EP0021458A1 - Electrode for water electrolysis - Google Patents

Electrode for water electrolysis Download PDF

Info

Publication number
EP0021458A1
EP0021458A1 EP80200270A EP80200270A EP0021458A1 EP 0021458 A1 EP0021458 A1 EP 0021458A1 EP 80200270 A EP80200270 A EP 80200270A EP 80200270 A EP80200270 A EP 80200270A EP 0021458 A1 EP0021458 A1 EP 0021458A1
Authority
EP
European Patent Office
Prior art keywords
sintered body
electrode according
electrode
edge zone
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80200270A
Other languages
German (de)
French (fr)
Other versions
EP0021458B1 (en
Inventor
Robert Bänziger
Roland Isenschmid
Anton Dr. Menth
René Dr. Dipl.-Phys. Müller
Samuel Dr. Stucki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione ozonia AG
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0021458A1 publication Critical patent/EP0021458A1/en
Application granted granted Critical
Publication of EP0021458B1 publication Critical patent/EP0021458B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the invention relates to an electrode according to the preamble of claim 1.
  • Electrodes and processes for their production are known primarily from the technology developed for fuel cells (e.g. Carl Berger, Handbook of Fuel Cell Technology pp. 401-406, Prentice Hall 1968; HA Liebhafsky and EJ Cairns, Fuel Cells and Fuel Batteries, p 289-294, John Wiley & Sons, 1968).
  • the requirement for precisely defined reaction zones requires a multilayer structure and special treatment processes for such fuel cell electrodes.
  • the structure of the electrodes described above is too complicated for water decomposition and their manufacturing methods are too complex and costly. This applies in particular with regard to manufacturing methods for large industrial plants for the economical production of hydrogen.
  • Electrodes for water decomposition cells have already been proposed (eg US Pat. No. 4,039,409). To accelerate the electrochemical reactions, they are usually used with kata dysers doped.
  • the described electrodes leave something to be desired in terms of their mechanical and chemical properties. The same applies to the catalysts used.
  • the invention has for its object to provide an electrode for water electrolysis, which with good mechanical and chemical stability, high electrical conductivity and good permeability to water and gas has a long service life and the property to catalytically accelerate the water decomposition reaction in an optimal manner.
  • porous electrode material permeable sintered body based on titanium, preferably titanium alloy Ti6A14V.
  • An impregnation from a mixture of ruthenium oxide and iridium oxide is provided as the catalyst.
  • Fig. 1 shows a sintered body which is made of titanium or a titanium alloy by powder metallurgy.
  • the porous sintered body 1 carries on its side facing the electrolyte a surface coating 2 consisting of a mixture of ruthenium oxide and iridium oxide.
  • Fig. 2 shows the cross section through an embodiment with a smooth metallic ring. 1 and 2 correspond to FIG. 1.
  • the circumference of the sintered body 1 is closed by a smooth ring 3 made of dense material.
  • This ring 3 which is advantageously made of the same material as the sintered body 1, serves to seal and terminate the electrode in the context of the entire cell structure.
  • FIG. 3 shows the floor plan of the embodiment according to FIG. 2.
  • the reference numerals correspond to those of FIG. 2.
  • the structure of the smooth edge, which is formed by the dense ring 3 relative to the porous, granular sintered body 1, can be clearly seen .
  • the shape of the scope is here shown in a circle. It goes without saying that any other arbitrary shape can also be chosen: eg triangle, square, rectangle, hexagon or octagon. In practice, square shapes are preferred for large-area electrodes of industrial water decomposition apparatus, which allow simple cell construction in the manner of a filter press.
  • FIG. 4 shows the cross section through an embodiment with an edge zone infiltrated by plastic.
  • the sintered body 1 made of titanium provided with the catalyst as the surface coating 2 passes through to the outer circumference of the electrode. However, its edge zone is impregnated with a plastic 4 over a certain radial width.
  • This infiltration which preferably consists of polytetrafluoroethylene, completely fills the pores of the sintered body 1, a completely dense, smooth edge zone being formed which has the same function as the ring 3 in FIG. 2.
  • FIG. 5 shows the floor plan of the embodiment according to FIG. 4.
  • the reference numerals correspond to those of FIG. 4. Otherwise, what has been said under FIG. 3 applies.
  • the device was then cooled and the sintered body was removed from the die after reaching room temperature.
  • the titanium sintered body was again preheated to 200 ° C. and coated on one side with the catalyst as follows. In the present case, this consisted of a powder mixture of 20 m o l% Ru0 2 and 80 mol -% Ir0. 2 93 rel. % By weight of this powder mixture was 7 rel. % By weight of powdered tetrafluoroethylene is mixed and the whole (0.5 g) is mixed with 10 to 20 times the amount (5 to 10 g) of water and stirred to give a suspension. The latter was brushed onto the side of the preheated sintered body facing the electrolyte and the liquid was evaporated at 200.degree. The process of surface coating described above was repeated two more times. The sintered body coated with the catalyst was then heat-treated in an argon atmosphere at 375 ° C. for 1 h.
  • the edge zone of the sintered body was coated with a filler - in this case tetrafluoroethylene in powder form. In order to allow the latter to penetrate into the pores of the sintered body, it was subjected to a vacuum for a certain time. The process of coating and evacuating was repeated a further 2 to 3 times. Finally, the sintered body was subjected to a further heat treatment at 375 ° C / lh.
  • the invention is not restricted to this exemplary embodiment: in particular, the tightness of the edge zone can also be achieved by impregnating or infiltrating another plastic, for example an epoxy resin.
  • the electrodes produced according to the above exemplary embodiment have a particularly high corrosion resistance in an oxidizing environment and can therefore be used above all as oxygen-side electrodes.
  • the described method can be used in a particularly advantageous manner in the production of electrodes for high-performance water decomposition apparatus for the production of hydrogen. Thanks to its simplicity and economy, it is ideally suited for the production of standard, large-area electrodes for large industrial plants.
  • the electrodes manufactured in this way are characterized by high chemical resistance and a favorable decomposition voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Elektrode für die Wasserelektrolyse, bestehend aus einem plattenförmigen porösen Sinterkörper (1) aus Titan oder Titanlegierung, vorzugsweise Ti6A14V, dessen dem Elektrolyten zugewandte Seite mit einer Mischung von 20 mol-% Rutheniumoxyd und 80 mol-% tridiumoxyd beschichtet ist. In Sonderausführung wird der Sinterkörper an seinem Umfang durch einen dichten glatten Ring begrenzt, welcher entweder aus demselben, aber kompakten Material (3) bestehen kann oder durch porenschliessende Infiltration eines Kunstharzes (4), bevorzugt Tetrafluoräthylen, gebildet wird.

