EP0028670A1 - Process for preparing bodies containing highly radioactive wastes - Google Patents

Process for preparing bodies containing highly radioactive wastes Download PDF

Info

Publication number
EP0028670A1
EP0028670A1 EP19800102963 EP80102963A EP0028670A1 EP 0028670 A1 EP0028670 A1 EP 0028670A1 EP 19800102963 EP19800102963 EP 19800102963 EP 80102963 A EP80102963 A EP 80102963A EP 0028670 A1 EP0028670 A1 EP 0028670A1
Authority
EP
European Patent Office
Prior art keywords
glass
ceramic
mpa
pressure
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19800102963
Other languages
German (de)
French (fr)
Other versions
EP0028670B1 (en
Inventor
Gerhard Dr. Ondracek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0028670A1 publication Critical patent/EP0028670A1/en
Application granted granted Critical
Publication of EP0028670B1 publication Critical patent/EP0028670B1/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix

Definitions

  • the invention relates to a method for producing molded articles containing highly radioactive waste materials, in which the waste materials are embedded in a glass, glass ceramic or ceramic matrix.
  • the glass state is an imbalance state, crystallization can be expected with long-term storage. According to previous knowledge, this begins with the macroscopically inhomogeneously distributed, heterogeneous inclusions, which act as nuclei. Crystallized areas with chemically different composition and fine structure are formed, which are arranged macroscopically inhomogeneous in the remaining glass phase. The highly active fission products are - in varying amounts - mainly concentrated in the crystallized areas. Because of their different composition and structure, these have different coefficients of thermal expansion, which leads to mechanical stresses in a glass block during final storage. In particular, the macroscopically inhomogeneous distribution of the different crystal areas, ultimately based on the macroscopically inhomogeneous distribution of the heterogeneous inclusions, increases the risk of cracking and brittle fracture in the glass block.
  • the object of the invention is to provide improved solidification products made of highly radioactive waste and a glass, glass ceramic or ceramic matrix in their properties, in which a homogeneous distribution of the incorporated waste is ensured both during production and during long-term storage. It is a further object of the invention to: •) (DE-OS 26 57 265)
  • the object is also achieved in a different way, namely in that the waste materials are first melted in a known manner into a glass, glass ceramic or ceramic matrix, then mechanically comminuted or ground, the comminuted material or the ground material mixed and pressed at a pressure in the range of 5o MPa to 5oo MPa and then sintered below the melting range of the matrix in the devitrification area or pressure sintered in the range of lo to 5o MPa.
  • the sludge which contains the waste materials and is thickened with glass, glass ceramic or ceramic powder, is compressed in the slip casting prior to drying.
  • According to the invention is sintered at a temperature in the range of 5oo K to 8 00 K or pressure sintered.
  • the first solution also offers the advantage that the glass or glass ceramic / ceramic waste mixture does not have to be melted, the processing temperatures can therefore be reduced to about two thirds of the temperatures required by melting technology, viscosity-related flow problems are avoided and crucible Reactions and signs of segregation of the heterogeneous inclusions (segregation, inhomogeneous distribution) are reduced. In addition, the evaporation of highly active components, which was previously unavoidable when melting, is greatly reduced.
  • radioactive powder can be introduced into the end products solidified by the process according to the invention.
  • a simulated, denitrified waste solution of the following composition was prepared with inactive components:
  • this solution was evaporated to dryness and the residue was ground to a particle size of on average lo to 50 ⁇ m (waste powder).
  • powder fractions can also be used, but powder fractions that are too finely ground will not be used in order to rule out dust formation as far as possible.
  • Example 1 For the production of blocks having a diameter of 2 mm 0 o and 15o mm height by means of cold isostatic pressing in a flexible container, which is for isostatic molding condition, was first described in Example 1, Method. The powder mixture was pressed at a pressure of about 5oo MPa. Thereafter the compacts were lo to 15 hours at 00 6 8 00 K to K sintered and then tempered. The desired macroscopic homogeneity was also achieved with these samples. The density was about 95% of the melt density.
  • Example 1 The waste described in Example 1 and glass powder mixture was filled in a graphite mold with graphite stamp and without a preceding continuous cold pressing with simultaneous task a pressure of from lo to 4o MPa at about 6 00 K (indirect heating) hot pressing or pressure-sintered.
  • a treatment time of 10 minutes was sufficient for the blocks with a diameter of 20 mm and a height of 25 mm.
  • a density of 97% of the solid density on the blocks and the desired macroscopic homogeneity were found.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

1. Method for the production of high-level waste containing moulded materials by which the wastes and the glass, glass ceramic or ceramic matrix surrounding them are sintered by means of pressure and temperature, with 1) the wastes a) in the form of a dry or nearly dry powder being mechanically mixed in a conventional way with the glass, glass ceramic or ceramic matrix present as a granulate or powder ; or b) in the form of a sludge being concentrated with glass, glass ceramic or ceramic powder, mechanically mixed and dried, and 2) the mixture, without previous encapsulation, being directly either c) cold pressed initially at a pressure of 50 MPa to 500 MPa and subsequently sintered below the matrix melting zone in the devitrification range at a temperature between 500 K and 800 K ; or d) pressure sintered at a pressure of 10 to 50 MPa and a temperature in the range of 500 K to 800 K (hot isostatic pressing excepted).

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern, bei welchem die Abfallstoffe in eine Glas- ,Glaskeramik- oder Keramik-Matrix eingebettet werden.The invention relates to a method for producing molded articles containing highly radioactive waste materials, in which the waste materials are embedded in a glass, glass ceramic or ceramic matrix.

Aus der Notwendigkeit einer Langzeitlagerung von hochradioaktiven Abfall enthaltenden Verfestigungsprodukten in beispielsweise Salzstöcken ergeben sich folgende Forderungen an derartige Endlagerungsprodukte:

  • Das Produkt muß weitgehend im inneren thermochemischen Gleichgewicht sein, d.h. es muß sich in einem energetischen Minimalzustand befinden, da dies die z.Z. bestmögliche Gewähr für thermochemische Stabilität ist.
  • Das Produkt muß so beschaffen sein, daß Wechselwirkungen mit der Umgebung nicht zu einem Sicherheitsrisiko werden können. Solche Wechselwirkungen sind nicht ausschließbar, da den realen Zustandsbedingungen gemäß und den möglichen Änderungen der Zustandsbedingungen über einen langen Zeitraum entsprechend ein Gleichgewicht zwischen dem Endlagerungsprodukt und seiner Umgebung in der Lagerstätte nicht gewährleistet werden kann.

Werden diese Forderungen nicht erfüllt, so können
  • durch Veränderungen im Produkt die Wechselwirkungen zwischen verschiedenen Kompcnenten oder Phasenumwandlungen oder dessen Eigenschaften, wie z.B. die Wärmeleitfähigkeit, Korrosionsresistenz oder Festigkeit, ungünstig verändert werden und durch chemische und/oder mechanische Wechselwirkung mit der Umgebung, wie Auslaugung oder mechanische Beanspruchung durch geologische Druck- und Scherkräfte, die Endlagerungsprodukte ganz oder teilweise zerstört werden.
The necessity of long-term storage of solidification products containing highly radioactive waste in, for example, salt domes results in the following requirements for such final storage products:
  • The product must be largely in the internal thermochemical equilibrium, ie it must be in an energetically minimal state, since this is currently the best possible guarantee for thermochemical stability.
  • The product must be designed in such a way that interactions with the environment cannot become a safety risk. Such interactions cannot be ruled out, because according to the real state conditions and the possible changes in the state conditions over a long period of time, a balance between the final storage product and its surroundings in the deposit cannot be guaranteed.

If these requirements are not met, you can
  • due to changes in the product, the interactions between different components or phase transformations or their properties, such as thermal conductivity, corrosion resistance or strength, are adversely changed and through chemical and / or mechanical interaction with the environment, such as leaching or mechanical stress due to geological pressure and shear forces , the disposal products are completely or partially destroyed.

In jedem Falle wäre damit aber der unkontrollierbare Übertritt von hochradioakiven Spaltprodukten in die Biosphäre verbunden.In any case, this would involve the uncontrollable transfer of highly radioactive fission products into the biosphere.

Für die Endlagerung von hochradioaktivem Abfall ist dessen Einschmelzen in Glasblöcken vorgesehen. Dabei werden die im allgemeinen denitrierten Spaltproduktoxide zum Teil homogen im Glas gelöst. Der restliche Teil, vorwiegend Edelmetalle, liegt als heterogene Einschlüsse in der Glasmatrix vor. Die Verteilung dieser Einschlüsse ist bei dem derzeitigen Stand der Schmelztechnologie nicht reproduzierbar und makroskopisch meist nicht homogen.For the final storage of highly radioactive waste, it is intended to be melted down in glass blocks. The generally denitrified fission product oxides are partially dissolved homogeneously in the glass. The remaining part, mainly precious metals, is present as heterogeneous inclusions in the glass matrix. The distribution of these inclusions is not reproducible at the current state of melting technology and is usually not macroscopically homogeneous.

Da der Glaszustand ein Ungleichgewichtszustand ist, ist bei Langzeitlagerung mit Kristallisation zu rechnen. Diese beginnt nach bisherigen Erkenntnissen an den makroskopisch inhomogen verteilten, heterogenen Einschlüssen, die als Kristallisationskeime wirken. Es bilden sich kristallisierte Bereiche mit chemisch unterschiedlicher Zusammensetzung und Feinstruktur, die makroskopisch inhomogen in der verbleibenden Glasphase angeordnet sind. Die hochaktiven Spaltprodukte sind -- in unterschiedlicher Menge - vorwiegend in den kristallisierten Bereichen konzentriert. Diese haben wegen ihrer unterschiedlichen Zusammensetzung und Struktur, unterschiedliche thermische Ausdehnungskoeffizienten, was in einem Glasblock bei Endlagerung zu mechanischen Spannungen führt. Dabei erhöht insbesondere die makroskopisch inhomogene Verteilung der unterschiedlichen Kristallbereiche, letztlich ausgehend von der makroskopisch inhomogenen Verteilung der heterogenen Einschlüsse, die Gefahr von Rissbildung und Sprödbruch im Glasblock.Since the glass state is an imbalance state, crystallization can be expected with long-term storage. According to previous knowledge, this begins with the macroscopically inhomogeneously distributed, heterogeneous inclusions, which act as nuclei. Crystallized areas with chemically different composition and fine structure are formed, which are arranged macroscopically inhomogeneous in the remaining glass phase. The highly active fission products are - in varying amounts - mainly concentrated in the crystallized areas. Because of their different composition and structure, these have different coefficients of thermal expansion, which leads to mechanical stresses in a glass block during final storage. In particular, the macroscopically inhomogeneous distribution of the different crystal areas, ultimately based on the macroscopically inhomogeneous distribution of the heterogeneous inclusions, increases the risk of cracking and brittle fracture in the glass block.

Der Erfindung liegt die Aufgabe zugrunde, in ihren Eigenschaften verbesserte Verfestigungsprodukteaus hochradioaktiven Abfällen und einer Glas-,Glaskeramik- cder Keramik-Matrix bereitzustellen, bei denen sowchl während der Herstellung als auch während der Langzeitlagerung eine homogene Verteilung der inkorporierten Abfälle gewährleistet ist. Es ist weiterhin Aufgabe der Erfindung, ein •) (DE-OS 26 57 265)The object of the invention is to provide improved solidification products made of highly radioactive waste and a glass, glass ceramic or ceramic matrix in their properties, in which a homogeneous distribution of the incorporated waste is ensured both during production and during long-term storage. It is a further object of the invention to: •) (DE-OS 26 57 265)

Verfahren zu schaffen, mit welchem zwischen- und endlagerbare Formkörper solcher verbesserter Verfestigungsprodukte hergestellt werden können. Insbesondere sollen mechanische Spannungen, die die Gefahr von Rissbildung und Sprödbruch im Formkörper in sich bergen, vermieden werden.To create methods with which intermediate and final storage moldings of such improved solidification products can be produced. In particular, mechanical stresses which involve the risk of crack formation and brittle fracture in the molded body are to be avoided.

Die Aufgabe wird in überraschend einfacher Weise erfindungsgemäß dadurch gelöst, daß die Abfallstoffe

  • a) in Form eines trockenen oder nahezu trockenen Pulvers mit einer Glas-, Glaskeramik- cder Keramik-Matrix in Granulat-oder Pulver-Form oder
  • b) in Form eines Schlammes mit Glas-, Glaskeramik- oder Keramik-Pulver verdickt,

mechanisch gemischt und im Falle von b) getrocknet werden, danach bei einem Druck im Bereich von 5o MPa bis 5oo MPa gepreßt und anschließend unterhalb des Schmelzbereiches der Matrix im Entglasungsbereich gesintert oder im Bereich von lo bis 5o MPa druckgesintert werden.The object is achieved in a surprisingly simple manner according to the invention in that the waste materials
  • a) in the form of a dry or almost dry powder with a glass, glass ceramic or ceramic matrix in granule or powder form or
  • b) thickened in the form of a slurry with glass, glass ceramic or ceramic powder,

mechanically mixed and dried in the case of b), then pressed at a pressure in the range from 5o MPa to 5oo MPa and then sintered below the melting range of the matrix in the devitrification area or pressure sintered in the range from lo to 5o MPa.

Erfindungsgemäß wird die Aufgabe aber auch in einer anderen Weise gelöst, nämlich dadurch, daß die Abfallstoffe zunächst in be-kannter Weise in eine Glas-, Glaskeramik- oder Keramik-Matrix eingeschmolzen werden, danach mechanisch zerkleinert oder gemahlen, das Zerkleinerungsgut bzw. das Mahlgut durchmischt und bei einem Druck im Bereich von 5o MPa bis 5oo MPa gepreßt und anschließend unterhalb des Schmelzbereiches der Matrix im Entglasungsbereich -gesintert oder im Bereich von lo bis 5o MPa druckgesintert werden.According to the invention, however, the object is also achieved in a different way, namely in that the waste materials are first melted in a known manner into a glass, glass ceramic or ceramic matrix, then mechanically comminuted or ground, the comminuted material or the ground material mixed and pressed at a pressure in the range of 5o MPa to 5oo MPa and then sintered below the melting range of the matrix in the devitrification area or pressure sintered in the range of lo to 5o MPa.

In einer besonderen Ausbildung des erfindungsgemäßen Verfahrens wird der mit Glas-,Glaskeramik- oder Keramik-Pulver verdickte, die Abfallstoffe enthaltende Schlamm vor dem Trocknen im Schlickerguß verdichtet.In a special embodiment of the method according to the invention, the sludge, which contains the waste materials and is thickened with glass, glass ceramic or ceramic powder, is compressed in the slip casting prior to drying.

Erfindungsgemäß wird bei einer Temperatur im Bereich von 5oo K bis 800 K gesintert oder druckgesintert.According to the invention is sintered at a temperature in the range of 5oo K to 8 00 K or pressure sintered.

Mit beiden Lösungswegen entsteht ein Endprodukt mit homogenisiertem Aufbau, mit reduzierten, mechanischen Spannungsgradienten bei Erwärmung, wie sie bei einer Endlagerung auftreten wird, und somit mit erhöhter, mechanischer Stabilität des Endlagerblocks. Während des abschließenden Sinterns tritt mit der Formgebung eine Verdichtung und gleichzeitig bei geeigneten technologischen Bedingungen vorteilhafte Teilkristallisation ein, die lediglich kleine Kristalle erzeugt und eine unkontrollierte, willkürliche Bildung größerer Kristalle während der Endlagerung vermeidet.Both solutions result in an end product with a homogenized structure, with reduced mechanical stress gradients when heated, as will occur during final storage, and thus with increased mechanical stability of the repository block. During the final sintering, the shaping leads to densification and, at the same time, advantageous partial crystallization under suitable technological conditions, which only produces small crystals and avoids an uncontrolled, arbitrary formation of larger crystals during final storage.

Der erste Lösungsweg bietet außerdem den Vorteil, daß die Glas-, bzw. Glaskeramik-/Keramik-Abfall-Mischung nicht aufgeschmolzen werden muß, die Bearbeitüngstemperaturen daher auf etwa zwei Drittel der schmelztechnelogisch notwendigen Temperaturen herabgesetzt werden können, viskositätsbedingte Fließprobleme vermieden werden und Tiegel-Reaktionen und Segregationserscheinungen der heterogenen Einschlüsse (Entmischung, inhomogene Verteilung) reduziert werden. Außerdem wird die bisher beim Erschmelzen unvermeidbare Abdampfung hochaktiver Bestandteile sehr stark reduziert.The first solution also offers the advantage that the glass or glass ceramic / ceramic waste mixture does not have to be melted, the processing temperatures can therefore be reduced to about two thirds of the temperatures required by melting technology, viscosity-related flow problems are avoided and crucible Reactions and signs of segregation of the heterogeneous inclusions (segregation, inhomogeneous distribution) are reduced. In addition, the evaporation of highly active components, which was previously unavoidable when melting, is greatly reduced.

Je nach Durchführbarkeit der Wärmeabfuhr aus den inkorporierten Radionukliden und je nach den hiermit in Zusammenhang stehenden Block- bzw. Formkörpergrößen können bis zu 4o Gew.-% an radioaktivem Pulver in die nach dem erfindungsgemäßen Verfahren verfestigten Endprodukte eingebracht werden.Depending on the feasibility of heat removal from the incorporated radionuclides and depending on the block or molded body sizes associated therewith, up to 40% by weight of radioactive powder can be introduced into the end products solidified by the process according to the invention.

Im folgenden wird die Erfindung anhand einiger Beispiele näher erläutert. Die Erfindung ist jedoch auf diese Beispiele nicht beschränkt.The invention is explained in more detail below with the aid of a few examples. However, the invention is not limited to these examples.

Beispiel 1:Example 1:

Mit inaktiven Bestandteilen wurde eine simulierte, denitrierte Abfall-Lösung der folgenden Zusammensetzung hergestellt:

Figure imgb0001
A simulated, denitrified waste solution of the following composition was prepared with inactive components:
Figure imgb0001

Zur Verwendung im erfindungsgemäßen Verfahren wurde diese Lösung zur Trockne eingedampft und der Rückstand auf eine Partikelgröße von im Mittel lo bis 5oµm gemahlen (Abfallpulver). Grundsätzlich können auch andere Pulverfraktionen eingesetzt werden, doch wird man nicht zu fein gemahlene Pulverfraktionen nehmen, um eine Staubentwicklung möglichst auszuschließen.For use in the process according to the invention, this solution was evaporated to dryness and the residue was ground to a particle size of on average lo to 50 μm (waste powder). In principle, other powder fractions can also be used, but powder fractions that are too finely ground will not be used in order to rule out dust formation as far as possible.

Zur Herstellung der Probeblöcke (Formkörper) wurden jeweils 15 Gewichtsteile des so erhaltenen Abfallpulvers mit 85 Gewichtsteilen einer ebenfalls auf eine Partikelgröße von im Mittel lo bis 15/um gemahlenen Glasfritte aus Borosilikatglas der Zusammensetzung (in Gew.-%):

Figure imgb0002
gut gemischt (beispielsweise 3 Stunden lang in einem Taumelmischer) und zu Zylinderblöcken mit 8 mm Durchmesser und 2o mm Höhe ohne Preßhilfe in einer Stahlmatrize kalt gepreßt mit Drücken zwichen 7o MPa und 3oo MPa. Danach wurden die so erhaltenen Preßlinge bei 600 K bis 800 K 24 Stunden lang gesintert und langsam abgekühlt. Untersuchungen der Blöcke zeigten eine sehr gute, makroskopisch homogene Verteilung der beiden Pulverkomponenten und stets Dichten über 92% der Schmelzlingsdichte (δs= 2,74 g/cm3).To prepare the sample blocks (molded body) 15 parts by weight of the waste powder thus obtained with 85 parts by weight were each subjected also to a particle size of on average lo to 15 / um milled glass frit made of borosilicate glass having the composition (in wt .-%):
Figure imgb0002
well mixed (for example for 3 hours in a tumble mixer) and cold-pressed into cylinder blocks with a diameter of 8 mm and a height of 20 mm without pressing aid in a steel matrix with pressures between 7o MPa and 3oo MPa. Thereafter the compacts thus obtained were sintered at 6 00 K for 24 hours to 8 K 00 and slowly cooled. Examinations of the blocks showed a very good, macroscopically homogeneous distribution of the two powder components and always densities above 92% of the melt density (δ s = 2.74 g / cm 3 ).

Beipiel 2:Example 2:

Zur Herstellung von Blöcken mit einem Durchmesser von 20o mm und 15o mm Höhe mit Hilfe von isostatischem Kaltpressen in einem flexiblen Gefäß, was für isostatische Formgebung Bedingung ist, wurde zunächst, wie in Beispiel 1 beschrieben, verfahren. Das Pulvergemisch wurde mit einem Druck von ca. 5oo MPa gepreßt. Danach wurden die Preßlinge lo bis 15 Stunden lang bei 600 K bis 800 K gesintert und anschließend getempert. Die angestrebte makroskopische Homogenität wurde auch bei diesen Proben erreicht. Die Dichte betrug etwa 95 % der Schmelzlingsdichte.For the production of blocks having a diameter of 2 mm 0 o and 15o mm height by means of cold isostatic pressing in a flexible container, which is for isostatic molding condition, was first described in Example 1, Method. The powder mixture was pressed at a pressure of about 5oo MPa. Thereafter the compacts were lo to 15 hours at 00 6 8 00 K to K sintered and then tempered. The desired macroscopic homogeneity was also achieved with these samples. The density was about 95% of the melt density.

Beispiel 3:Example 3:

Die in Beispiel 1 beschriebene Abfall- und Glas-Pulvermischung wurde in eine Graphit-Form mit Graphitstempel eingefüllt und ohne vorangehendes Kaltpressen unter gleichzeitiger Aufgabe eines Druckes von lo bis 4o MPa bei ca. 600 K (indirekte Beheizung) heißgepreßt bzw. druckgesintert. Für die Blöcke mit einem Durchmesser von 2o mm und einer Höhe von 25 mm war eine Behandlungsdauer von lo Minuten ausreichend. Es wurde eine Dichte von 97 % der Schmelzlingsdichte an den Blöcken festgestellt, sowie die gewünschte makroskopische Homogenität.The waste described in Example 1 and glass powder mixture was filled in a graphite mold with graphite stamp and without a preceding continuous cold pressing with simultaneous task a pressure of from lo to 4o MPa at about 6 00 K (indirect heating) hot pressing or pressure-sintered. A treatment time of 10 minutes was sufficient for the blocks with a diameter of 20 mm and a height of 25 mm. A density of 97% of the solid density on the blocks and the desired macroscopic homogeneity were found.

Claims (4)

1. Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern, bei welchem die Abfallstoffe in eine Glas-, Glaskeramik- oder Keramik-Matrix eingebettet werden, dadurch gekennzeichnet, daß die Abfallstoffe a) in Form eines trockenen oder nahezu trockenen Pulvers mit der Glas-, Glaskeramik- oder Keramik-Matrix in Granulat-oder Pulver-Form oder b) in Form eines Schlammes mit Glas-, Glaskeramik- oder Keramik-Pulver verdickt,
mechanisch gemischt und im Falle b) getrocknet werden, danach bei einem Druck im Bereich von 5o MPa bis 5oo MPa gepreßt und anschließend unterhalb des Schmelzbereiches der Matrix im Entglasungsbereich gesintert oder im Bereich von lo bis 5o MPa druckgesintert werden.
1. A process for the production of moldings containing highly radioactive waste materials, in which the waste materials are embedded in a glass, glass ceramic or ceramic matrix, characterized in that the waste materials a) in the form of a dry or almost dry powder with the glass, glass ceramic or ceramic matrix in granulate or powder form or b) thickened in the form of a slurry with glass, glass ceramic or ceramic powder,
mechanically mixed and dried in case b), then pressed at a pressure in the range from 5o MPa to 5oo MPa and then sintered below the melting range of the matrix in the devitrification area or pressure sintered in the range from lo to 5o MPa.
2. Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern, bei welchem die Abfallstoffe in eine Glas-,Glaskeramik- oder Keramik-Matrix eingebettet werden, dadurch gekennzeichnet, daß die Abfallstoffe zunächst in bekannter Weise in eine Glas-,Glaskeramik- oder Keramik-Matrix eingeschmolzen werden, danach mechanisch zerkleinert oder gemahlen, das Zerkleinerungsgut bzw. das Mahlgut durchmischt und bei einem Druck im Bereich von 5o MPa bis 5oo MPa gepreßt und anschließend unterhalb des Schmelzbereiches der Matrix im Entglasungsbereich gesintert oder im Bereich von lo bis 5o MPa druckgesintert werden.2. Process for the production of moldings containing highly radioactive waste materials, in which the waste materials are embedded in a glass, glass ceramic or ceramic matrix, characterized in that the waste materials are initially known in a glass, glass ceramic or ceramic matrix are melted down, then mechanically comminuted or ground, the comminuted material or the ground material is mixed and pressed at a pressure in the range from 5o MPa to 5oo MPa and then sintered below the melting range of the matrix in the devitrification area or pressure sintered in the range from lo to 5o MPa. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der mit Glas-, Glaskeramik- oder Keramik-Pulver verdickte, die Abfallstoffe enthaltende Schlamm vor dem Trocknen im Schlickerguß verdichtet wird.3. The method according to claim 1, characterized in that the thickened with glass, glass ceramic or ceramic powder, the waste containing sludge is compressed before drying in slip casting. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei einer Temperatur im Bereich von 5oo K bis 800 K gesintert oder druckgesintert wird.4. The method according to claim 1, characterized in that is sintered or pressure sintered at a temperature in the range of 5oo K to 800 K.
EP19800102963 1979-11-08 1980-05-28 Process for preparing bodies containing highly radioactive wastes Expired EP0028670B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2945006 1979-11-08
DE19792945006 DE2945006C2 (en) 1979-11-08 1979-11-08 Process for the production of molded bodies containing highly radioactive waste

Publications (2)

Publication Number Publication Date
EP0028670A1 true EP0028670A1 (en) 1981-05-20
EP0028670B1 EP0028670B1 (en) 1983-09-28

Family

ID=6085400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800102963 Expired EP0028670B1 (en) 1979-11-08 1980-05-28 Process for preparing bodies containing highly radioactive wastes

Country Status (4)

Country Link
EP (1) EP0028670B1 (en)
JP (1) JPS5682499A (en)
BR (1) BR8007001A (en)
DE (1) DE2945006C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525381A1 (en) * 1982-04-17 1983-10-21 Kernforschungsz Karlsruhe PROCESS FOR IMPROVING THE PROPERTIES NECESSARY FOR LONG-TERM STORAGE OF SOLIDIFIED RADIOACTIVE WASTE
EP0136401A2 (en) * 1983-05-30 1985-04-10 Hitachi, Ltd. Method and apparatus for processing radioactive waste resin
EP0156001A2 (en) * 1983-12-01 1985-10-02 Forschungszentrum Jülich Gmbh Process for conditioning contaminated waste by coating with cement
US4855082A (en) * 1983-09-09 1989-08-08 Willy De Roode Process for rendering harmless dangerous chemical waste
WO2018152290A1 (en) * 2017-02-16 2018-08-23 GeoRoc International, Inc. Composition and method for the processing of hazardous sludges and ion exchange media

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778626A (en) * 1985-11-04 1988-10-18 Australian Nat'l Univ. of Acton Preparation of particulate radioactive waste mixtures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000072A (en) * 1959-08-20 1961-09-19 Ca Atomic Energy Ltd Process of containing and fixing fission products
DE2534014A1 (en) * 1975-07-30 1977-02-17 Kernforschung Gmbh Ges Fuer THERMODYNAMICALLY STABLE CERAMIC GLASS PRODUCT OR CERAMIC GLASS PRODUCT FOR THE FINAL DISPOSAL OF HIGHLY RADIOACTIVE WASTE
DE2747951A1 (en) * 1976-11-02 1978-05-11 Asea Ab PROCESS FOR BINDING RADIOACTIVE SUBSTANCES IN A BODY THAT IS RESISTANT TO LEAKAGE BY WATER

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2627265A1 (en) * 1976-06-18 1977-12-29 Krauss Maffei Ag Decanter type centrifuge with cake washing - having inserts inside bowl to cause break up of cake
FR2375695A1 (en) * 1976-12-21 1978-07-21 Asea Ab PROCESS FOR THE TREATMENT OF RADIOACTIVE WASTE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000072A (en) * 1959-08-20 1961-09-19 Ca Atomic Energy Ltd Process of containing and fixing fission products
DE2534014A1 (en) * 1975-07-30 1977-02-17 Kernforschung Gmbh Ges Fuer THERMODYNAMICALLY STABLE CERAMIC GLASS PRODUCT OR CERAMIC GLASS PRODUCT FOR THE FINAL DISPOSAL OF HIGHLY RADIOACTIVE WASTE
US4097401A (en) * 1975-07-30 1978-06-27 Gesellschaft Fur Kernforschung M.B.H. Thermodynamically stable product for permanent storage and disposal of highly radioactive liquid wastes
DE2747951A1 (en) * 1976-11-02 1978-05-11 Asea Ab PROCESS FOR BINDING RADIOACTIVE SUBSTANCES IN A BODY THAT IS RESISTANT TO LEAKAGE BY WATER
FR2369659A1 (en) * 1976-11-02 1978-05-26 Asea Ab PR

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525381A1 (en) * 1982-04-17 1983-10-21 Kernforschungsz Karlsruhe PROCESS FOR IMPROVING THE PROPERTIES NECESSARY FOR LONG-TERM STORAGE OF SOLIDIFIED RADIOACTIVE WASTE
GB2121232A (en) * 1982-04-17 1983-12-14 Kernforschungsz Karlsruhe Method for solidifying radioactive wastes
EP0136401A2 (en) * 1983-05-30 1985-04-10 Hitachi, Ltd. Method and apparatus for processing radioactive waste resin
EP0136401A3 (en) * 1983-05-30 1986-03-26 Hitachi, Ltd. Method and apparatus for processing radioactive waste resin
US4855082A (en) * 1983-09-09 1989-08-08 Willy De Roode Process for rendering harmless dangerous chemical waste
EP0156001A2 (en) * 1983-12-01 1985-10-02 Forschungszentrum Jülich Gmbh Process for conditioning contaminated waste by coating with cement
EP0156001A3 (en) * 1983-12-01 1986-10-15 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Process for conditioning contaminated waste by coating with cement
WO2018152290A1 (en) * 2017-02-16 2018-08-23 GeoRoc International, Inc. Composition and method for the processing of hazardous sludges and ion exchange media
CN110291593A (en) * 2017-02-16 2019-09-27 乔罗克国际股份有限公司 For handling the composition and method of harmful sludge and Ion Exchange Medium
CN110291593B (en) * 2017-02-16 2024-04-16 乔罗克国际股份有限公司 Compositions and methods for treating hazardous sludge and ion exchange media

Also Published As

Publication number Publication date
DE2945006C2 (en) 1987-01-15
DE2945006A1 (en) 1981-05-21
EP0028670B1 (en) 1983-09-28
BR8007001A (en) 1981-05-12
JPS5682499A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
DE3854547T2 (en) Process for manufacturing parts from powdered material.
DE1758845C3 (en) Process for the production of precision casting molds for reactive metals
DE3428252C2 (en)
DE10248888B4 (en) Process for the production of near net shape, metallic and / or ceramic components
DE3214242C2 (en)
DE3881669T2 (en) Heat-resistant composite body and process for its production.
CH653954A5 (en) METHOD FOR PRODUCING SHAPED COMPOSITES FROM A FIBER REINFORCED GLASS MATRIX OR GLASS CERAMIC MATRIX.
DE1918834A1 (en) Isotropic graphite of high density
EP0028670B1 (en) Process for preparing bodies containing highly radioactive wastes
DE6802373U (en) GRINDING WHEEL.
DE2856466C2 (en) Process for solidifying highly radioactive waste materials in a metal matrix in the form of granules or powder
CH676433A5 (en)
DE69301780T2 (en) Process for producing a metallic composite material containing dispersed metal carbide
DE112006000461T5 (en) casting process
EP0123191A2 (en) Method of making glass bodies used in the manufacture of light guides
DE3008368C2 (en) Process for manufacturing a glass-ceramic heat exchanger core
DE2855738C3 (en) Process for the production of storable, biologically harmful, in particular radioactive, waste
DE3729700C2 (en) Process for the production of pressable granules for the manufacture of products from sintered ceramic material
DE19629064C2 (en) Process for the production of composite materials
EP0475549A1 (en) Method of making articles of high silica content
DE1471364B2 (en) Process for the production of a hard, glossy, impermeable, glass-like body by carbonizing a preformed, hardened phenolaldehyde resin
DE3884327T2 (en) Material for foundry cores.
DE2701599A1 (en) Silicon nitride-contg. refractories with low permeability - prepd. by reaction sintering ferrosilicon nitride and silicon powders
DE2128270C3 (en) Dense, refractory bodies and processes for their manufacture
DE2346739B2 (en) Process for the production of materials for therapeutic purposes, consisting of a glass matrix with embedded particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB

17P Request for examination filed

Effective date: 19810609

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840601

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880528

BERE Be: lapsed

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

Effective date: 19880531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890131

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890531