EP0028025B1 - Method and device for the production of microdroplets of liquid - Google Patents

Method and device for the production of microdroplets of liquid Download PDF

Info

Publication number
EP0028025B1
EP0028025B1 EP80106544A EP80106544A EP0028025B1 EP 0028025 B1 EP0028025 B1 EP 0028025B1 EP 80106544 A EP80106544 A EP 80106544A EP 80106544 A EP80106544 A EP 80106544A EP 0028025 B1 EP0028025 B1 EP 0028025B1
Authority
EP
European Patent Office
Prior art keywords
reaction space
fact
space
gas
swirl chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80106544A
Other languages
German (de)
French (fr)
Other versions
EP0028025A1 (en
Inventor
Karl Folke Peterson
Kurt L. Skoog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dala Invest AB
Original Assignee
Dala Invest AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE7908865A external-priority patent/SE7908865L/en
Priority claimed from SE7908864A external-priority patent/SE7908864L/en
Priority claimed from SE7908863A external-priority patent/SE7908863L/en
Application filed by Dala Invest AB filed Critical Dala Invest AB
Priority to AT80106544T priority Critical patent/ATE3906T1/en
Publication of EP0028025A1 publication Critical patent/EP0028025A1/en
Application granted granted Critical
Publication of EP0028025B1 publication Critical patent/EP0028025B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0466Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the central liquid flow towards the peripheral gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/105Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet at least one of the fluids being submitted to a swirling motion

Definitions

  • the invention relates to a method for producing micro-liquid droplets, in which a liquid is injected through an opening into a swirl chamber and from there is passed into a transport or reaction space, in which the liquid is acted upon by an external gas flow, the flow path of which is concentric and helical runs to the axis of the opening opening into the reaction space, and a device for carrying out such a method and the use of the method or the device for the combustion of oil.
  • the present invention is based on the object of providing a method and a device of the type mentioned at the outset which permit extremely fine atomization of the liquid injected into the reaction space, even in the case of an extremely short reaction space.
  • This object is achieved procedurally in that a hollow-cone-shaped flow profile is formed in the vortex chamber, which undergoes an additional widening in the subsequent reaction space as a result of a negative pressure immediately behind the inlet opening into the reaction space.
  • the measures according to the invention achieve a spontaneous fanning out of the liquid injected into the reaction space, which results in a correspondingly fine atomization.
  • the hollow spray cone introduced into the reaction space is literally pulled apart in the radial direction by the negative pressure which forms immediately behind the inlet opening, which leads to an extremely rapid increase in surface area, which leads to the fine atomization mentioned over a very short distance.
  • the external gas flow prevents, in a manner known per se, that liquid droplets are deposited on the inner wall of the reaction space and lead to incrustations.
  • the effects according to the invention also occur when the liquid is injected into the swirl chamber with only low pressure and from there into the reaction space.
  • the method according to the invention and the device according to the invention are particularly suitable for the combustion of oil. It is generally known that the smaller the droplets of the combustion liquid (oil), the faster and more complete the combustion.
  • the relationship between the process time t (combustion time) and the droplet diameter d is as follows: where c is a constant.
  • the process time t is the necessary length of stay in the reaction space, and in the invention, this length of stay can also be maintained in a very short reaction space.
  • a practically residue-free combustion can be achieved with extremely low proportions of CO, NO x and CH x .
  • the combustion can take place safely in an open space.
  • FIG. 1 comprises a swirl chamber 12, into which a nozzle 10 opens, and a reaction chamber 20, which directly adjoins the swirl chamber 12.
  • the liquid 15 emerging from the nozzle 10 is set in rotation in the swirl chamber 12 by an external gas flow 13, so that the liquid in the swirl chamber 12 assumes a hollow-cone-shaped flow profile.
  • This hollow-cone-shaped flow profile passes through an opening 22 located opposite the nozzle 10 from the swirl chamber 12 into the downstream reaction chamber 20, where it experiences a spontaneous additional expansion due to a negative pressure immediately behind the inlet opening 22 into the reaction chamber 20.
  • This fanning out is identified in FIG. 1 by the reference number 19.
  • the reaction space 20 is pot-shaped, the inlet opening 22 being arranged centrally in the end face of the reaction space 20.
  • gas inlet openings 24 are provided approximately uniformly distributed over the circumference and are inclined to the radial in order to impart a predetermined screw movement through the reaction space 20 to the gas flow 21.
  • the inner diameter of the pot-shaped reaction space 20 can be dimensioned such that the outer gas flow 21 practically no longer acts on the inner surface of the side wall 28. This eliminates the risk of deposits of liquid droplets 19 or their reaction products on the inner surface of the side wall 28. Such deposits would lead to a change in the flow conditions and would require cleaning of the reaction space 20 after a certain period of operation.
  • gas inlet tubes 30 projecting beyond the inner surface of the side wall 28 are inserted into the openings 24 (FIG. 1).
  • the tubes 30 are slidably inserted within the openings 24 so that the length of the part projecting beyond the inner surface of the side wall 28 can be changed.
  • the easiest way to solve this problem is to screw the tubes 30 into the openings 24.
  • a distributor body 32 is arranged at a distance in front of the inlet opening 22, the side of the distributor body facing the opening 22 being flat.
  • the plane of the distributor body 32 facing the opening 22 can also have a convex or conical shape.
  • the distributor body 32 thus favors rapid mixing of the droplets with the gas flow 21, the degree of mixing being able to be set by the shape of the distributor body 32.
  • the distance between the distributor body 32 and the opening 22 also has an influence on the degree of mixing or fanning out of the liquid droplets introduced into the reaction space.
  • the distributor body 32 is therefore preferably mounted so that it can be moved back and forth in the direction of the longitudinal axis 9 of the reaction space 20. Good results can be achieved if the distributor body 32 lies in a plane between the inlet opening 22 and the plane defined by the gas inlet tubes 30 close to the same.
  • the distributor body 32 promotes, in particular, the uniform distribution of the introduced droplets 19 over the cross section of the reaction space 20.
  • the distributor body 32 thus prevents local droplet accumulations, so that uniform mixing into the gas stream 21 is achieved.
  • the distributor body 32 is attached to a rigid wire.
  • other fastening options are also conceivable, but care must be taken that the fastening means do not adversely affect the flow, in particular the swirl movement of the gas-droplet flow in the reaction space 20.
  • an ignition device 36 is preferably provided in the area of the droplet inlet opening 22 in order to burn the liquid droplets, e.g. B. oil droplets to start.
  • the swirl movement of the gas flow 13 in the swirl chamber 12 is obtained by gas guide means 16 arranged on the outer periphery of the nozzle 10 obliquely to the longitudinal axis of the nozzle, whereby as Gas guide means baffles or swirl grooves arranged on the outer circumference of the nozzle 10 can serve.
  • the vortex chamber 12 is frustoconical, the smaller end face being formed through the inlet opening 22 into the reaction space 20.
  • the unit according to FIG. 1 is used as an oil burner and is identified by the reference number 41.
  • the burner 41 is attached to the upper end of an upright heat exchanger 42, the reaction space 20 projecting slightly into an exhaust gas space 43.
  • the reaction chamber 20 serves as the combustion chamber, the flame 44 knocking somewhat out of the combustion chamber 20.
  • the hot combustion gases are passed through the exhaust gas space 43 in accordance with the arrows 45, a tubular radiation body 34 being arranged concentrically on the inside of the exhaust gas space 43 away from the burner.
  • the outer diameter of the tubular radiation body 34 is slightly smaller than the inner diameter of the exhaust gas space 43, which is also tubular in the embodiment shown.
  • Both the radiation body 34 and the wall of the exhaust gas space 43 are preferably made of heat-resistant metal (steel) and have a dark, preferably black color, so that they serve as ideal radiation bodies.
  • the additional radiation body 34 and the exhaust pipe delimiting the exhaust gas space 43 promote the heat exchange between the hot combustion gases and the environment, in the present case a heat exchange medium 38 which is guided past the exhaust pipe.
  • Heat is exchanged by convection between the hot combustion gases and the exhaust pipe and in particular the black radiation body 34.
  • the heat absorbed by the exhaust pipe and / or radiation body 34 is emitted again by radiation to the environment or to the heat exchange medium 38 and transported through this to another location.
  • black radiation bodies which are flushed by the hot combustion gases, can also be arranged behind the outlet of the exhaust pipe or in the gas guide channels 46 extending through the heat exchanger 42.
  • the shape of the radiation body can e.g. B. be egg-shaped.
  • tubular radiation bodies can also be used again. Care must, of course, be taken to ensure that the arrangement of the radiation bodies in the gas guide channels does not cause excessive pressure drops.
  • the black radiation bodies are made of metal, preferably of heat-resistant, stainless steel. But they can just as well be made of ceramic or stone. The material depends on the gas flowing around the radiation body or the chemical and / or physical reactions taking place in the reaction space 20.
  • the radiation bodies are arranged relatively far from the combustion flame, the flame temperature and thus the combustion are not influenced by the radiation bodies.
  • the radiation bodies are arranged in the immediate vicinity of the flame or the reaction site, the radiation bodies, which are heat to the outside, ie. H. dissipate to the environment, achieved a cooling effect that z. B. results in the reaction speed being reduced or a reaction not taking place at all (e.g. cracking processes).
  • the radiation bodies are also particularly suitable for the controlled afterburning of exhaust gases in an exhaust duct.
  • the radiation bodies are arranged in the exhaust duct at a suitable distance from the combustion flame and heated from the outside by heat radiation. The heat then emitted from the radiation body by convection to the exhaust gases causes the exhaust gases to re-ignite, so that complete combustion is achieved before the exhaust gases exit to the outside.
  • the described invention is particularly suitable for an oil burner. Therefore, the conditions in an oil burner and the advantages achieved by the solution according to the invention are discussed in detail again below.
  • equation (2) is limited to the case in which there is no influence of a relative movement between the droplet and the environment.
  • the third condition can also be met very simply by preheating the oil to be burned.
  • the formation of a negative pressure according to the invention immediately behind the liquid inlet opening 22 and screw movement of the liquid droplets through the reaction chamber achieves a sufficient residence time for the droplets in the reaction chamber 20 for complete combustion (0, 01 s), although the reaction space 20 is very short.
  • the short construction of the reaction space 20 has the additional advantage that heat radiation losses in the area of the reaction space are correspondingly low.
  • Nitrogen oxides are particularly dangerous for animals and humans. For this reason, laws in many countries require that the nitrogen oxide concentration in exhaust gases must not exceed a certain value. In Germany, the nitrogen oxide concentration in oil burners (fueled with heavy oil) must not exceed 500 ppm in the exhaust gas.
  • oil burners When using the unit of FIG. 1 as Due to the small design (extremely short reaction space 20), oil burners have a correspondingly short dwell time for the combustion gases. Furthermore, the burning time is reduced to a minimum even due to the extremely small liquid or oil droplets.
  • the residence time of the droplets and exhaust gases in the unit according to FIG. 1 is approximately 0.07 seconds.
  • approximately 20 ppm NO are formed when the unit according to FIG. 1 is used as an oil burner. With this short dwell time, it hardly matters if the combustion air is preheated. As has been explained above, preheating the combustion air improves the combustion itself or the combustion intensity.
  • Fig. 4 the NOx values of an oil burner designed according to the invention are shown again schematically compared to conventional oil burners, depending on the oil flow rate (1 / h) and the oxygen content during combustion.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Mikroflüssigkeitströpfchen, bei dem durch eine Öffnung in eine Wirbelkammer eine Flüssigkeit eingespritzt und von dort in einen Transport- bzw. Reaktionsraum geleitet wird, in dem die Flüssigkeit von einer äußeren Gasströmung beaufschlagt wird, deren Strömungsbahn konzentrisch und schraubenförmig zur Achse der in den Reaktionsraum mündenden Öffnung verläuft, sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens und die Verwendung des Verfahrens bzw. der Vorrichtung zur Verbrennung von Öl.The invention relates to a method for producing micro-liquid droplets, in which a liquid is injected through an opening into a swirl chamber and from there is passed into a transport or reaction space, in which the liquid is acted upon by an external gas flow, the flow path of which is concentric and helical runs to the axis of the opening opening into the reaction space, and a device for carrying out such a method and the use of the method or the device for the combustion of oil.

Ein derartiges Verfahren sowie eine derartige Vorrichtung unter anderem zur Verbrennung von Öl ist aus der US-A-4120 640 bekannt. Bei der bekannten Lösung wird die Flüssigkeit in einem sehr kompakten, sich nur unwesentlich öffnenden Sprühkegel in den Reaktionsraum eingespritzt, wobei die in den Reaktionsraum mündende Öffnung von einem konzentrischen Ring umgeben ist, der zwischen sich und der Innenwandung des Reaktionsraumes einen Ringraum freiläßt, in den eine Düse für die äußere Gasströmung mündet. Die Gasströmung bewirkt dementsprechend bereits in diesem Ringraum eine äußere Zone mit Überdruck, die im wesentlichen über die gesamte Länge des Reaktionsraumes erhalten bleibt, wodurch der Sprühkegel regelrecht zusammengehalten wird und Ablagerungen von Flüssigkeitströpfchen an der Innenwandung des Reaktionsraumes sicher vermieden werden können. Andererseits ist die Folge dieser Konstruktion, daß der Reaktionsraum relativ lang gebaut werden muß, um eine einigermaßen zufriedenstellende Zerstäubung der eingespritzten Flüssigkeit zu erhalten.Such a method and such a device, inter alia for the combustion of oil, are known from US-A-4120 640. In the known solution, the liquid is injected into the reaction space in a very compact spray cone, which opens only insignificantly, the opening opening into the reaction space being surrounded by a concentric ring which leaves an annular space between itself and the inner wall of the reaction space, into which a nozzle for the external gas flow opens. The gas flow accordingly already causes an outer zone with excess pressure in this annular space, which is essentially maintained over the entire length of the reaction space, as a result of which the spray cone is literally held together and deposits of liquid droplets on the inner wall of the reaction space can be reliably avoided. On the other hand, the consequence of this construction is that the reaction space has to be built relatively long in order to obtain a reasonably satisfactory atomization of the injected liquid.

Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art zu schaffen, das bzw. die eine äußerst feine Zerstäubung der in den Reaktionsraum eingespritzten Flüssigkeit auch bei extrem kurz gebautem Reaktionsraum erlaubt.In contrast, the present invention is based on the object of providing a method and a device of the type mentioned at the outset which permit extremely fine atomization of the liquid injected into the reaction space, even in the case of an extremely short reaction space.

Diese Aufgabe wird verfahrensmäßig dadurch gelöst, daß in der Wirbelkammer ein hohlkegelförmiges Strömungsprofil ausgebildet wird, das im anschließenden Reaktionsraum eine zusätzliche Aufweitung infolge eines Unterdrucks unmittelbar hinter der Eintrittsöffnung in den Reaktionsraum erfährt.This object is achieved procedurally in that a hollow-cone-shaped flow profile is formed in the vortex chamber, which undergoes an additional widening in the subsequent reaction space as a result of a negative pressure immediately behind the inlet opening into the reaction space.

Durch die erfindungsgemäßen Maßnahmen wird eine spontane Auffächerung der in den Reaktionsraum eingespritzten Flüssigkeit erreicht, die eine entsprechend feine Zerstäubung zur Folge hat. Der in den Reaktionsraum eingeleitete hohle Sprühkegel wird durch den sich unmittelbar hinter der Eintrittsöffnung ausbildenden Unterdruck in radialer Richtung regelrecht auseinandergezogen, wodurch eine extrem schnelle Oberflächenvergrößerung herbeigeführt wird, die zu der erwähnten feinen Zerstäubung auf kürzester Strecke führt. Die äußere Gasströmung verhindert dabei in an sich bekannter Weise, daß Flüssigkeitströpfchen sich an der Innenwandung des Reaktionsraumes ablagern und zu Verkrustungen führen.The measures according to the invention achieve a spontaneous fanning out of the liquid injected into the reaction space, which results in a correspondingly fine atomization. The hollow spray cone introduced into the reaction space is literally pulled apart in the radial direction by the negative pressure which forms immediately behind the inlet opening, which leads to an extremely rapid increase in surface area, which leads to the fine atomization mentioned over a very short distance. The external gas flow prevents, in a manner known per se, that liquid droplets are deposited on the inner wall of the reaction space and lead to incrustations.

Aus der US-A-3 758 259 und der DE-A-2 356 229 ist es zwar jeweils bekannt, die aus einer Düse austretende Flüssigkeit durch eine äußere Gasströmung in Drehung zu versetzen, so daß die Flüssigkeit ein schlauchförmiges bzw. hohlkegelförmiges Strömungsprofil annimmt, wodurch eine relativ gleichmäßige feine Zerstäubung der austretenden Flüssigkeit erhalten wird (vgl. z. B. DE-A-2 356 229, Seite 2 Absatz 3). Im übrigen sind bei den bekannten Lösungen jedoch keine Vorkehrungen für eine zusätzliche spontane Auffächerung des hohlkegelförmigen Strömungsprofils nach Austritt aus der Düse vorgesehen, die zu einer noch feineren Zerstäubung der auf extrem kurzer Distanz führt.From US-A-3 758 259 and DE-A-2 356 229 it is known in each case to set the liquid emerging from a nozzle in rotation by an external gas flow, so that the liquid assumes a tubular or hollow-conical flow profile , whereby a relatively uniform fine atomization of the emerging liquid is obtained (see, for example, DE-A-2 356 229, page 2, paragraph 3). Moreover, in the known solutions, however, no provisions are made for an additional spontaneous fanning out of the hollow-cone-shaped flow profile after exiting the nozzle, which leads to an even finer atomization at an extremely short distance.

Überraschenderweise stellen sich die erfindungsgemäßen Effekte auch dann ein, wenn die Flüssigkeit mit nur geringem Druck in die Wirbelkammer und aus dieser in den Reaktionsraum eingespritzt wird.Surprisingly, the effects according to the invention also occur when the liquid is injected into the swirl chamber with only low pressure and from there into the reaction space.

Bevorzugte Weiterbildungen des erfindungsgemäßen Verfahrens sind in den Ansprüchen 2 bis 5 näher beschrieben, wobei durch die Maßnahmen nach Anspruch 5 eine noch stärkere Verfeinerung der Flüssigkeitströpfchen erhalten wird. Die Gasströmung ist bei dieser Ausführungsform durch zwei überlagerte Rotationsbewegungen gekennzeichnet.Preferred developments of the method according to the invention are described in more detail in claims 2 to 5, wherein the measures according to claim 5 result in an even greater refinement of the liquid droplets. In this embodiment, the gas flow is characterized by two superimposed rotational movements.

Vorrichtungsmäßig wird die gestellte Aufgabe durch die Maßnahmen nach Anspruch 6 gelöst, wobei in den Ansprüchen 7 bis 11 vorteilhafte konstruktive Weiterbildungen der erfindungsgemäßen Vorrichtung näher beschrieben sind.In terms of the device, the object is achieved by the measures according to claim 6, with advantageous constructive developments of the device according to the invention being described in more detail in claims 7 to 11.

Das erfindungsgemäße Verfahren sowie die erfindungsgemäße Vorrichtung eignen sich ganz besonders zur Verbrennung von Öl. Es ist allgemein bekannt, daß eine Verbrennung umso schneller und vollständiger erfolgt, je kleiner die Tröpfchen der Verbrennungsflüssigkeit (Öl) sind. Die Abhängigkeit zwischen der Prozeßzeit t (Verbrennungszeit) und dem Tröpfchendurchmesser d ist wie folgt :

Figure imgb0001
wobei c eine Konstante ist. Die Prozeßzeit t ist die notwendige Aufenthaltsdauer im Reaktionsraum, wobei bei der Erfindung diese Aufenthaltsdauer auch bei einem sehr kurz gebautem Reaktionsraum eingehalten werden kann. Trotz der kurzen Baulänge der erfindungsgemäßen Vorrichtung läßt sich eine praktisch rückstandsfreie Verbrennung erzielen mit extrem niedrigen Anteilen an CO, NOx und CHx. Die Verbrennung kann gefahrlos in einen offenen Raum erfolgen.The method according to the invention and the device according to the invention are particularly suitable for the combustion of oil. It is generally known that the smaller the droplets of the combustion liquid (oil), the faster and more complete the combustion. The relationship between the process time t (combustion time) and the droplet diameter d is as follows:
Figure imgb0001
where c is a constant. The process time t is the necessary length of stay in the reaction space, and in the invention, this length of stay can also be maintained in a very short reaction space. Despite the short overall length of the device according to the invention, a practically residue-free combustion can be achieved with extremely low proportions of CO, NO x and CH x . The combustion can take place safely in an open space.

Nachstehend wird das erfindungsgemäße Verfahren anhand der in den anliegenden Zeichnungen schematisch dargestellten bevorzugten Ausführungsbeispiele der erfindungsgemäßen Vorrichtung näher erläutert..The method according to the invention is described below with reference to the preferred exemplary embodiments of the invention according to the invention, which are shown schematically in the accompanying drawings Device explained in more detail ..

Es zeigen :

  • Figur 1 eine Vorrichtung gemäß der Erfindung im Schnitt,
  • Figur 2 eine Anordnung der Vorrichtung gemäß Fig. 1 in einem Wärmetauscher und
  • Figuren 3 und 4 graphische Darstellungen zur Demonstration der vorteilhaften Wirkung der Vorrichtung gemäß Fig. 1.
Show it :
  • 1 shows a device according to the invention in section,
  • Figure 2 shows an arrangement of the device of FIG. 1 in a heat exchanger and
  • FIGS. 3 and 4 are graphical representations to demonstrate the advantageous effect of the device according to FIG. 1.

Die Vorrichtung gemäß Fig. 1 umfaßt eine Wirbelkammer 12, in die eine Düse 10 mündet, und einen Reaktionsraum 20, der sich unmittelbar an die Wirbelkammer 12 anschließt. Die aus der Düse 10 austretende Flüssigkeit 15 wird in der Wirbelkammer 12 durch eine äußere Gasströmung 13 in Drehung versetzt, so daß die Flüssigkeit in der Wirbelkammer 12 ein hohlkegelförmiges Strömungsprofil annimmt. Dieses hohlkegelförmige Strömungsprofil gelangt durch eine der Düse 10 gegenüberliegend angeordnete Öffnung 22 von der Wirbelkammer 12 in den nachgeordneten Reaktionsraum 20, wobei es dort eine spontane zusätzliche Aufweitung infolge eines Unterdrucks unmittelbar hinter der Eintrittsöffnung 22 in den Reaktionsraum 20 erfährt. Diese Auffächerung ist in Fig. 1 mit der Bezugsziffer 19 gekennzeichnet. Der Reaktionsraum 20 ist, wie Fig. 1 erkennen läßt, topfförmig ausgebildet, wobei die Eintrittsöffnung 22 in der Stirnseite des Reaktionsraumes 20 zentral angeordnet ist. Im Abstand von der Eintrittsöffnung 22 sind etwa gleichmäßig über den Umfang verteiltmehrere Gaseintrittsöffnungen 24 vorgesehen, die zur Radialen schräggestellt sind, um der Gasströmung 21 eine vorbestimmte Schraubenbewegung durch den Reaktionsraum 20 aufzuprägen. Der Innendurchmesser des topfförmigen Reaktionsraumes 20 kann so bemessen sein, daß die äußere Gasströmung 21 auf die Innenfläche der Seitenwandung 28 praktisch nicht mehr einwirkt. Damit ist die Gefahr einer Ablagerung von Flüssigkeitströpfchen 19 oder deren Reaktionsprodukte an der Innenfläche der Seitenwandung 28 gebannt. Derartige Ablagerungen würden zu einer Veränderung der Strömungsverhältnisse führen und nach gewisser Betriebsdauer eine Reinigung des Reaktionsraumes 20 erforderlich machen.1 comprises a swirl chamber 12, into which a nozzle 10 opens, and a reaction chamber 20, which directly adjoins the swirl chamber 12. The liquid 15 emerging from the nozzle 10 is set in rotation in the swirl chamber 12 by an external gas flow 13, so that the liquid in the swirl chamber 12 assumes a hollow-cone-shaped flow profile. This hollow-cone-shaped flow profile passes through an opening 22 located opposite the nozzle 10 from the swirl chamber 12 into the downstream reaction chamber 20, where it experiences a spontaneous additional expansion due to a negative pressure immediately behind the inlet opening 22 into the reaction chamber 20. This fanning out is identified in FIG. 1 by the reference number 19. 1, the reaction space 20 is pot-shaped, the inlet opening 22 being arranged centrally in the end face of the reaction space 20. At a distance from the inlet opening 22, several gas inlet openings 24 are provided approximately uniformly distributed over the circumference and are inclined to the radial in order to impart a predetermined screw movement through the reaction space 20 to the gas flow 21. The inner diameter of the pot-shaped reaction space 20 can be dimensioned such that the outer gas flow 21 practically no longer acts on the inner surface of the side wall 28. This eliminates the risk of deposits of liquid droplets 19 or their reaction products on the inner surface of the side wall 28. Such deposits would lead to a change in the flow conditions and would require cleaning of the reaction space 20 after a certain period of operation.

Um ganz sicher zu gehen, daß die Tröpfchen sich nicht an die Innenfläche der Seitenwandung 28 ablagern, sind in die Öffnungen 24 die Innenfläche der Seitenwandung 28 überragende Gaseintrittsröhrchen 30 eingesetzt (Fig. 1).In order to be absolutely certain that the droplets do not deposit on the inner surface of the side wall 28, gas inlet tubes 30 projecting beyond the inner surface of the side wall 28 are inserted into the openings 24 (FIG. 1).

Zur Anpassung an verschiedene Tröpfchengrößen, Reaktionsszeiten des Tröpfchenmaterials, etc., kann es vorteilhaft sein, wenn die Röhrchen 30 innerhalb der Öffnungen 24 verschiebbar eingesetzt sind, so daß die Länge des die Innenfläche der Seitenwandung 28 überragenden Teiles veränderbar ist. Am einfachsten läßt sich dieses Problem dadurch lösen, daß die Röhrchen 30 in die Öffnungen 24 eingeschraubt sind.To adapt to different droplet sizes, reaction times of the droplet material, etc., it can be advantageous if the tubes 30 are slidably inserted within the openings 24 so that the length of the part projecting beyond the inner surface of the side wall 28 can be changed. The easiest way to solve this problem is to screw the tubes 30 into the openings 24.

Schließlich ist auch denkbar, die Strahlrichtungen der Öffnungen 24 bzw. der Röhrchen 30 zu Zwecken der Anpassung an verschiedene Tröpfchengrößen, etc. zu verändern.Finally, it is also conceivable to change the jet directions of the openings 24 or the tubes 30 for the purpose of adapting to different droplet sizes, etc.

Es hat sich herausgestellt, daß sich in dem Ringraum zwischen der geschlossenen Stirnseite des topfförmigen Reaktionsraumes 20 und dem Einlaß 24 bzw. 30 für die äußere Gasströmung 21 ein Unterdruck ausbildet, der das aus der Öffnung 22 austretende hohlkegelförmige Strömungsprofil spontan radial nach außen zieht bzw. aufweitet, wodurch eine äußerst feine Zerstäubung erhalten wird. Die äußere Gasströmung 21 unterstützt diese Zerstäubung und verhindert gleichzeitig, daß sich Flüssigkeitströpfchen 19 an der Innenfläche der Seitenwandung 28 ablagern.It has been found that a negative pressure is formed in the annular space between the closed end face of the pot-shaped reaction space 20 and the inlet 24 or 30 for the external gas flow 21, which spontaneously pulls the hollow-conical flow profile emerging from the opening 22 radially outwards or expands, whereby an extremely fine atomization is obtained. The outer gas flow 21 supports this atomization and at the same time prevents liquid droplets 19 from being deposited on the inner surface of the side wall 28.

Um die Auffächerung der in den Transportraum eingeleiteten Flüssigkeitströpfchen zusätzlich zu erhöhen, ist im Abstand vor der Einlaßöffnung 22 ein Verteilerkörper 32 angeordnet, dessen der Öffnung 22 zugekehrte Seite eben ausgebildet ist. In Abhängigkeit von den äußeren Parametern, wie Gaseintrittsgeschwindigkeit, Tröpfchengröße etc. kann die der Öffnung 22 zugekehrte Ebene des Verteilerkörpers 32 auch konvex oder kegelförmig ausgebildet sein.In order to additionally increase the fanning out of the liquid droplets introduced into the transport space, a distributor body 32 is arranged at a distance in front of the inlet opening 22, the side of the distributor body facing the opening 22 being flat. Depending on the external parameters, such as gas entry speed, droplet size, etc., the plane of the distributor body 32 facing the opening 22 can also have a convex or conical shape.

Der Verteilerkörper 32 begünstigt also eine rasche Vermischung der Tröpfchen mit der Gasströmung 21, wobei der Grad der Vermischung durch die Form des Verteilerkörpers 32 eingestellt werden kann. Auch hat der Abstand des Verteilerkörpers 32 von der Öffnung 22 einen Einfluß auf den Grad der Vermischung bzw. der Auffächerung der in den Reaktionsraum eingeleiteten Flüssigkeitströpfchen. Zur Variierung des Vermischungsgrades bzw. der Auffächerung ist daher der Verteilerkörper 32 in Richtung der Längsachse 9 des Reaktionsraumes 20 vorzugsweise hin- und herbewegbar gelagert. Gute Ergebnisse lassen sich erzielen, wenn der Verteilerkörper 32 in einer Ebene zwischen der Einlaßöffnung 22 und der durch die Gaseintrittsröhrchen 30 definierten Ebene nahe derselben liegt. Der Verteilerkörper 32 fördert insbesondere die gleichförmige Verteilung der eingeleiteten Tröpfchen 19 über den Querschnitt des Reaktionsraumes 20. Der Verteilerkörper 32 verhindert also lokale Tröpfchen-Ansammlungen, so daß eine gleichförmige Einmischung in den Gasstrom 21 erzielt wird. Bei dem Ausführungsbeispiel gemäß Fig. 1 ist der Verteilerkörper 32 an einem steifen Draht befestigt. Sind jedoch auch andere Befestigungsmöglichkeiten denkbar, wobei jedoch darauf geachtet werden muß, daß die Befestigungsmittel die Strömung, insbesondere die Drallbewegung der Gas-Tröpfchen-Strömung im Reaktionsraum 20 nicht ungünstig beeinflussen. Falls der Reaktionsraum 20 als Verbrennungsraum dienen soll, ist in diesem vorzugsweise noch eine Zündeinrichtung 36 im Bereich der Tröpfchen-Einlaßöffnung 22 vorgesehen, um die Verbrennung der Flüssigkeitströpfchen, z. B. Öltröpfchen, zu starten.The distributor body 32 thus favors rapid mixing of the droplets with the gas flow 21, the degree of mixing being able to be set by the shape of the distributor body 32. The distance between the distributor body 32 and the opening 22 also has an influence on the degree of mixing or fanning out of the liquid droplets introduced into the reaction space. To vary the degree of mixing or fanning out, the distributor body 32 is therefore preferably mounted so that it can be moved back and forth in the direction of the longitudinal axis 9 of the reaction space 20. Good results can be achieved if the distributor body 32 lies in a plane between the inlet opening 22 and the plane defined by the gas inlet tubes 30 close to the same. The distributor body 32 promotes, in particular, the uniform distribution of the introduced droplets 19 over the cross section of the reaction space 20. The distributor body 32 thus prevents local droplet accumulations, so that uniform mixing into the gas stream 21 is achieved. In the embodiment shown in FIG. 1, the distributor body 32 is attached to a rigid wire. However, other fastening options are also conceivable, but care must be taken that the fastening means do not adversely affect the flow, in particular the swirl movement of the gas-droplet flow in the reaction space 20. If the reaction chamber 20 is to serve as a combustion chamber, an ignition device 36 is preferably provided in the area of the droplet inlet opening 22 in order to burn the liquid droplets, e.g. B. oil droplets to start.

Bei der Ausführungsform nach Fig. 1 wird die Drallbewegung der Gasströmung 13 in der Wirbelkammer 12 durch am äußeren Umfang der Düse 10 schräg zur Düsenlängsachse angeordnete Gasführungsmittel 16 erhalten, wobei als Gasführungsmittel Leitbleche oder am äußeren Umfang der Düse10 angeordnete Drallnuten dienen können. Die Wirbelkammer 12 ist kegelstumpfförmig ausgebildet, wobei die kleinere Stirnfläche durch die Eintrittsöffnung 22 in den Reaktionsraum 20 gebildet wird.In the embodiment according to FIG. 1, the swirl movement of the gas flow 13 in the swirl chamber 12 is obtained by gas guide means 16 arranged on the outer periphery of the nozzle 10 obliquely to the longitudinal axis of the nozzle, whereby as Gas guide means baffles or swirl grooves arranged on the outer circumference of the nozzle 10 can serve. The vortex chamber 12 is frustoconical, the smaller end face being formed through the inlet opening 22 into the reaction space 20.

In Fig. 2 ist die Einheit gemäß Fig. 1 als ÖIbrenner eingesetzt und mit der Bezugsziffer 41 gekennzeichnet. Der Brenner 41 ist am oberen Ende eines aufrechten Wärmetauschers 42 angebracht, wobei der Reaktionsraum 20 geringfügig in einen Abgasraum 43 hineinragt. Der Reaktionsraum 20 dient bei dem in Fig. 2 schematisch dargestellten Anwendungsbeispiel als Brennraum, wobei die Flamme 44 etwas aus dem Brennraum 20 herausschlägt. Durch den Abgasraum 43 werden die heißen Verbrennungsgase entsprechend den Pfeilen 45 hindurchgeleitet, wobei am brenner-abseitigen Ende des Abgasraumes 43 im Innern desselben konzentrisch ein rohrförmiger Strahlungskörper 34 angeordnet ist. Der Aussendurchmesser des rohrförmigen Strahlungskörpers 34 ist etwas geringer als der Innendurchmesser des Abgasraumes 43, der bei dem dargestellten Ausführungsbeispiel ebenfalls rohrförmig ausgebildet ist. Sowohl der Strahlungskörper 34 als auch die Wandung des Abgasraumes 43 sind vorzugsweise aus hitzebeständigem Metall (Stahl) hergestellt und weisen eine dunkle, vorzugsweise schwarze Färbung auf, so daß sie als ideale Strahlungskörper dienen. Der zusätzliche Strahlungskörper 34 sowie das den Abgasraum 43 begrenzende Abgasrohr fördern den Wärmeaustausch zwischen den heißen Verbrennungsgasen und der Umgebung, im vorliegenden Fall einem Wärmetauschermedium 38, das im Abstand vom Abgasrohr vorbeigeführt wird.In FIG. 2, the unit according to FIG. 1 is used as an oil burner and is identified by the reference number 41. The burner 41 is attached to the upper end of an upright heat exchanger 42, the reaction space 20 projecting slightly into an exhaust gas space 43. In the application example shown schematically in FIG. 2, the reaction chamber 20 serves as the combustion chamber, the flame 44 knocking somewhat out of the combustion chamber 20. The hot combustion gases are passed through the exhaust gas space 43 in accordance with the arrows 45, a tubular radiation body 34 being arranged concentrically on the inside of the exhaust gas space 43 away from the burner. The outer diameter of the tubular radiation body 34 is slightly smaller than the inner diameter of the exhaust gas space 43, which is also tubular in the embodiment shown. Both the radiation body 34 and the wall of the exhaust gas space 43 are preferably made of heat-resistant metal (steel) and have a dark, preferably black color, so that they serve as ideal radiation bodies. The additional radiation body 34 and the exhaust pipe delimiting the exhaust gas space 43 promote the heat exchange between the hot combustion gases and the environment, in the present case a heat exchange medium 38 which is guided past the exhaust pipe.

Zwischen den heißen Verbrennungsgasen und dem Abgasrohr sowie insbesondere dem schwarzen Strahlungskörper 34 erfolgt ein Wärmeaustausch durch Konvektion. Die von dem Abgasrohr und/oder Strahlungskörper 34 aufgenommene Wärme wird durch Strahlung wieder an die Umgebung bzw. an das Wärmetauschermedium 38 abgegeben und durch dieses an einen anderen Ort transportiert.Heat is exchanged by convection between the hot combustion gases and the exhaust pipe and in particular the black radiation body 34. The heat absorbed by the exhaust pipe and / or radiation body 34 is emitted again by radiation to the environment or to the heat exchange medium 38 and transported through this to another location.

Zusätzlich zu dem rohrförmigen Strahlungskörper 34 oder stattdessen können auch hinter dem Ausgang des Abgasrohres bzw. in den sich durch den Wärmetauscher 42 hindurcherstreckenden Gasführungskanälen 46 schwarze Strahlungskörper angeordnet sein, die von den heißen Verbrennungsgasen « umspült werden. Die Form der Strahlungskörper kann z. B. eiförmig sein. Es können jedoch auch wieder rohrförmige Strahlungskörper verwendet werden. Es muß natürlich darauf geachtet werden, daß durch die Anordnung der Strahlungskörper in den Gasführungskanälen keine zu großen Druckabfälle hervorgerufen werden.In addition to the tubular radiation body 34 or instead, black radiation bodies, which are flushed by the hot combustion gases, can also be arranged behind the outlet of the exhaust pipe or in the gas guide channels 46 extending through the heat exchanger 42. The shape of the radiation body can e.g. B. be egg-shaped. However, tubular radiation bodies can also be used again. Care must, of course, be taken to ensure that the arrangement of the radiation bodies in the gas guide channels does not cause excessive pressure drops.

Die schwarzen Strahlungskörper bestehen aus Metall, vorzugsweise aus hitzebeständigem, rostfreiem Stahl. Sie können aber genau so gut aus Keramik oder Stein bestehen. Das Material hängt von dem die Strahlungskörper umströmenden Gas bzw. den im Reaktionsraum 20 stattfindenden chemischen und/oder physikalischen Reaktionen ab.The black radiation bodies are made of metal, preferably of heat-resistant, stainless steel. But they can just as well be made of ceramic or stone. The material depends on the gas flowing around the radiation body or the chemical and / or physical reactions taking place in the reaction space 20.

Bei einer Anordnung der Strahlungskörper r lativ weit von der Verbrennungsflamme entfernt wird die Flammentemperatur und damit die Verbrennung durch die Strahlungskörper nicht beeinflußt.If the radiation bodies are arranged relatively far from the combustion flame, the flame temperature and thus the combustion are not influenced by the radiation bodies.

Bei einer Anordnung der Strahlungskörper in unmittelbarer Nähe der Flamme bzw. des Reaktionsortes wird durch die Strahlungskörper, die ja Wärme nach außen, d. h. an die Umgebung, abführen, ein Kühleffekt erzielt, der z. B. dazu führt, daß die Reaktionsgeschwindigkeit herabgesetzt wird oder eine Reaktion überhaupt nicht stattfindet (z. B. Crackprozesse).If the radiation bodies are arranged in the immediate vicinity of the flame or the reaction site, the radiation bodies, which are heat to the outside, ie. H. dissipate to the environment, achieved a cooling effect that z. B. results in the reaction speed being reduced or a reaction not taking place at all (e.g. cracking processes).

Bei manchen chemischen oder physikalischen Prozessen kann es auch erforderlich sein, zum Ablauf der Reaktionen von außen Wärme zuzuführen. Dies wurde bisher gewöhnlich nur durch Erwärmung des Reaktionsraumes mittels einer Heizung oder dgl. bewerkstelligt. Es hat sich nun gezeigt, daß durch Einsatz der vorbeschriebenen Strahlungskörper im Reaktionsraum sich die Wärmeübertragung von außen in den Reaktionsraum erheblich intensivieren läßt. Die im Reaktionsraum angeordneten Strahlungskörper ermöglichen eine zusätzliche Wärmezufuhr mittels Wärmestrahlung.In some chemical or physical processes, it may also be necessary to add heat from the outside to allow the reactions to take place. Up to now, this has usually only been accomplished by heating the reaction space by means of a heater or the like. It has now been shown that the heat transfer from the outside into the reaction space can be considerably intensified by using the radiation bodies described above in the reaction space. The radiation bodies arranged in the reaction space enable additional heat to be supplied by means of heat radiation.

Die Strahlungskörper eignen sich auch besonders zur gesteuerten Nachverbrennung von Abgasen in einem Abgaskanal. Zu diesem Zweck werden die Strahlungskörper im Abgaskanal in geeignetem Abstand von der Verbrennungsflamme angeordnet und von außen durch Wärmestrahlung erhitzt. Die dann vom Strahlungskörper mittels Konvektion an die Abgase abgegebene Wärme bewirkt eine Nachzündung der Abgase, so daß eine vollständige Verbrennung vor dem Austritt der Abgase ins Freie erzielt wird.The radiation bodies are also particularly suitable for the controlled afterburning of exhaust gases in an exhaust duct. For this purpose, the radiation bodies are arranged in the exhaust duct at a suitable distance from the combustion flame and heated from the outside by heat radiation. The heat then emitted from the radiation body by convection to the exhaust gases causes the exhaust gases to re-ignite, so that complete combustion is achieved before the exhaust gases exit to the outside.

Wie die obigen Ausführungen deutlich erkennen lassen, eignet sich die beschriebene Erfindung gans besonders für einen Ölbrenner. Es wird daher im folgenden nochmals eingehend auf die Verhältnisse in einem Ölbrenner und die Vorteile eingegangen, die durch die erfindungsgemäße Lösung erzielt werden.As can be clearly seen from the above statements, the described invention is particularly suitable for an oil burner. Therefore, the conditions in an oil burner and the advantages achieved by the solution according to the invention are discussed in detail again below.

Es gibt viele Verfahren, um die Russbildung bei einem Ölbrenner herabzusetzen. Einige dieser Verfahren sind z. B. in einer Veröffentlichung von Peterson und Skoog « Stoftbildning vid oljeeldning », Stockholm, 1972, näher beschrieben. Dabei beziehen sich die bekannten Verfahren vornehmlich auf den Einsatz von Schwerölen. Unter diesen bekannten Verfahren erwies sich der Einsatz einer Emulsion von Öl und Wasser als am geeignetsten. Doch läßt sich bei diesem Verfahren die Entstehung von kleinen Russteilchen, die zu aggressiven SO3-Konzentrationen führen, nicht vermeiden, wenn als Brennstoff Leichtöle verwendet werden. Die Entstehung dieser für die menschliche Lunge gefährlichen kleinen Russteilchen können durch Verbesserung der Verbrennung reduziert werden. Die Verbrennungsintensität oder Massendurchflußrate, die pro Masseneinheit Öl verbrannt wird, kann wie folgt definiert werden :

Figure imgb0002
wobei

  • m = die Massendurchflußrate pro Masseneinheit eines Tröpfchens,
  • d = der Tröpfchendurchmesser,
  • cy = die Konzentration des « Öldampfes » an der Tröpfchenoberfläche
  • cf = die Dampfkonzentration in der Flamme, = die Dichte des Öls bei Tropfentemperatur, und
  • β = der Transferkoeffizient für den Dampf bedeuten.
There are many methods to reduce soot formation in an oil burner. Some of these methods are e.g. B. in a publication by Peterson and Skoog "Stoftbildning vid oljeeldning", Stockholm, 1972, described in more detail. The known methods relate primarily to the use of heavy oils. Among these known methods, the use of an emulsion of oil and water has been found to be the most suitable. However, this process cannot avoid the formation of small soot particles that lead to aggressive SO 3 concentrations if light oils are used as fuel. The development of these small soot particles, which are dangerous for human lungs, can be improved by improving the ver burning can be reduced. The combustion intensity or mass flow rate that is burned per unit mass of oil can be defined as follows:
Figure imgb0002
in which
  • m = the mass flow rate per unit mass of a droplet,
  • d = the droplet diameter,
  • cy = the concentration of the «oil vapor» on the droplet surface
  • c f = the vapor concentration in the flame, = the density of the oil at drop temperature, and
  • β = the transfer coefficient for the steam.

Aus der obigen Gleichung (1) geht hervor, daß sich die Verbrennungsintensität erhöht bei :

  • a) einer Reduzierung des Tröpfchendurchmessers,
  • b) einer Zunahme des Wertes von cy, der durch Erhöhung der Öltemperatur, z. B. durch Vorwärmung, erhöht werden kann, und
  • c) einer Erhöhung des Wertes von ß, der durch folgende Gleichung bestimmt wird :
    Figure imgb0003
    wobei
    • D = der Diffusionskoeffizient,
    • pf = der Partialdruck entsprechend dem Wert von cY, und
    • ptot = der Gesamtdruck'in der Brennzone bedeuten.
It can be seen from equation (1) above that the combustion intensity increases with:
  • a) a reduction in the droplet diameter,
  • b) an increase in the value of cy caused by increasing the oil temperature, e.g. B. can be increased by preheating, and
  • c) an increase in the value of ß, which is determined by the following equation:
    Figure imgb0003
    in which
    • D = the diffusion coefficient,
    • p f = the partial pressure corresponding to the value of c Y , and
    • p tot = the total pressure in the firing zone.

Die Anwendung der Gleichung (2) ist begrenzt auf den Fall, in dem kein Einfluß einer Relativbewegung zwischen dem Tröpfchen und der Umgebung vorhanden ist.The application of equation (2) is limited to the case in which there is no influence of a relative movement between the droplet and the environment.

Wie aus der Gleichung (2) ersichtlich ist, kann der Wert β - und folglich der Wert m - erhöht werden durch Erhöhung der Temperatur der Umgebung des Öltröpfchens, in der Regel der Luftatmosphäre, da der Wert von D temperaturabhängig und dD/dT > 0 ist. Die Tröpfchengröße ist also von großer Bedeutung, da kleinere Tröpfchen zu einem höheren Wert von β führen. Zusammenfassen ergibt sich also, daß die Verbrennung verbessert werden kann durch

  • - kleine Öltröpfchen,
  • - höhere Temperaturen des die Tröpfchen umgebenden Mediums, meist Luft.
As can be seen from equation (2), the value β - and consequently the value m - can be increased by increasing the temperature of the environment around the oil droplet, usually the air atmosphere, since the value of D is temperature-dependent and dD / dT> 0 is. The droplet size is therefore of great importance, since smaller droplets lead to a higher value of β. To summarize, it follows that the combustion can be improved by
  • - small droplets of oil,
  • - higher temperatures of the medium surrounding the droplets, mostly air.

Diese beiden ersten Bedingungen werden in optimaler Weise durch die beschriebene Vorrichtung erfüllt.These two first conditions are optimally met by the device described.

Die dritte Bedingung kann ebenfalls sehr einfach durch Vorwärmung des zu verbrennenden Öls erfüllt werden.The third condition can also be met very simply by preheating the oil to be burned.

Wie oben bereits im Zusammenhang mit dem Reaktionsraum 20 ausführlich dargelegt worden ist, wird durch die erfindungsgemäße Ausbildung eines Unterdrucks unmittelbar hinter der Flüssigkeitseinlaßöffnung 22 und Schraubenbewegung der Flüssigkeitströpfchen durch den Reaktionsraum hindurch eine für eine vollständige Verbrennung ausreichende Verweilzeit der Tröpfchen im Reaktionsraum 20 erzielt (0,01 s), obwohl der Reaktionsraum 20 sehr kurz gebaut ist. Die kurze Bauweise des Reaktionsraumes 20 hat im übrigen den Vorteil, daß Wärmestrahlungsverluste im Bereich des Reaktionsraumes entsprechend gering sind.As has already been explained in detail above in connection with the reaction chamber 20, the formation of a negative pressure according to the invention immediately behind the liquid inlet opening 22 and screw movement of the liquid droplets through the reaction chamber achieves a sufficient residence time for the droplets in the reaction chamber 20 for complete combustion (0, 01 s), although the reaction space 20 is very short. The short construction of the reaction space 20 has the additional advantage that heat radiation losses in the area of the reaction space are correspondingly low.

Trotz der kurzen Bauweise des Reaktionsraumes 20 wird also bei der erfindungsgemäßen Lösung eine vollständige Verbrennung in diesem Raum gewährleistet.Despite the short construction of the reaction space 20, complete combustion in this space is thus ensured in the solution according to the invention.

Versuche haben gezeigt, daß die Russbildung bei Anwendung des erfindungsgemäßen Verfahrens bzw. Einsatz der erfindungsgemäßen Vorrichtung gemäß Fig. 1 nahezu Null ist. Dabei hat sich als vorteilhaft herausgestellt, wenn bei Hintereinanderanordnung von Zerstäuberraum und Reaktionsraum von dem zur Verfügung stehenden Druckgas etwa 15 % in den Zerstäuberraum und 85 % in den Transportraum eingeleitet werden. Die Geschwindigkeit des in den Transportraum eingeleiteten Druckgases, z. B. Luft, beträgt vorzugsweise zwischen etwa 50 bis etwa 150 m/Sekunde. Diese Werte haben sich als besonders vorteilhaft herausgestellt, insbesondere werden Luftüberschüsse vermieden, die zu unerwünschter SO3-Bildung führen. Eine geringe SO3-Bildung hat auch eine Abnahme der Russbildung zur Folge, wie bereits durch Gaydon et al in der Veröffentlichung « Proc. of Royal Society », London, 1947, nachgewiesen worden ist.Experiments have shown that the soot formation when using the method according to the invention or using the device according to the invention according to FIG. 1 is almost zero. It has proven to be advantageous if, when the atomizer chamber and reaction chamber are arranged one behind the other, about 15% of the compressed gas available is introduced into the atomizer chamber and 85% into the transport chamber. The speed of the compressed gas introduced into the transport space, e.g. B. air, is preferably between about 50 to about 150 m / second. These values have proven to be particularly advantageous, in particular excess air is avoided, which leads to undesirable SO 3 formation. A low SO 3 formation also results in a decrease in soot formation, as already described by Gaydon et al in the publication «Proc. of Royal Society », London, 1947.

Im folgenden sollen noch einige Worte über die Entstehung von Stickoxiden erwähnt werden. Stickoxide (NOx) sind insbesondere für Tiere und Menschen sehr gefährlich. Aus diesem Grunde wird in vielen Ländern durch Gesetze verlangt, daß die Stickoxid-Konzentration in Abgasen einen bestimmten Wert nicht übersteigen darf. In Deutschland darf die Stickoxid-Konzentration bei Ölbrennern (mit Schweröl betrieben) 500 ppm im Abgas nicht übersteigen.A few words about the formation of nitrogen oxides should be mentioned below. Nitrogen oxides (NO x ) are particularly dangerous for animals and humans. For this reason, laws in many countries require that the nitrogen oxide concentration in exhaust gases must not exceed a certain value. In Germany, the nitrogen oxide concentration in oil burners (fueled with heavy oil) must not exceed 500 ppm in the exhaust gas.

Die Bildung von Stickoxiden ist eine Folge von

  • - dem Anteil von Stickstoffatomen in den Öl bildenden Substanzen. Etwa 50 % der Stickoxide, die bei der Verbrennung entstehen, stammen unmittelbar von den Öl bildenden Komponenten,
  • - der Bildung von Stickoxiden bei der Verbrennung.
The formation of nitrogen oxides is a consequence of
  • - The proportion of nitrogen atoms in the oil-forming substances. About 50% of the nitrogen oxides that are generated during combustion come directly from the oil-forming components,
  • - The formation of nitrogen oxides during combustion.

Bei letzterer entstehen NO sowie N02. Die Entstehung von NO wurde intensiv untersucht. Dabei wurden folgende Ergebnisse gewonnen :

  • - eine Erhöhung der Flammentemperatur vermindert die Entstehung von NO,
  • - geringer Luftüberschuß fördert die Bildung von NO,
  • - die Bildung von NO ist sehr stark abhängig von der Zeit, die für die Bildung zur Verfügung steht. Es wird in diesem Zusammenhang auf die Fig. 9 hingewiesen, in der die Entstehung von NO in Abhängigkeit von der Verweilzeit der Verbrennungsgase im Brennraum graphisch dargestellt ist. Aus Fig. 9 geht auch hervor, daß die Entstehung von NO von der Brennlufttemperatur abhängt.
The latter produces NO and N0 2 . The formation of NO has been intensively investigated. The following results were obtained:
  • an increase in the flame temperature reduces the formation of NO,
  • - low excess air promotes the formation of NO,
  • - The formation of NO is very dependent on the time available for the formation. In this connection, reference is made to FIG. 9, in which the formation of NO as a function of the residence time of the combustion gases in the combustion chamber is shown graphically. 9 also shows that the formation of NO depends on the combustion air temperature.

Bei Verwendung der Einheit gemäß Fig. 1 als Ölbrenner erhält man aufgrund der kleinen Bauweise (extrem kurzer Reaktionsraum 20) eine entsprechend geringe Verweilzeit der Verbrennungsgase. Ferner wird die Brennzeit selbst aufgrund der extrem kleinen Flüssigkeits- bzw. Öltröpfchen auf ein Minimum reduziert. Die Verweilzeit der Tröpfchen und Abgase in der Einheit gemäß Fig. 1 beträgt etwa 0,07 Sekunden. Gemäß Fig. 3 bilden sich daher bei Verwendung der Einheit gemäß Fig. 1 als Ölbrenner etwa 20 ppm NO. Dabei spielt es bei dieser kurzen Verweilzeit auch kaum eine Rolle, wenn die Verbrennungsluft vorgewärmt wird. Wie oben dargelegt worden ist, wird durch Vorwärmung der Verbrennungsluft die Verbrennung selbst bzw. die Verbrennungsintensität verbessert.When using the unit of FIG. 1 as Due to the small design (extremely short reaction space 20), oil burners have a correspondingly short dwell time for the combustion gases. Furthermore, the burning time is reduced to a minimum even due to the extremely small liquid or oil droplets. The residence time of the droplets and exhaust gases in the unit according to FIG. 1 is approximately 0.07 seconds. According to FIG. 3, approximately 20 ppm NO are formed when the unit according to FIG. 1 is used as an oil burner. With this short dwell time, it hardly matters if the combustion air is preheated. As has been explained above, preheating the combustion air improves the combustion itself or the combustion intensity.

In Fig. 4 sind die NOx-Werte eines erfindungsgemäß ausgebildeten Ölbrenners im Vergleich zu herkömmlichen Ölbrennern nochmals schematisch dargestellt, und zwar in Abhängigkeit von der ÖI-Durchflußrate (1/h) und dem Sauerstoffanteil bei der Verbrennung.In Fig. 4, the NOx values of an oil burner designed according to the invention are shown again schematically compared to conventional oil burners, depending on the oil flow rate (1 / h) and the oxygen content during combustion.

Der Einsatz der Vorrichtung gemäß Fig. 1 mit Zerstäubereinheit und Reaktionseinheit als Ölbrenner führt also zu einer optimalen, russfreien Verbrennung bei extrem niedrigem Luftüberschuß mit einem Wirkungsgrad von mindestens 92%.The use of the device according to FIG. 1 with an atomizer unit and reaction unit as an oil burner thus leads to an optimal, soot-free combustion with extremely low excess air with an efficiency of at least 92%.

Claims (12)

1. Process for production of micro liquid drops in which a liquid is injected through an opening into a swirl chamber (12) and passed from there into a transport or reaction space (20) in which the liquid is charged by an external flow of gas (13), the flow path of which is concentric and helical-shaped relative to the axis of the opening (22) merging into the reaction space (20), charac- terized by the fact that a hollow cone-shaped flow pattern is formed in the swirl chamber (12), which is subject to an additional enlargement in the subsequent reaction space (20) due to a vacuum directly after the inlet opening (22) into the reaction space (20).
2. Process according to claim 1, characterized by the fact that the direction of the gas flow in the reaction space is selected identical to that in the upstream swirl chamber.
3. Process according to claim 1, characterized by the fact that the direction of the gas flow in the reaction space is selected opposite to that in the upstream swirl chamber.
4. Process according to one of claims 1 to 3, characterized by the fact that the gas is introduced into the swirl chamber and/or transport space at a distance from the inner surface of the wall of the space in such a way as to reliably avoid contact of the liquid drops with the inside of the walls of the space.
5. Process according to one of the claims 1 to 4, characterized by the fact that the gas executes a self-swirling or rotational motion along its flow path.
6. Device for the production of micro liquid drops in accordance with the process according to one of the claims 1 to 6 with a nozzle merging into a swirl chamber (12) and a transport or reaction space (20) adjoining the swirl chamber (12) with a gas inlet for a gas flow, the flow path of which is concentric and helical-shaped relative to the axis of the opening (22) merging into the reaction space (20), characterized by the fact that several holes (24) or similar extending inclined to the radial are provided at the side wall (28) forming the side confines of reaction space (20) at a distance from the inlet opening (22) for the input of gas.
7. Device according to claim 6, characterized by the fact that a tube (30) extending beyond the inner surface of the side wall (28) is inserted into the hole (24) so as to reliably avoid contact of the liquid drops borne by the helical gas flow with the inside of the side wall as they are transported throught the transport space.
8. Device according to claim 7, characterized by the fact that the length of the tube(s) (30) extending into the transport space (20) can be varied.
9. Device according to one of the claims 6 to 8, characterized by the fact that the hole (24) is also angled slightly in the direction of flow.
10. Device according to one of the claims 6 to 9, characterized by the fact that a distributor element (32) is provided in the reaction space (20) at a distance from the inlet opening for the drops (22), which is designed to radially disperse and uniformly distribute the drops introduced into the reaction space (20) over the cross section of the space.
11. Device according to one of the claims 6 to 10, characterized by the fact that dark, preferably black radiation elements (34) are provided after the reaction space (20), which dissipate to the surroundings by means of radiation the heat absorbed by means of convection by the drop/gas mixture or reaction gas, respectively, with the radiation elements being formed preferably by a tube section arranged concentrically in a duct (42) following the reaction space (20). -
12. Application of the process according to one of the claims 1 to 5 or of the device according to one of the claims 6 to 11 for the combustion of oil.
EP80106544A 1979-10-25 1980-10-24 Method and device for the production of microdroplets of liquid Expired EP0028025B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80106544T ATE3906T1 (en) 1979-10-25 1980-10-24 METHOD AND DEVICE FOR GENERATION OF MICROLIQUID DROPLETS.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
SE7908865A SE7908865L (en) 1979-10-25 1979-10-25 SET FOR TRANSPORT OF DROPS
SE7908864A SE7908864L (en) 1979-10-25 1979-10-25 SET FOR DISTRIBUTION OF LIQUID TO DROPS
SE7908864 1979-10-25
SE7908863 1979-10-25
SE7908865 1979-10-25
SE7908863A SE7908863L (en) 1979-10-25 1979-10-25 STRALNINGSKROPP

Publications (2)

Publication Number Publication Date
EP0028025A1 EP0028025A1 (en) 1981-05-06
EP0028025B1 true EP0028025B1 (en) 1983-06-22

Family

ID=27355203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106544A Expired EP0028025B1 (en) 1979-10-25 1980-10-24 Method and device for the production of microdroplets of liquid

Country Status (9)

Country Link
US (1) US4473185A (en)
EP (1) EP0028025B1 (en)
JP (1) JPS56501380A (en)
CA (1) CA1159356A (en)
DE (1) DE3063914D1 (en)
DK (1) DK150395C (en)
FI (1) FI69696C (en)
NO (1) NO812067L (en)
WO (1) WO1981001186A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685882A (en) * 1985-09-09 1987-08-11 Coen Company, Inc. Pulverized fuel slurry burner and method of operating same
US4726761A (en) * 1985-09-09 1988-02-23 Coen Company, Inc. Method and apparatus for introducing combustion air into a combustion chamber
JPH068170B2 (en) * 1985-10-29 1994-02-02 宇部興産株式会社 Method for producing high-purity magnesium oxide fine powder
FR2605053A1 (en) * 1986-10-14 1988-04-15 Gen Electric MULTIPLE COMBUSTIBLE AIRCRAFT AND ITS PROPULSION SYSTEM
US4835959A (en) * 1986-10-14 1989-06-06 General Electric Company Multiple-propellant air vehicle and propulsion system
BE1000767A7 (en) * 1987-07-16 1989-03-28 Recticel METHOD AND APPARATUS FOR FORMING A layer of polyurethane on a surface by spraying.
DE3843543C2 (en) * 1988-12-23 2000-11-23 Thyssen Gas Process for the reduction of nitrogen oxides contained in flue gases from combustion plants
DE3939178A1 (en) * 1989-11-27 1991-05-29 Branson Ultraschall DEVICE FOR SPRAYING LIQUID AND SOLID MATERIALS, PREFERABLY MELTED METALS
NL9100490A (en) * 1991-03-20 1992-10-16 Witteveen Gustaaf J APPARATUS FOR MIXING A GAS FLOW WITH A MIXTURE, BURNER INCLUDING SUCH A DEVICE AND METHOD FOR OPERATING THE BURNER.
US5588379A (en) * 1991-03-20 1996-12-31 Witteveen; Gustaaf J. Mixing device and method for gaseous liquid of pulverised substances
GB9115340D0 (en) * 1991-07-16 1991-08-28 Univ Leeds Nebuliser
US5183186A (en) * 1991-08-15 1993-02-02 Emson Research Inc. Spray dispensing device having a tapered mixing chamber
DE4212360A1 (en) * 1992-04-13 1993-10-14 Babcock Energie Umwelt Burner lance for atomizing a coal-water suspension
US6123145A (en) * 1995-06-12 2000-09-26 Georgia Tech Research Corporation Synthetic jet actuators for cooling heated bodies and environments
US5758823A (en) * 1995-06-12 1998-06-02 Georgia Tech Research Corporation Synthetic jet actuator and applications thereof
US6457654B1 (en) 1995-06-12 2002-10-01 Georgia Tech Research Corporation Micromachined synthetic jet actuators and applications thereof
US6132397A (en) * 1997-05-01 2000-10-17 Chase Medical Inc. Integral aortic arch infusion clamp catheter
US6068608A (en) * 1997-05-01 2000-05-30 Chase Medical, Inc. Method of using integral aortic arch infusion clamp
US6241699B1 (en) 1998-07-22 2001-06-05 Chase Medical, Inc. Catheter system and method for posterior epicardial revascularization and intracardiac surgery on a beating heart
EP1024852A2 (en) * 1997-07-22 2000-08-09 Chase Medical Inc. Catheter having a lumen occluding balloon and method of use thereof
DE19856169A1 (en) * 1998-12-05 2000-06-29 Deutsch Zentr Luft & Raumfahrt Fluid atomization method for e.g. heating burners generates spray consisting of fine and coarse spray components, with coarse spray formed by drops above a certain size
US6554607B1 (en) 1999-09-01 2003-04-29 Georgia Tech Research Corporation Combustion-driven jet actuator
WO2005016548A1 (en) * 2003-08-13 2005-02-24 Unilever Plc Nozzle for a spray device
ZA200601085B (en) * 2003-08-13 2007-05-30 Unilever Plc Domestic spray device
US6827296B1 (en) * 2003-08-18 2004-12-07 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for atomizing fluids with a multi-fluid nozzle
FI116774B (en) * 2004-01-08 2006-02-28 Dekati Oy Method and apparatus for increasing the size of small particles
US7500849B2 (en) * 2004-01-16 2009-03-10 Air Products And Chemicals, Inc. Emulsion atomizer nozzle, and burner, and method for oxy-fuel burner applications
FR2872887B1 (en) * 2004-07-07 2006-09-08 Inst Francais Du Petrole HOMOGENEOUS COMBUSTION METHOD AND THERMAL GENERATOR USING SUCH A METHOD
FI116798B (en) * 2004-07-30 2006-02-28 Metso Automation Oy Moisture nozzle for a paper web
US20100233640A1 (en) * 2008-02-07 2010-09-16 Radek Masin Glycerin burning system
US20090202953A1 (en) * 2008-02-07 2009-08-13 Radek Masin Glycerin burning system
US8287938B1 (en) * 2008-05-20 2012-10-16 Ingo Scheer Method to produce a coating and to fine-tune the coating morphology
ES2350208B1 (en) * 2008-08-08 2011-11-07 Universidad De Sevilla METHOD FOR THE PRODUCTION OF MICRO AND NANO-MONODISPERSE BUBBLES THROUGH ROTATING CO-FLOW.
JP5456653B2 (en) * 2010-12-13 2014-04-02 日本光電工業株式会社 Blood measuring device
JP6166103B2 (en) * 2013-06-04 2017-07-19 ヤンマー株式会社 Urea water injection nozzle
JP6395363B2 (en) * 2013-10-11 2018-09-26 川崎重工業株式会社 Gas turbine fuel injection device
US11028727B2 (en) * 2017-10-06 2021-06-08 General Electric Company Foaming nozzle of a cleaning system for turbine engines
US10287970B1 (en) 2017-12-07 2019-05-14 Caterpillar Inc. Fuel injection system
JP7101787B2 (en) * 2018-01-23 2022-07-15 エスエイチエル・メディカル・アーゲー Aerosol generator
CN109365156A (en) * 2018-12-05 2019-02-22 郑州沃众实业有限公司 A kind of type high-efficiency spray device rotated automatically
CN111346869B (en) * 2020-05-06 2021-01-05 浙江大农实业股份有限公司 Hot water high pressure cleaner
CN113461346A (en) * 2021-07-09 2021-10-01 鞍钢金属结构有限公司 Lime slaking tank capable of removing tank bottom sediment without stopping and working method thereof
CN113680545B (en) * 2021-08-30 2022-12-16 浙江工业大学 Noise reduction nozzle adjusted by adopting rotating structure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047570A (en) * 1933-02-10 1936-07-14 Wiltschire William Frederick Fuel burner
GB484602A (en) * 1936-11-09 1938-05-09 Reginald Percy Fraser Improvements relating to liquid atomising devices, particularly for oil burning furnaces
US2254123A (en) * 1939-03-06 1941-08-26 Swindell Brothers Inc Oil burner
GB570066A (en) * 1944-06-24 1945-06-20 John Graves Mckean Improvements in and relating to liquid fuel burners of the low-pressure-air type
BE652651A (en) * 1963-09-03
DE1551728A1 (en) * 1967-12-19 1970-04-16 Shell Int Research Burner head
DE2005972C3 (en) * 1970-02-10 1982-06-16 Basf Ag, 6700 Ludwigshafen Atomizer head
SE410218B (en) * 1970-03-24 1979-10-01 Collin Ab Rolf BURNER
US3734677A (en) * 1970-08-12 1973-05-22 Matsushita Electric Ind Co Ltd Liquid fuel burner
US3844484A (en) * 1971-03-03 1974-10-29 Hitachi Ltd Method of fuel atomization and a fuel atomizer nozzle therefor
JPS4924012B1 (en) * 1971-03-03 1974-06-20
US3758259A (en) * 1971-11-26 1973-09-11 J Voorheis Methods for preparing fuels and also for thereafter feeding them into furnaces and burning them therein
DE2356229C3 (en) * 1973-11-10 1981-01-29 Shigetake Kawasaki Kanagawa Tamai (Japan) Truncated cone-shaped atomizer nozzle having radial gas channels
SU525837A1 (en) * 1974-10-14 1976-08-25 Предприятие П/Я В-2453 Gas oil burner
GB1497832A (en) * 1975-04-11 1978-01-12 Howe Baker Eng Fuel atomizing device
US4105163A (en) * 1976-10-27 1978-08-08 General Electric Company Fuel nozzle for gas turbines
US4120640A (en) * 1977-02-18 1978-10-17 Infern-O-Therm Corporation Burner for liquid fuel

Also Published As

Publication number Publication date
CA1159356A (en) 1983-12-27
WO1981001186A1 (en) 1981-04-30
FI69696C (en) 1986-03-10
DE3063914D1 (en) 1983-07-28
DK199781A (en) 1981-05-05
US4473185A (en) 1984-09-25
NO812067L (en) 1981-06-18
EP0028025A1 (en) 1981-05-06
FI69696B (en) 1985-11-29
DK150395B (en) 1987-02-16
JPS56501380A (en) 1981-09-24
DK150395C (en) 1987-09-28
FI811693L (en) 1981-06-01

Similar Documents

Publication Publication Date Title
EP0028025B1 (en) Method and device for the production of microdroplets of liquid
DE4200073A1 (en) DUAL FUEL BURNER WITH REDUCED NO (DOWN ARROW) X (DOWN ARROW) EXHAUST
DE2836534A1 (en) METHOD FOR BURNING LIQUID FUEL IN A PLANT WITH AT LEAST ONE SPRAYER AND BURNER PLANT FOR CARRYING OUT THE METHOD
DE3430010C2 (en)
DE3010078A1 (en) BURNER USED WITH LIQUID FUEL FOR HEATING DEVICES
DE917025C (en) Furnace and process for making carbon black
DE2341904B2 (en) Combustion chamber for gas turbine engines
DE2455103A1 (en) PROCEDURE AND DEVICE FOR DUSTING A FLAMMABLE SUBSTANCE
DE2210773A1 (en) Process for burning sulfur and apparatus for carrying out the process
DE3607676C2 (en)
DE3007209A1 (en) DEVICE FOR COOLING THE WALL OF A COMBUSTION CHAMBER
DE1592853C3 (en) Process and device for the production of carbon black
DE19507088B4 (en) premix
DE1501777C3 (en) Combustion chamber for heating devices, in particular for air heaters
EP2679897B1 (en) Oil pre-mix burner with swirler
DE3928214A1 (en) BURNER WITH FUEL GAS RECIRCULATION FOR FLOWABLE FUELS
DE102004008358B4 (en) vehicle heater
DE10140422C1 (en) Thermal post-combustion device for cleaning waste gases comprises a burner having a second flame tube surrounding the end of a first flame tube with a greater radius to form an annular gap
DE4011190A1 (en) Recuperative burner for industrial plant
DE3201366A1 (en) Heat treatment oven
EP0451662B1 (en) Recuperative burner
DD153585A5 (en) METHOD AND DEVICE FOR PRODUCING VOB MICRO FLUID FLAVOR
DE1181359B (en) Jet pipe
DE2150112C3 (en) Burner with combustion chamber and fuel distribution pipe held coaxially in the oxidizing agent supply line
DE2319494A1 (en) COMBUSTION CHAMBER FOR LIQUID OR GASEOUS FUELS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19811003

ITF It: translation for a ep patent filed

Owner name: ST. ASSOC. MARIETTI & PIPPARELLI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19830622

REF Corresponds to:

Ref document number: 3906

Country of ref document: AT

Date of ref document: 19830715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3063914

Country of ref document: DE

Date of ref document: 19830728

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911030

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931022

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931027

Year of fee payment: 14

Ref country code: AT

Payment date: 19931027

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931129

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

EUG Se: european patent has lapsed

Ref document number: 80106544.2

Effective date: 19930510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST