EP0026812B1 - Apparatus for producing amorphous metal strips - Google Patents

Apparatus for producing amorphous metal strips Download PDF

Info

Publication number
EP0026812B1
EP0026812B1 EP80104056A EP80104056A EP0026812B1 EP 0026812 B1 EP0026812 B1 EP 0026812B1 EP 80104056 A EP80104056 A EP 80104056A EP 80104056 A EP80104056 A EP 80104056A EP 0026812 B1 EP0026812 B1 EP 0026812B1
Authority
EP
European Patent Office
Prior art keywords
nozzle opening
nozzle
width
opening
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80104056A
Other languages
German (de)
French (fr)
Other versions
EP0026812A1 (en
Inventor
Hans-Reiner Dr. Hilzinger
Stefan Dipl.-Ing. Hock
Kurt Krüger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Priority to AT80104056T priority Critical patent/ATE3006T1/en
Publication of EP0026812A1 publication Critical patent/EP0026812A1/en
Application granted granted Critical
Publication of EP0026812B1 publication Critical patent/EP0026812B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars

Definitions

  • the invention relates to a device for producing amorphous metal strips with a movable heat sink and a nozzle which is arranged in the immediate vicinity and can be closed with a stopper, which is connected to a storage container containing a metallic melt, and at the opening of which the surface of the heat sink is at a speed of is moved past at least 5 m / s.
  • Amorphous tapes are produced, for example, by quenching a corresponding melt, typically at a cooling rate of about 10 4 to 10 6 K / s, so rapidly that solidification occurs without crystallization.
  • the molten amorphous metal alloy is usually pressed under pressure through one or more nozzle openings and the emerging melt jet is directed against a moving cooling surface.
  • the inner or outer surface of a rotating roller or an endlessly rotating belt can be used as the cooling surface.
  • the thickness of the strips obtained in this way can be, for example, a few hundredths of a millimeter, and the width can be a few millimeters to several centimeters.
  • the amorphous alloys can be distinguished from the crystalline alloys by means of X-ray diffraction measurements.
  • the intensity in the X-ray diffraction pattern in amorphous metal alloys changes only slowly with the diffraction angle, similarly as is the case with liquids or ordinary glass.
  • the ribbons made from amorphous alloys can be completely amorphous or comprise a two-phase mixture of the amorphous and the crystalline state.
  • An amorphous metal alloy is generally understood to mean an alloy whose molecular structure is at least 50%, preferably at least 80%, amorphous.
  • the known device has a slot nozzle which is connected to a reservoir for molten metal and which is arranged in the immediate vicinity, for example at a distance of 0.03 to 1 mm, from the surface of a suitable heat sink.
  • the width of the slot measured in the direction of movement of the cooling surfaces is approximately 0.2 to a maximum of 1 mm, the width of the nozzle edges on both sides being regarded as particularly critical. While the first edge arranged in the direction of movement of the cooling surface has a width which is at least equal to the width of the slot, the width of the second edge is approximately 1.5 to 3 times the width of the slot.
  • the distance between the nozzle opening and the cooling surface lies in a range between 0.1 times and 1 times the width of the slot.
  • the molten metal pressed from such a nozzle opening forms under these conditions when it comes into contact with the heat sink surface, the longitudinal movement of which moves at a speed of about 100 to 2000 m / min. takes place, a solidification front that just passes the second edge of the nozzle without touching it.
  • the flow rate of the molten metal is primarily controlled by the viscous flow between the first edge of the nozzle and the solidified metal strip.
  • nozzles with such small dimensions require extremely pure melts. Otherwise there is a risk that the nozzle opening will be blocked by particles of the melt which are not completely dissolved or have prematurely solidified.
  • a considerably greater machining effort is also necessary in order to produce such a nozzle opening with the corresponding tolerance.
  • the object of the invention is to provide a device of the type mentioned, with the evenly formed metal strips at higher production speeds and reduced requirements for the purity of the melt and the tolerances of the nozzle opening can be achieved.
  • this is achieved in that the width of the nozzle opening in the direction of movement of the surface of the heat sink is 1.5 to 6 mm and in that the protective tube of a thermocouple immersed in the metallic melt is provided as a stopper.
  • the device according to the invention differs in that the nozzle opening is much wider.
  • the protective tube of a thermocouple immersed in the metallic melt is provided as a stopper. This combination of features enables in particular uniformly formed metal strips to be achieved at high production speeds.
  • the considerably wider nozzle opening compared to the prior art has the further advantage that the nozzle shape is less decisive for the strip geometry and clogging in the production process and, with a correspondingly low pressure of the melt, premature wear of the nozzle opening is avoided.
  • the preferred process parameters to be selected each depend on the width or thickness of the metal strips to be produced. It has proven to be particularly advantageous if the surface of the heat sink is guided past a 2 to 4 mm wide nozzle opening at a speed of approximately 20 to 40 m / s at a distance which is less than 0.1 times the width of the nozzle opening.
  • the exact shape of the nozzle opening at a width above 1.5 mm is less important for the band geometry, it is particularly advantageous if the opening cross section of the nozzle opening is circular or almost circular.
  • other nozzle shapes for example nozzles with a rectangular opening cross section or multiple nozzles, can also be used. With a correspondingly wider opening cross section, these nozzles are much easier to manufacture because of the reduced requirements for the dimensional tolerances.
  • thermocouple protection tube provided as a plug can also be easily adapted to the shape of the outlet opening of the nozzle.
  • the figure shows schematically the essential parts of a device according to the invention.
  • the nozzle opening 1 is arranged in the immediate vicinity of a heat sink surface 2, for example the surface of a strip, the arrow being intended to indicate its direction of movement.
  • Molten metal 3 is pressed under pressure of a preferably inert gas through the nozzle opening 1, a drop of melt being formed on the surface of the moving heat sink 2, on the underside of which the metal strip 4 is formed by progressive solidification.
  • the width of the nozzle opening 1 is greater than the distance a between the nozzle opening 1 and the surface of the heat sink 2.
  • the lateral extent of the melting drop determined by the boundary surfaces 5 is determined by the extrusion pressure and the distance a.
  • the expansion of the melting drop is approximately equal to the width of the nozzle opening 1 measured in the direction of movement of the heat sink surface of the heat sink 2.
  • the extent of the melt drop thus determines not only the speed of the heat sink 2, but primarily the thickness of the amorphous metal strip produced.
  • a further influence on the strip thickness is the rate of solidification of the molten metal, which depends on the one hand on the thermal conductivity of the heat sink material and on the other hand on the heat transfer coefficient between the solidified strip 4 and the surface of the heat sink 2.
  • 500 g of this alloy were inductively heated in a storage container or crucible made of quartz glass to a temperature about 50 to 100 ° C above its melting point.
  • the nozzle attached to the lower end of the storage container had an opening with a circular cross section and a diameter of 2.5 mm.
  • a protective tube of a thermocouple immersed in the metallic melt as a stopper adapted to the shape of the outflow opening, prevented the melt from flowing out prematurely. After the required temperature of the melt had been reached, the stopper was pulled out and an excess pressure was then immediately applied to squeeze out the melt.
  • Example 2 In a modification of Example 1, the peripheral speed of the cooling roll was increased to 48 m / s. An amorphous 3 mm wide band was also obtained, the thickness of which was now 0.03 mm.
  • Example 1 In a further modification of Example 1, a quartz crucible with a circular nozzle opening cross section of 3 mm was selected. The peripheral speed of the chill roll was increased to 60 m / s. At an extrusion pressure of 0.13 bar, an amorphous tape with a width of 3 mm was obtained, the thickness of which was only 0.022 mm.
  • Example 2 Under otherwise identical conditions as in Example 1, a storage container with a circular nozzle opening of 4 mm in diameter was selected and the peripheral speed was set to 50 m / s. The amorphous ribbon produced was 5 mm wide and 0.04 mm thick.
  • Example 2 Under the same conditions as in Example 1, a quartz crucible with a circular nozzle opening of 1.5 mm in diameter was used. The peripheral speed was reduced to 20 m / s. An amorphous metal tape was obtained, the width of which was 2 mm and the thickness of which was 0.04 mm.
  • Example 2 In a further modification according to Example 1, a quartz crucible with a circular nozzle opening of 5.5 mm in diameter was used. A 7 mm wide and 0.05 mm thick amorphous tape was obtained at an extrusion pressure of 0.13 bar and a speed of the cooling roll surface of 30 m / s.
  • Example 2 In a further modification according to Example 1, a quartz crucible with a circular nozzle opening of 6 mm in diameter was selected. At an extrusion pressure reduced to 0.06 bar and a peripheral speed of the cooling roller of 45 m / s, the melt jet solidified into a 6 mm wide and 0.04 mm thick amorphous band.
  • Example 1 In a further modification according to Example 1, instead of the cooling roll made of pure copper, a cooling roll of the same diameter made of a copper-beryllium alloy with about 1.7% by weight beryllium content was used, the thermal conductivity of which was about 1.13 W / cm - K Factor 3 is smaller than pure copper. Due to the lower solidification rate of the melt on this cooling roll surface, a 3 mm wide amorphous band was obtained, the thickness of which was only 0.03 mm.
  • a crucible made of boron nitride was used to produce an amorphous metal strip of the composition Fe 4o Ni 4o B 2o , and a nozzle with a rectangular opening cross section was inserted at the lower end of the crucible.
  • the opening of this slot nozzle had a width of 2.5 mm in the direction of movement of the heat sink surface, while its longitudinal dimension was 10 mm across it.
  • the moving chill roll was located at a distance of 0.15 mm from the crucible, the peripheral speed of which was set at approximately 30 m / s. At a gas pressure of 0.12 bar prevailing over the melt, the pressed melt jet solidified into a 10 mm wide amorphous band with a thickness of 0.04 mm.
  • An alloy of the composition was prepared under the same conditions as in Example 9 Zung CoysShsBic used, which was heated to about 1200 ° C before pressing.
  • the metal strip produced was 10 mm wide and 0.04 mm thick.
  • Example 9 In a further modification of Example 9, a nozzle with a rectangular outflow opening was used, the width of which was 2 mm in the direction of movement of the heat sink and the length of which was 20 mm transversely thereto.
  • the tape produced with this nozzle was 20 mm wide and 0.035 mm thick. Its structure could be determined to be completely amorphous using X-ray diffraction measurements.
  • the amorphous metal tape can be made in air, in a vacuum, or in any other suitable atmosphere, such as an inert gas atmosphere. If an oxidative attack on the surface of amorphous metal strips is to be avoided during the production process, an inert gas is preferably used under vacuum or in the absence of air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Amorphous metal tapes are produced by expressing a metallic melt in a supply container through at least one nozzle opening onto a moving surface of a cooling body positioned in relatively close proximity to the nozzle opening. The nozzle opening is 1.5 through 6 mm wide, as measured in the direction of motion of the cooling body surface, which is positioned at a distance of about 0.005 through 0.6 times the width of the nozzle opening from such opening and is moved at a velocity of at least 5 meters per second past such nozzle opening.

Description

Die Erfindung betrifft eine Vorrichtung zur Herstellung von amorphen Metallbändern mit einem beweglichen Kühlkörper und einer in unmittelbarer Nähe angeordneten, mit einem Stopfen verschließbaren Düse, die mit einem eine metallische Schmelze enthaltenden Vorratsbehälter verbunden ist, und an deren Öffnung die Oberfläche des Kühlkörpers mit einer Geschwindigkeit von mindestens 5 m/s vorbeibewegt wird.The invention relates to a device for producing amorphous metal strips with a movable heat sink and a nozzle which is arranged in the immediate vicinity and can be closed with a stopper, which is connected to a storage container containing a metallic melt, and at the opening of which the surface of the heat sink is at a speed of is moved past at least 5 m / s.

Vorrichtungen, die eine Herstellung von amorphen Metallbändern direkt aus der Schmelze gestatten, sind bekannt. Amorphe Bänder werden beispielsweise dadurch hergestellt, daß man eine entsprechende Schmelze typischerweise mit einer Abkühlgeschwindigkeit von etwa 104 bis 106 K/s so rasch abschreckt, daß ein Erstarren ohne Kristallisation eintritt. Dabei wird die geschmolzene amorphe Metallegierung in der Regel unter Druck durch eine oder mehrere Düsenöffnungen gepreßt und der austretende Schmelzstrahl gegen eine bewegte Kühlfläche gerichtet. Als Kühlfläche kann hierzu beispielsweise die innere oder äußere Oberfläche einer rotierenden Walze oder eines endlos umlaufenden Bandes verwendet werden. Die Dicke der auf diese Weise erhaltenen Bänder kann beispielsweise einige hundertstel mm, die Breite einige mm bis zu mehreren cm betragen.Devices which allow the production of amorphous metal strips directly from the melt are known. Amorphous tapes are produced, for example, by quenching a corresponding melt, typically at a cooling rate of about 10 4 to 10 6 K / s, so rapidly that solidification occurs without crystallization. The molten amorphous metal alloy is usually pressed under pressure through one or more nozzle openings and the emerging melt jet is directed against a moving cooling surface. For this purpose, the inner or outer surface of a rotating roller or an endlessly rotating belt can be used as the cooling surface. The thickness of the strips obtained in this way can be, for example, a few hundredths of a millimeter, and the width can be a few millimeters to several centimeters.

Von den kristallinen Legierungen lassen sich die amorphen Legierungen durch Röntgenbeugungsmessungen unterscheiden. Im Gegensatz zu kristallinen Materialien, die charakteristische, scharfe Beugungslinien zeigen, verändert sich bei amorphen Metallegierungen die Intensität im Röntgenbeugungsbild nur langsam mit dem Beugungswinkel, ähnlich wie dies auch bei Flüssigkeiten oder gewöhnlichem Glas der Fall ist.The amorphous alloys can be distinguished from the crystalline alloys by means of X-ray diffraction measurements. In contrast to crystalline materials, which show characteristic, sharp diffraction lines, the intensity in the X-ray diffraction pattern in amorphous metal alloys changes only slowly with the diffraction angle, similarly as is the case with liquids or ordinary glass.

Je nach den Herstellungsbedingungen können die aus amorphen Legierungen hergestellten Bänder vollständig amorph sein oder ein zweiphasiges Gemisch des amorphen und des kristallinen Zustandes umfassen. Im allgemeinen versteht man unter einer amorphen Metallegierung eine Legierung, deren Molekülstruktur zu wenigstens 50%, vorzugsweise zu wenigstens 80%, amorph ist.Depending on the manufacturing conditions, the ribbons made from amorphous alloys can be completely amorphous or comprise a two-phase mixture of the amorphous and the crystalline state. An amorphous metal alloy is generally understood to mean an alloy whose molecular structure is at least 50%, preferably at least 80%, amorphous.

Bekannt ist es bereits, bei der Herstellung sehr schmaler amorpher Metallbänder runde Düsen mit einem Durchmessser von 0,5 bis 1 mm zu verwenden. Der durch die Düsenöffnung gepreßte Schmelzstrahl trifft bei diesem Verfahren nach Durchlaufen einer freien Strecke von etwa 1 bis 20 mm auf eine bewegte Kühlkörperoberfläche und weitet sich dort zu einem stationären Schmelztropfen auf. An der Unterseite entsteht dann das Metallband durch fortschreitende Erstarrung. Dieses Verfahren läßt sich jedoch nicht ohne weiteres, beispielsweise unter Verwendung einer größeren Düsenöffnung, auf die Herstellung von breiten Metallbändern übertragen, da die Bandgeometrie sehr stark von der Ausdehnung des Schmelztropfens abhängt. Bei zu großen Düsenöffnungen wird nämlich bei entsprechend höherer Geschwindigkeit der Kühlkörperoberfläche der Schmelztropfen zu lang und damit instabil. Ferner wird die Bandqualität durch alle Oszillationen des freien Schmelztropfens nachteilig beeinflußt. Die auch für breitere Bänder geforderten glatten und gleichmäßigen Oberflächen sowie gleiche Dicke und Breite über die gesamte Länge lassen sich mit diesem Verfahren nicht erreichen.It is already known to use round nozzles with a diameter of 0.5 to 1 mm in the production of very narrow amorphous metal strips. In this method, the melt jet pressed through the nozzle opening strikes a moving heat sink surface after passing through a free distance of approximately 1 to 20 mm and expands there to form a stationary melt drop. The metal band then forms on the underside through progressive solidification. However, this method cannot easily be transferred to the production of wide metal strips, for example using a larger nozzle opening, since the strip geometry depends very much on the expansion of the melt drop. If the nozzle openings are too large, the melting drop becomes too long and therefore unstable at a correspondingly higher speed of the heat sink surface. Furthermore, the tape quality is adversely affected by all oscillations of the free melt drop. The smooth and uniform surfaces required for wider tapes, as well as the same thickness and width over the entire length, cannot be achieved with this process.

Ein weiteres Verfahren zur Herstellung von amorphen Metallbändern sowie eine Vorrichtung zur Durchführung dieses Verfahrens sind aus der DE-A-2 746 238 bekannt. Die bekannte Vorrichtung weist eine mit einem Vorratsbehälter für geschmolzenes Metall in Verbindung stehende Schlitzdüse auf, die in unmittelbarer Nähe, beispielsweise in einer Entfernung von 0,03 bis 1 mm, von der Oberfläche eines geeigneten Kühlkörpers angeordnet ist. Die Breite des in der Bewegungsrichtung der Kühlflächen gemessenen Schlitzes beträgt dabei etwa 0,2 bis maximal 1 mm, wobei insbesondere die Breite der beiderseitigen Düsenberandungen als besonders kritisch angesehen wird. Während der in Bewegungsrichtung der Kühlfläche angeordnete erste Rand eine Breite aufweist, die wenigstens gleich der Breite des Schlitzes ist, beträgt die Breite des zweiten Randes etwa das 1,5- bis 3fache der Breite des Schlitzes. Ferner liegt der Abstand zwischen der Düsenöffnung und der Kühlfläche in einem Bereich zwischen der 0,lfachen und der lfachen Breite des Schlitzes. Das aus einer derartigen Düsenöffnung gepreßte geschmolzene Metall bildet unter diesen Bedingungen bei der Berührung mit der Kühlkörperoberfläche, deren Längsbewegung mit einer Geschwindigkeit von etwa 100 bis 2000 m/Min. erfolgt, eine Verfestigungsfront, die gerade an dem zweiten Rand der Düse vorbeigeht, ohne diesen zu berühren. Die Fließgeschwindigkeit des geschmolzenen Metalls wird dabei primär durch den viskosen Fluß zwischen dem ersten Rand der Düse und dem erstarrten Metallband gesteuert. Düsen mit derart kleinen Abmessungen erfordern aber extrem reine Schmelzen. Sonst besteht nämlich die Gefahr, daß die Düsenöffnung durch nicht vollständig gelöste beziehungsweise bereits vorzeitig erstarrte Teilchen der Schmelze verstopft wird. Neben der geringeren Produktionsgeschwindigkeit, die sich im allgemeinen mit engen Düsenöffnungen erreichen läßt, ist ferner auch ein erheblich größerer Bearbeitungsaufwand notwendig, um eine derartige Düsenöffnung mit der entsprechenden Toleranz herzustellen.Another method for producing amorphous metal strips and an apparatus for carrying out this method are known from DE-A-2 746 238. The known device has a slot nozzle which is connected to a reservoir for molten metal and which is arranged in the immediate vicinity, for example at a distance of 0.03 to 1 mm, from the surface of a suitable heat sink. The width of the slot measured in the direction of movement of the cooling surfaces is approximately 0.2 to a maximum of 1 mm, the width of the nozzle edges on both sides being regarded as particularly critical. While the first edge arranged in the direction of movement of the cooling surface has a width which is at least equal to the width of the slot, the width of the second edge is approximately 1.5 to 3 times the width of the slot. Furthermore, the distance between the nozzle opening and the cooling surface lies in a range between 0.1 times and 1 times the width of the slot. The molten metal pressed from such a nozzle opening forms under these conditions when it comes into contact with the heat sink surface, the longitudinal movement of which moves at a speed of about 100 to 2000 m / min. takes place, a solidification front that just passes the second edge of the nozzle without touching it. The flow rate of the molten metal is primarily controlled by the viscous flow between the first edge of the nozzle and the solidified metal strip. However, nozzles with such small dimensions require extremely pure melts. Otherwise there is a risk that the nozzle opening will be blocked by particles of the melt which are not completely dissolved or have prematurely solidified. In addition to the lower production speed, which can generally be achieved with narrow nozzle openings, a considerably greater machining effort is also necessary in order to produce such a nozzle opening with the corresponding tolerance.

Aufgabe der Erfindung ist es, eine Vorrichtung der eingangs erwähnten Art anzugeben, mit der gleichmäßig ausgebildete Metallbänder auch bei höheren Produktionsgeschwindigkeiten und verringerten Anforderungen an die Reinheit der Schmelze und die Toleranzen der Düsenöffnung erzielt werden können.The object of the invention is to provide a device of the type mentioned, with the evenly formed metal strips at higher production speeds and reduced requirements for the purity of the melt and the tolerances of the nozzle opening can be achieved.

Erfindungsgemäß wird dies dadurch erreicht, daß die Breite der Düsenöffnung in Bewegungsrichtung der Oberfläche des Kühlkörpers gesehen 1,5 bis 6 mm beträgt und daß als Stopfen das Schutzrohr eines in die metallische Schmelze eintauchenden Thermoelements vorgesehen ist.According to the invention, this is achieved in that the width of the nozzle opening in the direction of movement of the surface of the heat sink is 1.5 to 6 mm and in that the protective tube of a thermocouple immersed in the metallic melt is provided as a stopper.

Gegenüber den bisher bekannten Vorrichtungen zur Herstellung amorpher Metallbänder unterscheidet sich die Vorrichtung gemäß der Erfindung durch eine wesentlich breitere Düsenöffnung. Zur Vermeidung eines vorzeitigen Ausfließens der metallischen Schmelze durch die Düsenöffnung ist das Schutzrohr eines in die metallischeSchmelzeeintauchendenThermoelementes als Stopfen vorgesehen. Durch diese Merkmalskombination können insbesondere gleichmäßig ausgebildete Metallbänder bei hohen Produktionsgeschwindigkeiten erzielt werden.Compared to the previously known devices for producing amorphous metal strips, the device according to the invention differs in that the nozzle opening is much wider. To prevent premature leakage of the metallic melt through the nozzle opening, the protective tube of a thermocouple immersed in the metallic melt is provided as a stopper. This combination of features enables in particular uniformly formed metal strips to be achieved at high production speeds.

Wie sich ferner überraschend herausgestellt hat, hat die gegenüber dem Stand der Technik wesentlich breitere Düsenöffnung den weiteren Vorteil, daß die Düsenform weniger entscheidend für die Bandgeometrie ist und beim Herstellungsprozeß ein Verstopfen sowie bei entsprechend geringem Auspreßdruck der Schmelze ein vorzeitiges Verschleißen der Düsenöffnung vermieden wird. Die vorzugsweise zu wählenden Verfahrensparameter hängen jeweils von der Breite beziehungsweise Dicke der herzustellenden Metallbänder ab. Als besonders günstig hat es sich erwiesen, wenn die Oberfläche des Kühlkörpers mit einer Geschwindigkeit von etwa 20 bis 40 m/s an einer 2 bis 4 mm breiten Düsenöffnung in einem Abstand vorbeigeführt wird, der geringer ist als die 0,1fache Breite der Düsenöffnung.As has also surprisingly been found, the considerably wider nozzle opening compared to the prior art has the further advantage that the nozzle shape is less decisive for the strip geometry and clogging in the production process and, with a correspondingly low pressure of the melt, premature wear of the nozzle opening is avoided. The preferred process parameters to be selected each depend on the width or thickness of the metal strips to be produced. It has proven to be particularly advantageous if the surface of the heat sink is guided past a 2 to 4 mm wide nozzle opening at a speed of approximately 20 to 40 m / s at a distance which is less than 0.1 times the width of the nozzle opening.

Wird jedoch die Düsenöffnung wesentlich breiter als 6 mm gewählt, sind aufgrund der dann auf die Kühlkörperoberfläche auftreffenden größeren Schmelzmengen nur noch entsprechend dickere Bänder herstellbar. Dies hängt auch damit zusammen, daß der Wärmeableitung über die Kühlkörperoberfläche technische Grenzen gesetzt sind. Es wird daher angenommen, daß bei Düsenöffnungen, die wesentlich breiter als 6 mm sind, Probleme mit der notwendigen Kühlung des Kühlkörpers beziehungsweise mit der Amorphstruktur der hergestellten Bänder auftreten können.However, if the nozzle opening is chosen to be significantly wider than 6 mm, only correspondingly thicker strips can be produced due to the larger amounts of melt that then hit the heat sink surface. This is also due to the fact that there are technical limits to the heat dissipation via the heat sink surface. It is therefore assumed that problems with the necessary cooling of the heat sink or with the amorphous structure of the strips produced can occur in the case of nozzle openings which are substantially wider than 6 mm.

Obwohl, wie bereits erwähnt, die genaue Form der Düsenöffnung bei einer Breite oberhalb von 1,5 mm weniger entscheidend für die Bandgeometrie ist, ist es besonders günstig, wenn der Öffnungsquerschnitt der Düsenöffnung kreisförmig oder nahezu kreisförmig ist. Jedoch können auch andere Düsenformen, beispielsweise Düsen mit rechteckigem Öffnungsquerschnitt oder Mehrfachdüsen verwendet werden. Bei entsprechend breiterem Öffnungsquerschnitt lassen sich diese Düsen wegen der verrringerten Anforderungen an die Abmessungstoleranzen wesentlich einfacher herstellen.Although, as already mentioned, the exact shape of the nozzle opening at a width above 1.5 mm is less important for the band geometry, it is particularly advantageous if the opening cross section of the nozzle opening is circular or almost circular. However, other nozzle shapes, for example nozzles with a rectangular opening cross section or multiple nozzles, can also be used. With a correspondingly wider opening cross section, these nozzles are much easier to manufacture because of the reduced requirements for the dimensional tolerances.

Das als Stopfen vorgesehene Thermoelementschutzrohr kann ebenfalls einfach an die jeweilige Form der Ausflußöffnung der Düse angepaßt werden.The thermocouple protection tube provided as a plug can also be easily adapted to the shape of the outlet opening of the nozzle.

Anhand einer Figur und einiger Ausführungsbeispiele soll die Erfindung noch näher erläutert werden.The invention will be explained in more detail with reference to a figure and some exemplary embodiments.

Die Figur zeigt schematisch die wesentlichen Teile einer erfindungsgemäßen Vorrichtung. Die Düsenöffnung 1 ist in unmittelbarer Nähe einer Kühlkörperfläche 2, beispielsweise der Oberfläche eines Bandes angeordnet, wobei der Pfeil dessen Bewegungsrichtung andeuten soll. Schmelzflüssiges Metall 3 wird unter Druck eines vorzugsweise inerten Gases durch die Düsenöffnung 1 gepreßt, wobei auf der Oberfläche des bewegten Kühlkörpers 2 ein Schmelztropfen gebildet wird, an dessen Unterseite das Metallband 4 durch fortschreitende Erstarrung entsteht. Von entscheidender Bedeutung ist, daß die Breite der Düsenöffnung 1 größer ist als der Abstand a der Düsenöffnung 1 von der Oberfläche des Kühlkörpers 2. Die durch die Grenzflächen 5 bestimmte seitliche Ausdehnung des Schmelztropfens wird durch den Auspreßdruck und den Abstand a bestimmt. Bei sehr kleinem a, im Bereich von etwa 0,03 bis 1 mm, vorzugsweise im Bereich von 0,1 bis 0,2 mm, ist die Ausdehnung des Schmelztropfens etwa gleich der in Bewegungsrichtung der Kühlkörperoberfläche des Kühlkörpers 2 gemessenen Breite der Düsenöffnung 1. Die Ausdehnung des Schmelztropfens bestimmt somit neben der Geschwindigkeit des Kühlkörpers 2 vornehmlich die Dicke des hergestellten amorphen Metallbandes. Als weiterer Einfluß auf die Banddicke kommt ferner noch die Erstarrungsrate des schmelzflüssigen Metalls hinzu, die einerseits von der Wärmeleitfähigkeit des Kühlkörpermaterials und andererseits aber auch von dem Wärmeübergangskoeffizienten zwischen dem erstarrten Band 4 und der Oberfläche des Kühlkörpers 2 abhängt. Insgesamt hat es sich gezeigt, daß mit steigender Wärmeleitfähigkeit des Kühlkörpermaterials, zunehmender Breite der Düsenöffnung sowie abnehmender Geschwindigkeit der Kühlkörperoberfläche die Banddicke erhöht wird.The figure shows schematically the essential parts of a device according to the invention. The nozzle opening 1 is arranged in the immediate vicinity of a heat sink surface 2, for example the surface of a strip, the arrow being intended to indicate its direction of movement. Molten metal 3 is pressed under pressure of a preferably inert gas through the nozzle opening 1, a drop of melt being formed on the surface of the moving heat sink 2, on the underside of which the metal strip 4 is formed by progressive solidification. It is of crucial importance that the width of the nozzle opening 1 is greater than the distance a between the nozzle opening 1 and the surface of the heat sink 2. The lateral extent of the melting drop determined by the boundary surfaces 5 is determined by the extrusion pressure and the distance a. With a very small a, in the range of approximately 0.03 to 1 mm, preferably in the range of 0.1 to 0.2 mm, the expansion of the melting drop is approximately equal to the width of the nozzle opening 1 measured in the direction of movement of the heat sink surface of the heat sink 2. The extent of the melt drop thus determines not only the speed of the heat sink 2, but primarily the thickness of the amorphous metal strip produced. A further influence on the strip thickness is the rate of solidification of the molten metal, which depends on the one hand on the thermal conductivity of the heat sink material and on the other hand on the heat transfer coefficient between the solidified strip 4 and the surface of the heat sink 2. Overall, it has been shown that the strip thickness increases with increasing thermal conductivity of the heat sink material, increasing width of the nozzle opening and decreasing speed of the heat sink surface.

Beispiel 1example 1

Zur Herstellung eines amorphen Metallbandes diente zunächst eine Legierung der Zusammensetzung FeaoNiaoBzo, deren Schmelztemperatur bei etwa 1050°C liegt. 500 g dieser Legierung wurden in einem Vorratsbehälter, beziehungsweise Tiegel aus Quarzglas auf eine Temperatur etwa 50 bis 100° C oberhalb ihres Schmelzpunktes induktiv erhitzt. Die am unteren Ende des Vorratsbehälters angebrachte Düse hatte eine Öffnung mit kreisförmigem Querschnitt und einem Durchmesser von 2,5 mm. Während des Aufheizens verhinderte ein an die Form der Ausflußöffnung angepaßtes Schutzrohr eines in die metallische Schmelze eintauchenden Thermoelements als Stopfen das vorzeitige Ausfließen der Schmelze. Nach Erreichen der erforderlichen Temperatur der Schmelze wurde der Stopfen herausgezogen und sofort anschließend ein Überdruck zum Auspressen der Schmelze angelegt. Hierzu wurde eine Argonatmosphäre mit einem Überdruck von 0,18 bar verwendet. Der schmelzflüssige Stahl traf auf die 0,2 mm entfernte Oberfläche einer bewegten Kühlwalze aus sauerstofffreiem Kupfer. Die verwendete Kühlwalze hatte einen Durchmesser von 42 cm. Sie rotierte mit einer Geschwindigkeit von etwa 1400 U/min entsprechend einer linearen Geschwindigkeit der Kühlwalzenoberfläche von etwa 30 m/s. Die aus der Düse ausgepreßte metallische Schmelze erstarrte auf der Oberfläche der Kühlwalze zu einem 3 mm breiten und 0,04 mm dicken Band. Röntgenstrahlbeugungsmessungen ergaben, daß das erzeugte Band vollständig amorph war. Bei der Kontrolle der Bandgeometrie wurde eine äußerst gleichmäßige Breite und Dicke über die gesamte Länge des Bandes festgestellt.An alloy of the composition Fe ao Ni ao Bzo, the melting temperature of which is approximately 1050 ° C., was initially used to produce an amorphous metal strip. 500 g of this alloy were inductively heated in a storage container or crucible made of quartz glass to a temperature about 50 to 100 ° C above its melting point. The nozzle attached to the lower end of the storage container had an opening with a circular cross section and a diameter of 2.5 mm. During the Heating, a protective tube of a thermocouple immersed in the metallic melt as a stopper, adapted to the shape of the outflow opening, prevented the melt from flowing out prematurely. After the required temperature of the melt had been reached, the stopper was pulled out and an excess pressure was then immediately applied to squeeze out the melt. An argon atmosphere with an overpressure of 0.18 bar was used for this. The molten steel hit the 0.2 mm distant surface of a moving cooling roller made of oxygen-free copper. The cooling roll used had a diameter of 42 cm. It rotated at a speed of approximately 1400 rpm, corresponding to a linear speed of the cooling roll surface of approximately 30 m / s. The metallic melt squeezed out of the nozzle solidified on the surface of the cooling roll to form a 3 mm wide and 0.04 mm thick band. X-ray diffraction measurements indicated that the tape produced was completely amorphous. When checking the belt geometry, an extremely uniform width and thickness was found over the entire length of the belt.

Beispiel 2Example 2

In Abänderung des Beispiels 1 wurde die Umfangsgeschwindigkeit der Kühlwalze auf 48 m/s erhöht. Es wurde ebenfalls ein amorphes, 3 mm breites Band erhalten, dessen Dicke nunmehr0,03 mm betrug.In a modification of Example 1, the peripheral speed of the cooling roll was increased to 48 m / s. An amorphous 3 mm wide band was also obtained, the thickness of which was now 0.03 mm.

Beispiel 3Example 3

In weiterer Abänderung des Beispiels 1 wurde ein Quarztiegel mit kreisförmigem Düsenöffnungsquerschnitt von 3 mm gewählt. Die Umfangsgeschwindigkeit der Kühlwalze wurde auf 60 m/s erhöht. Bei einem Auspreßdruck von 0,13 bar wurde ein amorphes Band von 3 mm Breite erhalten, dessen Dicke nur noch 0,022 mm betrug.In a further modification of Example 1, a quartz crucible with a circular nozzle opening cross section of 3 mm was selected. The peripheral speed of the chill roll was increased to 60 m / s. At an extrusion pressure of 0.13 bar, an amorphous tape with a width of 3 mm was obtained, the thickness of which was only 0.022 mm.

Beispiel 4Example 4

Bei sonst gleichen Bedingungen wie beim Beispiel 1 wurde ein Vorratsbehälter mit einer kreisförmigen Düsenöffnung von 4 mm Durchmesser gewählt und die Umfangsgeschwindigkeit auf 50 m/s eingestellt. Das erzeugte amorphe Band war 5 mm breit und 0,04 mm dick.Under otherwise identical conditions as in Example 1, a storage container with a circular nozzle opening of 4 mm in diameter was selected and the peripheral speed was set to 50 m / s. The amorphous ribbon produced was 5 mm wide and 0.04 mm thick.

Beispiel 5Example 5

Bei gleichen Bedingungen wie beim Beispiel 1 wurde ein Quarztiegel mit einer kreisförmigen Düsenöffnung von 1,5 mm Durchmesser verwendet. Die Umfangsgeschwindigkeit wurde auf 20 m/s erniedrigt. Es wurde ein amorphes Metallband erhalten, dessen Breite 2 mm und dessen Dicke 0,04 mm betrug.Under the same conditions as in Example 1, a quartz crucible with a circular nozzle opening of 1.5 mm in diameter was used. The peripheral speed was reduced to 20 m / s. An amorphous metal tape was obtained, the width of which was 2 mm and the thickness of which was 0.04 mm.

Beispiel 6Example 6

In weiterer Abänderung nach Beispiel 1 wurde ein Quarztiegel mit einer kreisförmigen Düsenöffnung von 5,5 mm Durchmesser verwendet. Bei einem Auspreßdruck von 0,13 bar und einer Geschwindigkeit der Kühlwalzenoberfläche von 30 m/s wurde ein 7 mm breites und 0,05 mm dickes amorphes Band erhalten.In a further modification according to Example 1, a quartz crucible with a circular nozzle opening of 5.5 mm in diameter was used. A 7 mm wide and 0.05 mm thick amorphous tape was obtained at an extrusion pressure of 0.13 bar and a speed of the cooling roll surface of 30 m / s.

Beispiel 7Example 7

In weiterer Abänderung nach Beispiel 1 wurde ein Quarztiegel mit einer kreisförmigen Düsenöffnung von 6 mm Durchmesser gewählt. Bei einem auf 0,06 bar reduzierten Auspreßdruck und einer Umfangsgeschwindigkeit der Kühlwalze von 45 m/s erstarrte der Schmelzstrahl zu einem 6 mm breiten und 0,04 mm dicken amorphen Band.In a further modification according to Example 1, a quartz crucible with a circular nozzle opening of 6 mm in diameter was selected. At an extrusion pressure reduced to 0.06 bar and a peripheral speed of the cooling roller of 45 m / s, the melt jet solidified into a 6 mm wide and 0.04 mm thick amorphous band.

Beispiel 8Example 8

In weiterer Abänderung nach Beispiel 1 wurde statt der Kühlwalze aus reinem Kupfer eine KühlWalze gleichen Durchmessers aus einer Kupfer-Beryllium-Legierung mit etwa 1,7 Gew.-% Berylliumgehalt verwendet, deren Wärmeleitfähigkeit mit 1,13 W/cm - K etwa um den Faktor 3 kleiner ist als die reinen Kupfers. Bedingt durch die geringere Erstarrungsgeschwindigkeit der Schmelze auf dieser Kühlwalzenoberfläche wurde ein 3 mm breites amorphes Band erhalten, dessen Dicke nur noch 0,03 mm betrug.In a further modification according to Example 1, instead of the cooling roll made of pure copper, a cooling roll of the same diameter made of a copper-beryllium alloy with about 1.7% by weight beryllium content was used, the thermal conductivity of which was about 1.13 W / cm - K Factor 3 is smaller than pure copper. Due to the lower solidification rate of the melt on this cooling roll surface, a 3 mm wide amorphous band was obtained, the thickness of which was only 0.03 mm.

Beispiel 9Example 9

Für die Herstellung eines amorphen Metallbandes der Zusammensetzung Fe4oNi4oB2o wurde ein Tiegel aus Bornitrid verwendet, an dessen unterem Ende eine Düse mit rechteckigem Öffnungsquerschnitt eingesetzt war. Die Öffnung dieser Schlitzdüse wies in der Bewegungsrichtung der Kühlkörperoberfläche eine Breite von 2,5 mm auf, während ihre Längsabmessung quer hierzu 10 mm betrug. In einem Abstand von 0,15 mm vom Tiegel befand sich die bewegte Kühlwalze, deren Umfangsgeschwindigkeit auf etwa 30 m/s eingestellt war. Bei einem über der Schmelze herrschenden Gasdruck von 0,12 bar erstarrte der ausgepreßte Schmelzstrahl zu einem 10 mm breiten amorphen Band mit einer Dicke von 0,04 mm.A crucible made of boron nitride was used to produce an amorphous metal strip of the composition Fe 4o Ni 4o B 2o , and a nozzle with a rectangular opening cross section was inserted at the lower end of the crucible. The opening of this slot nozzle had a width of 2.5 mm in the direction of movement of the heat sink surface, while its longitudinal dimension was 10 mm across it. The moving chill roll was located at a distance of 0.15 mm from the crucible, the peripheral speed of which was set at approximately 30 m / s. At a gas pressure of 0.12 bar prevailing over the melt, the pressed melt jet solidified into a 10 mm wide amorphous band with a thickness of 0.04 mm.

Beispiel 10Example 10

Unter gleichen Bedingungen wie beim Beispiel 9 wurde eine Legierung der Zusammensetzung CoysShsBic verwendet, die vor dem Auspressen auf etwa 1200°C erhitzt wurde. Das erzeugte Metallband war 10 mm breit und 0,04 mm dick.An alloy of the composition was prepared under the same conditions as in Example 9 Zung CoysShsBic used, which was heated to about 1200 ° C before pressing. The metal strip produced was 10 mm wide and 0.04 mm thick.

Beispiel 11Example 11

In weiterer Abänderung des Beispiels 9 wurde eine Düse mit rechteckiger Ausflußöffnung verwendet, deren Breite in der Bewegungsrichtung des Kühlkörpers 2 mm und deren Länge quer hierzu 20 mm betrug. Das mit dieser Düse erzeugte Band war 20 mm breit und 0,035 mm dick. Seine Struktur konnte mit Hilfe von Röntgenbeugungsmessungen als vollständig amorph bestimmt werden.In a further modification of Example 9, a nozzle with a rectangular outflow opening was used, the width of which was 2 mm in the direction of movement of the heat sink and the length of which was 20 mm transversely thereto. The tape produced with this nozzle was 20 mm wide and 0.035 mm thick. Its structure could be determined to be completely amorphous using X-ray diffraction measurements.

Das amorphe Metallband kann in Luft, in einem Vakuum oder in irgendeiner anderen geeigneten Atmosphäre, wie zum Beispiel einer Inertgasatmosphäre, hergestellt werden. Wenn ein oxidativer Angriff auf die Oberfläche von amorphen Metallbändern während des Herstellungsvorgangs vermieden werden soll, wird man vorzugsweise unter Vakuum beziehungsweise unter Luftabschluß mit einem Inertgas arbeiten.The amorphous metal tape can be made in air, in a vacuum, or in any other suitable atmosphere, such as an inert gas atmosphere. If an oxidative attack on the surface of amorphous metal strips is to be avoided during the production process, an inert gas is preferably used under vacuum or in the absence of air.

Claims (3)

1. Apparatus for the production of amorphous metal strips (4) comprising a moving cooling body (2) and a nozzle which is arranged in the immediate vicinity and can be closed by means of a plug, which is connected to a reservoir containing a metal melt (3), and at the opening of which nozzle, the surface of the cooling body (2) is moved past at a speed of at least 5 m/s, characterised in that, considered in the direction of motion of the surface of the cooling body (2), the width of the nozzle opening (1) is 1.5 to 6 mm, and that as the plug, the protective tube of a thermoelement dipping into the metal melt (3) is provided.
2. Apparatus as claimed in Claim 1, characterised in that the width of the nozzle opening (1) is 2 to 4 mm.
3. Apparatus as claimed in Claim 1 or Claim 2, characterised in that the nozzle opening (1) has an approximately circular cross-section.
EP80104056A 1979-09-25 1980-07-12 Apparatus for producing amorphous metal strips Expired EP0026812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80104056T ATE3006T1 (en) 1979-09-25 1980-07-12 DEVICE FOR THE PRODUCTION OF AMORPHIC METAL STRIPS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2938709 1979-09-25
DE19792938709 DE2938709A1 (en) 1979-09-25 1979-09-25 METHOD AND DEVICE FOR PRODUCING AMORPHOUS METAL BANDS

Publications (2)

Publication Number Publication Date
EP0026812A1 EP0026812A1 (en) 1981-04-15
EP0026812B1 true EP0026812B1 (en) 1983-04-13

Family

ID=6081770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80104056A Expired EP0026812B1 (en) 1979-09-25 1980-07-12 Apparatus for producing amorphous metal strips

Country Status (6)

Country Link
US (1) US4386648A (en)
EP (1) EP0026812B1 (en)
JP (1) JPS5656758A (en)
AT (1) ATE3006T1 (en)
CA (1) CA1149577A (en)
DE (2) DE2938709A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3136303A1 (en) * 1981-09-12 1983-04-14 Vacuumschmelze Gmbh, 6450 Hanau Apparatus for the production of metal strip from a melt
DE3362675D1 (en) * 1982-07-15 1986-04-30 Akzo Nv Method of forming continuous strip of amorphous metal
DE3226931A1 (en) * 1982-07-19 1984-01-19 Siemens AG, 1000 Berlin und 8000 München Process and equipment for producing large-area band-shaped silicon bodies for use in the manufacture of solar cells
EP0111728A3 (en) * 1982-11-12 1985-04-03 Concast Standard Ag Method of and device for producing products in the shape of strips or foils
DE3509552A1 (en) * 1985-03-16 1986-09-18 Vacuumschmelze Gmbh, 6450 Hanau FERROMAGNETIC FILM FOR A TORQUE SENSOR
ATE70752T1 (en) * 1985-06-19 1992-01-15 Sundwiger Eisen Maschinen PROCESS FOR PRODUCTION OF A METAL STRAND, PARTICULARLY IN THE FORM OF A STRIP OR PROFILE BY CASTING AND DEVICE FOR CARRYING OUT THIS PROCESS.
DE3521778A1 (en) * 1985-06-19 1987-01-02 Sundwiger Eisen Maschinen Method for the production of a metal strand, in particular in the form of a strip or section, by casting and an apparatus for carrying out this method
JPS61293637A (en) * 1985-06-21 1986-12-24 Nippon Steel Corp Nozzle for producing broad metallic strip
US4768458A (en) * 1985-12-28 1988-09-06 Hitachi, Metals Inc. Method of producing thin metal ribbon
DE3706636A1 (en) * 1987-03-02 1988-09-15 Vacuumschmelze Gmbh Method for monitoring the thickness of a cast product solidifying on a moving cooling surface
CA2130597A1 (en) * 1993-08-23 1995-02-24 Nippon Chemi-Con Corporation Process for producing an amorphous alloy ribbon

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU503857B2 (en) * 1976-10-22 1979-09-20 Allied Chemical Corp. Continuous casting of metal strip
US4142571A (en) * 1976-10-22 1979-03-06 Allied Chemical Corporation Continuous casting method for metallic strips
DE2809837A1 (en) * 1977-03-07 1978-09-21 Furukawa Electric Co Ltd Process for the production of amorphous metal strips
JPS6038225B2 (en) * 1977-09-12 1985-08-30 ソニー株式会社 Manufacturing method of amorphous alloy
DE2856795C2 (en) * 1977-12-30 1984-12-06 Noboru Prof. Sendai Tsuya Use of molten steel for a method of continuously casting a thin strip
DE2952620C2 (en) * 1979-01-02 1984-07-05 Allied Corp., Morris Township, N.J. Device for the continuous casting of vitreous metal alloy threads

Also Published As

Publication number Publication date
JPS5656758A (en) 1981-05-18
US4386648A (en) 1983-06-07
CA1149577A (en) 1983-07-12
DE2938709A1 (en) 1981-04-02
ATE3006T1 (en) 1983-04-15
EP0026812A1 (en) 1981-04-15
DE3062734D1 (en) 1983-05-19

Similar Documents

Publication Publication Date Title
DE4106605C2 (en) Process for the one-piece production of a solid, solidified amorphous alloy material and device for carrying out the process
DE2746238C2 (en) Device for the continuous casting of a thin metal strip
DE2759736C2 (en) Use of a slot nozzle and a heat sink
DE3638901C2 (en)
DE2462878C2 (en) Method and device for the discontinuous continuous casting of wire or thread sections from a melt
EP0026812B1 (en) Apparatus for producing amorphous metal strips
EP0111728A2 (en) Method of and device for producing products in the shape of strips or foils
DE2719710A1 (en) METHOD OF CASTING CONTINUOUS FEEDS WITH CALCER ROLLER AND DEVICE FOR CARRYING OUT THE METHOD
DE2104616B2 (en) Continuous casting mold for metals
CH663922A5 (en) ELECTRODE FOR WIRE CUTTING SPARK EDM.
DE2637311A1 (en) PROCESS FOR SINTERING OR MELTING CERAMIC OR REFRACTORY PRODUCTS
DE2853867C2 (en) Process for avoiding cracks in the edge area of metal strands cast in a continuous casting mold as well as additive and device for carrying out the process
DE2050697C3 (en) Process for the production of float glass
DE3207777C2 (en) Method and device for continuous pipe casting of metals, inbes. Nickel and cobalt alloys
DE3517454A1 (en) METHOD AND DEVICE FOR ROLLING STRIP MATERIAL MADE BY CASTING
EP0009603B1 (en) Method and apparatus for the production of metallic strips
DE2944175C2 (en) Continuous casting mold
WO1988002288A1 (en) Process and device for casting thin strip or foil from a molten mass
DE3444955A1 (en) DEVICE AND METHOD FOR PRODUCING MICROCRYSTALLINE METAL MATERIALS
DE2707806C3 (en) Method and device for the continuous immersion plating of metallic wire, rod or pipe material
DE2842421B1 (en) Method and device for the production of metal bands
DE2647300B2 (en) Continuous casting mold for metals
DE2419373C3 (en) Method of casting strands
DE1596334C3 (en)
DE1583636C (en) Cooling of a strand produced by casting on metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810401

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3006

Country of ref document: AT

Date of ref document: 19830415

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3062734

Country of ref document: DE

Date of ref document: 19830519

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930906

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940623

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940627

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940713

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940727

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940729

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940731

Year of fee payment: 15

EAL Se: european patent in force in sweden

Ref document number: 80104056.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950712

Ref country code: AT

Effective date: 19950712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950731

Ref country code: CH

Effective date: 19950731

Ref country code: BE

Effective date: 19950731

BERE Be: lapsed

Owner name: VACUUMSCHMELZE G.M.B.H.

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

EUG Se: european patent has lapsed

Ref document number: 80104056.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT