EP0028314B1 - Device for electromagnetic release, especially for actuating print hammers - Google Patents

Device for electromagnetic release, especially for actuating print hammers Download PDF

Info

Publication number
EP0028314B1
EP0028314B1 EP80105795A EP80105795A EP0028314B1 EP 0028314 B1 EP0028314 B1 EP 0028314B1 EP 80105795 A EP80105795 A EP 80105795A EP 80105795 A EP80105795 A EP 80105795A EP 0028314 B1 EP0028314 B1 EP 0028314B1
Authority
EP
European Patent Office
Prior art keywords
magnets
magnet
coil
release
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105795A
Other languages
German (de)
French (fr)
Other versions
EP0028314A2 (en
EP0028314A3 (en
Inventor
Hans-Gordon Dr. Seifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0028314A2 publication Critical patent/EP0028314A2/en
Publication of EP0028314A3 publication Critical patent/EP0028314A3/en
Application granted granted Critical
Publication of EP0028314B1 publication Critical patent/EP0028314B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J9/00Hammer-impression mechanisms
    • B41J9/26Means for operating hammers to effect impression
    • B41J9/38Electromagnetic means

Definitions

  • the invention relates to an electromagnetic release device which can be used in particular for driving pressure hammers.
  • a large number of printing hammer drives are known, including from German Patent 1,276,380, in which the printing hammer is carried by two parallel leaf springs clamped on one side. The energy stored in the deflected state of the print hammer is used to actuate the print hammer. The print hammer is held in a biased position by an electromagnet. In the case of printing hammer drives of this type, however, a relatively high amount of energy has to be used to actuate the printing hammer.
  • An arrangement for carrying out this method is characterized in that a moving element provided with a first magnet is provided, which can be moved past one or more other magnets, and in that a further magnet which determines the relatively stable holding position is provided.
  • the arrangement according to DE-A-2 837 602 represents an arrangement for a contact-free conversion of rotational energy into energy of a translational or pivoting movement of a spring-mass oscillator, which is characterized in that a first magnet is arranged on the spring-mass oscillator, that a second magnet is arranged on a rotatable shaft, that the second magnet or a magnetically conductive element connected to it can be moved past the first magnet with the formation of magnetic cutting forces, as a result of which the spring-mass oscillator can be deflected.
  • FIG. 1 an electrically controlled print hammer release device is shown in a schematic sectional view.
  • a coil-wound magnet 3 is movably arranged between two stationary magnets 1 and 2.
  • the magnet 3 is shorter in the direction of movement D than the stationary magnets 1 and 2.
  • the direction of magnetization of the stationary magnets 1 and 2 is the same and is identified by M1 and M2.
  • the magnetization direction M3 of the movable magnet 3 is opposite to the magnetization direction of the first two magnets 1 and 2.
  • the magnetization direction of all magnets 1, 2, 3 is perpendicular to the direction of movement D of the magnet 3.
  • a coil 4 is arranged around the magnet 3.
  • this coil is subject to the condition that the winding parts 4-1 (drawn black) which are essential for the force action during the triggering process have a high magnetic flux within the space enclosed by the magnets 1 and 2 run dense.
  • the part of the coil marked with 4-2 outside this space lies in an area of lower magnetic flux density and therefore only makes a minor contribution to the release force.
  • Magnets that are difficult to demagnetize must be used as magnets. These conditions are met in particular by rare earth magnets. Because of their large magnetic energy density, only small magnet volumes are required and the magnets maintain their magnetization even in open magnetic circuits with repulsive magnets.
  • the magnet 3 passes from the area of the cutting forces acting in the direction S via an equilibrium position into the area of the cutting forces acting in the direction D.
  • the movement element 9 experiences the kinetic energy required for the printing process.
  • Magnetic cutting forces are understood to be those which occur in the direction of movement when magnets which are attracting or repelling one another move past.
  • the movement element 9 can be reset in its starting position with the aid of mechanical restoring forces or with the aid of a restoring current to be supplied to the coil 4.
  • the coil part 4-2 would have to be in the deflected position of the movement element 9 in the area of strong magnetic flux density between the magnets 1 and 2.
  • a reset current would then require a force in the direction of arrow S. This would overcome the magnetic cutting forces acting in the direction of the arrow D until the magnetic cutting forces acting in the direction of the arrow S between the magnets 1 and 3 or 2 and 3 would force the action member 9 into its stop position.
  • each printing hammer consists of a base body in which a magnet and a coil surrounding it are embedded. Every print hammer will guided by two leaf springs. The two print hammers are offset from one another in such a way that their leaf springs are fixed at opposite points on the print hammer bank and that their hammer heads are aligned in a row.
  • the base body of the print hammer bank is identified by 14-5, the two print hammers by 14 and 15.
  • the print hammer 14 contains the magnet 14-1 with the coil 14-2 surrounding it. It is connected via the leaf springs 14-3 and 14-4 to the upper leg of the base body 14-5. The same applies to the hammer 15 lying under the hammer 14 in the illustration according to FIG. 4, the magnet of which is identified by 15-1 and the coil surrounding this magnet is identified by 15-2.
  • the leaf springs 15-3 and 15-4 supporting it are connected to the lower leg of the base body 14-5.
  • the illustration of the stationary magnets enclosing the magnets 14-1 and 15-1 has been omitted for reasons of simplification. With a corresponding current flow of the coils 14-2 or 15-2, the corresponding pressure hammer experiences a force effect in the direction of arrow D for the triggering process.
  • a common return device is provided for the common return of all print hammers of the print hammer bank into their starting position.
  • This consists of a guide piece 18 which is movably arranged to and fro in a guide 23 and which is connected to the rear ends of the pressure hammers 14 and 15 via elastic elements 16 and 17. These elastic elements can be tension springs.
  • the guide piece 18 is driven by an eccentric drive 21/20. This eccentric drive (stationary axis 21 with an eccentric eccentric disc) acts in a recess 19 in the guide piece 18.
  • the guide piece 18 executes a lifting movement within the guide 23, as a result of which the deflected pressure hammers are moved by the elastic elements over the range of the direction D acting magnetic cutting forces in the area of the magnetic cutting forces acting in the direction S are withdrawn to their starting position.
  • the starting position is determined by the stops 14-6 and 14-7.
  • FIG. An exploded perspective view of three magnet pairs is shown, one of which is movably arranged connected to a coil between the remaining stationary other magnet pairs.
  • both sides (23-1 and 23-2) of the coil 23 of the moving element 24 are always in an area of high magnetic flux density, which is generated by the magnet pair 22-2 / 22-3 and 21-2 / 21-3 becomes.
  • the magnet pairs 22-2 / 22-3 and 21-2 / 21-3 are arranged adjacent to each other and aligned.
  • the magnets of these pairs of magnets are so far apart from one another that a movement element 24 movable in the direction of arrow D can be arranged between them.
  • This moving element consists of the sequence of a magnet 22-1, a coil 23 and a magnet 21-1.
  • the magnet 22-1 is located between the magnets 22-2 and 22-3, the magnet 21-1 between the magnets 21-2 and 21-3.
  • the magnets 22-1 and 21-1 (seen in the direction of movement of the movement element 24) have a shorter length than the magnets 22-2, 22-3, 21-2 and 21-3.
  • the coil 23 arranged between the magnets 22-1 and 21-1 remains sufficient space, on the one hand, with its coil parts 23-1 and 23-2, which are decisive for the force action in the direction of arrow D, between the magnets 22-2 and 22-3 and on the other hand to lie between the magnets 21-2 and 21-3.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Impact Printers (AREA)

Description

Die Erfindung betrifft eine elektromagnetische Auslösevorrichtung, die insbesondere für den Antrieb von Druckhämmern verwendet werden kann.The invention relates to an electromagnetic release device which can be used in particular for driving pressure hammers.

Es sind eine Vielzahl von Druckhammerantrieben, so auch aus der Deutschen Patentschrift 1 276 380, bekannt, bei denen der Druckhammer von zwei parallelen einseitig eingespannten Blattfedern getragen wird. Die im ausgelenkten Zustand des Druckhammers gespeicherte Energie dient der Druckhammerbetätigung. Der Druckhammer wird durch einen Elektromagneten in vorgespannter Lage gehalten. Bei Druckhammerantrieben dieser Art ist jedoch ein relativ hoher Energiebetrag zur Druckhammerbetätigung aufzuwenden.A large number of printing hammer drives are known, including from German Patent 1,276,380, in which the printing hammer is carried by two parallel leaf springs clamped on one side. The energy stored in the deflected state of the print hammer is used to actuate the print hammer. The print hammer is held in a biased position by an electromagnet. In the case of printing hammer drives of this type, however, a relatively high amount of energy has to be used to actuate the printing hammer.

Des weiteren sind in der Deutschen Offenlegungsschrift 2 837 550 und 2 837 602 Anordnungen zur Verwendung in Druckern beschrieben, welche von der Verwendung sog. seltener Erd-magnete Gebrauch machen.Furthermore, the German Offenlegungsschrift 2,837,550 and 2,837,602 describe arrangements for use in printers which make use of so-called rare earth magnets.

Die Anordnung gemäß der EP-A-0 008 660, die für DE, FR und GB zum nicht vorveröffentlichten Stand der Technik gehört, beschreibt ein Verfahren zum Betrieb eines Haltesystems für Auslösevorrichtungen mit einem Bewegungselement, welches dadurch gekennzeichnet ist, daß das ausgelöste Bewegungselement durch Wirkung magnetischer Kräfte oder durch Wirkung einer Feder in Wirkrichtung eine Beschleunigung erfährt, und daß für den Haltezustand durch Überlagerung des Potentialfeldes eine oder mehrere Magnetschneiden mit einem weiteren Potentialfeld, basierend auf einer mechanischen Vorspannung des Bewegungselementes durch die Feder und/oder auf einem Magneten, eine Gesamtpotentialverteilung mit einer relativ stabilen Halteposition hoher potentieller Energie für das Bewegungselement erzeugt wird, aus der heraus das Bewegungselement durch Aufwendung einer die Halteposition überwindenden Auslösekraft ausgelöst wird.The arrangement according to EP-A-0 008 660, which for DE, FR and GB belongs to the unpublished prior art, describes a method for operating a holding system for release devices with a movement element, which is characterized in that the movement element triggered by The effect of magnetic forces or the action of a spring accelerates in the direction of action, and that for the holding state, by superimposing the potential field, one or more magnetic cutting edges with a further potential field, based on a mechanical preload of the moving element by the spring and / or on a magnet Total potential distribution is generated with a relatively stable holding position of high potential energy for the movement element, from which the movement element is triggered by applying a triggering force that overcomes the holding position.

Eine Anordnung zur Durchführung dieses Verfahrens ist dadurch gekennzeichnet, daß ein mit einem ersten Magneten versehenes Bewegungselement vorgesehen ist, welcher an einem oder mehreren anderen Magneten vorbeibewegbar ist, und daß ein weiterer die relativ stabile Halteposition bedingender Magnet vorgesehen ist.An arrangement for carrying out this method is characterized in that a moving element provided with a first magnet is provided, which can be moved past one or more other magnets, and in that a further magnet which determines the relatively stable holding position is provided.

Die Anordnung nach DE-A-2 837 602 stellt eine Anordnung für eine berührungsfreie Umsetzung von Rotationsenergie in Energie einer translatorischen oder Schwenkbewegung eines FederMasse-Schwingers dar, welcher dadurch gekennzeichnet ist, daß auf dem Feder-Masse-Schwinger ein erster Magnet angeordnet ist, daß auf einer drehbaren Welle ein zweiter Magnet angeordnet ist, daß der zweite Magnet oder ein mit ihm verbundenes magnetisch leitendes Element an dem ersten Magneten unter Ausbildung magnetischer Schneidenkräfte vorbeibewegbar ist, wodurch der Feder-Masse-Schwinger auslenkbar ist.The arrangement according to DE-A-2 837 602 represents an arrangement for a contact-free conversion of rotational energy into energy of a translational or pivoting movement of a spring-mass oscillator, which is characterized in that a first magnet is arranged on the spring-mass oscillator, that a second magnet is arranged on a rotatable shaft, that the second magnet or a magnetically conductive element connected to it can be moved past the first magnet with the formation of magnetic cutting forces, as a result of which the spring-mass oscillator can be deflected.

Es ist Aufgabe der Erfindung, eine elektromagnetische Auslösevorrichtung, insbesondere zur Verwendung für Druckhammerantriebe anzugeben, welche bei geringem Platzbedarf und geringer Auslöseenergie, eine relativ große kinetische Energie zu erzeugen erlaubt.It is an object of the invention to provide an electromagnetic release device, in particular for use with printing hammer drives, which allows a relatively large kinetic energy to be generated with a small space requirement and low release energy.

Diese Aufgabe der Erfindung wird in vorteilhafter Weise durch die im kennzeichnenden Teil des Anspruches 1 angegebenen Maßnahmen gelöst.This object of the invention is achieved in an advantageous manner by the measures specified in the characterizing part of claim 1.

Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.Advantageous developments of the invention can be found in the subclaims.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben.Embodiments of the invention are shown in the drawings and are described in more detail below.

Es zeigt

  • Fig. 1 eine schematische Schnittdarstellung einer elektromagnetischen Druckhammer-Auslösevorrichtung,
  • Fig.2 eine schematische ausschnittsweise perspektivische Darstellung eines bewegbaren spulenumwundenen Magneten, der zwischen zwei stationären Magneten gemäß Fig. 1 angeordnet ist,
  • Fig. 3 eine ausschnittsweise perspektivische Darstellung einer Druckhammerbank mit einer als Druckhammer ausgebildeten Anordnung gemäß Fig. 1,
  • Fig. 4 eine Aufsicht auf eine Druckhammerbank mit gegeneinander versetzt angeordneten Druckhämmern, die mit einer gemeinsamen Rückholanordnung verbunden sind,
  • Fig. 5 eine auseinandergezogene perspektivische Darstellung dreier Magnetpaare, von denen das eine Paar mit einer Spule verbunden bewegbar zwischen den Stationären anderen Magnetpaaren angeordnet ist.
It shows
  • 1 is a schematic sectional view of an electromagnetic pressure hammer triggering device,
  • 2 shows a schematic, partial perspective illustration of a movable coil-wound magnet which is arranged between two stationary magnets according to FIG. 1,
  • 3 is a partial perspective view of a printing hammer bank with an arrangement designed as a printing hammer according to FIG. 1,
  • 4 shows a plan view of a printing hammer bank with printing hammers which are arranged offset with respect to one another and which are connected to a common return arrangement,
  • Fig. 5 is an exploded perspective view of three pairs of magnets, of which one pair is movably arranged between the stationary other magnet pairs connected to a coil.

In Fig. 1 ist in schematischer Schnittdarstellung eine elektrisch gesteuerte Druckhammerauslösevorrichtung gezeigt. In dieser Vorrichtung ist ein spulenumwundener Magnet 3 bewegbar zwischen zwei stationären Magneten 1 und 2 angeordnet. Der Magnet 3 ist in Bewegungsrichtung D kürzer als die stationären Magnete 1 und 2. Die Magnetisierungsrichtung der stationären Magnete 1 und 2 ist gleich und mit M1 bzw. M2 gekennzeichnet. Die Magnetisierungsrichtung M3 des bewegbaren Magneten 3 verläuft entgegengesetzt zur Magnetisierungsrichtung der beiden erstgenannten Magnete 1 und 2. Die Magnetisierungsrichtung aller Magnete 1, 2, 3 verläuft senkrecht zur Bewegungsrichtung D des Magneten 3. Zum besseren Verständnis der Form der Magnete und ihrer gegenseitigen Anordnung sei auf die perspektivische Darstellung in Fig. 2 verwiesen. Um den Magneten 3 ist eine Spule 4 angeordnet. Die Anordnung dieser Spule unterliegt der Bedingung, daß die für die Kraftwirkung beim Auslösevorgang wesentlichen Windungsteile 4-1 (schwarz ausgezogen) innerhalb des von den Magneten 1 und 2 eingeschlossenen Raumes hoher magnetischer Flußdichte verlaufen. Der außerhalb dieses Raumes verlaufende mit 4-2 gekennzeichnete Spulenteil liegt in einem Gebiet geringerer magnetischer Flußdichte und trägt daher nur geringfügig zur Auslösekraft bei. Als Magnete müssen solche verwendet werden, die sich schwer entmagnetisieren lassen. Diese Bedingungen erfüllen insbesondere Seltene-Erd-Magnete. Wegen ihrer großen magnetischen Energiedichte werden nur kleine Magnetvolumina benötigt und die Magnete behalten auch in offenen Magnetkreisen mit abstoßenden Magneten ihre Magnetisierung bei. Durch Wirksamwerden sog. magnetischer Schneidenkräfte zwischen den Magneten 1 und 3 bzw. 3 und 2 wird das bewegbare Bewegungselement 9 in eine durch den Pfeil S gekennzeichnete Stopp-Position 8 gezwungen. Diese Stopp-Position kann beispielsweise durch eine Stellschraube 7, welche in der Sohle des U-förmigen Trägers 6 für die Magnete 1 und 2 angebracht ist, gebildet werden. Der bewegbare Magnet 3 und diespule 4 sind zu einem Grundkörper mit einem Hammerkopf 5 vergossen (siehe auch Fig. 3), welcher in seiner Gesamtheit das Bewegungselement 9 bildet. Für eine Auslösung des Bewegungselementes 9 aus seiner Stopp-Position in Richtung des Pfeiles D wird die Spule 4 mit einem Auslösestrom beaufschlagt. Durch den Spulenteil 4-1 im Magnetfeld der Magnete 1 und 2 wird die wesentliche Kraft zur Wirkung in Pfeilrichtung D erzeugt (diese Kraftwirkung würde aufgehoben, wenn sich der Spulenteil 4-2 ebenfalls im gleichen Feld zwischen den Magneten 1 und 2 befände).In Fig. 1, an electrically controlled print hammer release device is shown in a schematic sectional view. In this device, a coil-wound magnet 3 is movably arranged between two stationary magnets 1 and 2. The magnet 3 is shorter in the direction of movement D than the stationary magnets 1 and 2. The direction of magnetization of the stationary magnets 1 and 2 is the same and is identified by M1 and M2. The magnetization direction M3 of the movable magnet 3 is opposite to the magnetization direction of the first two magnets 1 and 2. The magnetization direction of all magnets 1, 2, 3 is perpendicular to the direction of movement D of the magnet 3. For a better understanding of the shape of the magnets and their mutual arrangement, see the perspective view in Fig. 2 referenced. A coil 4 is arranged around the magnet 3. The arrangement of this coil is subject to the condition that the winding parts 4-1 (drawn black) which are essential for the force action during the triggering process have a high magnetic flux within the space enclosed by the magnets 1 and 2 run dense. The part of the coil marked with 4-2 outside this space lies in an area of lower magnetic flux density and therefore only makes a minor contribution to the release force. Magnets that are difficult to demagnetize must be used as magnets. These conditions are met in particular by rare earth magnets. Because of their large magnetic energy density, only small magnet volumes are required and the magnets maintain their magnetization even in open magnetic circuits with repulsive magnets. By the effect of so-called magnetic cutting forces between the magnets 1 and 3 or 3 and 2, the movable movement element 9 is forced into a stop position 8 indicated by the arrow S. This stop position can be formed, for example, by an adjusting screw 7, which is attached in the sole of the U-shaped support 6 for the magnets 1 and 2. The movable magnet 3 and the coil 4 are cast into a base body with a hammer head 5 (see also FIG. 3), which forms the movement element 9 in its entirety. To trigger the movement element 9 from its stop position in the direction of arrow D, the coil 4 is acted upon by a trigger current. The coil force 4-1 in the magnetic field of magnets 1 and 2 generates the essential force for action in the direction of arrow D (this force effect would be canceled if coil coil 4-2 were also in the same field between magnets 1 and 2).

Durch diese Kraftwirkung gelangt der Magnet 3 aus dem Gebiet der in Richtung S wirkenden Schneidenkräfte über eine Gleichgewichtsposition in das Gebiet der in Richtung D wirkenden Schneidenkräfte. Durch diese Schneidenkräfte erfährt das Bewegungselement 9 die für den Druckvorgang erforderliche kinetische Energie.As a result of this force effect, the magnet 3 passes from the area of the cutting forces acting in the direction S via an equilibrium position into the area of the cutting forces acting in the direction D. As a result of these cutting forces, the movement element 9 experiences the kinetic energy required for the printing process.

Über magnetische Schneidenkräfte sind genauere Einzelheiten in der EP-A-2 837 550 ausgesagt. Dort heißt es: »Zur qualitativen Kennzeichnung üblicher Magnetkräfte sei zunächst auf die altbekannte Tatsache hingewiesen, daß beim Annähern zweier gleichartiger Magnetpole hohe Abstoßungskräfte auftreten, welche mit abnehmender Entfernung zwischen beiden Magnetpolen stark abnehmen. Neben diesen Kräften für abstoßende Konfigurationen gibt es natürlich auch solche für anziehende Konfigurationen. Bei den letzteren werden ungleichmäßige Magnetpole einander angenähert.More details are given in EP-A-2 837 550 about magnetic cutting forces. There it says: »For the qualitative identification of conventional magnetic forces, reference is first made to the well-known fact that when two magnetic poles of the same type approach each other, high repulsive forces occur, which decrease sharply as the distance between the two magnetic poles decreases. In addition to these forces for repulsive configurations, there are of course also those for attractive configurations. In the latter, uneven magnetic poles are brought closer together.

Als magnetische Schneidenkräfte werden solche verstanden, die beim Vorbeibewegen sich einander anziehender oder abstoßender Magnete in Bewegungsrichtung auftreten.Magnetic cutting forces are understood to be those which occur in the direction of movement when magnets which are attracting or repelling one another move past.

Das Rückstellen des Bewegungselementes 9 in seiner Ausgangsposition kann mit Hilfe mechanischer Rückstellkräfte oder mit Hilfe eines auf die Spule 4 zu gebenden Rückstellstroms erfolgen. Für den letzteren Fall müßte sich der Spulenteil 4-2 in ausgelenkter Position des Bewegungselementes 9 in dem Bereich starker magnetischer Flußdichte zwischen den Magneten 1 und 2 befinden. Ein Rückstellstrom würde dann eine Kraftwirkung in Pfeilrichtung S bedingen. Dadurch würden die in Pfeilrichtung D wirkenden magnetischen Schneidenkräfte überwunden bis die in Pfeilrichtung S wirkenden magnetischen Schneidenkräfte zwischen den Magneten 1 und 3 bzw. 2 und 3 das Aktionsglied 9 in seine Stopp-Position zwingen würden.The movement element 9 can be reset in its starting position with the aid of mechanical restoring forces or with the aid of a restoring current to be supplied to the coil 4. In the latter case, the coil part 4-2 would have to be in the deflected position of the movement element 9 in the area of strong magnetic flux density between the magnets 1 and 2. A reset current would then require a force in the direction of arrow S. This would overcome the magnetic cutting forces acting in the direction of the arrow D until the magnetic cutting forces acting in the direction of the arrow S between the magnets 1 and 3 or 2 and 3 would force the action member 9 into its stop position.

In Fig. 3 ist eine Druckhammerbank in auseinandergezogener ausschnittsweiser, perspektivischer Darstellung gezeigt. Aus Vereinfachungsgründen entfällt in dieser Darstellung jedoch die Stellschraube 7 (siehe Fig. 1) für die Stopp-Position des Bewegungselementes 9. Das Bewegungselement 9 ist als Druckhammer ausgebildet; es ist in bekannter Weise auf zwei Blattfedern 10 und 11 gelagert. Die Spulenanschlüsse sind mit 12 und 13 gekennzeichnet, sie können mit den Blattfedern 10 und 11 verbunden sein, über die dann die Stromzuführung erfolgen würde. Für die Ausbildung des Bewegungselementes 9 gibt es eine Vielzahl von Möglichkeiten. So könnte beispielsweise der Grundkörper dieses Gliedes in Kunststoffschalenbauweise unter Einschluß des Magneten 3 und der Spule 4 ausgebildet sein. Der Druckhammerkopf 5 könnte an seiner Schlagfläche eine metallisierte Auflage erhalten. Die Blattfedern 10 und 11 können z. B. durch eine entsprechende Klebverbindung mit dem Aktionsglied verbunden sein. Die Wirkungsweise dieser in Fig. 3 gezeigten Anordnung für den Druckvorgang ist die gleiche wie im Zusammenhang mit Fig. 1 beschrieben. Das Rücksetzen des Bewegungselementes 9 in seine Ausgangsposition würde durch die Blattfedern 10 und 11 unterstützt werden, denen neben dieser Funkti, on auch die Führung des Bewegungselementes 9 zukäme. Die Blattfedern werden durch die Schneidenkräfte gleichzeitig mit der Erzeugung der kinetischen Energie des Bewegungselementes 9 gespannt. Dadurch wird die Gleichgewichtsposition des Bewegungselementes 9 in eine Position (in Richtung D) verlagert. In dieser Gleichgewichtsposition würde das Bewegungselement 9 ohne weitere Rückstellkräfte durch die Blattfedern nach erfolgtem Druckvorgang zurückgeholt werden. Über den in Fig. 3 dargestellten Teil hinaus aber sei bemerkt, daß bei einer solchen Druckhammerbank benachbarte Bewegungselemente immer einen gemeinsamen zwischen ihnen liegenden, festen stationären Magneten (1 bzw. 2) haben. Eine Ausnahme in diesem Zusammenhang bilden lediglich die an den Enden der Druckhammerbank liegenden Bewegungselemente.In Fig. 3, a print hammer bank is shown in an exploded, perspective view. For reasons of simplification, however, the adjusting screw 7 (see FIG. 1) for the stop position of the movement element 9 is omitted in this illustration. The movement element 9 is designed as a pressure hammer; it is supported in a known manner on two leaf springs 10 and 11. The coil connections are marked with 12 and 13, they can be connected to the leaf springs 10 and 11, via which the current supply would then take place. There are a multitude of possibilities for the formation of the movement element 9. For example, the base body of this link could be constructed in a plastic shell construction including the magnet 3 and the coil 4. The print hammer head 5 could have a metallized surface on its face. The leaf springs 10 and 11 can, for. B. be connected to the action member by a corresponding adhesive connection. The mode of operation of this arrangement shown in FIG. 3 for the printing process is the same as described in connection with FIG. 1. The resetting of the movement element 9 into its starting position would be supported by the leaf springs 10 and 11, which, in addition to this function, would also guide the movement element 9. The leaf springs are tensioned by the cutting forces simultaneously with the generation of the kinetic energy of the movement element 9. As a result, the equilibrium position of the movement element 9 is shifted into a position (in the direction D). In this equilibrium position, the movement element 9 would be brought back by the leaf springs after the printing process without further restoring forces. Beyond the part shown in FIG. 3, however, it should be noted that in such a printing hammer bench, adjacent movement elements always have a common stationary magnet (1 or 2) lying between them. The only exception in this connection are the movement elements located at the ends of the print hammer bench.

In Fig. 4 ist die Aufsicht auf eine Druckhammerbank mit gegeneinander versetzt angeordneten Druckhämmern und mit einer Rückholanordnung gezeigt. Aus Vereinfachungsgründen sind nur zwei übereinanderliegende Druckhämmer 14 und 15 dargestellt. Jeder Druckhammer besteht, wie auch in Fig. 1 und 3, aus einem Grundkörper, in dem ein Magnet und eine ihn umgebende Spule eingebettet ist. Jeder Druckhammer wird von zwei Blattfedern geführt. Die beiden Druckhämmer sind derart gegeneinander versetzt, daß ihre Blattfedern an entgegengesetzten Stellen der Druckhammerbank fixiert sind und daß ihre Hammerköpfe in einer Reihe ausgerichtet sind. Der Grundkörper der Druckhammerbank ist mit 14-5 gekennzeichnet, die beiden Druckhämmer mit 14 und 15. Der Druckhammer 14 enthält den Magneten 14-1 mit der ihn umgebenden Spule 14-2. Er ist über die Blattfedern 14-3 und 14-4 mit dem oberen Schenkel des Grundkörpers 14-5 verbunden. Entsprechendes gilt für den in der Darstellung nach Fig. 4 unter den Hammer 14 liegenden Hammer 15, dessen Magnet mit 15-1 und dessen diesen Magneten umgebende Spule mit 15-2 gekennzeichnet ist. Die ihn tragenden Blattfedern 15-3 und 15-4 sind mit dem unteren Schenkel des Grundkörpers 14-5 verbunden. Auf die Darstellung der die Magnete 14-1 bzw. 15-1 einschließenden stationären Magnete wurde aus Vereinfachungsgründen verzichtet. Bei entsprechendem Stromfluß der Spulen 14-2 bzw. 15-2 erfährt der entsprechende Druckhammer eine Kraftwirkung in Pfeilrichtung D für den Auslösevorgang. Für das gemeinsame Zurückstellen aller Druckhämmer der Druckhammerbank in ihre Ausgangsposition ist eine gemeinsame Rückholvorrichtung vorgesehen. Diese besteht aus einem in einer Führung 23 hin und her bewegbar angeordneten Führungsstück 18, welches über elastische Elemente 16 und 17 mit den rückwärtigen Enden der Druckhämmer 14 und 15 verbunden ist. Diese elastischen Elemente können Zugfedern sein. Das Führungsstück 18 wird über einen Exzenterantrieb 21/20 angetrieben. Dieser Exzenterantrieb (stationäre Achse 21 mit azentrischer Exzenterscheibe) wirkt in einer Aussparung 19 im Führungsstück 18. Bei einer Drehung des Exzenters führt das Führungsstück 18 innerhalb der Führung 23 eine Hubbewegung aus, wodurch die ausgelenkten Druckhämmer durch die elastischen Elemente über den Bereich der in Richtung D wirkenden magnetischen Schneidenkräfte in den Bereich der in Richtung S wirkenden magnetischen Schneidenkräfte in ihre Ausgangsposition zurückgezogen werden. Die Ausgangsposition ist durch die Anschläge 14-6 bzw. 14-7 festgelegt.4 shows the top view of a printing hammer bank with printing hammers offset with respect to one another and with a return arrangement. For reasons of simplification, only two pressure hammers 14 and 15 lying one above the other are shown. As in FIGS. 1 and 3, each printing hammer consists of a base body in which a magnet and a coil surrounding it are embedded. Every print hammer will guided by two leaf springs. The two print hammers are offset from one another in such a way that their leaf springs are fixed at opposite points on the print hammer bank and that their hammer heads are aligned in a row. The base body of the print hammer bank is identified by 14-5, the two print hammers by 14 and 15. The print hammer 14 contains the magnet 14-1 with the coil 14-2 surrounding it. It is connected via the leaf springs 14-3 and 14-4 to the upper leg of the base body 14-5. The same applies to the hammer 15 lying under the hammer 14 in the illustration according to FIG. 4, the magnet of which is identified by 15-1 and the coil surrounding this magnet is identified by 15-2. The leaf springs 15-3 and 15-4 supporting it are connected to the lower leg of the base body 14-5. The illustration of the stationary magnets enclosing the magnets 14-1 and 15-1 has been omitted for reasons of simplification. With a corresponding current flow of the coils 14-2 or 15-2, the corresponding pressure hammer experiences a force effect in the direction of arrow D for the triggering process. A common return device is provided for the common return of all print hammers of the print hammer bank into their starting position. This consists of a guide piece 18 which is movably arranged to and fro in a guide 23 and which is connected to the rear ends of the pressure hammers 14 and 15 via elastic elements 16 and 17. These elastic elements can be tension springs. The guide piece 18 is driven by an eccentric drive 21/20. This eccentric drive (stationary axis 21 with an eccentric eccentric disc) acts in a recess 19 in the guide piece 18. When the eccentric rotates, the guide piece 18 executes a lifting movement within the guide 23, as a result of which the deflected pressure hammers are moved by the elastic elements over the range of the direction D acting magnetic cutting forces in the area of the magnetic cutting forces acting in the direction S are withdrawn to their starting position. The starting position is determined by the stops 14-6 and 14-7.

In Fig. ist eine auseinandergezogene perspektivische Darstellung dreier Magnetpaare gezeigt, von denen eines mit einer Spule verbunden bewegbar zwischen den verbleibenden stationären anderen Magnetpaaren angeordnet ist. Bei dieser Anordnung liegen beide Seiten (23-1 und 23-2) der Spule 23 des Bewegungselementes 24 immer in einem Gebiet hoher magnetischer Flußdichte, daß von dem Magnetpaar 22-2/22-3 bzw. 21-2/21-3 erzeugt wird. Die Magnetpaare 22-2/22-3 und 21-2/21-3 sind benachbart angeordnet und aufeinander ausgerichtet. Die Magnete dieser Magnetpaare sind so weit voneinander beabstandet, daß zwischen ihnen ein in Pfeilrichtung D bewegbares Bewegungselement 24 angeordnet werden kann. Dieses Bewegungselement besteht aus der Folge eines Magneten 22-1, einer Spule 23 und eines Magneten 21-1. Der Magnet 22-1 befindet sich zwischen den Magneten 22-2 und 22-3, der Magnet 21-1 zwischen den Magneten 21-2 und 21-3. Die Magnete 22-1 und 21-1 haben (in Bewegungsrichtung des Bewegungselementes 24 gesehen) eine geringere Länge als die Magnete 22-2, 22-3, 21-2 und 21-3. Auf diese Weise bleibt der zwischen den Magneten 22-1 und 21-1 angeordneten Spule 23 ausreichend Platz, um mit ihren für die Kraftwirkung in Pfeilrichtung D maßgebenden Spulenteilen 23-1 und 23-2 einerseits zwischen den Magneten 22-2 und 22-3 und andererseits zwischen den Magneten 21-2 und 21-3 zu liegen. Die Magnetisierungsrichtung M22-2 und M22-3 der Magnete 22-2 und 22-3 ist gleich und der Magnetisierungsrichtung M22-1 des zwischen ihnen angeordneten Magneten 22-1 entgegengerichtet. Ebenso ist die Magnetisierungsrichtung M21-2 und M21-3 der Magnete 21-2 und 21-3 gleich und zu der M21-1 des zwischen ihnen liegenden Magneten 21-1 entgegengerichtet; jedoch verlaufen die Magnetisierungsrichtungen M22-1 und M22-2 einander entgegengesetzt. Durch eine derartige Anordnung ergibt sich beim Fließen eines Stroms in den Spulenteilen 23-1 und 23-2 eine Kraftwirkung in Pfeilrichtung D. Durch die besondere Konfiguration dieser Anordnung gemäß Fig. 5 ist es möglich, am Auslösevorgang des Bewegungselementes 24 beide Spulenteile 23-1 und 23-2 gleichwertig teilnehmen zu lassen (im Gegensatz zu der Anordnung nach Fig. 1). Diese Möglichkeit erfordert jedoch einen höheren konstruktiven Aufwand.In Fig. An exploded perspective view of three magnet pairs is shown, one of which is movably arranged connected to a coil between the remaining stationary other magnet pairs. With this arrangement, both sides (23-1 and 23-2) of the coil 23 of the moving element 24 are always in an area of high magnetic flux density, which is generated by the magnet pair 22-2 / 22-3 and 21-2 / 21-3 becomes. The magnet pairs 22-2 / 22-3 and 21-2 / 21-3 are arranged adjacent to each other and aligned. The magnets of these pairs of magnets are so far apart from one another that a movement element 24 movable in the direction of arrow D can be arranged between them. This moving element consists of the sequence of a magnet 22-1, a coil 23 and a magnet 21-1. The magnet 22-1 is located between the magnets 22-2 and 22-3, the magnet 21-1 between the magnets 21-2 and 21-3. The magnets 22-1 and 21-1 (seen in the direction of movement of the movement element 24) have a shorter length than the magnets 22-2, 22-3, 21-2 and 21-3. In this way, the coil 23 arranged between the magnets 22-1 and 21-1 remains sufficient space, on the one hand, with its coil parts 23-1 and 23-2, which are decisive for the force action in the direction of arrow D, between the magnets 22-2 and 22-3 and on the other hand to lie between the magnets 21-2 and 21-3. The magnetization direction M22-2 and M22-3 of the magnets 22-2 and 22-3 is the same and the magnetization direction M22-1 of the magnet 22-1 arranged between them is opposite. Likewise, the magnetization direction M21-2 and M21-3 of the magnets 21-2 and 21-3 is the same and is opposite to that of the M21-1 of the magnet 21-1 lying between them; however, the magnetization directions M22-1 and M22-2 are opposite to each other. Such an arrangement results in a force effect in the direction of the arrow D when a current flows in the coil parts 23-1 and 23-2. The special configuration of this arrangement according to FIG. 5 makes it possible for both coil parts 23-1 to trigger the movement element 24 and 23-2 to participate equally (in contrast to the arrangement according to FIG. 1). However, this possibility requires a higher design effort.

Claims (7)

1. Electromagnetic release mechanism with a moving element (9) provided with at least a first magnet (3) which, as a function of magnetic edge forces, is movably arranged between other second magnets (1, 2),
where through the release force caused by the energization of a release coil (4) provided in the moving element (9) and generating a magnetic field directed in parallel to the magnetic fields of the second magnets (1, 2), the first magnet (3) can be transferred, against te influence of the magnetic edge forces, from an initial position to a position out of which the magnetic edge forces accelerate the movingelement (9) in a direction (D) opposite to its initial position,
and where the moving element (9) is connected with one or several springs (10, 11) through which, from its deflected position, it can be fully or partly restored to its initial position,

characterized in that
the first magnet (3), by means of the magnetic edge forces, can be transferred to an initialposi. tion formed by a fixed stop (8), and that the first magnet (3) is surrounded by the release coil (4) generating a magnetic field directed in parallel to the magnetic fields of the magnets (1, 2, 3) whose coil part (4-1) contributing to a force active in the release direction (D), is arranged in the space formed by the magnets (1, 2) between which the first magnet (3) is located.
2. Arrangement in accordance with claim 1,
characterized in
that the coil parts (4-2) of the release coil (4) in the deflected position of the moving element (9) are arranged in the space between the magnets (1, 2),
and that upon energization of the release coil (4), a force is exerted on the moving element (9) in the direction (S), restoring said element to its initial position (8).
3. Arrangement in accordance with claim 1,
characterized in
that the moving element (24) is provided with two magnets (22-1, 21-1) arranged one behind the other in the direction of movement, and with a release coil (23) arranged therebetween, that the first (22-1) of these magnets is movable between a stationary magnet pair (22-2, 22-3) and the second (21-1) of these magnets is movable between a second stationary magnet pair (21-2, 21-3),
and that the two parts of the coil (23-1, 23-2) contributing to the release force of the moving element are located in the space formed by the first stationary (22-2, 22-3) and the second (21-2; 21-3) stationary magnet pair.
4. Arrangement in accordance with one of the preceding claims 1 to 3, for use in connection with print hammer actuators.
5. Arrangement in accordance with one of the claims 1 to 4, characterized in that the moving element is supported by means of two leaf springs (10,11; 14-4, 14-5; 15-3,15-4).
6. Arrangement in accordance with one of the claims 4 or 5, characterized in that several moving elements (14,15) representing one print hammer each are combined in the form of a print hammer bank in such a manner that the moving elements for adjacent print hammers are oppositely arranged, and that the print hammers are connected to a common eccentrically driven restore element (18) via a spring (16,17).
7. Arrangement in accordance with claim 4, characterized in that neighbouring moving elements (9, 24) have one or several stationary magnets in common.
EP80105795A 1979-11-02 1980-09-25 Device for electromagnetic release, especially for actuating print hammers Expired EP0028314B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792944287 DE2944287A1 (en) 1979-11-02 1979-11-02 ELECTROMAGNETIC RELEASE DEVICE, ESPECIALLY FOR THE DRIVE OF PRESSURE HAMMER
DE2944287 1979-11-02

Publications (3)

Publication Number Publication Date
EP0028314A2 EP0028314A2 (en) 1981-05-13
EP0028314A3 EP0028314A3 (en) 1982-09-08
EP0028314B1 true EP0028314B1 (en) 1985-02-13

Family

ID=6084986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105795A Expired EP0028314B1 (en) 1979-11-02 1980-09-25 Device for electromagnetic release, especially for actuating print hammers

Country Status (4)

Country Link
US (1) US4343239A (en)
EP (1) EP0028314B1 (en)
CA (1) CA1150338A (en)
DE (2) DE2944287A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2935939A1 (en) * 1979-09-06 1981-03-26 AEG Olympia Office GmbH, 26419 Schortens Electrodynamic impact mechanism for printer - has excitation coil, coacting with control device, whose axis is transverse to impact member
US4420714A (en) * 1981-10-02 1983-12-13 Polaroid Corporation Apparatus for continuously incrementing an output member
DE3147449C2 (en) * 1981-12-01 1984-03-08 Olympia Werke Ag, 2940 Wilhelmshaven Electrodynamic stop device for a printing unit in typewriters or similar office machines
US4458227A (en) * 1982-04-12 1984-07-03 Polaroid Corporation Electromagnetic actuators
US4531820A (en) * 1983-06-22 1985-07-30 Polaroid Corporation Electromagnetic actuator generating equal and opposing force vectors
US4558937A (en) * 1984-02-06 1985-12-17 Polaroid Corporation Electromagnetic blade mechanism
US4973634A (en) * 1989-05-19 1990-11-27 E. I. Du Pont De Nemours And Company Preparation of bromo-containing perfluoropolymers having iodine curesites
US10110109B2 (en) * 2014-06-11 2018-10-23 Aston Gustavous Farquharson Self-powered alternative energy machine to generate electricity
US9692275B2 (en) 2014-06-11 2017-06-27 Aston Gustavous Farquharson Alternative energy generator
CN107078601A (en) * 2014-11-07 2017-08-18 纳斯佩谢丝全球机械公司 Produce the self-powered replacement energy machine of electric power

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008660A1 (en) * 1978-08-29 1980-03-19 International Business Machines Corporation Structure in the form of a symmetrical magnetic retaining system for release devices with a movable element, e.g. a print hammer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1264120B (en) * 1964-07-25 1968-03-21 Ibm Deutschland Print hammer mechanism and procedure for adjusting its magnet yokes
US3459976A (en) * 1966-07-05 1969-08-05 Mohawk Data Sciences Corp Rotary electrodynamic driver
US3606834A (en) * 1969-06-24 1971-09-21 Mohawk Data Sciences Corp Printer having a permanent magnet hammer mechanism
BE757078A (en) * 1969-10-06 1971-03-16 Ncr Co PROCESS FOR BONDING A METAL PART AND A MOLDED POLYMERIC MATERIAL

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008660A1 (en) * 1978-08-29 1980-03-19 International Business Machines Corporation Structure in the form of a symmetrical magnetic retaining system for release devices with a movable element, e.g. a print hammer

Also Published As

Publication number Publication date
EP0028314A2 (en) 1981-05-13
DE3070166D1 (en) 1985-03-28
US4343239A (en) 1982-08-10
EP0028314A3 (en) 1982-09-08
CA1150338A (en) 1983-07-19
DE2944287A1 (en) 1981-05-14

Similar Documents

Publication Publication Date Title
EP0028314B1 (en) Device for electromagnetic release, especially for actuating print hammers
DE3715304C2 (en)
DE69918197T2 (en) Hybrid type magnet and stepping motor containing it
DE2652339C2 (en) Electrodynamic actuator for a printer
DE2629235A1 (en) PRINTING DEVICE FOR CALCULATING, ACCOUNTING AND SIMILAR PRINTING MACHINES
DE69702128T2 (en) ELECTRO-MAGNETIC DEVICE FOR AUTOMATICALLY CONTROLLING THE NEEDLES OF A JACQUARD MECHANISM
EP0063233B1 (en) Electromagnetic driving element
EP0134827A1 (en) Electromagnetic drive for continuous and stepwise linear or rotary movements
DE2452325A1 (en) ELECTROMAGNETIC STOP DEVICE FOR PRINTER
DE2249125C2 (en) Printer with a selection arrangement for printing elements
EP0014737B1 (en) Electromagnetic actuator
EP0021335B1 (en) Electromagnetic device for driving a print element
DE2305362A1 (en) ELECTROMAGNETIC ACTUATION DEVICE FOR A PEN OF A DOT PRINT DEVICE
DE2235225A1 (en) METHOD AND DEVICE FOR READING IN CARD FLASHING MACHINES, JACQUARD MACHINES OR THE LIKE
DE19637077A1 (en) Permanent magnet for the magnetic circuit of a magnetic release that can preferably be used in a residual current circuit breaker
DE3502469C2 (en)
DE1474164C3 (en) Device for punching on drawing carriers
DE2924672A1 (en) NEEDLE PRINTING PLANT
DE3018407A1 (en) ELECTROMAGNETICALLY OPERABLE PUSH DRIVE, ESPECIALLY FOR STOP PRINTER
EP0012812A1 (en) Magnetic modulated-flux actuator
EP0174381B1 (en) Print hammer bank of modular construction
DE3402621A1 (en) PRINT HEAD FOR A STRIKING MOSAIC LINE PRINTER
DE1965577C3 (en) Actuator arrangement for a number of actuators
EP0108159A1 (en) Electromagnetic swing drive, in particular for impact printers
DE2845806C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19810807

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19850213

REF Corresponds to:

Ref document number: 3070166

Country of ref document: DE

Date of ref document: 19850328

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900803

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901004

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910925

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST