EP0028569A1 - Process for agitating a molten metal by injection of gases - Google Patents
Process for agitating a molten metal by injection of gases Download PDFInfo
- Publication number
- EP0028569A1 EP0028569A1 EP80401549A EP80401549A EP0028569A1 EP 0028569 A1 EP0028569 A1 EP 0028569A1 EP 80401549 A EP80401549 A EP 80401549A EP 80401549 A EP80401549 A EP 80401549A EP 0028569 A1 EP0028569 A1 EP 0028569A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- molten metal
- gas
- tube
- injection
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 title claims abstract description 121
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 121
- 238000002347 injection Methods 0.000 title claims abstract description 61
- 239000007924 injection Substances 0.000 title claims abstract description 61
- 239000007789 gas Substances 0.000 title claims description 85
- 238000000034 method Methods 0.000 title claims description 24
- 230000008569 process Effects 0.000 title description 7
- 230000035515 penetration Effects 0.000 claims abstract description 3
- 238000003756 stirring Methods 0.000 claims description 14
- 239000011261 inert gas Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- 229910001882 dioxygen Inorganic materials 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 3
- 238000000265 homogenisation Methods 0.000 abstract description 2
- 229910000831 Steel Inorganic materials 0.000 description 24
- 239000010959 steel Substances 0.000 description 24
- 238000013019 agitation Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D1/00—Treatment of fused masses in the ladle or the supply runners before casting
- B22D1/002—Treatment with gases
- B22D1/005—Injection assemblies therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/40—Mixers using gas or liquid agitation, e.g. with air supply tubes
- B01F33/403—Mixers using gas or liquid agitation, e.g. with air supply tubes for mixing liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
Definitions
- the present invention relates to the treatment of molten metals by methods which involve the intervention of a gas. It relates more particularly to a method and a device for stirring a molten metal, which can be used in particular for the homogenization or degassing of steel or other metals.
- inert gas to ensure the agitation of molten steel is increasing.
- the inert gas is used to homogenize the molten steel, in its chemical composition and in temperature, after its extraction from the refining furnace and before its casting in ingots or in continuous casting devices. Mixing with a gas in the ladle makes it possible to obtain a steel whose characteristics are more uniform in all respects.
- molten steel is stirred, by means of a steel ingot which is lowered using a traveling crane, into the molten steel contained in the ladle.
- the movement of the bridge causes a displacement of the ingot and the agitation of the metal. This process is impractical, it takes time and it is not effective enough.
- a stopper which consists of a rod which is hollow, so that it can convey gas.
- the stopper rod has at its end small orifices arranged radially, allowing the outlet of the gas. It is protected by a refractory sleeve.
- the stopper system instead of being attached to the pocket, is attached to a fixed raised horizontal beam; the rod is placed upside down and the gas is introduced into it by a gas inlet at the top and it exits at the bottom, through the head orifices.
- a pocket containing molten metal is brought, by a crane, into position under the sys stopper rod and it is lifted so that the stopper rod is immersed in the molten metal.
- the gas exiting the head of the stopper spears through the molten metal, thereby producing the desired agitation.
- a porous refractory is used to introduce the gases into the molten metal.
- This process is implemented industrially. It uses a refractory brick or a porous plug having the property of being permeable to gas under pressure but substantially impermeable to molten metal.
- the porous plug constitutes part of the internal lining of the bag, in a place where it is submerged when the bag is filled with molten metal.
- the gas is introduced into the molten metal through the porous plug and the desired degree of agitation is obtained by action on the gas flow rate.
- such porous plugs can have a life expectancy of 10 to 25 cycles, and in the case of the composition of molten iron, the life can be from 50 to 200 heating cycles.
- a metal tube is used, made of steel, which is embedded in the refractory lining of a ladle, for example at the bottom or near the bottom.
- This tube passes through the steel outer casing and the internal lining of refractory material and ends at the surface interior of the latter.
- the introduction of gas begins before the metal is poured into the pocket and after obtaining the desired agitation, the introduction of gas is stopped.
- the metal then flows back into the tube and solidifies.
- the tube should be replaced after each cycle.
- the tube can be cleaned after use, by broaching using a steel bar or by drilling and removing the solidified metal, and it can be reused until it becomes too short.
- porous refractory and metal tube processes are also applied for the introduction of a relatively non-reactive gas at the bottom of a bath of molten metal in the steelworks field, in certain oxygen converters of the LD type.
- these gas distribution stirring devices can also be used to stir the molten metal.
- the subject of the present invention is a method and a device for stirring by introducing pressurized gas into a molten metal, which does not require any maintenance intervention between successive heaters.
- the method and the device according to the invention can be used for stirring molten metal, in order to homogenize the latter, but they can also be used to partially or completely expel a particular gas dissolved in the molten metal.
- the gas can be an inert gas, playing only a stirring role, it can also be a reactive gas in the presence of the molten metal, for example a reducing gas or an oxidizing gas, or any other gas to be introduced into the molten metal or to be mixed with it.
- the dimensions of the metal tube through which the gas is injected are chosen so that the molten metal solidifies at the end of the tube and completely closes the mouth, the inlet of molten metal in the inner conduit of the metal tube thus being prevented.
- the closed end is easy to unclog by gas pressure when the metal tube is put into service.
- the metal tube according to the invention therefore makes it possible to avoid the drawbacks of the metal tubes used in the prior process in that it has a long service life and can be used in successive heating cycles without requiring maintenance. This distinguishes it from the metal tubes according to the prior art, of larger diameter, which must be replaced after each use. In addition, there is no need for a special device to prevent the entry of molten metal into the gas supply circuit, since the metal tube itself prevents this entry.
- the invention thus relates to a device for stirring a molten metal by gas injection, characterized in that it comprises a tank for containing the molten metal, comprising an outer casing provided with a refractory lining and at minus a metal injection tube which passes through this envelope and ends at the right of the interior surface of the refractory lining, means for admitting a gas under pressure into the tank through the injection tube, from a source of supply of gas under pressure external to the tank and means for interrupting the injection by closing a connection pipe between the injection tube and said source, and means for creating at least temporarily an inlet pressure for the gas sufficient to expel a solidified metal plug possibly formed at the end of the tube during an interruption of the injection.
- the invention also relates to a method of stirring molten metal by means of the preceding device, which essentially consists in using a tank for containing the molten metal, comprising an outer casing provided with a refractory lining and at least one tube.
- the injection tube advantageously has a small diameter to prevent the penetration of the molten metal into the tube, the maximum value of which is determined by the condition that the molten metal must not enter the tube.
- the maximum diameter can be determined experimentally, for particular molten metals.
- the maximum admissible diameter of the interior passage of the tube is of the order of 2.5 mm.
- the minimum admissible diameter is determined by the condition that the injection tube is capable of distributing an inert gas at a suitable rate and under pressure to ensure mixing of the molten metal.
- the internal diameter may generally be between 0.25 and 2.5 mm, over a length of at least 2 mm, and in particular over the entire thickness of the lining, which it passes through, of the order of 100 mm to 1 meter.
- the thickness of the wall of the injector tube is determined to ensure sufficient mechanical strength of the tube for normal handling.
- the injection tube can be made of any metal which does not deform or soften under the operating conditions.
- the injection tube can be made of stainless steel, low carbon steel or copper.
- the conditions of treatment can be modified according to the nature of the metal used to manufacture the tubes.
- the injection tube passes through the refractory lining, so that the end or gas outlet mouth of the tube stops at the right of the interior surface of the lining.
- the injection tube must not extend beyond the refractory lining, taking into account the high temperatures to which it would be subjected.
- Molten metal for example molten steel, is poured into the pocket and the injection tube then becomes closed by the metal which solidifies on the free end. When the temperature of the injection tube increases, the tube becomes very weak mechanically.
- gas pressure is applied to the tube to unclog it.
- the unblocking can take place by expulsion of the only solidified metal on the end, or by bursting of the hot part, therefore weak, of the tube, near the end where it approaches the temperature of the molten metal.
- the gas can flow through the tube.
- the introduction of gas is stopped and the molten metal again closes the end of the tube, by solidification on the mouth.
- the hot molten metal which is poured into the pocket heats the injection tube and the solidified metal plug, so that this plug is expelled or the tube bursts as described above, which allows the introduction normal brewing gas in the pocket.
- Copper and low carbon steel tubes have the advantage that a lower gas pressure is required to unclog them compared to stainless steel tubes.
- the supply pressure suitable for stirring is normally between 1 and 12 bars, it is desirable to have an installation making it possible to apply a pressure of 10 to 100 bars, at the start of the injection, to expel the solidified metal, and when the gas supply is stopped by closing the supply duct, the pressure in this duct is balanced with that of the bath and the plug hardly forms for 2 to 3 mm at the end of the tube.
- the same device according to the invention can also be used with profit in converter installations for refining cast iron, although in this case it is not necessary to interrupt the gas injections. between two charges and that we can therefore avoid the formation of the solidified metal plug.
- Figure 1 is a vertical section through a ladle containing a metal bath and equipped with an injection tube according to the present invention, this tank can be an LD type converter, an electric oven or a street lamp.
- Figure 2 is a horizontal section along line 2-2 of Figure 1, a bag equipped with several injection tubes.
- Figures 3a and 3b are respectively a side view and an end view of an injection tube usable in the invention.
- Figure 4 is a partial vertical section through a pocket, showing a group of injection tubes.
- Figure 5 is a partial section, on a larger scale, illustrating an injection zone in a tank bottom for the reception of molten metal.
- Figure 6 is a longitudinal section through another embodiment of the injection tube according to the invention, the tube being housed in a thin metal sleeve.
- Figure 7 is a cross-section along line 7-7 of the tube of Figure 6.
- the ladle is generally designated by the reference B.
- the ladle B has a steel casing 15 and a refractory lining 17 and it contains a bath C of molten metal.
- the bottom of the bag B is equipped with a refractory piece 19, through which an injection tube D enters for the introduction of inert gas into the bath C.
- the bag B is provided with a cover 21, coated on the inside of a refractory lining 23.
- the lid 21 protects the surface of the stirred metal C melt, against moisture and oxygen - 'ambient atmosphere. To increase the effectiveness of this protection, it may be desirable to introduce an additional inert gas through the cover 21. An inlet pipe, not shown, can be provided for this purpose.
- the cover 21 also reduces heat loss by radiation. For example, in an installation treating 60 tonnes of steel heated under argon, the temperature drop rate is reduced from around 7 ° C / min without cover 21, to around 3.8 ° C / min with cover 21.
- FIG. 2 represents a bag B equipped with four injection tubes D, D 1 , D 2 , D 3 , and a pouring nozzle 31.
- the diameter of the interior passage of the injection tube D should not be greater than about 2.5 mm when the bath C is a molten ferrous metal. A diameter greater than this value can allow drips of molten metal penetrating further into the tube and causing internal blockages which cannot be removed by the pressure of gas alone. Such blockages would require cleaning the tube D mechanically or replacing it between successive uses.
- the admissible internal diameter, up to a maximum of 2.5 mm, is determined by the gas flow rate and the pressure for expulsion. In practice, the minimum internal diameter is of the order of 0.25 and preferably 0.8 mm.
- the wall thickness of tube D must be between 0.25 mm and 4 mm.
- the minimum wall thickness is determined by the mechanical strength required for the tube.
- the maximum wall thickness is determined by the combination of the temperature of the molten metal with which the tube comes into contact, the gas pressure and the type of refractory that surrounds the tube.
- the heat transmission, under the conditions prevailing in the area surrounding the injection tube D, the refractory and the contact with the molten metal, is extremely complex. Consequently, the optimal dimensions must be specified experimentally.
- the injection tube D can be a single tube, as shown in FIG. 3. If a greater flow rate is necessary to obtain the desired agitation in the molten metal, several tubes can be used.
- FIG. 4 illustrates this device. It can be seen in this figure that a common inlet tube 1 leads to a bundle of tubes D, D 1 , through a steel casing 15 and a refractory lining 17. This makes it possible to multiply the gas flow, in any conditions, while remaining for the individual tubes within suitable dimensional tolerances.
- multiple bundles of injection tubes can be provided, arranged for efficient operation.
- the number of tubes D can be chosen as a function of several factors, and makes it possible to overcome certain difficulties inherent in the use of a single source of gas for expulsion.
- the ladle has a dimension to receive a full load of steel from the refining furnace.
- the distribution of the gas in a bundle of injection tubes makes it possible to ensure the mixing of such a complete charge, while the use of a single source could lead to projections which, to be avoided, would require reducing the quantity of metal in the pocket so as to increase the upper free space for projections.
- the projection conditions in an LD converter, an electric oven and a reverberatory oven are less strict than in a ladle.
- FIG. 5 is a view, on a larger scale, of an injection tube D through the steel casing 15 and the refractory lining 17.
- the tube D is surrounded by refractory elements 33 and 35 which may be prefabricated bricks from compressed or suspended refractory material.
- the refractory elements 33 and 35 constitute a part of the refractory lining 17.
- the end E of the tube D does not extend beyond the free interior surface of the refractory element 35.
- their ends can be modified so as to receive a material of lower resistance than that of the adjacent refractory, for example graphite, which can burst or break during the withdrawal of the worn tube.
- a material of lower resistance than that of the adjacent refractory for example graphite
- FIGS. 6 and 7 show such a tube D5 provided with a thin sleeve 8.
- inert or relatively inert gases it is understood that it is not limited to the use of such gases. It can be used with reducing gases, for example natural gas, propane, etc. Liquid hydrocarbons can also be used. Active oxidizing gases, for example oxygen, can be sent through the injection tube not in commercially pure form, but diluted with an inert gas, for example argon, helium, nitrogen, etc. Oxygen can be present up to a content of 75% by volume. In a particular embodiment, the gas contains by volume 70% of molecular oxrygene.
- the molten metal treated by the process according to the invention can be subjected to a lower or higher pressure than atmospheric pressure, depending on the desired results.
- the gas pressure necessary to open the closed end of the injection tube can advantageously be between approximately 10 bars and approximately 50 bars, although higher pressures can be used. Once the tube is opened, which is almost immediate, the gas pressure can be reduced to the desired value, which essentially depends on the agitation useful for homogenizing the molten metal.
- a mild steel injection tube is used, having an outside diameter of 3.2 mm, a wall thickness of 0.8 mm, and an inside pass diameter of 1.55 mm.
- the tube is embedded in the refractory lining at the base of a pocket B, as shown in Figure 1.
- 112 kg of molten iron are poured into pocket B and the metal solidifies on the exposed end of the tube, sealing the latter.
- Argon is sent under a pressure of 15.7 bars, the plug on the tube is completely expelled and the metal is stirred with argon.
- the gas supply is stopped by closing the supply duct and the end of the tube is again closed by the molten metal.
- the latter is then emptied.
- 112 kg of molten metal are poured into pocket B.
- Argon pressure is applied and the normal gas flow is established.
- the cycle can be renewed continuously.
- the effective service life of the tube depends on the repair campaign of the pocket refractory.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Continuous Casting (AREA)
Abstract
Description
La présente invention se rapporta au traitement de métaux en fusion par les procédés qui impliquent l'intervention d'un gaz. Elle vise plus particulièrement un procédé et un dispositif de brassage d'un métal en fusion, utilisables notamment pour l'homogénéisation ou le dégazage de l'acier ou d'autres métaux.The present invention relates to the treatment of molten metals by methods which involve the intervention of a gas. It relates more particularly to a method and a device for stirring a molten metal, which can be used in particular for the homogenization or degassing of steel or other metals.
Avec le développement de la coulée continue d'acier et la demande pour de meilleures qualité d'aciers, l'utilisation de gaz inerte pour assurer l'agitation de l'acier en fusion va en augmentant. Le gaz inerte est employé pour homogénéiser l'acier fondu, dans sa composition chimique et en température, après son extraction du four d'affinage et avant sa coulée en lingots ou dans des appareils de coulée continue. Le brassage par un gaz dans la poche de coulée permet d'obtenir un acier dont les caractéristiques sont plus uniformes en tous points.With the development of continuous steel casting and the demand for better quality steels, the use of inert gas to ensure the agitation of molten steel is increasing. The inert gas is used to homogenize the molten steel, in its chemical composition and in temperature, after its extraction from the refining furnace and before its casting in ingots or in continuous casting devices. Mixing with a gas in the ladle makes it possible to obtain a steel whose characteristics are more uniform in all respects.
On connait plusieurs procédés de brassage de l'acier en fusion. Dans un premier procédé, on assure l'agitation de l'acier en fusion, au moyen d'un lingot d'acier qui est descendu à l'aide d'un pont roulant, dans l'acier fondu contenu dans la poche. Le mouvement du pont provoque un déplacement du lingotet l'agitation du métal. Ce procédé est peu pratique, il demande du temps et il n'est pas assez efficace.Several methods of brewing molten steel are known. In a first method, the molten steel is stirred, by means of a steel ingot which is lowered using a traveling crane, into the molten steel contained in the ladle. The movement of the bridge causes a displacement of the ingot and the agitation of the metal. This process is impractical, it takes time and it is not effective enough.
On connait d'autres procédés qui font intervenir une agitation par injection de gaz et qui sont plus sûrs. Ils diffèrent les uns des autres par la façon dont le gaz est introduit. Dans l'un de ces procédés, on utilise une quenouille constituée par une tige qui est creuse, de sorte qu'elle peut véhiculer du gaz. La quenouille comporte à son extrémité de petits orifices disposés radialement, permettant la sortie du gaz. Elle est protégée par un manchon réfractaire. En fonctionnement, le système de quenouille, au lieu d'être fixé à la poche, est attaché à une poutre horizontale surélevée fixe ; la tige est placée la tête en bas et le gaz y est introduit par une entrée de gaz à la partie supérieure et il sort à la partie inférieure, à travers les orifices de tête. Une poche contenant du métal en fusion est amenée, par une grue, en position sous le système de quenouille et elle est soulevée de façon à ce que la quenouille soit immergée dans le métal fondu. Le gaz sortant de la tête de la quenouille barbotte à travers le métal fondu, produisant ainsi l'agitation désirée.Other methods are known which involve agitation by injection of gas and which are safer. They differ from each other in the way the gas is introduced. In one of these methods, a stopper is used which consists of a rod which is hollow, so that it can convey gas. The stopper rod has at its end small orifices arranged radially, allowing the outlet of the gas. It is protected by a refractory sleeve. In operation, the stopper system, instead of being attached to the pocket, is attached to a fixed raised horizontal beam; the rod is placed upside down and the gas is introduced into it by a gas inlet at the top and it exits at the bottom, through the head orifices. A pocket containing molten metal is brought, by a crane, into position under the sys stopper rod and it is lifted so that the stopper rod is immersed in the molten metal. The gas exiting the head of the stopper spears through the molten metal, thereby producing the desired agitation.
Ce procédé est utilisé industriellement. Toutefois, un tel dispositif à quenouille dure seulement de 5 à 10 opérations, après quoi il doit être remplacé. D'autre part, on ne peut être certain que tout le débit gazeux passe dans le métal en fusion, car les manchons réfractaires constituent un joint de mauvaise qualité contre la quenouille en acier, et, de ce fait, le gaz empreinte le chemin de moindre résistance entre la quenouille et les manchons réfractaires, plutôt que de passer dans le métal en fusion. Enfin, on ne peut s'assurer d'une agitation suffisante qu'en examinant la surface du métal fondu pour régler le débit de gaz jusqu'à ce que l'on observe le degré voulu d'agitation.This process is used industrially. However, such a stopper device only lasts from 5 to 10 operations, after which it must be replaced. On the other hand, it cannot be certain that all the gas flow passes into the molten metal, because the refractory sleeves constitute a poor quality seal against the steel stopper, and, as a result, the gas imprints the path of less resistance between the stopper rod and the refractory sleeves, rather than passing through the molten metal. Finally, sufficient agitation can only be ensured by examining the surface of the molten metal to adjust the gas flow rate until the desired degree of agitation is observed.
Dans un autre procédé connu, on utilise un réfractaire poreux pour introduire les gaz dans le métal en fusion. Ce procédé est mis en oeuvre industriellement. Il utilise une brique réfractaire ou un bouchon poreux ayant la propriété d'être perméable au gaz sous pression mais sensiblement imperméable au métal en fusion. Le bouchon poreux constitue une partie du garnissage interne de la poche, à un endroit où il est submergé lorsque la poche est remplie de métal fondu. Le gaz est introduit dans le métal fondu à travers le bouchon poreux et le degré désiré d'agitation est obtenu par action sur le débit de gaz. Dans des conditions locales défavorables, de tels bouchons poreux peuvent avoir une espérance de vie de 10 à 25 cycles, et dans le cas de la composition de la fonte en fusion, la durée de vie peut être de 50 à 200 cycles de chauffe.In another known method, a porous refractory is used to introduce the gases into the molten metal. This process is implemented industrially. It uses a refractory brick or a porous plug having the property of being permeable to gas under pressure but substantially impermeable to molten metal. The porous plug constitutes part of the internal lining of the bag, in a place where it is submerged when the bag is filled with molten metal. The gas is introduced into the molten metal through the porous plug and the desired degree of agitation is obtained by action on the gas flow rate. Under unfavorable local conditions, such porous plugs can have a life expectancy of 10 to 25 cycles, and in the case of the composition of molten iron, the life can be from 50 to 200 heating cycles.
Dans un autre procédé connu, mis en oeuvre dans quelques installations, on utilise.un tube métallique, en acier, qui est noyé dans le revêtement réfractaire d'une poche de coulée, par exemple au fond ou près du fond. Ce tube traverse l'enveloppe extérieure en acier et le garnissage interne en matériau réfractaire et elle se termine au droit de la surface intérieure de ce dernier. L'introduction du gaz commence avant que le métal soit versé dans la poche et après obtention de l'agitation désirée, on arrête l'introduction de gaz. Le métal reflue alors dans le tube et se solidifie. D'une manière générale, le tube doit être remplacé après chaque cycle. Parfois, le tube peut être nettoyé après usage, par brochage au moyen d'une barre d'acier ou par forage et enlèvement du métal solidifié, et il peut être réutilisé tant qu'il ne devient pas trop court.In another known method, implemented in some installations, a metal tube is used, made of steel, which is embedded in the refractory lining of a ladle, for example at the bottom or near the bottom. This tube passes through the steel outer casing and the internal lining of refractory material and ends at the surface interior of the latter. The introduction of gas begins before the metal is poured into the pocket and after obtaining the desired agitation, the introduction of gas is stopped. The metal then flows back into the tube and solidifies. Generally, the tube should be replaced after each cycle. Sometimes the tube can be cleaned after use, by broaching using a steel bar or by drilling and removing the solidified metal, and it can be reused until it becomes too short.
Les procédés à réfractaire poreux et à tube métallique sont également appliqués pour l'introduction d'un gaz relativement non réactif dans le fond d'un bain de métal en fusion dans le domaine de l'aciérie, dans certains convertisseurs à oxygène du type L.D. Dans les fours électriques, les fours à réverbère et appareils analogues, ces dispositifs de brassage par distribution de gaz peuvent également être utilisés pour agiter le métal en fusion.The porous refractory and metal tube processes are also applied for the introduction of a relatively non-reactive gas at the bottom of a bath of molten metal in the steelworks field, in certain oxygen converters of the LD type. In electric ovens, reverberatory ovens and the like, these gas distribution stirring devices can also be used to stir the molten metal.
La présente invention a pour objet un procédé et un dispositif de brassage par introduction de gaz sous pression dans un métal en fusion, qui ne nécessitent pas d'intervention d'entretien entre des chauffes successives. Le procédé et le dispositif suivant l'invention peuvent être utilisés pour le brassage de métal en fusion, dans le but d'homogénéiser ce dernier, mais ils peuvent également être employés pour chasser partiellement ou complètement un gaz particulier dissous dans le métal en fusion. Par ailleurs, si le gaz peut être un gaz inerte, jouant uniquement un rôle de brassage, il peut aussi s'agir d'un gaz réactif en présence du métal en fusion, par exemple un gaz réducteur ou un gaz oxydant, ou de tout autre gaz à introduire dans le métal fondu ou à mélanger avec celui-ci.The subject of the present invention is a method and a device for stirring by introducing pressurized gas into a molten metal, which does not require any maintenance intervention between successive heaters. The method and the device according to the invention can be used for stirring molten metal, in order to homogenize the latter, but they can also be used to partially or completely expel a particular gas dissolved in the molten metal. Furthermore, if the gas can be an inert gas, playing only a stirring role, it can also be a reactive gas in the presence of the molten metal, for example a reducing gas or an oxidizing gas, or any other gas to be introduced into the molten metal or to be mixed with it.
Suivant l'invention, les dimensions du tube métallique par lequel s'effectue l'injection du gaz sont choisies de façon que le métal en fusion se solidifie à l'extrémité du tube et obture complètement l'embouchure, l'entrée de métal fondu dans le conduit intérieur du tube métallique étant ainsi empêchée. L'extrémité obturée est facile à déboucher par la pression du gaz, lorsque le tube métallique est mis en service.According to the invention, the dimensions of the metal tube through which the gas is injected are chosen so that the molten metal solidifies at the end of the tube and completely closes the mouth, the inlet of molten metal in the inner conduit of the metal tube thus being prevented. The closed end is easy to unclog by gas pressure when the metal tube is put into service.
Le tube métallique suivant l'invention permet donc d'éviter les inconvénients des tubes métalliques utilisés dans le procédé antérieur en ce qu'il a une longue durée de vie et peut être utilisé dans des cycles de chauffe successifs sans nécessiter d'entretien. Cela le distingue des tubes métalliques suivant l'art antérieur, de plus grand diamètre, qui doivent être remplacés après chaque utilisation. De plus, on n'a pas besoin d'un dispositif spécial pour empêcher l'entrée de métal en fusion dans le circuit d'amenée de gaz, puisque le tube métallique lui-même empêche cette entrée.The metal tube according to the invention therefore makes it possible to avoid the drawbacks of the metal tubes used in the prior process in that it has a long service life and can be used in successive heating cycles without requiring maintenance. This distinguishes it from the metal tubes according to the prior art, of larger diameter, which must be replaced after each use. In addition, there is no need for a special device to prevent the entry of molten metal into the gas supply circuit, since the metal tube itself prevents this entry.
L'invention a ainsi pour objet un dispositif de brassage d'un métal en fusion par injection de gaz, caractérisé en ce qu'il comprend une cuve pour contenir le métal en fusion, comprenant une enveloppe extérieure munie d'un garnissage réfractaire et au moins un tube d'injection métallique qui traverse cette enveloppe et se termine au droit de la surface intérieure du garnissage réfractaire, des moyens pour admettre un gaz sous pression dans la cuve par le tube d'injection, à partir d'une source d'alimentation en gaz sous pression extérieure à la cuve et des moyens pour interrompre l'injection par fermeture d'une conduite de liaison entre le tube d'injection et ladite source, et des moyens pour créer au moins provisoirement une pression d'admission du gaz suffisante pour expulser un bouchon de métal solidifié éventuellement formé à l'extrémité du tube lors d'une interruption de l'injection.The invention thus relates to a device for stirring a molten metal by gas injection, characterized in that it comprises a tank for containing the molten metal, comprising an outer casing provided with a refractory lining and at minus a metal injection tube which passes through this envelope and ends at the right of the interior surface of the refractory lining, means for admitting a gas under pressure into the tank through the injection tube, from a source of supply of gas under pressure external to the tank and means for interrupting the injection by closing a connection pipe between the injection tube and said source, and means for creating at least temporarily an inlet pressure for the gas sufficient to expel a solidified metal plug possibly formed at the end of the tube during an interruption of the injection.
L'invention a aussi pour objet un procédé de brassage de métal en fusion au moyen du dispositif précédent, qui consiste essentiellement à utiliser une cuve pour contenir le métal en fusion, comprenant une enveloppe extérieure munie d'un garnissage réfractaire et au moins un tube d'injection métallique qui traverse cette enveloppe et se termine au droit de la surface intérieure du garnissage réfractaire, introduire une première charge de métal en fusion dans la cuve, envoyer du gaz à travers le tube injecteur dans le métal en fusion, sous une pression capable d'assurer le brassage du métal en fusion, fermer ledit conduit pour interrompre l'envoi de ce gaz et permettre au métal en fusion de se solidifier sur l'extrémité du tube, en l'obturant, retirer le métal en fusion homogénéisé de la cuve, introduire une deuxième charge de métal en fusion dans la cuve, envoyer du gaz par le tube d'injection, au moins provisoirement sous une pression capable de provoquer le débouchage du tube à son extrémité, afin de permettre l'entrée de ce gaz dans la deuxième charge,et poursuivre l'admission de gaz sous une pression assurant le brassage de la deuxième charge de métal en fusion.The invention also relates to a method of stirring molten metal by means of the preceding device, which essentially consists in using a tank for containing the molten metal, comprising an outer casing provided with a refractory lining and at least one tube. of metal injection which crosses this envelope and ends at the right of the interior surface of the refractory lining, introduce a first charge of molten metal in the tank, send gas through the injector tube in the molten metal, under a pressure capable of ensuring the mixing of the molten metal, closing said conduit to interrupt the sending of this gas and allowing the molten metal to solidify on the end of the tube, by sealing it, remove the homogenized molten metal from the tank, introduce a second charge of molten metal into the tank, send gas through the injection tube, at least temporarily under a pressure capable of causing the tube to be uncorked at its end, in order allow the entry of this gas into the second charge, and continue the admission of gas under a pressure ensuring mixing of the second charge of molten metal.
Le tube d'injection a avantageusement un diamètre faible pour empêcher la pénétration du métal fondu dans le tube, dont la valeur maximale est déterminée par la condition que le métal en fusion ne doit pas pénétrer dans le tube. Le diamètre maximal peut être déterminé expérimentalement, pour des métaux en fusion particuliers. Dans le cas de métaux ferreux tels que le fer et l'acier, le diamètre maximal admissible du passage intérieur du tube est de l'ordre de 2,5 mm. Le diamètre minimal admissible est déterminé par la condition que le tube d'injection soit capable de distribuer un gaz inerte à un débit et sous une pression convenables pour assurer le brassage du métal en fusion. En fait, le diamètre interne peut être généralement compris entre 0,25 et 2,5 mm, sur une longueur d'au moins 2 mm, et notamment sur toute l'épaisseur du garnissage .qu'il traverse, de l'ordre de 100 mm à 1 mètre. L'épaisseur de la paroi du tube injecteur est déterminée pour assurer une résistance mécanique du tube suffisante pour une manipulation normale.The injection tube advantageously has a small diameter to prevent the penetration of the molten metal into the tube, the maximum value of which is determined by the condition that the molten metal must not enter the tube. The maximum diameter can be determined experimentally, for particular molten metals. In the case of ferrous metals such as iron and steel, the maximum admissible diameter of the interior passage of the tube is of the order of 2.5 mm. The minimum admissible diameter is determined by the condition that the injection tube is capable of distributing an inert gas at a suitable rate and under pressure to ensure mixing of the molten metal. In fact, the internal diameter may generally be between 0.25 and 2.5 mm, over a length of at least 2 mm, and in particular over the entire thickness of the lining, which it passes through, of the order of 100 mm to 1 meter. The thickness of the wall of the injector tube is determined to ensure sufficient mechanical strength of the tube for normal handling.
Le tube d'injection peut être réalisé en tout métal qui ne se déforme pas ou ne se ramollit pas dans les conditions opératoires. Par exemple, le tube d'in- jec-tion peut être fabriqué en acier inoxydable, en acier à basse teneur en carbone ou cuivre. Les conditions de traitement peuvent être modifiées suivant la nature du métal utilisé pour fabriquer les tubes.The injection tube can be made of any metal which does not deform or soften under the operating conditions. For example, the injection tube can be made of stainless steel, low carbon steel or copper. The conditions of treatment can be modified according to the nature of the metal used to manufacture the tubes.
Dans l'application par exemple à une poche de coulée, le tube d'injection traverse le garnissage réfractaire, de façon que l'extrémité ou embouchure de sortie de gaz du tube s'arrête au droit de la surface intérieure du garnissage. Le tube d'injection ne doit pas se prolonger au-delà du revêtement réfractaire, compte tenu des hautes températures auxquelles il serait soumis. On fait couler du métal en fusion, par exemple de l'acier fondu, dans la poche et le tube d'injection devient alors obturé par le métal qui se solidifie sur l'extrémité libre. Lorsque la température du tube d'injection augmente, le tube devient très faible mécaniquement.In the application for example to a ladle, the injection tube passes through the refractory lining, so that the end or gas outlet mouth of the tube stops at the right of the interior surface of the lining. The injection tube must not extend beyond the refractory lining, taking into account the high temperatures to which it would be subjected. Molten metal, for example molten steel, is poured into the pocket and the injection tube then becomes closed by the metal which solidifies on the free end. When the temperature of the injection tube increases, the tube becomes very weak mechanically.
Quand on a besoin d'un brassage par gaz, on applique une pression de gaz dans le tube pour le déboucher. Le débouchage peut avoir lieu par expulsion du seul métal solidifié sur l'extrémité, ou par éclatement de la partie chaude, donc faible, du tube, près de l'extrémité où il approche de la température du métal en fusion. Une fois que la pression gazeuse a dégagé le tube du métal solidifié, le gaz peut s'écouler à travers le tube. Lorsque l'agitation désirée du métal en fusion a été obtenue, on arrête l'introduction de gaz et le métal en fusion obture à nouveau l'extrémité du tube, par solidification sur l'embouchure. Au cycle suivant, le métal fondu chaud qui est versé dans la poche réchauffe le tube d'injection et le bouchon de métal solidifié, de sorte que ce bouchon est chassé ou que le tube éclate comme décrit plus haut, ce qui permet l'introduction normale de gaz de brassage dans la poche.When gas mixing is required, gas pressure is applied to the tube to unclog it. The unblocking can take place by expulsion of the only solidified metal on the end, or by bursting of the hot part, therefore weak, of the tube, near the end where it approaches the temperature of the molten metal. Once the gas pressure has cleared the tube from the solidified metal, the gas can flow through the tube. When the desired agitation of the molten metal has been obtained, the introduction of gas is stopped and the molten metal again closes the end of the tube, by solidification on the mouth. In the following cycle, the hot molten metal which is poured into the pocket heats the injection tube and the solidified metal plug, so that this plug is expelled or the tube bursts as described above, which allows the introduction normal brewing gas in the pocket.
Il est en pratiqué,de peu d'importance que l'extrémité du tube soit ou non cassée et expulsée avec le métal solidifié. Ceci peut dépendre de la nature du métal constituant le tube. Dans le cas d'un tube d'injection en acier inoxydable utilisé pour le traitement d'acier fondu, le plus probable est que le métal solidifié obturant l'embouchure soit seul chassé par la pression de gaz, puisque l'acier inoxydable résiste relativement bien aux températures élevées. Dans le cas d'un tube d'injection en cuivre utilisé pour le traitement d'acier fondu, le plus probable est que le tube lui-même éclate à son extrémité, le cuivre étant un métal de résistance mécanique plus faible, en particulier aux températures élevées.It is in practice, of little importance whether or not the end of the tube is broken and expelled with the solidified metal. This may depend on the nature of the metal constituting the tube. In the case of a stainless steel injection tube used for the treatment of steel molten, the most likely is that the solidified metal sealing the mouth is only driven by gas pressure, since stainless steel resists relatively well at high temperatures. In the case of a copper injection tube used for the treatment of molten steel, the most likely is that the tube itself bursts at its end, copper being a metal of lower mechanical resistance, in particular to high temperatures.
Les tubes en cuivre et en acier à basse teneur en carbone présentent l'avantage qu'il faut une pression de gaz plus faible pour les déboucher, comparativement aux tubes en acier inoxydable. En général, alors que la pression d'alimentation convenant au brassage est normalement comprise entre 1 et 12 bars, il est souhaitable de disposer d'une installation permettant d'appliquer une pression de 10 à 100 bars, au début de l'injection, pour expulser le métal solidifié, et lorsqu'on arrête l'arrivée de gaz en fermant le conduit d'alimentation, la pression dans ce conduit se met en équilibre avec celle du bain et le bouchon ne se forme guère que sur 2 à 3 mm en bout du tube.Copper and low carbon steel tubes have the advantage that a lower gas pressure is required to unclog them compared to stainless steel tubes. In general, while the supply pressure suitable for stirring is normally between 1 and 12 bars, it is desirable to have an installation making it possible to apply a pressure of 10 to 100 bars, at the start of the injection, to expel the solidified metal, and when the gas supply is stopped by closing the supply duct, the pressure in this duct is balanced with that of the bath and the plug hardly forms for 2 to 3 mm at the end of the tube.
Il est entendu qu'avec une utilisation continue, il peut se produire une certaine érosion du tube d'injection à l'extrémité. Toutefois, on constate que cette érosion est faible et que le tube reste intact, même après un service prolongé.It is understood that with continuous use, there may be some erosion of the injection tube at the end. However, it can be seen that this erosion is slight and that the tube remains intact, even after prolonged service.
On remarquera d'autre part que le même dispositif suivant l'invention peut être utilisé avec profit également dans des installations à convertisseurs pour l'affinage de la fonte, bien que dans ce cas il ne soit pas nécessaire d'interrompre les injections de gaz entre deux charges et que l'on puisse donc éviter la formation du bouchon de métal solidifié.On the other hand, it will be noted that the same device according to the invention can also be used with profit in converter installations for refining cast iron, although in this case it is not necessary to interrupt the gas injections. between two charges and that we can therefore avoid the formation of the solidified metal plug.
L'invention sera mieux comprise à la lumière de la-description de ses formes de réalisation, non limitatives, illustrée par les dessins annexés.The invention will be better understood in the light of the description of its non-limiting embodiments, illustrated by the accompanying drawings.
La figure 1 est une coupe verticale à travers une poche de coulée contenant un bain de métal et équipée d'un tube d'injection conforme à la présente invention, cette cuve pouvant être un convertisseur de type L.D., un four électrique ou un four à réverbère.Figure 1 is a vertical section through a ladle containing a metal bath and equipped with an injection tube according to the present invention, this tank can be an LD type converter, an electric oven or a street lamp.
La figure 2 est une coupe horizontale, suivant la ligne 2-2 de la figure 1, d'une poche équipée de plusieurs tubes d'injection.Figure 2 is a horizontal section along line 2-2 of Figure 1, a bag equipped with several injection tubes.
Les figures 3a et 3b sont respectivement une vue de côté et une vue en bout d'un tube d'injection utilisable dans l'invention.Figures 3a and 3b are respectively a side view and an end view of an injection tube usable in the invention.
La figure 4 est une coupe verticale partielle, à travers une poche, représentant un groupe de tubes d'injection.Figure 4 is a partial vertical section through a pocket, showing a group of injection tubes.
La figure 5 est une coupe partielle, à plus grande échelle, illustrant une zone d'injection dans un fond de cuve pour la réception de métal en fusion.Figure 5 is a partial section, on a larger scale, illustrating an injection zone in a tank bottom for the reception of molten metal.
La figure 6 est une coupe longitudinale à travers une autre forme de réalisation de tube d'injection suivant l'invention, le tube étant logé dans un manchon métallique mince.Figure 6 is a longitudinal section through another embodiment of the injection tube according to the invention, the tube being housed in a thin metal sleeve.
La figure 7 est une coupe transversale, suivant la ligne 7-7, du tube de la figure 6.Figure 7 is a cross-section along line 7-7 of the tube of Figure 6.
Sur les dessins, la poche de coulée est globalement désignée par le repère B. La poche B comporte une enveloppe 15 en acier et un garnissage réfractaire 17 et elle contient un bain C de métal en fusion. Le fond de la poche B est équipé d'une pièce réfractaire 19, à travers laquelle pénètre un tube d'injection D pour l'introduction de gaz inerte dans le bain C. La poche B est munie d'un couvercle 21, revêtu intérieurement d'un garnissage réfractaire 23.In the drawings, the ladle is generally designated by the reference B. The ladle B has a
Le couvercle 21 protège la surface agitée du bain C de métal en fusion, contre l'humidité et l'oxygène de-'l'atmosphère ambiante. Pour augmenter l'efficacité de cette protection, il peut être souhaitable d'introduire un gaz inerte supplémentaire à travers le couvercle 21. Une tubulure d'entrée, non représentée, peut être prévue à cet effet. Le couvercle 21 réduit également la perte de chaleur par rayonnement. Par exemple, dans une installation traitant 60 tonnes d'acier chauffé sous argon, la vitesse de chute de température est réduite de 7°C/mn environ sans couvercle 21, à environ 3,8°C/mn avec un couvercle 21.The
La figure 2 représente une poche B équipée de quatre tubes d'injection D, D1, D2, D3, et d'une buse de coulée 31.FIG. 2 represents a bag B equipped with four injection tubes D, D 1 , D 2 , D 3 , and a pouring
La répartition du flux de gaz entre plusieurs sources, comme représenté sur la figure 2, permet d'utiliser au total un débit de gaz beaucoup plus grand, sans projection excessive du métal.The distribution of the gas flow between several sources, as shown in FIG. 2, makes it possible in total to use a much greater gas flow, without excessive projection of the metal.
La nature du tube d'injection D et son utilisation dans la présente invention sont décrites ci-après en détail. Le diamètre du passage intérieur du tube d'injection D ne doit pas être supérieur à 2,5 mm environ lorsque le bain C est un métal ferreux en fusion. Un diamètre supérieur à cette valeur peut permettre des coulures de métal fondu pénétrant plus loin dans le tube et provoquant des bouchages internes qui ne peuvent pas être chassés par la pression de gaz seule. De tels bouchages obligeraient à nettoyer le tube D mécaniquement ou à le remplacer entre des utilisations successives. Le diamètre intérieur admissible, dans la limite maximale de 2,5 mm, est déterminé par le débit de gaz et la pression pour l'expulsion. En pratique, le diamètre intérieur minimal est de l'ordre de 0,25 et de préférence 0,8 mm.The nature of the injection tube D and its use in the present invention are described below in detail. The diameter of the interior passage of the injection tube D should not be greater than about 2.5 mm when the bath C is a molten ferrous metal. A diameter greater than this value can allow drips of molten metal penetrating further into the tube and causing internal blockages which cannot be removed by the pressure of gas alone. Such blockages would require cleaning the tube D mechanically or replacing it between successive uses. The admissible internal diameter, up to a maximum of 2.5 mm, is determined by the gas flow rate and the pressure for expulsion. In practice, the minimum internal diameter is of the order of 0.25 and preferably 0.8 mm.
L'épaisseur de paroi du tube D doit être comprise entre 0,25 mm et 4 mm. L'épaisseur minimale de paroi est déterminée par la résistance mécanique nécessaire pour le tube. L'épaisseur maximale de paroi est déterminée par la combinaison de la température du métal en fusion avec lequel le tube vient en contact, de la pression de gaz et du type de réfractaire qui entoure le tube. La transmission de chaleur, dans les conditions qui règnent dans la zone entourant le tube d'injection D, le réfractaire et le contact avec le métal en fusion, est extrêmement complexe. Par suite, les dimensions optimales doivent être précisées expérimentalement.The wall thickness of tube D must be between 0.25 mm and 4 mm. The minimum wall thickness is determined by the mechanical strength required for the tube. The maximum wall thickness is determined by the combination of the temperature of the molten metal with which the tube comes into contact, the gas pressure and the type of refractory that surrounds the tube. The heat transmission, under the conditions prevailing in the area surrounding the injection tube D, the refractory and the contact with the molten metal, is extremely complex. Consequently, the optimal dimensions must be specified experimentally.
Le tube d'injection D peut être un tube unique, comme représenté sur la figure 3. Si un débit plus grand est nécessaire pour obtenir l'agitation désirée dans le métal en fusion, on peut utiliser plusieurs tubes.The injection tube D can be a single tube, as shown in FIG. 3. If a greater flow rate is necessary to obtain the desired agitation in the molten metal, several tubes can be used.
Une autre façon d'obtenir un débit de gaz plus grand consiste à grouper en faisceau les tubes d'injection. Dans chaque groupe, on utilise deux ou plusieurs tubes raccordés à une entrée commune dans la poche. La figure 4 illustre ce dispositif. On voit, sur cette figure, qu'un tube d'entrée commune 1 conduit à un faisceau de tubes D, D1, à travers une enveloppe en acier 15 et un revêtement réfractaire 17. Cela permet de multiplier le débit de gaz, dans n'importe quelles conditions, tout en restant pour les tubes individuels à l'intérieur des tolérances dimensionnelles convenables.Another way to get a larger gas flow is to bundle the injection tubes. In each group, two or more tubes are used connected to a common inlet in the pocket. Figure 4 illustrates this device. It can be seen in this figure that a common inlet tube 1 leads to a bundle of tubes D, D 1 , through a
Pour obtenir un débit encore plus grand, on peut prévoir des faisceaux multiples de tubes d'injection, disposés pour un fonctionnement efficace. Le nombre de tubes D peut être choisi en fonction de plusieurs facteurs, et permettre de vaincre certaines difficultés inhérentes à l'emploi d'une seule source de gaz pour l'expulsion.To obtain an even greater flow rate, multiple bundles of injection tubes can be provided, arranged for efficient operation. The number of tubes D can be chosen as a function of several factors, and makes it possible to overcome certain difficulties inherent in the use of a single source of gas for expulsion.
Dans la plupart des aciéries, la poche de coulée a une dimension permettant de recevoir une charge complète d'acier venant du four d'affinage. La répartition du gaz dans un faisceau de tubes d'injection permet d'assurer le brassage d'une telle charge complète, alors que l'emploi d'une source unique pourrait conduire à des projections qui, pour être évitées, exigeraient de diminuer la quantité de-métal dans la poche de manière à augmenter l'espace supérieur libre pour les projections. Bien entendu, les conditions de projection dans un convertisseur L.D., un four électrique et un four à réverbère sont moins strictes que dans une poche de coulée.In most steel mills, the ladle has a dimension to receive a full load of steel from the refining furnace. The distribution of the gas in a bundle of injection tubes makes it possible to ensure the mixing of such a complete charge, while the use of a single source could lead to projections which, to be avoided, would require reducing the quantity of metal in the pocket so as to increase the upper free space for projections. Of course, the projection conditions in an LD converter, an electric oven and a reverberatory oven are less strict than in a ladle.
La figure 5 est une vue, à plus grande échelle, d'un tube d'injection D à travers l'enveloppe 15 en acier et le garnissage réfractaire 17. Le tube D est entouré par des éléments réfractaires 33 et 35 qui peuvent être des briques préfabriquées à partir d'une matière réfractaire comprimée ou en suspension. Les éléments réfractaires 33 et 35 constituent une partie du revêtement réfractaire 17. L'extrémité E du tube D ne se prolonge pas au-delà de la surface intérieure libre de l'élément réfractaire 35.FIG. 5 is a view, on a larger scale, of an injection tube D through the
Pour simplifier l'enlèvement et le remplacement des tubes d'injection, leurs extrémités peuvent être modifiées de manière à recevoir un matériau de plus faible résistance que celle du réfractaire adjacent, par exemple du graphite, qui peut éclater ou se briser pendant le retrait du tube usé.To simplify the removal and replacement of the injection tubes, their ends can be modified so as to receive a material of lower resistance than that of the adjacent refractory, for example graphite, which can burst or break during the withdrawal of the worn tube.
Les figures 6 et 7 représentent un tel tube D5 muni d'un manchon mince 8.FIGS. 6 and 7 show such a tube D5 provided with a
Bien que l'invention ait été décrite avec référence à des gaz inertes ou relativement inertes, il est entendu qu'elle n'est pas limitée à l'emploi de tels gaz. Elle peut être utilisée avec des gaz réducteurs, par exemple gaz naturel, propane, etc. On peut également utiliser des hydrocarbures liquides. Des gaz oxydants actifs, par exemple l'oxygène, peuvent être envoyés à travers le tube d'injection non pas sous forme commercialement pure, mais dilués avec un gaz inerte, par exemple argon, hélium, azote, etc. L'oxygène peut être présent jusqu'à une teneur de 75 % en volume. Dans une forme particulière de réalisation, le gaz contient en volume 70 % d'oxrygène moléculaire.Although the invention has been described with reference to inert or relatively inert gases, it is understood that it is not limited to the use of such gases. It can be used with reducing gases, for example natural gas, propane, etc. Liquid hydrocarbons can also be used. Active oxidizing gases, for example oxygen, can be sent through the injection tube not in commercially pure form, but diluted with an inert gas, for example argon, helium, nitrogen, etc. Oxygen can be present up to a content of 75% by volume. In a particular embodiment, the gas contains by volume 70% of molecular oxrygene.
Le métal en fusion traité par le procédé suivant l'invention peut être soumis à une pression plus faible ou plus forte que la pression atmosphérique, suivant les résultats désirés.The molten metal treated by the process according to the invention can be subjected to a lower or higher pressure than atmospheric pressure, depending on the desired results.
La pression de gaz nécessaire pour déboucher l'extrémité obturée du tube d'injection peut avantageusement être comprise entre 10 bars environ et 50 bars environ, bien que des pressions supérieures puissent être utilisées. Une fois le tube débouché, ce qui est quasiment immédiat, la pression de gaz peut être réduite à la valeur désirée, qui dépend essentiellement de l'agitation utile pour homogénéiser le métal en fusion.The gas pressure necessary to open the closed end of the injection tube can advantageously be between approximately 10 bars and approximately 50 bars, although higher pressures can be used. Once the tube is opened, which is almost immediate, the gas pressure can be reduced to the desired value, which essentially depends on the agitation useful for homogenizing the molten metal.
L'invention est illustrée ci après par référence à un exemple de mise en oeuvre.The invention is illustrated below with reference to an exemplary implementation.
On utilise un tube d'injection en acier doux, ayant un diamètre extérieur de 3,2 mm, une épaisseur de paroi de 0,8 mm, et un diamètre de .passage intérieur de 1,55 mm. Le tube est noyé dans le revêtement réfractaire à la base d'une poche B, comme représenté sur la figure 1. On verse 112 kg de fer en fusion dans la poche B et le métal se solidifie sur l'extrémité découverte du tube, obturant cette dernière. On envoie de l'argon sous une pression de 15,7 bars, le bouchon sur le tube est expulsé complètement et on procède à l'agitation du métal à l'argon. On arrête l'arrivée de gaz en fermant le conduit d'alimentation et l'extrémité du tube est à nouveau obturée par le métal en fusion. On vidange ensuite ce dernier. Au cycle suivant, on verse dans la poche B 112 kg de métal en fusion. On applique une pression d'argon et on établit le débit normal de gaz. Le cycle peut être renouvelé continuellement. La durée de vie effective du tube est fonction de la campagne de réfection du réfractaire de la poche.A mild steel injection tube is used, having an outside diameter of 3.2 mm, a wall thickness of 0.8 mm, and an inside pass diameter of 1.55 mm. The tube is embedded in the refractory lining at the base of a pocket B, as shown in Figure 1. 112 kg of molten iron are poured into pocket B and the metal solidifies on the exposed end of the tube, sealing the latter. Argon is sent under a pressure of 15.7 bars, the plug on the tube is completely expelled and the metal is stirred with argon. The gas supply is stopped by closing the supply duct and the end of the tube is again closed by the molten metal. The latter is then emptied. In the following cycle, 112 kg of molten metal are poured into pocket B. Argon pressure is applied and the normal gas flow is established. The cycle can be renewed continuously. The effective service life of the tube depends on the repair campaign of the pocket refractory.
Il est entendu que des modifications de détail peuvent être apportées dans la forme de mise en oeuvre du procédé et du dispositif suivant l'invention, sans sortir du cadre de celle-ci.It is understood that modifications of detail can be made in the form of implementation of the method and of the device according to the invention, without departing from the scope thereof.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT80401549T ATE11795T1 (en) | 1979-10-31 | 1980-10-31 | METAL FLUSHING METHOD BY GAS INJECTION. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000338904A CA1141174A (en) | 1979-10-31 | 1979-10-31 | Homogenization of metal using gas |
CA338904 | 1979-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0028569A1 true EP0028569A1 (en) | 1981-05-13 |
EP0028569B1 EP0028569B1 (en) | 1985-02-13 |
Family
ID=4115497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80401549A Expired EP0028569B1 (en) | 1979-10-31 | 1980-10-31 | Process for agitating a molten metal by injection of gases |
Country Status (7)
Country | Link |
---|---|
US (1) | US4311518A (en) |
EP (1) | EP0028569B1 (en) |
JP (1) | JPS5681641A (en) |
AT (1) | ATE11795T1 (en) |
AU (1) | AU540327B2 (en) |
CA (1) | CA1141174A (en) |
DE (1) | DE3070177D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0070197A1 (en) * | 1981-07-15 | 1983-01-19 | Nippon Steel Corporation | A nozzle assembly for bottom blown steel converter |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5871343A (en) * | 1981-10-22 | 1983-04-28 | Kobe Steel Ltd | Nozzle for blowing of gas provided in molten metal vessel |
US4462824A (en) * | 1983-06-14 | 1984-07-31 | Allegheny Ludlum Steel Corporation | Annular tuyere |
US4699654A (en) * | 1986-04-08 | 1987-10-13 | Union Carbide Corporation | Melting furnace and method for melting metal |
WO2010080911A1 (en) | 2009-01-07 | 2010-07-15 | Divx, Inc. | Singular, collective and automated creation of a media guide for online content |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2855293A (en) * | 1955-03-21 | 1958-10-07 | Air Liquide | Method and apparatus for treating molten metal with oxygen |
FR1503078A (en) * | 1965-12-01 | 1967-11-24 | Union Carbide Corp | Metallurgical lance |
US3495815A (en) * | 1967-07-17 | 1970-02-17 | Union Carbide Corp | Outside change tuyere |
FR2012888A1 (en) * | 1968-07-12 | 1970-03-27 | Interstop Ag | |
DE1901563A1 (en) * | 1968-08-13 | 1970-09-24 | Maximilianshuette Eisenwerk | Process for refining pig iron to steel |
FR2076057A1 (en) * | 1970-01-12 | 1971-10-15 | Uss Eng & Consult | |
US3633898A (en) * | 1969-06-06 | 1972-01-11 | Stora Kopparbergs Bergslags Ab | Means for gas-flushing metal melts |
FR2172057A1 (en) * | 1972-02-18 | 1973-09-28 | Uss Eng & Consult | |
US4135920A (en) * | 1976-07-06 | 1979-01-23 | Barbakadze Dzhondo F | Method of introducing powdered material into molten metal |
-
1979
- 1979-10-31 CA CA000338904A patent/CA1141174A/en not_active Expired
-
1980
- 1980-10-16 US US06/197,514 patent/US4311518A/en not_active Expired - Lifetime
- 1980-10-31 AU AU64026/80A patent/AU540327B2/en not_active Ceased
- 1980-10-31 DE DE8080401549T patent/DE3070177D1/en not_active Expired
- 1980-10-31 JP JP15236780A patent/JPS5681641A/en active Granted
- 1980-10-31 AT AT80401549T patent/ATE11795T1/en not_active IP Right Cessation
- 1980-10-31 EP EP80401549A patent/EP0028569B1/en not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2855293A (en) * | 1955-03-21 | 1958-10-07 | Air Liquide | Method and apparatus for treating molten metal with oxygen |
FR1503078A (en) * | 1965-12-01 | 1967-11-24 | Union Carbide Corp | Metallurgical lance |
US3495815A (en) * | 1967-07-17 | 1970-02-17 | Union Carbide Corp | Outside change tuyere |
FR2012888A1 (en) * | 1968-07-12 | 1970-03-27 | Interstop Ag | |
DE1901563A1 (en) * | 1968-08-13 | 1970-09-24 | Maximilianshuette Eisenwerk | Process for refining pig iron to steel |
US3633898A (en) * | 1969-06-06 | 1972-01-11 | Stora Kopparbergs Bergslags Ab | Means for gas-flushing metal melts |
FR2076057A1 (en) * | 1970-01-12 | 1971-10-15 | Uss Eng & Consult | |
FR2172057A1 (en) * | 1972-02-18 | 1973-09-28 | Uss Eng & Consult | |
US4135920A (en) * | 1976-07-06 | 1979-01-23 | Barbakadze Dzhondo F | Method of introducing powdered material into molten metal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0070197A1 (en) * | 1981-07-15 | 1983-01-19 | Nippon Steel Corporation | A nozzle assembly for bottom blown steel converter |
Also Published As
Publication number | Publication date |
---|---|
AU6402680A (en) | 1981-05-07 |
JPS5681641A (en) | 1981-07-03 |
JPH032934B2 (en) | 1991-01-17 |
EP0028569B1 (en) | 1985-02-13 |
CA1141174A (en) | 1983-02-15 |
AU540327B2 (en) | 1984-11-15 |
US4311518A (en) | 1982-01-19 |
ATE11795T1 (en) | 1985-02-15 |
DE3070177D1 (en) | 1985-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
LU86568A1 (en) | METHOD AND DEVICE FOR FORMING A REFRACTORY MASS ON A SURFACE | |
EP0255450B1 (en) | Device for gas-shielding a molten metal jet | |
FR2505219A1 (en) | LIQUID METAL TRANSPORTATION SYSTEM COMPRISING MEANS FOR MAINTAINING THE TEMPERATURE OF LIQUID METAL | |
CA1330159C (en) | Steel casting process with carbon dioxide snow purging of the steel bath | |
EP0028569B1 (en) | Process for agitating a molten metal by injection of gases | |
LU81971A1 (en) | USE OF ARGON IN THE PROCESS OF REFINING STEEL IN FUSION WITH BASIC OXYGEN TO CONTROL SPRAY | |
EP0127521A1 (en) | Process and device for the treatment of a low-pressure cast metal, especially for the inoculation of the melt | |
FR2475063A1 (en) | METHOD FOR MOUNTING AND REPLACING A TRIM FOR GAS INTRODUCING BY THE WALL OF A CONTAINER CONTAINING A MOLTEN MASS, AND DEVICE FOR IMPLEMENTING IT | |
FR2611151A1 (en) | DEVICE FOR PREHEATING AND / OR FILLING AND UNCHOUCHING A CASTING ORIFICE AND METHOD FOR IMPLEMENTING SAID METHOD | |
EP0446152B1 (en) | Package for introducing light metal into a molten aluminium alloy | |
EP0924305B1 (en) | Metallurgical reactor for treating of molten metal under reduced pressure | |
FR2513909A1 (en) | METHOD AND APPARATUS FOR TREATING LIQUID METAL IN A CONTAINER | |
EP0046721B1 (en) | Nozzle for oxygen-injection lances used in the decarburisation of pig iron, in particular chromium pig iron | |
LU84742A1 (en) | PROCESS FOR IMPROVING THE LIFE OF PERMEABLE REFRACTORY ELEMENTS LODGED IN THE BOTTOM OF METALLURGICAL REFINING CONTAINERS, IN PARTICULAR STEEL CONVERTERS WITH OXYGEN BLOWING FROM THE TOP | |
EP0332483B1 (en) | Nozzle for assisting orifice,device incorporated therein and method for method for carrying out | |
FR2701412A1 (en) | Novel-type pouring (casting) ladle | |
EP0093039B1 (en) | Process for increasing the gas-permeability of fire-proof elements in the bottoms of metallurgical vessels, and materials for carrying it out | |
FR2675411A1 (en) | Distributor (tundish) for the continuous casting of liquid metal, particularly steel, between a ladle and an ingot mould | |
FR2472153A1 (en) | Sliding shutter for tap-hole on open hearth furnace - where compressed air prevents ingress of molten steel and also stirs melt to reduce steel mfg. time (BR 7.7.81) | |
EP0223722A1 (en) | Device and process for the low-pressure injection of pulverulent additives into a stream of molten metal | |
EP0998588A1 (en) | Inert tank for treating oxidable liquid metal | |
EP0536185B1 (en) | Liquid steel bath reheating method | |
LU85378A1 (en) | Metal treatment for low pressure die casting - particularly inoculation of cast iron with ferrosilicon wire | |
FR2852608A1 (en) | Recuperation of zinc contained in molten iron by vacuum treatment and collection of zinc dust, allowing the use of some zinc coated steel scrap in the iron-making operation | |
BE1005461A3 (en) | High-carbon ferromanganese refining method and installation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
17P | Request for examination filed |
Effective date: 19811020 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 11795 Country of ref document: AT Date of ref document: 19850215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3070177 Country of ref document: DE Date of ref document: 19850328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19851031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19900910 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19900912 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19900917 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19900927 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19901031 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19911031 Ref country code: AT Effective date: 19911031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19911101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19920501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
ITTA | It: last paid annual fee | ||
EUG | Se: european patent has lapsed |
Ref document number: 80401549.3 Effective date: 19920604 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960911 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19960919 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971031 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990930 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19991004 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Free format text: 20001031 *CANADIAN LIQUID AIR LTD *AIR LIQUIDE CANADA LTEE |