic carboxylic acid wherein the ester contains a total of eight to twenty-six carbon atoms, as previously described.
- an electron donor more specifically, an alkyl ester of an aromatic carboxylic acid wherein the ester contains a total of eight to twenty-six carbon atoms, as previously described.
- This particular group of electron donor compounds exhibits the effect of increasing the stereospecificity of the titanium halide in the production of polypropylene.
- excessive amounts of these esters have an adverse effect on the activity of the titanium catalyst, and the amount of the ester must be controlled in order that the titanium to ester mole ratio lies in the range of from 0.5:1 to 10:1, preferably from 2:1 to 4:1.
- Both the ester treatment of the support particles and the deposition of the titanium halide on the support may be carried out a temperature of from 0° to 100°C., preferably from 15° to 60°C., for a period of from 0.25 hour to two hours.
- the support particles are washed with hydrocarbon.
- the support particles After treatment with the titanium halide, the support particles also may be further treated with an electron donor, preferably an aliphatic ether containing four to twenty-four carbon atoms, such as diethyl ether, diisopropylether, dibutyl ether, diisoamyl ether, dihexyl ether and dioctyl ether.
- an electron donor preferably an aliphatic ether containing four to twenty-four carbon atoms, such as diethyl ether, diisopropylether, dibutyl ether, diisoamyl ether, dihexyl ether and dioctyl ether.
- the amount of ether used may be from 1:10 to 5:1, preferably from 1:5 to 1:1, on a molar basis relative to the amount of magnesium present.
- the ether treatment may be carried out at a temperature of from 20° to 50°C. for 0.25 to one hour.
- the supported catalyst particles are then thoroughly washe
- the hydrocarbons used in the processing steps shown in the examples may be C 5 -C 16 aliphatic hydrocarbons, C 5 -C 16 cycloaliphatic hydrocarbons, C 6- C 16 monocyclic aromatic hydrocarbons or mixtures of any of these hydrocarbons.
- the preferred hydrocarbons are the C S- C 12 aliphatic hydrocarbons and the C 6- C 12 monocyclic aromatic hydrocarbons.
- Representative of the aliphatic hydrocarbons are pentane, hexane, heptane and octane.
- Representative of the cycloaliphatic hydrocarbons are cyclopentane and cyclohexane, and exemplary of the aromatic hydrocarbons are benzene, toluene and xylene.
- the 1-olefins which may be polymerized in accordance with this invention are well known. Other than the propylene shown in the examples, representative olefins are ethylene, 1-butene, 4-methylpentene-1 and 1-hexene. Mixtures of the 1-olefins also may be utilized. In addition to the increased mileage obtained by the polymerization of these olefins in accordance with this invention, it is to be observed, as shown in Example 3, that the activity of the catalyst does not decrease to as great an extent as it does when the activator component is composed only of a trialkylaluminum and an alkyl ester of an aromatic carboxylic acid. Accordingly, the polymerization of 1-olefins in accordance with this invention represents a distinct improvement in the art.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
- This invention relates to the polymerization of 1-olefins using an improved catalyst. More particularly, it relates to an improved trialkylaluminum activator composition and the process of using it. This composition provides for increased productivity of the catalyst when used as a catalyst component in the polymerization of 1-olefins.
- As is well known in the art, effective catalysts for the polymerization of 1-olefins are the Ziegler-Natta catalysts obtained by combining transition metal compounds of Groups IVb to Vlb of the periodic table with organometallic compounds of Groups I to III of the table. It also is known that these catalysts can be made more effective by depositing the transition metal component on an inorganic compound as a support. Essentially anhydrous magnesium halides, MgX2, wherein X is a chlorine or bromine atom, are preferred support materials. Nevertheless, many of the resulting catalysts have not been completely satisfactory, due to the fact that the amount of polymer produced per unit of the transition metal component used is not enough to obviate removal of the catalyst residues from the polymer product.
- Now, in accordance with this invention, there has been discovered an improvement in an activated catalyst and its use in a process for the polymerization of 1-olefins in the presence of a solid catalyst component composed of a titanium halide deposited on an essentially anhydrous magnesium halide support and an activator component composed of a trialkylaluminum and an alkyl ester of an aromatic carboxylic acid, said ester containing from eight to twenty-six carbon atoms, and the mole ratio of aluminum to ester being from 3:1 to 4:1, the improvement comprising including a halosilane in the activator component, said halosilane having the formula ASiHXz, wherein A is a hydrogen atom, a C1-C4 alkyl group or X, and X is a chlorine or bromine atom, the amount of said halosilane being sufficient to provide a mole ratio of silicon to aluminum of from 0.3:1 to 10:1. For example, the inclusion, on a molar basis, of as little as 0.3, based on the trialkylaluminum, of one of the specified halosilanes in the activator composition may increase the mileage by as much as 50%.
- Having generally described the embodiments of this invention, the following examples constitute specific illustrations thereof. All amounts are as given in the examples.
- Under an atmosphere of argon throughout the reaction, a flask was charged with 30 mmols of diisoamyl ether (DIAE) and 60 mmols of dibutylmagnesium, and hexane was added to a total volume of approximately 120 ml. The flask was cooled to -65°C. and 180 mmols of ethylaluminum dichloride was added dropwise over two hours with stirring at a speed of 250 r.p.m. The final volume was approximately 225 ml. The mixture was stirred an additional hour at -65°C., then allowed to warm to room temperature over one-half hour and stirred for another hour. The supernatant liquor was decanted, and the support was washed five times with 100-ml. portions of fresh hexane. The solid was resuspended in hexane to a total volume of about 150 mi. [Anal.: 0.36 M Mg; 0.085 MAl; 1.15 M Cl.]
- Under an atmosphere of argon, the above slurry of magnesium chloride particles in hexane was treated with 47.4 mmols of DIAE (ratio of ether/Mg about 0.9) for one hour at room temperature. The liquor was decanted, and the solid was washed three times with 100-ml. portions of hexane; the solid was then resuspended in 150 mi. of fresh hexane. To this slurry, 1.44 mmols of ethyl benzoate was added, and the mixture was stirred at room temperature for one hour, following which 2.88 mmols TiCI4 was added and the resulting mixture was stirred at 35°C. for another hour. An additional 47.4 mmols of DIAE was then added and the mixture was stirred another hour at 35°C. After decantation of liquid, the solid was washed three times with 1 00-ml. portions of hexane and resuspended to a volume of 360 ml. [Anal.: 0.0038 M Ti; 0.139 M Mg; 0.272 M Cl; 0.001 MAl; thus providing for 2.66 mol % Ti (based on Mg) and a CI/Mg ratio of 1.95].
- Polymerizations were conducted in magnetically stirred vessels of 800 milliliters volume. The vessels were charged with 400 ml. of purified hexane, which was free of air and water, under argon. The values given in the first three columns of Table I are the millimoles of reagents added to the vessel at room temperature. The argon was replaced by propylene, and the solid catalyst was injected by syringe as a slurry in hexane. [The amount of Ti listed in the fourth column of Table I is calculated from the analysis of the polypropylene product for p.p.m. Ti]. After approximately five minutes, the temperature of the vessel was raised to 65°C., and the total pressure was increased to 3.7 bars (hexane vapor as well as propylene). Propylene was continuously added to the reaction mixture for three hours to maintain the pressure at 3.7 bars after which the addition of propylene was discontinued and the system was reacted down for 15 minutes. The polypropylene product was filtered while hot, washed once with 150 ml. of fresh hexane which was at room temperature, and dried.
- The remaining information pertaining to the above polymerizations also is shown in Table I. In this table, the following definitions apply: EtOAn=ethyl-p-anisate; DHN=decahydronaphthalene; Mileage=the number of grams of the polypropylene product insoluble in the hexane solvent per millimole of titanium; and "Z"=the average rate, expressed in grams of diluent insoluble polypropylene product, at which the product is produced per millimole of titanium per atmosphere of propylene per hour. The values given for the amount of decahydronaphthalene-soluble polymer were determined by recrystafiization of the hexane-insoluble polymer from decahydronaphthalene.
-
- The procedure of Example 1 was followed except to carry out the polymerization at 60°C. and to substitute 0.64 mmol of methyldichlorosilane (CH3SiHClz) for the 0.64 mmol of trichlorosilane of (e) of Example 1. The amount of polymer product insoluble in hexane was 91.0%, the amount of decahydronaphthalene solubles was 13.8%, the mileage was 9800, the rate was 1240 and the bulk density was 0.32 g./cc. The corresponding values for the control (no silane) were 89.4%, 14.0%, 5300, 676 and 0.31 g./cc.
- Following the procedure of Example 2, 0.64 mmol of dichlorosilane was used in conjunction with 0.32 mmol of triethylaluminum and 0.10 mmol of ethyl-p-anisate as the activator composition, and the polymerization was run for three and three-tenths hours instead of three. The hexane-insoluble polymer amounted to 95.0% and the decahydronaphthalene solubles amounted to 9.5%. The mileage was 10200, the rate 1175 and the bulk density 0.35 g./cc. The actual rate of polymerization at the time the polymerization was interrupted was 50% of the initial rate. The corresponding polymerization run as a control provided 92.2% hexane-insoluble polymer, 8.2% decahydronaphthalene solubles, a mileage of 5560, a rate of 641, a bulk density of 0.35 g./cc. and an actual rate, when the polymerization was interrupted, of 20% of the initial rate of polymerization.
- A 1000 ml., four-necked reaction vessel was equipped with a mechanical stirrer, two pressure- equalized dropping funnels, a thermometer, an argon inlet, an argon outlet and a bubbler. All components of the apparatus were dried and purged with argon. An argon atmosphere was provided throughout the reaction. The flask was charged with 100 ml. of hexane. One dropping funnel was charged with 113 ml. of a 0.266 molar solution of magnesium 2-ethylhexanoate (30 millimoles) in an approximately 50:50 by volume admixture of hexane and an 85 aliphatic:15 cycloaliphatic hydrocarbon mixture having a boiling point range of 175 to 190°C. To the solution of magnesium 2-ethylhexanoate in the dropping funnel was added 0.28 g. of poly(2-ethylhexyl acrylate) dissolved in one milliliter of toluene, and the solutions were mixed with a spatula under argon. The other dropping funnel was charged with 23 ml. of a 3.1 molar solution of ethylaluminum dichloride (71 millimoles) in heptane, followed by 90 ml. of hexane. The contents of the two dropping funnels were added at equal rates to the hexane in the flask over a period of three hours while stirring the reaction mixture at 260 r.p.m. The aluminum to magnesium mole ratio in the reaction mixture was 2.4:1.
- After stirring the reaction mixture for an additional 2.2 hours, the resulting finely-divided white slurry of magnesium chloride was divided into two portions, one portion of which, containing 16 millimoles of magnesium, was washed free of unadsorbed aluminum compounds by centrifuging, decanting and resuspending the slurry five times using 75-ml. portions of toluene. After the final wash, the solid particles were resuspended in hexane to provide a slurry having a total volume of 100 ml. To this hexane slurry of magnesium chloride (16 millimoles of magnesium) was added 1.4 milliliters of din-butyl ether (8.5 millimoles) and the resulting admixture was tumbled for one hour at room temperature. The white slurry then was centrifuged, the solvent decanted and the resulting solid washed four times using 50 ml. of hexane each time.
- After resuspending the ether-treated particles from the above preparation in hexane, the resulting slurry (16 millimoles of magnesium) was agitated with 3.8 ml. of a 0.1 molar solution of ethyl benzoate (0.38 millimole) in hexane for one hour at room temperature. To the slurry then was added 2.5 ml. of a 0.3 molar solution of titanium tetrachloride (0.75 millimole) in hexane and the reaction mixture was agitated for one hour at 35°C. The resulting slurry was treated with 0.71 ml. of di-n-butyl ether (4.2 millimoles) for one hour at 35°C. and then was centrifuged, the solvent decanted and the solid washed four times using 75 ml. of hexane each time. The slurry was resuspended to 50 ml. with hexane.
- An 800 ml. glass polymerization vessel was charged with 400 ml. of hexane and, after sparging the vessel with argon, the hexane was sparged with propylene at room temperature and atmospheric pressure. The total pressure was then adjusted to 1.4 bars with propylene while 0.35 millimole of triethylaluminum, 0.1 millimole of ethyl-p-anisate and 0.64 millimole of trichlorosilane were added to the polymerization vessel, followed by 3.5 mi. of the catalyst (0.0062 millimole of titanium) prepared as above. After a prepolymerization period of 15 minutes, the temperature was raised to 60°C. and the total pressure was adjusted to 3.6 bars with propylene, after which the temperature was raised to 65°C. over a period of 10 minutes. Propylene was continuously added to the reaction mixture for three hours to maintain the pressure at 3.6 bars (2.63 atmospheres partial pressure of propylene), after which the addition of propylene was discontinued and the system was reacted down for 15 minutes.
- The white powdery polypropylene product was filtered while hot, washed once with 150 ml. of fresh hexane which was at room temperature, and dried. It was determined that the polypropylene product was obtained at an average rate of 1010 g. of diluent insoluble polypropylene per millimole of titanium per atmosphere of polypropylene per hour. The mileage was 8000 g. of diluent insoluble polypropylene per millimole of titanium. The polymer product contained 92.9% of diluent insoluble polymer and the latter contained 7.5% of decahydronaphthalene solubles as determined by recrystallization of the diluent insoluble polymer from decahydronaphthalene. The polymer product had a bulk density of 0.31 g./cc. The particle size distribution of the product was:
- The improved activator component of the Ziegler-Natta catalyst system used in the polymerization of 1-olefins in accordance with this invention is composed of a trialkylaluminum, an alkyl ester of an aromatic carboxylic acid and a halosilane having the formula ASiHX2. Each of these is a necessary ingredient, and the amounts thereof are very important in obtaining the desired polypropylene products and the desired improvement in productivity.
- In general, the trialkylaluminums used in accordance with this invention are those trialkylaluminums in which each alkyl group contains from one to ten carbon atoms. Representative compounds are trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, triisohexylaluminum, tri-n-decylaluminum and mixtures thereof.
- The alkyl esters of aromatic carboxylic acids used in the activator component of this invention are those alkyl esters, preferably the alkyl (C1-C4) esters, of aromatic carboxylic acids wherein the esters contain a total of eight to twenty-six carbon atoms, preferably eight to sixteen carbon atoms. Exemplary esters are methyl benzoate, ethyl benzoate, isobutyl benzoate, ethyl p-anisate, ethyl o-anisate, ethyl p-toluate, methyl p-toluate, methyl m-chlorobenzoate, methyl o-fluorobenzoate, ethyl p-decylbenzoate, ethyl p-nonyloxybenzoate, ethyl p-hexadecyloxybenzoate and mixtures thereof. The p-anisate and p-toluate esters are somewhat preferred to the benzoate esters in that the former generally provide a smaller amount of diluent soluble polymer in the polymer product.
- The halosilanes used in the activator component in accordance with this invention have, as mentioned above, the general formula ASiHXz. In this formula, A may be a hydrogen atom, an alkyl (C1-G4) group or X, and X may be a chlorine or bromine atom. Thus, the halosilanes of this invention may be dichlorosilane, trichlorosilane, methyldichlorosilane, ethyldichlorosilane, propyldichlorosilane, butyldichlorosilane, the corresponding bromosilanes, those compounds of the above formula containing both chlorine and bromine atoms, such as bromochlorosilane and bromodichlorosilane, and mixtures thereof. The operability of these particular halosilanes was not predictable. Halosilanes wherein A was other than C1-C4 alkyl, for example, phenyl, showed essentially no activity. The same was true for those compounds containing only one halogen, such as in chlorodimethylsilane, or no halogen at all, as in triethylsilane and triphenylsilane. Also inactive were those halosilanes containing no hydrogen, as in ethyltrichlorosilane and tetrachlorosilane. The halosilanes of this invention may be combined with the other activator components either before or after the catalyst component is added to the polymerization system.
- The mole ratio of trialkylaluminum (R3AI) to the ester in the activator component used in accordance with this invention is very important. More specifically, the mole ratio of aluminum to ester should be at least 3:1 and no more than 4:1, and preferably is from 3.2:1 to 3.5:1. When this ratio is as low as 2.5:1, for example, the yield of polymer is low and, when the ratio reaches 4:1, the proportion of the polymer product that is diluent soluble may be as much as 30% of the total polymer produced. With regard to the halosilane, the mole ratio of silicon to aluminum should be at least 0.3:1, since smaller amounts of the halosilane relative to the trialkylaluminum may not provide a substantial increase in mileage. The mole ratio of silicon to aluminum may be as high as 10:1, but ordinarily will be no more than 2:1. The maximum improvement in mileage usually is obtained at ratios from 1.4:1 to 1.8:1. It is significant that, concurrent with the increase in mileage brought about by use of the halosilanes in accordance with this invention, there is essentially no decrease in the percentage of diluent-insoluble polymer in the product. As a matter of fact, small increases in the percentage of diluent-insoluble polymer are often observed. This is contrary to many other Ziegler-Natta catalyst systems, which, although effecting an increase in mileage, also lead to a decrease in the percentage of diluent-insoluble polymer in the product.
- Relative to the solid catalyst component which is used in accordance with this invention, it is composed of a titanium halide deposited on essentially anhydrous, magnesium halide support particles, and the preparation of representative catalyst components has been shown in the examples. However, other methods of preparing the magnesium halide support particles may be used and are known in the art. Also known in the art are procedures for depositing the titanium halide on solid supports.
- The titanium halides preferably used in accordance with this invention are, for example, titanium tetrachloride, methoxytitanium trichloride, titanium tetrabromide and titanium tetraiodide. More generally, the titanium halides may be characterized by the formula TiXn(OR)4-n, wherein R is a C1-C20 alkyl group, X is a chlorine, bromine or iodine atom and n is 1, 2, 3 or 4. Titanium tetrachloride is preferred. The amount of the tetravalent titanium halide added to the support is preferably such that the magnesium to titanium mole ratio is in the range of from 200:1 to 1:1, more preferably from 80:1 to 5:1.
- In conjunction with depositing the titanium halide on the magnesium halide support, it may be desirable to treat the support particles with an electron donor, more specifically, an alkyl ester of an aromatic carboxylic acid wherein the ester contains a total of eight to twenty-six carbon atoms, as previously described. This particular group of electron donor compounds exhibits the effect of increasing the stereospecificity of the titanium halide in the production of polypropylene. However, excessive amounts of these esters have an adverse effect on the activity of the titanium catalyst, and the amount of the ester must be controlled in order that the titanium to ester mole ratio lies in the range of from 0.5:1 to 10:1, preferably from 2:1 to 4:1. Both the ester treatment of the support particles and the deposition of the titanium halide on the support may be carried out a temperature of from 0° to 100°C., preferably from 15° to 60°C., for a period of from 0.25 hour to two hours. Following deposition of the titanium halide on the support, the support particles are washed with hydrocarbon.
- After treatment with the titanium halide, the support particles also may be further treated with an electron donor, preferably an aliphatic ether containing four to twenty-four carbon atoms, such as diethyl ether, diisopropylether, dibutyl ether, diisoamyl ether, dihexyl ether and dioctyl ether. The amount of ether used may be from 1:10 to 5:1, preferably from 1:5 to 1:1, on a molar basis relative to the amount of magnesium present. The ether treatment may be carried out at a temperature of from 20° to 50°C. for 0.25 to one hour. The supported catalyst particles are then thoroughly washed with hydrocarbon and resuspended in hydrocarbon for use in the polymerization of 1-olefins.
- The hydrocarbons used in the processing steps shown in the examples may be C5-C16 aliphatic hydrocarbons, C5-C16 cycloaliphatic hydrocarbons, C6-C16 monocyclic aromatic hydrocarbons or mixtures of any of these hydrocarbons. The preferred hydrocarbons are the CS-C12 aliphatic hydrocarbons and the C6-C12 monocyclic aromatic hydrocarbons. Representative of the aliphatic hydrocarbons are pentane, hexane, heptane and octane. Representative of the cycloaliphatic hydrocarbons are cyclopentane and cyclohexane, and exemplary of the aromatic hydrocarbons are benzene, toluene and xylene.
- The 1-olefins which may be polymerized in accordance with this invention are well known. Other than the propylene shown in the examples, representative olefins are ethylene, 1-butene, 4-methylpentene-1 and 1-hexene. Mixtures of the 1-olefins also may be utilized. In addition to the increased mileage obtained by the polymerization of these olefins in accordance with this invention, it is to be observed, as shown in Example 3, that the activity of the catalyst does not decrease to as great an extent as it does when the activator component is composed only of a trialkylaluminum and an alkyl ester of an aromatic carboxylic acid. Accordingly, the polymerization of 1-olefins in accordance with this invention represents a distinct improvement in the art.
Claims (8)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/110,563 US4277372A (en) | 1980-01-09 | 1980-01-09 | Solid catalyst component for olefin polymerization |
US110563 | 1980-01-09 | ||
US06/130,500 US4250287A (en) | 1980-03-14 | 1980-03-14 | 1-Olefin polymerization catalyst |
US130500 | 1980-03-14 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0032295A2 EP0032295A2 (en) | 1981-07-22 |
EP0032295A3 EP0032295A3 (en) | 1981-08-05 |
EP0032295B1 true EP0032295B1 (en) | 1984-03-07 |
Family
ID=26808155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19800304438 Expired EP0032295B1 (en) | 1980-01-09 | 1980-12-09 | 1-olefin polymerization and catalyst for 1-olefin polymerization |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0032295B1 (en) |
CA (1) | CA1144698A (en) |
DE (1) | DE3066882D1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1016512A (en) * | 1961-07-28 | 1966-01-12 | Kogyogijutsuin | Preparation of a new type polymer silicopolypropylene |
SU434745A1 (en) * | 1972-07-11 | 1979-02-25 | Казанский Химико- Технологический Институт Им. С.М. Кирова | Method of obtaining polyolefins |
GB1492618A (en) * | 1974-02-01 | 1977-11-23 | Mitsui Petrochemical Ind | Process for preparing highly stereoregular polyolefins and catalyst used therefor |
IT1099805B (en) * | 1978-10-26 | 1985-09-28 | Montedison Spa | COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINS |
-
1980
- 1980-10-29 CA CA000363468A patent/CA1144698A/en not_active Expired
- 1980-12-09 DE DE8080304438T patent/DE3066882D1/en not_active Expired
- 1980-12-09 EP EP19800304438 patent/EP0032295B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3066882D1 (en) | 1984-04-12 |
CA1144698A (en) | 1983-04-12 |
EP0032295A2 (en) | 1981-07-22 |
EP0032295A3 (en) | 1981-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4159965A (en) | Catalyst useful for polymerizing olefins | |
US4250287A (en) | 1-Olefin polymerization catalyst | |
US4435550A (en) | Method for polymerizing α-olefin | |
JP2557061B2 (en) | Alpha-olefin polymerization catalyst system containing suitable modifier components | |
US4431568A (en) | Catalyst for polymerization of olefins and polymerization process employing such catalyst | |
EP0032294B1 (en) | Solid catalyst component for olefin polymerization | |
US4565798A (en) | Process for polymerization of olefins | |
US4330646A (en) | Polymerization of an α-olefin | |
JPH0216324B2 (en) | ||
EP0451876B1 (en) | Olefin polymerization catalyst | |
KR20000068055A (en) | Components and catalysts for the polymerization of olefins | |
JPH05310824A (en) | Production of polyolefin | |
US4258167A (en) | Process for producing powdery isotactic polyolefin | |
US4822763A (en) | Catalyst component for polymerization of olefin | |
JPH083215A (en) | Method for polymerizing alpha-olefin | |
US4398006A (en) | Process for producing polybutene-1 | |
GB1586267A (en) | Catalyst for polymerizing olefins and process for the polymerization of olefins | |
EP0136112B1 (en) | Catalyst component for polymerization of olefins | |
JP3044262B2 (en) | Method for producing polyolefin | |
EP0032295B1 (en) | 1-olefin polymerization and catalyst for 1-olefin polymerization | |
EP0314169A1 (en) | Catalyst system and process for producing alpha-olefin polymer | |
JPS61151207A (en) | Production of poly(1-butene) | |
EP0031213B1 (en) | 1-olefin polymerization and catalyst for 1-olefin polymerization | |
JPS5812889B2 (en) | Polyethylene material | |
JPH0717695B2 (en) | Method for producing catalyst carrier for olefin polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT NL |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19810824 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 3066882 Country of ref document: DE Date of ref document: 19840412 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19901127 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19901215 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19901219 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19901228 Year of fee payment: 11 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19901231 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910131 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19911209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19911231 Ref country code: CH Effective date: 19911231 Ref country code: BE Effective date: 19911231 |
|
BERE | Be: lapsed |
Owner name: HERCULES INC. Effective date: 19911231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19920701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |