EP0255450B1 - Device for gas-shielding a molten metal jet - Google Patents

Device for gas-shielding a molten metal jet Download PDF

Info

Publication number
EP0255450B1
EP0255450B1 EP87401801A EP87401801A EP0255450B1 EP 0255450 B1 EP0255450 B1 EP 0255450B1 EP 87401801 A EP87401801 A EP 87401801A EP 87401801 A EP87401801 A EP 87401801A EP 0255450 B1 EP0255450 B1 EP 0255450B1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
steel
mold
casting
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87401801A
Other languages
German (de)
French (fr)
Other versions
EP0255450A3 (en
EP0255450A2 (en
Inventor
Guy Savard
Robert Gum Hong Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Canada Inc
Original Assignee
Air Liquide Canada Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Canada Inc filed Critical Air Liquide Canada Inc
Priority to AT87401801T priority Critical patent/ATE51352T1/en
Publication of EP0255450A2 publication Critical patent/EP0255450A2/en
Publication of EP0255450A3 publication Critical patent/EP0255450A3/en
Application granted granted Critical
Publication of EP0255450B1 publication Critical patent/EP0255450B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/003Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/106Shielding the molten jet

Definitions

  • the invention relates to a method of forming a protective gas shield around the steel to prevent oxidation, when this steel is poured from a container in the form of a liquid stream until the moment when it solidifies.
  • the liquid steel produced by any of the well known methods usually contains a high oxygen content. This is detrimental to its quality.
  • the steel is calmed by introducing into the liquid steel deoxidizing agents, for example, silicon, in the form of ferrosilicon, or aluminum or these two substances at the same time. This is usually done in a transfer pocket, on casting.
  • the quenched liquid steel has a strong affinity for oxygen, which it absorbs when it is exposed to the atmosphere, when it is poured into ingot molds, to form billets. or slabs. This results in defects in the resulting steel.
  • liquid argon is poured into the molds.
  • the argon evaporates when it comes into contact with the liquid steel and isolates the latter from the atmosphere during the rest of the casting in the ingot mold.
  • the main drawbacks of this process are that the storage and transport of the equipment is difficult to adapt to the severe working conditions of the casting platform and, moreover, the cost of argon is high, relatively at the price of normal steel grades.
  • Another method uses liquid nitrogen to form a protective shield for the stream of liquid steel as it is cast in a continuous casting machine.
  • This process is described in the brochure entitled "Conspal Surface Protection” published by Concast AG, Zurich, Switzerland, March 1977, as well as in US Patent No. 4,178,980, issued in the name of L'Air Liquide.
  • liquid nitrogen gives a degree of protection which provides a good improvement compared to other processes.
  • handling this substance under the harsh conditions of the casting platform makes it difficult in some cases to obtain continuity of the casting during the operation.
  • carbon dioxide C0 2
  • C0 2 carbon dioxide
  • Patent DE-A 2 040 504 describes the use of carbon monoxide CO so as to maintain a reducing atmosphere above the molten metal, on the one hand, and the reduction of the iron oxide FeO contained in the metal bath by injecting CO into said metal bath, on the other hand.
  • the Applicant has found that the kinetics of the reactions are such that, on coming into contact with liquid steel, and although the carbon dioxide decomposes at the gas-metal interface, a negligible quantity of oxygen dissolves in the metal and the carbon monoxide formed behaves like a screen layer at the gas-metal interface. Not only is oxidation considerably reduced compared to the level it would reach in the absence of a shielding layer between the metal and the atmosphere, but also absorption of nitrogen and hydrogen (from moisture from air) by liquid steel. The absorption of oxygen from decomposition is less than about 60 parts per million and can be reduced to 40 parts per million. Carbon dioxide is therefore capable of forming an effective screen between liquid steel and the surrounding atmosphere when this steel is poured from a container in the form of a liquid stream until it solidifies, which considerably reduces the rate of oxidation.
  • a protective carbon dioxide screen is formed around the stream of liquid steel, close to its source, and this screen is kept in contact with the steel until the latter is solidifies.
  • the general criteria to be observed for the use of carbon dioxide as a protective screen are generally the same as in the case of the use of argon or other inert gases.
  • the ingot mold is purged in advance using carbon dioxide to remove the oxygen and to form an anhydride atmosphere in the ingot mold. carbon dioxide into which and through which the steel is poured.
  • the oxygen content of the mold, before casting can be reduced to less than 3% by volume, and preferably, to 1% at most.
  • the protective screen can be formed by means of an annular ramp pierced with outlet orifices which are arranged around the stream of liquid steel, close to its source, for delivering carbon dioxide in the form of jets. which come together to form a cover that follows the surface of the steel stream.
  • an annular distribution ramp can surround the outlet nozzle of the ladle.
  • the steel forming the liquid stream is usually at a temperature between 1,625 ° C and 1,650 ° C.
  • the invention also relates to the use of mixtures of argon and carbon dioxide in steel casting to prevent oxidation.
  • FIG. 1 represents a pocket A containing liquid steel which is poured into an ingot mold B.
  • a protective gas composed of carbon dioxide, is conveyed through an annular distribution ramp (represented in FIG. 4), supplied by a supply line 15.
  • An ingot mold 8 1 which waits its turn to receive the liquid steel, is shown while receiving carbon dioxide purge gas via a line 17 and the following ingot molds Bi and B 2 wait their turn to be processed.
  • each of the molds Before entering the treatment phase, each of the molds is provided with a cap 19 formed of an aluminum film.
  • the cap 19 has been torn locally to form an opening for the introduction of the gas pipe.
  • FIG. 2 shows, in a more detailed manner, the ingot mold B 1 during purging with carbon dioxide.
  • Line 17 is passed through an opening 20 in the aluminum foil cap and it ends in a nozzle 18 through which carbon dioxide is introduced into the bottom of the mold to move the air and replace it with a carbon dioxide atmosphere.
  • the mold 8 1 has a wall 22 which encloses a molding cavity 23 of decreasing section.
  • the base of the wall 22 is supported on a corrugated metal interlayer 24, which is itself supported by the plate of a carriage C and is intended to form a seal between the base of the wall 22 and the plate of the carriage, by letting a certain quantity of carbon dioxide gas escape laterally.
  • Carbon dioxide is injected into the ingot mold Bi until this ingot mold has an oxygen content of not more than 3%, and preferably not more than 1%.
  • the mold is now ready for casting. It is then brought to the position of the mold B and the casting operation is carried out as described with reference to FIG. 4.
  • a valve arranged in the pocket A is opened, by means of a remote control, for allow the liquid steel to flow through an outlet passage 25 formed in the pocket A and pass in the form of a vertical current at the level of a protective gas diffuser 27.
  • the diffuser 27 is supplied with gaseous carbon dioxide by a pipe 15, which has the effect that a gas screen surrounds the stream of liquid metal and accompanies the latter when it enters the carbon dioxide atmosphere contained in the ingot mold B.
  • the liquid steel is isolated from the atmosphere by a continuous curtain of carbon dioxide.
  • the valve of the ladle is closed to stop the flow of liquid metal and the next ingot mold and the ladle are brought into positions of mutual alignment so that this ingot mold receives its liquid steel content.
  • equipment which is substantially as shown in FIG. 4.
  • a bag is used having a capacity of 50 tonnes and ingot molds each having a capacity of 8 to 9 tonnes.
  • the pocket has a circular opening or nozzle with a diameter of 5 to 6.5 cm.
  • Each mold has a depth of 240 to 260 cm. The distance from the bottom of the nozzle to the upper surface of the mold is 75 cm.
  • Each ingot mold rests on a trolley-mounted interlayer, of the type used to evacuate the solidified ingots from the casting station.
  • the bag is equipped with a perforated circular ramp, located just below the nozzle and capable of forming a protective screen for carbon dioxide gas.
  • This ramp is connected to a continuous source of carbon dioxide gas supply.
  • the installation includes conventional equipment for purging the ingot mold by means of carbon dioxide gas.
  • each mold is purged using carbon dioxide gas, at a rate of 2.8 cubic meters per minute, to expel the air from inside the mold.
  • the air is expelled from the interior of the ingot mold by the carbon dioxide purge at a flow rate of 2265 to 2832 liters / minute (80 to 100 sefm standard cubic foot minute), for approximately 3 minutes before the casting of each ingot .
  • a rubber hose with a protective asbestos coating is introduced into the mold, through the aluminum film, so that the diffuser plunges as low as possible, as shown in Figure 2.
  • the gas flow is extended to the air has been expelled from the mold, to such an extent that the concentration of oxygen in the mold does not exceed 1% by volume.
  • the gas injection is extended to an instant immediately preceding the pouring into this ingot mold, this to take account of the gas leak between the ingot mold and its interlayer.
  • the molds are prepared for casting according to the following procedure.
  • a strong jet of compressed air is projected onto the interlayer to remove any free particles from it.
  • a coating composed of a dispersion of cement in dilute phosphoric acid is then applied to the interlayer.
  • Four strips of corrugated steel sheet of approximately 150 mm x 750 mm 1.6 mm are placed on the interlayer, in a square or a rectangle.
  • an oblong chimney made of thin sheet steel, measuring approximately 500 mm x 1,000 mm x 1,250 mm, to reduce the intensity of projections to the time of the start of the pouring of liquid metal into the mold.
  • Exothermic “boards” hot elevators or "hot tops" are fixed on the upper end 12 ′ of the internal surface of the ingot mold, these boards generating heat by coming into contact with the liquid steel, this for to slow the cooling at the part of the ingot, and to thereby reduce the depth of the recess formed in the upper part of this ingot and which must be cut before the subsequent rolling.
  • a thin aluminum foil cap is placed over the top of the mold to limit exposure to the atmosphere before the mold has been purged with carbon dioxide.
  • the liquid steel punctures a small hole in the thin aluminum sheet, thereby reducing the amount of ambient air that is drawn into the mold.
  • the temperature of the current steel is from 1,625 ° C to 1,650 ° C.
  • a screen of carbon dioxide is formed near the source of the current, that is to say say just below the bottom of the pocket, under the nozzle.
  • the screen formed around the current of liquid steel is entrained with the steel and forms a protective screen insulating from the atmosphere from the moment the steel leaves the nozzle until its impact in the mold.
  • the carbon dioxide flow rate sent to the screen is 2.8 cubic meters per minute.
  • the pocket containing the 50 tonnes of steel is positioned above the first ingot mold, already purged and the flow of screen gas is put into action.
  • the purge pipe was previously transferred to the second ingot mold without interrupting the flow of gas.
  • the valve is open to start casting (see Figure 4). At times, the nozzle is blocked by solidified metal or by slag. In each case, it is necessary to inject oxygen to the lance to clear the nozzle (see Figure 4).
  • C0 2 gas is used at the two injection points (purging and forming a screen).
  • a device is therefore used which has a vaporization capacity to provide a flow rate comparable to that of an inert gas, for example argon.
  • the composition of the CO 2 feed is shown in Figure 5.
  • the ingot mold is filled and the valve is closed (for approximately 20 to 30 seconds) while the crane operator positions the pocket above the second ingot mold. During this time, the purge gas pipe is transferred to the next ingot mold and the valve is opened again to fill the mold that has just been purged. The sequence is continued until the pocket is emptied of its metal charge.
  • each mold is allowed to cool, in the conventional manner, with a neck che of protective flux on its surface, so as to form a solid ingot.
  • the ingot molds are then emptied of their ingots.
  • Each ingot is hot rolled into a strip, according to standard practice, then subjected to ultrasonic control for the detection of surface defects.
  • the acceptable strip was then rolled into a sheet and the sheet was then made into a helically welded tube. The tube was then subjected to ultrasonic testing for fault detection.
  • the gas flow rate was 2.8 cubic meters per minute in the case of carbon dioxide and 2.8 cubic meters per minute in the case of l 'argon.
  • Each mold was purged for approximately 2 minutes and the stream of liquid metal was protected for the duration of the casting operation, approximately 25 minutes.
  • this gas constitutes an extremely useful gas when used according to the invention.
  • Carbon dioxide is heavier than air (1.5: 1) unlike argon (1.5: 2) and therefore it maintains an effective protective screen longer than lighter gases since it does not does not disperse into the atmosphere as easily.
  • Carbon dioxide can be used in the form of carbon dioxide snow to provide a concentrated form of C0 2 gas for the use of the ingot mold in ingot casting or in the ingot mold of a continuous casting installation.

Abstract

Molten steel, normally exposed to an atmosphere of air, is protected against pick-up of impurities by placing carbon dioxide gas in such quantities and in such proximity to the surface to cause dissociation of the carbon dioxide at a rate which furnishes an atmosphere of carbon monoxide and gives off a negligible amount of oxygen to the steel, thus providing a gas barrier or shroud isolating the steel from the surrounding atmosphere and preventing pick-up therefrom of oxygen, nitrogen or hydrogen. This method may be applied to protecting steel being transferred from a ladle to a mold, or from a ladle to a tundish and from the tundish to a mold in continuous casting. In a method where a number of shrouding operations are carried out in series, carbon dioxide vapor, under pressure, is bled, in increments, from a storage vessel containing a body of liquid carbon dioxide in overlying ullage space containing vapor. Each increment is superheated, after it leaves the vessel, and is ultimately expanded and dispersed at ambient temperature to form the shroud. As each increment of vapor is removed from the vessel, it is replaced by withdrawing liquid carbon dioxide, vaporizing it and returning it to the ullage space.

Description

L'invention concerne un procédé de formation d'un écran protecteur de gaz autour de l'acier pour éviter l'oxydation, lorsque cet acier est coulé à partir d'un récipient sous la forme d'un courant liquide jusqu'au moment où il se solidifie.The invention relates to a method of forming a protective gas shield around the steel to prevent oxidation, when this steel is poured from a container in the form of a liquid stream until the moment when it solidifies.

Dans la pratique normale, l'acier liquide produit par l'un quelconque des procédés bien connus contient habituellement une forte teneur en oxygène. Ceci est préjudiciable à sa qualité. Pour éviter cet inconvénient, on calme l'acier en introduisant dans l'acier liquide des agents désoxydants, par exemple, du silicium, sous la forme de ferrosilicium, ou de l'aluminium ou encore ces deux substances à la fois. Ceci s'effectue habituellement dans une poche de transfert, à la coulée.In normal practice, the liquid steel produced by any of the well known methods usually contains a high oxygen content. This is detrimental to its quality. To avoid this drawback, the steel is calmed by introducing into the liquid steel deoxidizing agents, for example, silicon, in the form of ferrosilicon, or aluminum or these two substances at the same time. This is usually done in a transfer pocket, on casting.

A la suite du traitement de désoxydation, l'acier liquide calmé possède une forte affinité pour l'oxygène, qu'il absorbe lorsqu'il est exposé à l'atmosphère, au moment où on le coule dans des lingotières, pour former des billettes ou brames. Ceci se traduit par des défauts dans l'acier résultant.Following the deoxidation treatment, the quenched liquid steel has a strong affinity for oxygen, which it absorbs when it is exposed to the atmosphere, when it is poured into ingot molds, to form billets. or slabs. This results in defects in the resulting steel.

Pour éviter ou réduire cette absorption d'oxygène, on a déjà utilisé différents procédés de protection. Un procédé consiste à protéger les courants d'acier liquide coulés à l'air libre en les faisant passer dans des tuyaux céramiques entre le bassin de coulée et la lingotière. Cette technique constituait une pratique établie adoptée pour maintenir une qualité élevée dans la coulée continue de blooms et brames de forte section. Malheureusement, elle ne peut pas être appliquée aux blooms et billettes de plus petite section en raison de limitations d'espace. Un exemple de ce type de procédé est décrit dans le brevet canadien n 01097881.To avoid or reduce this absorption of oxygen, various protection procedures have already been used. One method consists in protecting the streams of liquid steel poured in the open air by passing them through ceramic pipes between the casting basin and the ingot mold. This technique was an established practice adopted to maintain high quality in the continuous casting of large section blooms and slabs. Unfortunately, it cannot be applied to smaller blooms and billets due to space limitations. An example of this type of process is described in Canadian Patent No. 0 1097881.

Dans un autre procédé, on verse de l'argon liquide dans les lingotières. L'argon s'évapore en entrant en contact avec l'acier liquide et isole ce dernier de l'atmosphère pendant la suite de la coulée dans la lingotière. Les principaux inconvénients de ce procédé consistent en ce que le stockage et le transport de l'équipement sont difficiles à adapter aux sévères conditions de travail de la plate-forme de coulée et, par ailleurs, le coût de l'argon est élevé, relativement au prix des nuances normales d'acier.In another method, liquid argon is poured into the molds. The argon evaporates when it comes into contact with the liquid steel and isolates the latter from the atmosphere during the rest of the casting in the ingot mold. The main drawbacks of this process are that the storage and transport of the equipment is difficult to adapt to the severe working conditions of the casting platform and, moreover, the cost of argon is high, relatively at the price of normal steel grades.

La protection par gaz inerte de l'acier coulé en continu a également été décrite dans l'article "Gas Shrouding of Strand Cast Steel at Jones & Laughlin Steel Corporation" de Samways, Pollard & Fedenco, Journals of Metals, octobre 1974, ainsi que dans les brevets américains, 3 908 734, 3 963 224 et 4 023 614.The inert gas protection of continuously cast steel has also been described in the article "Gas Shrouding of Strand Cast Steel at Jones & Laughlin Steel Corporation" by Samways, Pollard & Fedenco, Journals of Metals, October 1974, as well as in U.S. patents 3,908,734, 3,963,224 and 4,023,614.

Un autre procédé utilise de l'azote liquide pour former un écran protecteur pour le courant d'acier liquide au moment où il est coulé dans une machine de coulée continue. Ce procédé est décrit dans la brochure intitulée "Conspal Surface Protection" éditée par Concast AG, Zurich, Suisse, mars 1977, ainsi que dans le brevet américain n 4 178 980, délivré au nom de L'Air Liquide. En général, l'azote liquide donne un degré de protection qui apporte une bonne amélioration comparativement aux autres procédés. Toutefois, la manipulation de cette substance dans les sévères conditions de la plate-forme de coulée rend dans certains cas difficile l'obtention de la continuité de la coulée pendant l'opération.Another method uses liquid nitrogen to form a protective shield for the stream of liquid steel as it is cast in a continuous casting machine. This process is described in the brochure entitled "Conspal Surface Protection" published by Concast AG, Zurich, Switzerland, March 1977, as well as in US Patent No. 4,178,980, issued in the name of L'Air Liquide. In general, liquid nitrogen gives a degree of protection which provides a good improvement compared to other processes. However, handling this substance under the harsh conditions of the casting platform makes it difficult in some cases to obtain continuity of the casting during the operation.

La demanderesse a constaté que, contre toute attente, l'anhydride carbonique (C02) peut être utilisé efficacement comme gaz protecteur pour protéger l'acier liquide de l'oxydation par l'atmosphère dans le cas de la coulée continue, ou de la coulée en lingots, lorsque cet acier est coulé à partir d'un récipient sous la forme d'un courant liquide jusqu'au moment où il se solidifie.The Applicant has found that, against all expectations, carbon dioxide (C0 2 ) can be used effectively as a protective gas to protect the liquid steel from oxidation by the atmosphere in the case of continuous casting, or of casting in ingots, when this steel is poured from a container in the form of a liquid stream until it solidifies.

Un appareil conforme au préambule de la revendication 1 est décrit dans DE-A 1 920 421. Dans cet appareil de coulée continue, un gaz est injecté dans le volume fermé délimité par la partie inférieure extérieure du récipient supérieur (A) et la partie supérieure du récipient inférieur (B). Une pression constante est ainsi maintenue au dessus du métal intorduit dans la lingotière.An apparatus in accordance with the preamble of claim 1 is described in DE-A 1 920 421. In this continuous casting apparatus, a gas is injected into the closed volume delimited by the lower external part of the upper container (A) and the upper part of the lower container (B). A constant pressure is thus maintained above the metal entering the mold.

Le brevet DE-A 2 040 504 décrit l'utilisation de monoxide de carbone CO de manière à maintenir une atmosphère réductrice au dessus du métal fondu, d'une part, et la réduction de l'oxyde de fer FeO contenu dans le bain métallique par injection du CO dans ledit bain métallique, d'autre part.Patent DE-A 2 040 504 describes the use of carbon monoxide CO so as to maintain a reducing atmosphere above the molten metal, on the one hand, and the reduction of the iron oxide FeO contained in the metal bath by injecting CO into said metal bath, on the other hand.

Il est connu d'utiliser l'anhydride carbonique pour protéger les métaux liquides tels que le plomb, le zinc, le cuivre, métaux qui possèdent un point de fusion inférieur à la température de décomposition de l'anhydride carbonique. En se basant sur des considérations thermodynamiques, on doit s'attendre à ce qu'une telle protection ne soit pas réalisée par le coulée de métaux ayant un point de fusion supérieur à la température de décomposition de l'anhydride carbonique. En particulier, on doit s'attendre à ce que, sous l'effet du contact entre l'anhydride carbonique et l'acier liquide, ce dernier soit oxydé par la décomposition du gaz, puisque sa température de décomposition est très inférieure à celle de l'acier liquide. De manière inattendue, la demanderesse a constaté que les cinétiques des réactions sont telles que, en entrant en contact avec l'acier liquide, et bien que l'anhydride carbonique se décompose à l'interface gaz-métal, une quantité négligeable d'oxygène se dissout dans le métal et l'oxyde de carbone formé se comporte comme une couche écran à l'interface gaz-métal. Non seulement l'oxydation est considérablement réduite comparativement au niveau qu'elle atteindrait en l'absence de couche écran entre le métal et l'atmosphère mais on évite également l'absorption d'azote et d'hydrogène (provenant de l'humidité de l'air) par l'acier liquide. L'absorption d'oxygène issu de la décomposition est inférieure à environ 60 parties par million et peut être réduite à 40 parties par million. L'anhydride carbonique est donc capable de former un écran efficace entre l'acier liquide et l'atmosphère environnante lorsque cet acier est coulé à partir d'un récipient dans la forme d'un courant liquide jusqu'au moment où il se solidifie, ce qui réduit considérablement le taux d'oxydation.It is known to use carbon dioxide to protect liquid metals such as lead, zinc, copper, metals which have a melting point below the decomposition temperature of carbon dioxide. Based on thermodynamic considerations, it should be expected that such protection will not be achieved by the casting of metals having a melting point above the decomposition temperature of carbon dioxide. In particular, it should be expected that, under the effect of contact between carbon dioxide and liquid steel, the latter will be oxidized by the decomposition of the gas, since its decomposition temperature is much lower than that of liquid steel. Unexpectedly, the Applicant has found that the kinetics of the reactions are such that, on coming into contact with liquid steel, and although the carbon dioxide decomposes at the gas-metal interface, a negligible quantity of oxygen dissolves in the metal and the carbon monoxide formed behaves like a screen layer at the gas-metal interface. Not only is oxidation considerably reduced compared to the level it would reach in the absence of a shielding layer between the metal and the atmosphere, but also absorption of nitrogen and hydrogen (from moisture from air) by liquid steel. The absorption of oxygen from decomposition is less than about 60 parts per million and can be reduced to 40 parts per million. Carbon dioxide is therefore capable of forming an effective screen between liquid steel and the surrounding atmosphere when this steel is poured from a container in the form of a liquid stream until it solidifies, which considerably reduces the rate of oxidation.

Ce procédé fair l'objet de la demande européenne 154 585, dont la présente demande est une division.This process is the subject of European application 154 585, of which the present application is a division.

Dans la mise en oeuvre du procédé, on forme un écran protecteur d'anhydride carbonique autour du courant d'acier liquide, à proximité de sa source, et on maintient cet écran en contact avec l'acier jusqu'à ce que ce dernier se solidifie. Les critères généraux à respecter pour l'utilisation de l'anhydride carbonique en tant qu'écran protecteur sont généralement les mêmes que dans le cas de l'utilisation de l'argon ou d'autres gaz inertes. Par exemple, dans le cas de la coulée d'un lingot par le haut dans une lingotière, on purge à l'avance la lingotière au moyen d'anhydride carbonique pour éliminer l'oxygène et pour former dans la lingotière une atmosphère d'anhydride carbonique dans laquelle et à travers laquelle l'acier est coulé.In the implementation of the process, a protective carbon dioxide screen is formed around the stream of liquid steel, close to its source, and this screen is kept in contact with the steel until the latter is solidifies. The general criteria to be observed for the use of carbon dioxide as a protective screen are generally the same as in the case of the use of argon or other inert gases. For example, in the case of pouring an ingot from above into an ingot mold, the ingot mold is purged in advance using carbon dioxide to remove the oxygen and to form an anhydride atmosphere in the ingot mold. carbon dioxide into which and through which the steel is poured.

De cette façon, la teneur en oxygène de la lingotière, avant la coulée, peut être ramenée à moins de 3 % en volume, et de préférence, à 1 % au plus.In this way, the oxygen content of the mold, before casting, can be reduced to less than 3% by volume, and preferably, to 1% at most.

L'écran protecteur peut être formé au moyen d'une rampe annulaire percée d'orifices de sortie que l'on dispose autour du courant d'acier liquide, à proximité de sa source, pour débiter l'anhydride carbonique sous la forme de jets qui se rassemblent en formant un couvercle qui épouse la surface du courant d'acier. Dans le cas de la coulée dans une lingotière, une rampe de distribution annulaire peut entourer la busette de sortie de la poche de coulée.The protective screen can be formed by means of an annular ramp pierced with outlet orifices which are arranged around the stream of liquid steel, close to its source, for delivering carbon dioxide in the form of jets. which come together to form a cover that follows the surface of the steel stream. In the case of casting in an ingot mold, an annular distribution ramp can surround the outlet nozzle of the ladle.

L'acier formant le courant liquide est habituellement à une température comprise entre 1 625 °C et 1 650 °C.The steel forming the liquid stream is usually at a temperature between 1,625 ° C and 1,650 ° C.

L'invention concerne également l'utilisation de mélanges d'argon et d'anhydride carbonique dans la coulée d'acier pour éviter l'oxydation.The invention also relates to the use of mixtures of argon and carbon dioxide in steel casting to prevent oxidation.

L'invention sera mieux comprise à l'aide des exemples de réalisation suivants, donnés à titre non limitatif, conjointement avec les figures qui représentent :

  • la figure 1 est une vue en perspective qui montre les positions relatives de la poche de coulée et d'une rangée de lingotières, pendant la mise en oeuvre du procédé selon l'invention;
  • la figure 2 est une coupe verticale, en partie en élévation, d'une lingotière pendant l'opération de purge à l'anhydride carbonique qui sert à préparer cette lingotière pour la réception de l'acier liquide;
  • la figure 3 est une vue partielle à échelle agrandie qui montre un intercalair e en acier ondulé qui supporte la base de la lingotière ;
  • la figure 4 est une coupe verticale, en partie en élévation,qui montre une opération de coulée en lingots; et
  • la figure 5 est un schéma montrant la disposition des éléments d'un équipement approprié pour la mise en oeuvre d'un procédé selon l'invention, et les liaisons de transmission des fluides qui relient ces éléments.
The invention will be better understood with the aid of the following embodiments, given without limitation, together with the figures which represent:
  • Figure 1 is a perspective view showing the relative positions of the ladle and a row of molds, during the implementation of the method according to the invention;
  • Figure 2 is a vertical section, partly in elevation, of an ingot mold during the purging operation with carbon dioxide which is used to prepare this ingot mold for the reception of liquid steel;
  • Figure 3 is a partial view on an enlarged scale which shows a corrugated steel spacer which supports the base of the mold;
  • Figure 4 is a vertical section, partly in elevation, which shows an ingot casting operation; and
  • FIG. 5 is a diagram showing the arrangement of the elements of equipment suitable for implementing a method according to the invention, and the transmission links of the fluids which connect these elements.

La figure 1 représente une poche A contenant de l'acier liquide qui est coulé dans une lingotière B. Un gaz protecteur, composé d'anhydride carbonique, est acheminé à travers une rampe de distribution annulaire (représentée sur la figure 4), alimentée par une conduite d'alimentation 15.FIG. 1 represents a pocket A containing liquid steel which is poured into an ingot mold B. A protective gas, composed of carbon dioxide, is conveyed through an annular distribution ramp (represented in FIG. 4), supplied by a supply line 15.

Une lingotière 81, qui attend son tour pour recevoir l'acier liquide, est représentée alors qu'elle reçoit de l'anhydride carbonique gazeux de purge par une conduite 17 et les lingotières suivantes Bi et B2 attendent leur tour pour être traitées.An ingot mold 8 1 , which waits its turn to receive the liquid steel, is shown while receiving carbon dioxide purge gas via a line 17 and the following ingot molds Bi and B 2 wait their turn to be processed.

Avant d'entrer dans la phase de traitement, chacune des lingotières est munie d'un chapeau 19 formé d'une pellicule d'aluminium. Le chapeau 19 a été déchiré localement pour former une ouverture pour l'introduction de la conduite de gaz.Before entering the treatment phase, each of the molds is provided with a cap 19 formed of an aluminum film. The cap 19 has been torn locally to form an opening for the introduction of the gas pipe.

La figure 2 montre, d'une façon plus détaillée, la lingotière B1 en cours de purge par l'anhydride carbonique. La conduite 17 est passée à travers une ouverture 20 du chapeau en pellicule d'aluminium et elle se termine par une buse 18 à travers laquelle l'anhydride carbonique est introduit dans le fond de la lingotière pour déplacer l'air et le remplacer par une atmosphère d'anhydride carbonique.FIG. 2 shows, in a more detailed manner, the ingot mold B 1 during purging with carbon dioxide. Line 17 is passed through an opening 20 in the aluminum foil cap and it ends in a nozzle 18 through which carbon dioxide is introduced into the bottom of the mold to move the air and replace it with a carbon dioxide atmosphere.

La lingotière 81 possède une paroi 22 qui renferme une cavité de moulage 23 à section décroissante. La base de la paroi 22 est appuyée sur un intercalaire 24 en métal ondulé, qui est lui-même supporté par le plateau d'un chariot C et est destiné à former un joint entre la base de la paroi 22 et le plateau du chariot, en laissant une certaine quantité d'anhydride carbonique gazeux s'échapper latéralement.The mold 8 1 has a wall 22 which encloses a molding cavity 23 of decreasing section. The base of the wall 22 is supported on a corrugated metal interlayer 24, which is itself supported by the plate of a carriage C and is intended to form a seal between the base of the wall 22 and the plate of the carriage, by letting a certain quantity of carbon dioxide gas escape laterally.

On injecte de l'anhydride carbonique dans la lingotière Bi jusqu'à ce que cette lingotière possède un contenu d'oxygène non supérieur à 3%, et de préférence, de 1 % au plus. La lingotière est maintenant prête pour la coulée. Elle est alors amenée à la position de la lingotière B et l'opération de coulée est exécutée de la façon décrite en regard de la figure 4. On ouvre une vanne agencée dans la poche A, au moyen d'une commande à distance, pour laisser l'acier liquide s'écouler à travers un passage de sortie 25 ménagé dans la poche A et passer sous la forme d'un courant vertical au droit d'un diffuseur de gaz protecteur 27. Le diffuseur 27 est alimenté en anhydride carbonique gazeux par une conduite 15, ce qui a pour effet qu'un écran de gaz entoure le courant de métal liquide et accompagne ce dernier lorsqu'il pénètre dans l'atmosphère d'anhydride carbonique contenue dans la lingotière B. Depuis l'instant où il sort de la poche jusqu'à l'instant où il atteint sa destination dans la lingotière, l'acier liquide est isolé de l'atmosphère par un rideau continu d'anhydride carbonique. Lorsque la lingotière est remple, on referme la vanne de la poche pour arrêter l'écoulement de métal liquide et on amène la lingotière suivante et la poche dans des positions d'alignement mutuel pour que cette lingotière reçoive son contenu d'acier liquide.Carbon dioxide is injected into the ingot mold Bi until this ingot mold has an oxygen content of not more than 3%, and preferably not more than 1%. The mold is now ready for casting. It is then brought to the position of the mold B and the casting operation is carried out as described with reference to FIG. 4. A valve arranged in the pocket A is opened, by means of a remote control, for allow the liquid steel to flow through an outlet passage 25 formed in the pocket A and pass in the form of a vertical current at the level of a protective gas diffuser 27. The diffuser 27 is supplied with gaseous carbon dioxide by a pipe 15, which has the effect that a gas screen surrounds the stream of liquid metal and accompanies the latter when it enters the carbon dioxide atmosphere contained in the ingot mold B. From the moment it leaves the pocket until it reaches its destination in the mold, the liquid steel is isolated from the atmosphere by a continuous curtain of carbon dioxide. When the ingot mold is cast, the valve of the ladle is closed to stop the flow of liquid metal and the next ingot mold and the ladle are brought into positions of mutual alignment so that this ingot mold receives its liquid steel content.

Pour assurer une alimentation en anhydride carbonique en temps voulu, sur ordre, on utilise un équipement d'alimentation tel que celui représenté sur la figure 5.To ensure a supply of carbon dioxide in due time, on order, use is made of feeding equipment such as that shown in FIG. 5.

EXEMPLEEXAMPLE

Pour les besoins de cet exemple, on utilise un équipement sensiblement tel que représenté sur la figure 4. On utilise une poche possédant une capacité de 50 tonnes et des lingotières possédant chacune une capacité de 8 à 9 tonnes. La poche possède une ouverture ou busette circulaire d'un diamètre de 5 à 6,5 cm. Chaque lingotière possède une profondeur de 240 à 260 cm. La distance séparant le bas de la busette de la surface supérieure de la lingotière est de 75 cm. Chaque lingotière repose sur un intercalaire monté sur chariot, du type utilisé pour évacuer les lingots solidifiés du poste de coulée.For the purposes of this example, equipment is used which is substantially as shown in FIG. 4. A bag is used having a capacity of 50 tonnes and ingot molds each having a capacity of 8 to 9 tonnes. The pocket has a circular opening or nozzle with a diameter of 5 to 6.5 cm. Each mold has a depth of 240 to 260 cm. The distance from the bottom of the nozzle to the upper surface of the mold is 75 cm. Each ingot mold rests on a trolley-mounted interlayer, of the type used to evacuate the solidified ingots from the casting station.

La poche est équipée d'une rampe circulaire perforée, située juste au-dessous de la busette et capable de former un écran protecteur d'anhydride carbonique gazeux. Cette rampe est reliée à une source continue d'alimentation d'anhydride carbonique gazeux. En outre, l'installation comprend un appareillage classique pour purger la lingotière au moyen d'anhydride carbonique gazeux.The bag is equipped with a perforated circular ramp, located just below the nozzle and capable of forming a protective screen for carbon dioxide gas. This ramp is connected to a continuous source of carbon dioxide gas supply. In addition, the installation includes conventional equipment for purging the ingot mold by means of carbon dioxide gas.

Juste avant la coulée, on purge chaque lingotière au moyen d'anhydride carbonique gazeux, à un débit de 2,8 mètres cubes par minute, pour expulser l'air de l'intérieur de la lingotière. L'air est expulsé de l'intérieur de la lingotière par la purge d'anhydride carbonique à un débit de 2265 à 2832 litres/minute (80 à 100 sefm standard cubic foot minute), pendant environ 3 minutes avant la coulée de chaque lingot. On introduit un tuyau de caoutchouc à revêtement protecteur d'amiante dans la lingotière, à travers la pellicule d'aluminium, de façon que le diffuseur plonge aussi bas que possible, comme représenté sur la figure 2. On prolonge l'écoulement de gaz jusqu'à ce que l'air ait été expulsé de la lingotière, à un point tel que la concentration de l'oxygène dans la lingotière ne soit pas supérieure à 1 % en volume. L'injection de gaz est prolongée jusqu'à un instant précédant immédiatement la coulée dans cette lingotière, ceci pour tenir compte de la fuite de gaz entre la lingotière et son intercalaire.Just before casting, each mold is purged using carbon dioxide gas, at a rate of 2.8 cubic meters per minute, to expel the air from inside the mold. The air is expelled from the interior of the ingot mold by the carbon dioxide purge at a flow rate of 2265 to 2832 liters / minute (80 to 100 sefm standard cubic foot minute), for approximately 3 minutes before the casting of each ingot . A rubber hose with a protective asbestos coating is introduced into the mold, through the aluminum film, so that the diffuser plunges as low as possible, as shown in Figure 2. The gas flow is extended to the air has been expelled from the mold, to such an extent that the concentration of oxygen in the mold does not exceed 1% by volume. The gas injection is extended to an instant immediately preceding the pouring into this ingot mold, this to take account of the gas leak between the ingot mold and its interlayer.

Pendant que l'acier se trouve dans le four, on prépare les lingotières pour la coulée selon la procédure suivante. On projète un fort jet d'air comprimé sur l'intercalaire pour en éliminer les éventuelles particules libres. On applique ensuite sur l'intercalaire une enduction composée d'une dispersion de ciment dans l'acide phosphorique dilué. On place quatre bandes de tôle d'acier ondulé d'environ 150 mm x 750 mm 1,6 mm sur l'intercalaire, en carré ou en rectangle. Lorsque la lingotière est placée en position, son poids a écrasé les ondulations pour réduire ainsi les risques de fuites de l'acier liquide (voir détail sur la figure 2).While the steel is in the oven, the molds are prepared for casting according to the following procedure. A strong jet of compressed air is projected onto the interlayer to remove any free particles from it. A coating composed of a dispersion of cement in dilute phosphoric acid is then applied to the interlayer. Four strips of corrugated steel sheet of approximately 150 mm x 750 mm 1.6 mm are placed on the interlayer, in a square or a rectangle. When the mold is placed in position, its weight has crushed the corrugations to reduce the risk of leakage of the liquid steel (see detail in Figure 2).

On place sur l'intercalaire, à l'intérieur de la lingotière, une cheminée de forme oblongue, faite de tôle d'acier mince, mesurant environ 500 mm x 1 000 mm x 1 250 mm, pour réduire l'intensité des projections au moment du début de la coulée de métal liquide dans la lingotière. On fixe des "planches" exothermiques (rehausses chaudes ou "hot tops"), sur l'extrémité supérieure 12' de la surface interne de la lingotière, ces planches engendrant de la chaleur en entrant en contact avec l'acier liquide, ceci pour ralentir le refroidissement à la partie du lingot, et pour réduire de cette façon la profondeur de la retassure formée dans la partie supérieure de ce lingot et qui doit être coupée avant le laminage consécutif. On place un chapeau en pellicule d'aluminium mince sur la partie supérieure de la lingotière pour limiter l'exposition à l'atmosphère avant que la lingotière n'ait été purgée au moyen d'anhydride carbonique.On the insert, inside the mold, an oblong chimney, made of thin sheet steel, measuring approximately 500 mm x 1,000 mm x 1,250 mm, to reduce the intensity of projections to the time of the start of the pouring of liquid metal into the mold. Exothermic "boards" (hot elevators or "hot tops") are fixed on the upper end 12 ′ of the internal surface of the ingot mold, these boards generating heat by coming into contact with the liquid steel, this for to slow the cooling at the part of the ingot, and to thereby reduce the depth of the recess formed in the upper part of this ingot and which must be cut before the subsequent rolling. A thin aluminum foil cap is placed over the top of the mold to limit exposure to the atmosphere before the mold has been purged with carbon dioxide.

Au début de la coulée, l'acier liquide perfore un petit trou dans la feuille mince d'aluminium en réduisant ainsi la quantité d'air ambiant qui est attiré dans le moule. La température de l'acier du courant est de 1 625 °C à 1 650 °C. Pendant le remplissage de chaque lingotière, il se forme un écran d'anhydride carbonique à proximité de la source du courant, c'est-à-dire juste au-dessous du bas de la poche, sous la busette. L'écran formé autour du courant d'acier liquide est entraîné avec l'acier et forme un écran protecteur isolant de l'atmosphère depuis l'instant où l'acier quitte la busette jusqu'à son impact dans la lingotière. Le débit d'anhydride carbonique envoyé à l'écran est de 2,8 mètres cubes par minute.At the start of casting, the liquid steel punctures a small hole in the thin aluminum sheet, thereby reducing the amount of ambient air that is drawn into the mold. The temperature of the current steel is from 1,625 ° C to 1,650 ° C. During the filling of each ingot mold, a screen of carbon dioxide is formed near the source of the current, that is to say say just below the bottom of the pocket, under the nozzle. The screen formed around the current of liquid steel is entrained with the steel and forms a protective screen insulating from the atmosphere from the moment the steel leaves the nozzle until its impact in the mold. The carbon dioxide flow rate sent to the screen is 2.8 cubic meters per minute.

La poche contenant les 50 tonnes d'acier est positionnée au-dessus de I a première lingotière, déjà purgée et le débit de gaz d'écran est mis en action. Le tuyau de purge a précédemment été transféré à la deuxième lingotière sans interrompre l'écoulement du gaz.The pocket containing the 50 tonnes of steel is positioned above the first ingot mold, already purged and the flow of screen gas is put into action. The purge pipe was previously transferred to the second ingot mold without interrupting the flow of gas.

La vanne est ouverte pour commencer la coulée (voir figure 4). A certains moments, la busette est bouchée par du métal solidifié ou par du laitier. Dans chaque cas, il est nécessaire d'injecter de l'oxygène à la lance pour dégager la busette (voir figure 4).The valve is open to start casting (see Figure 4). At times, the nozzle is blocked by solidified metal or by slag. In each case, it is necessary to inject oxygen to the lance to clear the nozzle (see Figure 4).

Bien que l'anhydride carbonique soit fourni sous la forme liquide, on utilise du C02 gazeux aux deux points d'injection (purge et formation d'un écran). On utilise donc un dispositif qui possède une capacité de vaporisation pour fournir un débit comparable à celui d'un gaz inerte, par exemple de l'argon. La composition de l'alimentation en C02 est représentée sur la figure 5.Although carbon dioxide is supplied in liquid form, C0 2 gas is used at the two injection points (purging and forming a screen). A device is therefore used which has a vaporization capacity to provide a flow rate comparable to that of an inert gas, for example argon. The composition of the CO 2 feed is shown in Figure 5.

C'est le premier lingot qui demande le moins de temps pour la coulée, puisque la pression statique du métal décroît progressivement au cours de la coulée. En environ 3 minutes, la lingotière est remplie et la vanne est fermée (pour environ 20 à 30 secondes) pendant que l'opérateur du pont roulant positionne la poche au-dessus de la deuxième lingotière. Pendant ce temps, le tuyau de gaz de purge est transféré à la lingotière suivante puis la vanne est ouverte à nouveau pour remplir la lingotière qui vient d'être purgée. La séquence est poursuivie jusqu'à ce que la poche soit vidée de sa charge de métal.It is the first ingot that requires the least time for casting, since the static pressure of the metal gradually decreases during casting. In approximately 3 minutes, the ingot mold is filled and the valve is closed (for approximately 20 to 30 seconds) while the crane operator positions the pocket above the second ingot mold. During this time, the purge gas pipe is transferred to the next ingot mold and the valve is opened again to fill the mold that has just been purged. The sequence is continued until the pocket is emptied of its metal charge.

On laisse la charge contenue dans chaque lingotière se refroidir, de la façon classique, avec une couche de flux protecteur sur sa surface, de manière à former un lingot solide. Les lingotières sont ensuite vidées de leurs lingots.The charge contained in each mold is allowed to cool, in the conventional manner, with a neck che of protective flux on its surface, so as to form a solid ingot. The ingot molds are then emptied of their ingots.

Chaque lingot est laminé à chaud en un feuillard, selon la pratique standard, puis soumis à un contrôle aux ultrasons pour la détection des défauts de surface. Le feuillard acceptable a été ensuite laminé en une tôle et la tôle a été ensuite transformée en un tube soudé en hélice. Le tube a été ensuite soumis à un contrôle aux ultrasons pour la détection des défauts.Each ingot is hot rolled into a strip, according to standard practice, then subjected to ultrasonic control for the detection of surface defects. The acceptable strip was then rolled into a sheet and the sheet was then made into a helically welded tube. The tube was then subjected to ultrasonic testing for fault detection.

Des chauffes témoins ont été ensuite exécutées d'une façon identique.Control heaters were then performed in an identical fashion.

Au cours de l'ensemble de l'opération de coulée en lingotière, le débit de gaz était de 2,8 mètres cubes par minute dans le cas de l'anhydride carbonique et de 2,8 mètres cubes par minute dans le cas de l'argon. Chaque lingotière a été purgée pendant environ 2 minutes et le courant de métal liquide a été protégé pendant toute la durée de l'opération de coulée, d'environ 25 minutes.During the entire mold casting operation, the gas flow rate was 2.8 cubic meters per minute in the case of carbon dioxide and 2.8 cubic meters per minute in the case of l 'argon. Each mold was purged for approximately 2 minutes and the stream of liquid metal was protected for the duration of the casting operation, approximately 25 minutes.

Une comparaison des résultats est donnée ci-après en termes de défauts de surface sur les feuillards formés par laminage à partir de billettes produites :

Figure imgb0001
A comparison of the results is given below in terms of surface defects on the strips formed by rolling from billets produced:
Figure imgb0001

Défauts détectés par l'effet aux ultrasons sur un tube soudé en hélice :

Figure imgb0002
Faults detected by the ultrasonic effect on a helically welded tube:
Figure imgb0002

Grâce au coût relativement faible de l'anhydride carbonique et à la facilité avec laquelle on peut se le procurer, comparativement, par exemple, à l'argon, et grâce au fait qu'il peut être produit et fourni en continu, ce gaz constitue un gaz extrêmement utile lorsqu'il est utilisé selon l'invention. L'anhydride carbonique est plus lourd que l'air (1,5 : 1) contrairement à l'argon (1,5 : 2) et il maintient donc un écran de protection efficace plus longtemps que les gaz plus légers puisqu'il ne se disperse pas dans l'atmosphère aussi facilement.Thanks to the relatively low cost of carbon dioxide and the ease with which it can be obtained, compared, for example, to argon, and thanks to the fact that it can be produced and supplied continuously, this gas constitutes an extremely useful gas when used according to the invention. Carbon dioxide is heavier than air (1.5: 1) unlike argon (1.5: 2) and therefore it maintains an effective protective screen longer than lighter gases since it does not does not disperse into the atmosphere as easily.

L'anhydride carbonique peut être utilisé sous la forme de neige carbonique pour fournir une forme concentrée de gaz C02 pour l'utilisation de la lingotière dans la coulée en lingots ou dans la lingotière d'une installation de coulée continue.Carbon dioxide can be used in the form of carbon dioxide snow to provide a concentrated form of C0 2 gas for the use of the ingot mold in ingot casting or in the ingot mold of a continuous casting installation.

On constate également des résultats comparatifs ci-dessus que l'utilisation d'argon au niveau de l'écran et d'anhydride carbonique pour la purge de la lingotière donne, de manière inattendue, des résultats encore améliorés. Il est clair également à partir de ce s exemples, qu'un mélange d'anhydride carbonique et d'argon, au niveau de l'écran, quelles que soient les proportions, associé à une purge de la lingotière à l'anhydride carbonique, donnera des résultats supérieurs ou égaux à ceux obtenus avec l'anhydride carbonique seul.It is also noted from the above comparative results that the use of argon at the level of the screen and carbon dioxide for purging the ingot mold unexpectedly gives further improved results. It is also clear from these examples, that a mixture of carbon dioxide and argon, at the screen, whatever the proportions, associated with a purging of the mold with carbon dioxide, will give results greater than or equal to those obtained with carbon dioxide alone.

Claims (1)

1. Apparatus for producing a gaseous protection for a jet of molten metal cast from a upper container (A) provided with an opening and closing system situated in the lower part of the container, the opening of the system allowing the jet of metal to be cast into a lower container (Bi) provided with an opening for receiving the metal cast whilst the opening and closing system is open, a protective gaseous sheath being formed around the molten metal jet to protect it against the impurities of the ambient atmosphere during the casting of the metal jet into the lower container, characterised in that it comprises:
- means (15) of injecting gaseous carbon dioxide around the casting jet, which are situated in the first container and surround the tap-hole,
- means (17) of injecting gaseous carbon dioxide into the lower container to ensure its purging,
- a vessel containing carbon dioxide in liquid form in its lower portion and in gaseous form in its upper portion,
- means of drawing liquid carbon dioxide from the lower portion of the vessel, vapourising it and injecting it into the upper portion of the vessel to replace the gas drawn off,
- a conduit situated in the upper portion of the vessel for conveying the gaseous carbon dioxide towards the means of injecting carbon dioxide gas around the casting jet and the means of injecting carbon dioxide gas into the lower container,
- means of controlling the injection of carbon dioxide into the second container to ensure its purging before the casting of the metal,
- means of controlling the injection of carbon dioxide around the metal casting jet issuing from the first container.
EP87401801A 1984-02-24 1985-02-22 Device for gas-shielding a molten metal jet Expired - Lifetime EP0255450B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87401801T ATE51352T1 (en) 1984-02-24 1985-02-22 DEVICE FOR GAS PROTECTION OF A LIQUID METAL CASTING JET.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA448241 1984-02-24
CA448241 1984-02-24

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP85400326.6 Division 1985-02-22
EP85400326A Division EP0154585A3 (en) 1984-02-24 1985-02-22 Method for casting a liquid metal

Publications (3)

Publication Number Publication Date
EP0255450A2 EP0255450A2 (en) 1988-02-03
EP0255450A3 EP0255450A3 (en) 1988-05-18
EP0255450B1 true EP0255450B1 (en) 1990-03-28

Family

ID=4127268

Family Applications (2)

Application Number Title Priority Date Filing Date
EP85400326A Withdrawn EP0154585A3 (en) 1984-02-24 1985-02-22 Method for casting a liquid metal
EP87401801A Expired - Lifetime EP0255450B1 (en) 1984-02-24 1985-02-22 Device for gas-shielding a molten metal jet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP85400326A Withdrawn EP0154585A3 (en) 1984-02-24 1985-02-22 Method for casting a liquid metal

Country Status (8)

Country Link
US (1) US4614216A (en)
EP (2) EP0154585A3 (en)
JP (1) JPS60203338A (en)
AT (1) ATE51352T1 (en)
AU (1) AU573779B2 (en)
DE (1) DE3576792D1 (en)
ES (1) ES8602460A1 (en)
ZA (1) ZA85911B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657587A (en) * 1985-02-21 1987-04-14 Canadian Liquid Air Ltd./Air Liquide Canada Ltee Molten metal casting
FR2607039B1 (en) * 1986-11-26 1989-03-31 Air Liquide STEEL CASTING PROCESS INCLUDING INERING OF THE STEEL BATH WITH CARBONIC ANHYDRIDE IN THE FORM OF SNOW
US4723997A (en) * 1987-04-20 1988-02-09 L'air Liquide Method and apparatus for shielding a stream of liquid metal
FR2623890B1 (en) * 1987-11-26 1990-03-30 Air Liquide CARBON SNOW LAUNCH FOR METALLURGY
DE3904415C1 (en) * 1989-02-14 1990-04-26 Intracon Handelsgesellschaft Fuer Industriebedarf M.B.H., 6200 Wiesbaden, De
DK0544967T3 (en) * 1991-11-28 1995-10-16 Von Roll Ag Process for suppressing dust and smoke in the manufacture of electric steel
US5487005A (en) 1994-02-07 1996-01-23 Eaton Corporation Method/system for determination of gross combined weight of vehicles equipped with electronic data links
US6228187B1 (en) 1998-08-19 2001-05-08 Air Liquide America Corp. Apparatus and methods for generating an artificial atmosphere for the heat treating of materials
US6491863B2 (en) 2000-12-12 2002-12-10 L'air Liquide-Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes George Claude Method and apparatus for efficient utilization of a cryogen for inert cover in metals melting furnaces
US20080184848A1 (en) * 2006-08-23 2008-08-07 La Sorda Terence D Vapor-Reinforced Expanding Volume of Gas to Minimize the Contamination of Products Treated in a Melting Furnace
US20090064821A1 (en) * 2006-08-23 2009-03-12 Air Liquide Industrial U.S. Lp Vapor-Reinforced Expanding Volume of Gas to Minimize the Contamination of Products Treated in a Melting Furnace
US8403187B2 (en) * 2006-09-27 2013-03-26 Air Liquide Industrial U.S. Lp Production of an inert blanket in a furnace
US8932385B2 (en) 2011-10-26 2015-01-13 Air Liquide Industrial U.S. Lp Apparatus and method for metal surface inertion by backfilling
GB2510310B (en) 2011-11-17 2015-09-23 Nucor Corp Method of continuous casting thin steel strip
CN114749617B (en) * 2020-11-25 2024-03-01 宝钢德盛不锈钢有限公司 Production method for reducing mountain scales at hot rolled edge of 200 series stainless steel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR434070A (en) * 1910-11-14 1912-01-24 Marcellin Reymondier New casting and molding process to obtain healthy and homogeneous steels, cast irons, metals or alloys
US1227573A (en) * 1917-04-12 1917-05-29 William A Bole Method of making castings.
US1978222A (en) * 1932-09-24 1934-10-23 Allegheny Steel Co Method of and apparatus for treating metallic materials
US2343842A (en) * 1942-09-05 1944-03-07 Mahoning Paint And Oil Company Method of coating ingots
DE1137531B (en) * 1957-12-03 1962-10-04 U C P M I Union De Consommateu Process for treating steel during casting
US3174200A (en) * 1961-06-15 1965-03-23 Union Carbide Corp Method of purging mold and pouring metal therein
US3392009A (en) * 1965-10-23 1968-07-09 Union Carbide Corp Method of producing low carbon, non-aging, deep drawing steel
BE677958A (en) * 1966-03-16 1966-09-16
US3451594A (en) * 1966-05-17 1969-06-24 Sigmund W Stewart Tundish nozzle construction
DE1920421A1 (en) * 1969-04-22 1970-11-12 Ural Zd Tjazelogo Masinostroje Gas supply to the sealed upper ingot mould - chamber in continuous metal casting plant
DE2040504C3 (en) * 1970-08-14 1973-12-13 Badische Anilin- & Soda-Fabrik Ag, 6700 Ludwigshafen Process for improving the quality of metal ingots
LU70560A1 (en) * 1973-07-24 1974-11-28
FR2396920A1 (en) * 1977-07-05 1979-02-02 Air Liquide CONTROLLED CRYOGENIC FLUID INJECTION DEVICE
JPS54134033A (en) * 1978-04-10 1979-10-18 Kawasaki Steel Co Oxidation prevention of molten steel in bottom poured casting
CH628543A5 (en) * 1978-06-01 1982-03-15 Concast Ag METHOD AND DEVICE FOR CONTINUOUSLY CASTING METAL IN SINGLE OR MULTIPLE STRAND PLANTS.
JPS5736046A (en) * 1980-08-15 1982-02-26 Kikai Syst Shinko Kyokai Continuous casting method

Also Published As

Publication number Publication date
AU573779B2 (en) 1988-06-23
EP0255450A3 (en) 1988-05-18
ZA85911B (en) 1985-09-25
ATE51352T1 (en) 1990-04-15
AU3904285A (en) 1985-09-05
EP0154585A2 (en) 1985-09-11
ES540622A0 (en) 1985-12-01
ES8602460A1 (en) 1985-12-01
US4614216A (en) 1986-09-30
EP0154585A3 (en) 1986-02-26
EP0255450A2 (en) 1988-02-03
DE3576792D1 (en) 1990-05-03
JPS60203338A (en) 1985-10-14

Similar Documents

Publication Publication Date Title
EP0255450B1 (en) Device for gas-shielding a molten metal jet
KR101279447B1 (en) Flexible minimum energy utilization electric arc furnace system and processes for making steel products
CA1106134A (en) Metal casting process
EP0196242B1 (en) Method for protecting a casting-steel stream
CA1330159C (en) Steel casting process with carbon dioxide snow purging of the steel bath
EP0196952B1 (en) Process for obtaining a killed steel with a low nitrogen content
CA1257067A (en) Installation for casting molten nonferrous metals
FR2572840A1 (en) PROCESS FOR PREPARING A SUCTION SHELL FOR VITRIFIC RADIOACTIVE WASTE RECEPTION IN ACCORDANCE WITH THE SUCTION METHOD AND DEVICE FOR CARRYING OUT SAID PROCESS
EP0089282B1 (en) Process and device for the protection of a casting stream of liquid metal
EP0012074A1 (en) Method of cleaning a cold trap for liquid metals, and device for carrying out this method
FR2513909A1 (en) METHOD AND APPARATUS FOR TREATING LIQUID METAL IN A CONTAINER
EP0924305B1 (en) Metallurgical reactor for treating of molten metal under reduced pressure
EP0204634B1 (en) Process and device for treating non-organic solid tritiated wastes
FR2810394A1 (en) Fume dust generation prevention method during molten metal pouring into ladle, involves controlling amount of steam introduced into vessel or at surface of molten metal so as to reduce oxygen concentration
NO812327L (en) PROCEDURE FOR THE PREPARATION OF A THREADY METAL MELTING AGENT AND THE MANUFACTURING PRODUCT
EP0028569B1 (en) Process for agitating a molten metal by injection of gases
FR2567909A1 (en) PROCESS FOR PROCESSING BY SCAN GAS OF METALLIC BATHS
JPS63502601A (en) Injection of substances into hot liquids
FR2701412A1 (en) Novel-type pouring (casting) ladle
EP0536185B1 (en) Liquid steel bath reheating method
JP2004306039A (en) Continuously casting method for magnesium alloy molten metal
BE1005461A3 (en) High-carbon ferromanganese refining method and installation
CA1262826A (en) Molten metal casting
EP0211952A1 (en) Apparatus and process for transferring a predetermined amount of liquid metal from a vessel containing a molten metal bath into a receiving container
CA2018491C (en) Process and apparatus for degassing and maintaining a low hydrogen content in liquid aluminium alloys during transportation in ladles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870806

AC Divisional application: reference to earlier application

Ref document number: 154585

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19890301

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 154585

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 51352

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3576792

Country of ref document: DE

Date of ref document: 19900503

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910222

Ref country code: AT

Effective date: 19910222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910228

Ref country code: LI

Effective date: 19910228

Ref country code: CH

Effective date: 19910228

Ref country code: BE

Effective date: 19910228

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910901

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 87401801.3

Effective date: 19911008