Figure imgaf001
Electrode for water electrolysis, consisting of a plate-shaped porous sintered body (1) made of titanium or titanium alloy, preferably Ti6A14V, the side of which facing the electrolyte is coated with a mixture of 20 mol% ruthenium oxide and 80 mol% tridium oxide. In a special version, the circumference of the sintered body is limited by a dense, smooth ring, which can either consist of the same but compact material (3) or is formed by pore-closing infiltration of a synthetic resin (4), preferably tetrafluoroethylene.
Figure imgaf001

Description

Die Erfindung geht aus von einer Elektrode nach der Gattung des Anspruchs 1.The invention relates to an electrode according to the preamble of claim 1.

Elektroden sowie Verfahren zu deren Herstellung sind vor allem von der für Brennstoffzellen entwickelten Technologie her bekannt (z.B. Carl Berger, Handbook of Fuel Cell Technology S. 401-406, Prentice Hall 1968; H.A. Liebhafsky and E.J. Cairns, Fuel Cells and Fuel Batteries, S. 289-294, John Wiley & Sons, 1968). Die Forderung nach genau definierten Reaktionszonen bedingt einen vielschichtigen Aufbau und spezielle Behandlungsverfahren derartiger Brennstoffzellen-Elektroden.Electrodes and processes for their production are known primarily from the technology developed for fuel cells (e.g. Carl Berger, Handbook of Fuel Cell Technology pp. 401-406, Prentice Hall 1968; HA Liebhafsky and EJ Cairns, Fuel Cells and Fuel Batteries, p 289-294, John Wiley & Sons, 1968). The requirement for precisely defined reaction zones requires a multilayer structure and special treatment processes for such fuel cell electrodes.

Für die Wasserzersetzung sind die oben beschriebenen Elektroden in ihrem Aufbau zu kompliziert und ihre Fertigungsmethoden zu aufwendig und kostspielig. Dies gilt insbesondere im Hinblick auf Herstellungsmethoden für industrielle Grossanlagen zur wirtschaftlichen Erzeugung von Wasserstoff.The structure of the electrodes described above is too complicated for water decomposition and their manufacturing methods are too complex and costly. This applies in particular with regard to manufacturing methods for large industrial plants for the economical production of hydrogen.

Elektroden für Wasserzersetzungszellen sind bereits vorgeschlagen worden (z.B. US-PS 4 039 409). Zur Beschleunigung der elektrochemischen Reaktionen werden sie meist mit Katalysatoren dotiert.Electrodes for water decomposition cells have already been proposed (eg US Pat. No. 4,039,409). To accelerate the electrochemical reactions, they are usually used with kata dysers doped.

Die beschriebenen Elektroden lassen sowohl bezüglich ihrer mechanischen und chemischen Eigenschaften zu wünschen übrig. Das gleiche gilt bezüglich der verwendeten Katalysatoren.The described electrodes leave something to be desired in terms of their mechanical and chemical properties. The same applies to the catalysts used.

Der Erfindung liegt die Aufgabe zugrunde, eine Elektrode für die Wasserelektrolyse anzugeben, welche bei guter mechanischer und chemischer Stabilität, hoher elektrischer Leitfähigkeit und guter Durchlässigkeit für Wasser und Gas eine hohe Lebensdauer sowie die Eigenschaft besitzt, die Wasserzersetzungsreaktion katalytisch in optimaler Weise zu beschleunigen.The invention has for its object to provide an electrode for water electrolysis, which with good mechanical and chemical stability, high electrical conductivity and good permeability to water and gas has a long service life and the property to catalytically accelerate the water decomposition reaction in an optimal manner.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst.According to the invention, this object is achieved by the features of claim 1.

Es hat sich gezeigt, dass es vorteilhaft ist, als Elektrodenmaterial einen porösen; durchlässigen Sinterkörper auf Titanbasis, vorzugsweise Titanlegierung Ti6A14V zu benutzen. Als Katalysator ist eine Imprägnierung aus einer Mischung von Rutheniumoxyd und Iridiumoxyd vorgesehen.It has been shown that it is advantageous to use a porous electrode material; permeable sintered body based on titanium, preferably titanium alloy Ti6A14V. An impregnation from a mixture of ruthenium oxide and iridium oxide is provided as the catalyst.

Die Erfindung wird anhand des nachfolgenden, durch Figuren erläuterten Ausführungsbeispiels beschrieben.The invention is described with reference to the following exemplary embodiment explained by figures.

Dabei zeigt:

  • Fig. 1 den Querschnitt durch die Grundform der Elektrode,
  • Fig. 2 den Querschnitt durch eine Ausführungsform mit' glattem metallischen Ring,
  • Fig. 3 den Grundriss der Form gemäss Fig. 2,
  • Fig. 4 den Querschnitt durch eine Ausführungsform mit durch Kunststoff infiltrierter Randzone,
  • Fig. 5 den Grundriss der Form gemäss Fig. 4.
It shows:
  • 1 shows the cross section through the basic shape of the electrode,
  • 2 shows the cross section through an embodiment with ' smooth metallic ring,
  • 3 shows the outline of the shape according to FIG. 2,
  • 4 shows the cross section through an embodiment with an edge zone infiltrated by plastic,
  • 5 shows the outline of the shape according to FIG. 4.

In Fig. 1 ist der Querschnitt durch die Elektrode dargestellt, was den grundsätzlichen Aufbau erkennen lässt. 1 stellt einen Sinterkörper dar, welcher aus Titan oder einer Titanlegierung pulvermetallurgisch hergestellt ist. Der poröse Sinterkörper 1 trägt auf seiner dem Elektrolyt zugewandten Seite eine aus einer Mischung von Rutheniumoxyd und Iridiumoxyd bestehende Oberflächenbeschichtung 2.In Fig. 1, the cross section through the electrode is shown, which shows the basic structure. 1 shows a sintered body which is made of titanium or a titanium alloy by powder metallurgy. The porous sintered body 1 carries on its side facing the electrolyte a surface coating 2 consisting of a mixture of ruthenium oxide and iridium oxide.

Fig. 2 zeigt den Querschnitt durch eine Ausführungsform mit glattem metallischen Ring. 1 und 2 entsprechen der Fig. 1. Der Umfang des Sinterkörpers 1 ist durch einen glatten Ring 3 aus dichtem Material abgeschlossen. Dieser Ring 3, welcher vorteilhafterweise aus dem gleichen Werkstoff wie der Sinterkörper 1 gefertigt ist, dient der Dichtung und dem Abschluss der Elektrode im Rahmen des gesamten Zellenaufbaus.Fig. 2 shows the cross section through an embodiment with a smooth metallic ring. 1 and 2 correspond to FIG. 1. The circumference of the sintered body 1 is closed by a smooth ring 3 made of dense material. This ring 3, which is advantageously made of the same material as the sintered body 1, serves to seal and terminate the electrode in the context of the entire cell structure.

Fig. 3 stellt den Grundriss der Ausführungsform gemäss Fig. 2 dar. Die Bezugszeichen entsprechen denjenigen von Fig. 2. Der Aufbau des glatten Randes, der durch den dichten Ring 3 gegenüber dem porösen, körnigen Sinterkörper 1 gebildet wird, -ist deutlich zu erkennen. Die Form des Umfanges ist hier kreisrund dargestellt. Es versteht sich von selbst, dass auch jede andere beliebige Form gewählt werden kann: z.B. Dreieck, Quadrat, Rechteck, Sechseck oder Achteck. In der Praxis werden für grossflächige Elektroden industrieller Wasserzersetzungsapparate quadratische Formen bevorzugt, welche einen einfachen Zellenaufbau nach Art einer Filterpresse erlauben.FIG. 3 shows the floor plan of the embodiment according to FIG. 2. The reference numerals correspond to those of FIG. 2. The structure of the smooth edge, which is formed by the dense ring 3 relative to the porous, granular sintered body 1, can be clearly seen . The shape of the scope is here shown in a circle. It goes without saying that any other arbitrary shape can also be chosen: eg triangle, square, rectangle, hexagon or octagon. In practice, square shapes are preferred for large-area electrodes of industrial water decomposition apparatus, which allow simple cell construction in the manner of a filter press.

In Fig. 4 ist der Querschnitt durch eine Ausführungsform mit durch Kunststoff infiltrierter Randzone dargestellt. Der mit dem Katalysator als Oberflächenbeschichtung 2 versehene Sinterkörper 1 aus Titan geht bis zum äusseren Umfang der Elektrode durch. Seine Randzone ist jedoch auf einer gewissen radialen Breite mit einem Kunststoff 4 durchtränkt. Diese, vorzugsweise aus Polytetrafluoräthylen bestehende Infiltration (Imprägnierung) füllt die Poren des Sinterkörpers 1 vollständig aus, wobei eine völlig dichte, glatte Randzone gebildet wird, welche die gleiche Funktion wie der Ring 3 in Fig. 2 hat.4 shows the cross section through an embodiment with an edge zone infiltrated by plastic. The sintered body 1 made of titanium provided with the catalyst as the surface coating 2 passes through to the outer circumference of the electrode. However, its edge zone is impregnated with a plastic 4 over a certain radial width. This infiltration (impregnation), which preferably consists of polytetrafluoroethylene, completely fills the pores of the sintered body 1, a completely dense, smooth edge zone being formed which has the same function as the ring 3 in FIG. 2.

Fig. 5 zeigt den Grundriss der Ausführungsform gemäss Fig. 4. Die Bezugszeichen entsprechen denjenigen von Fig. 4. Im übrigen gilt das unter Fig. 3 Gesagte.FIG. 5 shows the floor plan of the embodiment according to FIG. 4. The reference numerals correspond to those of FIG. 4. Otherwise, what has been said under FIG. 3 applies.

Ausführungsbeispiel:Design example:

Es wurden 5 g Titanpulver mit einer Korngrösse zwischen 50 µ und 150 p abgewogen. Eine hohlzylindrische Matrize und ein zylindrischer Stempel aus Elektrographit (z.B. EK 85 von Ringsdorff-Werke GmbH) von 60 mm Durchmesser wurden mit Bornitrid eingerieben. Das Titanpulver wurde in die Matrize eingefüllt-, homogen verteilt und der Stempel aufgesetzt. Das Ganze wurde zunächst während 5 bis 10 Minuten einem Schutzgasstrom von Argon unterworfen, welcher während des ganzen Vorgangs anhielt. Hierauf wurde der Anpressdruck des Stempels auf 75 bar erhöht. Die Temperatur wurde mit einer Erwärmungsgeschwindigkeit von 40°C/min sukzessive auf 820°C erhöht und während 10 Minuten auf diesem Wert gehalten. Danach wurde die Vorrichtung abgekühlt und der Sinterkörper nach Erreichen von Raumtemperatur aus der Matrize herausgenommen. Der Titan-Sinterkörper wurde erneut auf 200°C vorgewärmt und wie folgt auf einer Seite mit dem Katalysator beschichtet. Im vorliegenden Fall bestand dieser aus einer Pulvermischung von 20 mol-% Ru02 und 80 mol -% Ir02. 93 rel. Gew.-% dieser Pulvermischung wurden mit 7 rel. Gew.-% pulverisierten Tetrafluoräthylens vermengt und das Ganze (0,5 g) mit der 10- bis 20-fachen Menge (5 bis 10 g) Wasser versetzt und zu einer Suspension angerührt. Letztere wurde auf die dem Elektrolyt zugewandte Seite des vorgewärmten Sinterkörpers aufgepinselt und die Flüssigkeit bei 200°C verdampft. Der vorgängig beschriebene Prozess der Oberflächenbeschichtung wurde noch weitere zwei Male wiederholt. Nun wurde der mit dem Katalysator beschichtete Sinterkörper in Argonatmosphäre während lh bei 375°C wärmebehandelt.5 g of titanium powder with a grain size between 50 μ and 150 p were weighed out. A hollow cylindrical die and a cylindrical stamp made of electrographite (eg EK 85 from Ringsdorff-Werke GmbH) with a diameter of 60 mm were rubbed with boron nitride. The titanium powder was poured into the die, distributed homogeneously and the stamp placed on it. The The whole was initially subjected to an inert gas stream of argon for 5 to 10 minutes, which continued throughout the process. The pressure of the stamp was then increased to 75 bar. The temperature was gradually increased to 820 ° C. at a heating rate of 40 ° C./min and was kept at this value for 10 minutes. The device was then cooled and the sintered body was removed from the die after reaching room temperature. The titanium sintered body was again preheated to 200 ° C. and coated on one side with the catalyst as follows. In the present case, this consisted of a powder mixture of 20 m o l% Ru0 2 and 80 mol -% Ir0. 2 93 rel. % By weight of this powder mixture was 7 rel. % By weight of powdered tetrafluoroethylene is mixed and the whole (0.5 g) is mixed with 10 to 20 times the amount (5 to 10 g) of water and stirred to give a suspension. The latter was brushed onto the side of the preheated sintered body facing the electrolyte and the liquid was evaporated at 200.degree. The process of surface coating described above was repeated two more times. The sintered body coated with the catalyst was then heat-treated in an argon atmosphere at 375 ° C. for 1 h.

Im vorliegenden Ausführungsbeispiel wurde die Randzone des Sinterkörpers mit einem Füllstoff - in diesem Fall Tetrafluoräthylen in Pulverform - beschichtet. Um ein Eindringen des letzteren in die Poren des Sinterkörpers zu ermöglichen, wurde dieser während einer gewissen Zeit einem Vakuum ausgesetzt. Der Vorgang des Beschichtens und Evakuierens wurde weitere 2 bis 3 Male wiederholt. Zum Schluss wurde der Sinterkörper nochmals einer Wärmebehandlung 375°C/lh unterworfen. Die Erfindung ist nicht auf dieses Ausführungsbeispiel beschränkt: Insbesondere kann die Dichtheit der Randzone auch durch Imprägnieren oder Infiltrieren eines anderen Kunststoffes, beispielsweise eines Epoxyharzes bewerkstelligt werden.In the present exemplary embodiment, the edge zone of the sintered body was coated with a filler - in this case tetrafluoroethylene in powder form. In order to allow the latter to penetrate into the pores of the sintered body, it was subjected to a vacuum for a certain time. The process of coating and evacuating was repeated a further 2 to 3 times. Finally, the sintered body was subjected to a further heat treatment at 375 ° C / lh. The invention is not restricted to this exemplary embodiment: in particular, the tightness of the edge zone can also be achieved by impregnating or infiltrating another plastic, for example an epoxy resin.

Die gemäss obigem Ausführungsbeispiel hergestellten Elektroden besitzen eine besonders hohe Korrosionsbeständigkeit in oxydierender Umgebung und können deshalb vor allem als sauerstoffseitige Elektroden eingesetzt werden.The electrodes produced according to the above exemplary embodiment have a particularly high corrosion resistance in an oxidizing environment and can therefore be used above all as oxygen-side electrodes.

Das beschriebene Verfahren lässt sich in besonders vorteilhafter Weise bei der Herstellung von Elektroden für Hochleistungs-Wasserzersetzungsapparate zur Herstellung von Wasserstoff anwenden. Dank seiner Einfachheit und Wirtschaftlichkeit eignet es sich vorzüglich zur Herstellung serienmässiger, grossflächiger Elektroden für industrielle Grossanlagen.The described method can be used in a particularly advantageous manner in the production of electrodes for high-performance water decomposition apparatus for the production of hydrogen. Thanks to its simplicity and economy, it is ideally suited for the production of standard, large-area electrodes for large industrial plants.

Die auf diese Art hergestellten Elektroden zeichnen sich durch hohe chemische Beständigkeit und eine günstige Zersetzungsspannung aus.The electrodes manufactured in this way are characterized by high chemical resistance and a favorable decomposition voltage.

BezeichnungslisteLabel list

  • 1 = Sinterkörper (Ti,- Ti-Legierung)1 = sintered body (Ti, - Ti alloy)
  • 2 = Oberflächenbeschichtung (Ru02/Ir02)2 = surface coating (Ru0 2 / Ir0 2 )
  • 3 = Ring aus dichtem Material3 = ring made of dense material
  • 4 = Kunststoff (Polytetrafluoräthylen) zur Infiltration4 = plastic (polytetrafluoroethylene) for infiltration

Claims (7)

1. Elektrode für die Wasserelektrolyse auf der Basis eines Verbundwerkstoffes, dadurch gekennzeichriet, dass sie aus einem dünnen plattenförmigen, pulvermetallurgisch hergestellten porösen Sinterkörper (1) aus Titan oder einer Titanlegierung besteht, welcher auf der dem Elektrolyten zugewandten Seite eine Oberflächenbeschichtung (2) aus einer Mischung von 20 mol-% RuO2 und 80 mol-% IrO2 trägt.1. Electrode for water electrolysis on the basis of a composite material, characterized in that it consists of a thin plate-shaped, powder-metallurgically produced porous sintered body (1) made of titanium or a titanium alloy, which has a surface coating (2) on the side facing the electrolyte Mixture of 20 mol% RuO 2 and 80 mol% IrO 2 carries. 2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, dass das zur Herstellung des Sinterkörpers (1) verwendete Pulver eine Partikelgrösse von 50 bis 150µ aufweist.2. Electrode according to claim 1, characterized in that the powder used to produce the sintered body (1) has a particle size of 50 to 150µ. 3. Elektrode nach Anspruch 1, dadurch gekennzeichnet, dass die Titanlegierung 6 % Aluminium und 4 % Vanadium enthält.3. Electrode according to claim 1, characterized in that the titanium alloy contains 6% aluminum and 4% vanadium. 4. Elektrode nach Anspruch 1, dadurch gekennzeichnet, dass der Sinterkörper(l) auf seinem ganzen Umfang eine aus kompaktem dichten Material bestehende glatte Randzone aufweist.4. Electrode according to claim 1, characterized in that the sintered body (l) has on its entire circumference a smooth edge zone consisting of compact, dense material. 5. Elektrode nach Anspruch 4, dadurch gekennzeichnet, dass die Randzone aus demselben, jedoch völlig dichten Material wie der Sinterkörper besteht, derart, dass ein Ring (3) mit allseitig glatter Oberfläche vorhanden ist.5. Electrode according to claim 4, characterized in that the edge zone made of the same, but completely dense material how the sintered body exists, such that a ring (3) with a smooth surface on all sides is present. 6. Elektrode nach Anspruch 4, dadurch gekennzeichnet, dass die Randzone aus demselben porösen Material wie der Sinterkörper besteht, dessen Poren durch Infiltration eines Kunststoffes (4) völlig dicht geschlossen sind.6. Electrode according to claim 4, characterized in that the edge zone consists of the same porous material as the sintered body, the pores of which are completely sealed by infiltration of a plastic (4). 7. Elektrode nach Anspruch 6, dadurch gekennzeichnet, dass der zur Infiltration der Randzone verwendete Kunststoff Polytetrafluoräthylen ist.7. Electrode according to claim 6, characterized in that the plastic used to infiltrate the edge zone is polytetrafluoroethylene.
EP80200270A 1979-06-29 1980-03-24 Electrode for water electrolysis Expired EP0021458B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6083/79 1979-06-29
CH608379 1979-06-29

Publications (2)

Publication Number Publication Date
EP0021458A1 true EP0021458A1 (en) 1981-01-07
EP0021458B1 EP0021458B1 (en) 1984-07-04

Family

ID=4303987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80200270A Expired EP0021458B1 (en) 1979-06-29 1980-03-24 Electrode for water electrolysis

Country Status (4)

Country Link
US (1) US4326943A (en)
EP (1) EP0021458B1 (en)
CA (1) CA1158601A (en)
DE (2) DE2928910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349247B1 (en) * 1999-09-18 2002-08-19 이호인 Elextrolysis electrode for treating wastewater and method of making the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707229A (en) * 1980-04-21 1987-11-17 United Technologies Corporation Method for evolution of oxygen with ternary electrocatalysts containing valve metals
US4457824A (en) * 1982-06-28 1984-07-03 General Electric Company Method and device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4510034A (en) * 1982-08-31 1985-04-09 Asahi Kasei Kogyo Kabushiki Kaisha Coating type insoluble lead dioxide anode
DE3472979D1 (en) * 1983-06-28 1988-09-01 Bbc Brown Boveri & Cie Process for manufacturing a depassivating layer and depassivating layer on an electrode for an electrochemical cell
US4619753A (en) * 1984-01-26 1986-10-28 Bbc Brown, Boveri & Company Limited Bipolar plate for an apparatus with a stacked configuration, said apparatus comprised of a plurality of electrochemical cells with solid electrolyte; and method of manufacturing said plate
US5419824A (en) * 1992-11-12 1995-05-30 Weres; Oleh Electrode, electrode manufacturing process and electrochemical cell
US6828055B2 (en) * 2001-07-27 2004-12-07 Hewlett-Packard Development Company, L.P. Bipolar plates and end plates for fuel cells and methods for making the same
JP4142896B2 (en) * 2001-09-21 2008-09-03 本田技研工業株式会社 Water electrolysis cell
JP5548296B1 (en) * 2013-09-06 2014-07-16 ペルメレック電極株式会社 Method for producing electrode for electrolysis
TWI637082B (en) * 2017-08-24 2018-10-01 潘柏秀 Protective material for anode diffusion layer of water electrolysis device
CN111855754B (en) * 2019-04-29 2021-12-03 深圳安吉尔饮水产业集团有限公司 Water hardness detection probe, sensor, detection method and water softener

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1225722B (en) * 1961-09-27 1966-09-29 Varta Ag Electrode for galvanic fuel elements
DE1281514B (en) * 1964-09-19 1968-10-31 Varta Ag Method for producing a pressure-tight and gas-tight connection between a porous disk and its holder
US3846273A (en) * 1967-12-14 1974-11-05 Electronor Corp Method of producing valve metal electrode with valve metal oxide semiconductive coating having a chlorine discharge catalyst in said coating
US4140615A (en) * 1977-03-28 1979-02-20 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous anode separator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1470577A (en) * 1921-08-27 1923-10-09 Roessler & Hasslacher Chemical Reenforced platinum anode for production of persalts
US2812301A (en) * 1953-11-23 1957-11-05 British Petroleum Co Electrolytic regeneration of aqueous solutions containing mercaptides
US4028215A (en) * 1975-12-29 1977-06-07 Diamond Shamrock Corporation Manganese dioxide electrode
US4110180A (en) * 1976-04-28 1978-08-29 Diamond Shamrock Technologies S.A. Process for electrolysis of bromide containing electrolytes
US4157943A (en) * 1978-07-14 1979-06-12 The International Nickel Company, Inc. Composite electrode for electrolytic processes
US4211627A (en) * 1978-07-27 1980-07-08 Ppg Industries, Inc. Permionic membrane electrolytic cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1225722B (en) * 1961-09-27 1966-09-29 Varta Ag Electrode for galvanic fuel elements
DE1281514B (en) * 1964-09-19 1968-10-31 Varta Ag Method for producing a pressure-tight and gas-tight connection between a porous disk and its holder
US3846273A (en) * 1967-12-14 1974-11-05 Electronor Corp Method of producing valve metal electrode with valve metal oxide semiconductive coating having a chlorine discharge catalyst in said coating
US4140615A (en) * 1977-03-28 1979-02-20 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous anode separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349247B1 (en) * 1999-09-18 2002-08-19 이호인 Elextrolysis electrode for treating wastewater and method of making the same

Also Published As

Publication number Publication date
DE3068409D1 (en) 1984-08-09
CA1158601A (en) 1983-12-13
US4326943A (en) 1982-04-27
DE2928910A1 (en) 1981-01-29
EP0021458B1 (en) 1984-07-04

Similar Documents

Publication Publication Date Title
EP0297315B1 (en) Process for preparing a composite from a cermet layer and a porous metal layer on one or both sides of the cermet layer for a diaphragm with an electrode
EP0021456B1 (en) Electrode for the electrolysis of water
EP0021458A1 (en) Electrode for water electrolysis
DE2752875C2 (en) Electrode for electrochemical processes and processes for their production
EP0037953B1 (en) Hydrophobic catalyst for recombiners
DE2208632A1 (en) PROCESS FOR MANUFACTURING CARBON GAS ELECTRODES WITH A HYDROPHOBIC BACKING LAYER
DE1219104B (en) Porous sinter framework for electrodes of galvanic elements
DE1771399C3 (en) Process for the production of a thin, porous multilayer electrode for fuel elements
DE2912834B2 (en) Process for the production of silver / silver chloride reference electrodes of high accuracy and stability
EP0021457A1 (en) Electrode for water electrolysis
DE3004080C2 (en) Method for coating a porous electrode
DE2914094A1 (en) POROESE NICKEL ELECTRODE FOR ALKALINE ELECTROLYSIS, METHOD FOR PRODUCING THE SAME AND THE USE THEREOF
DE1180432B (en) Process for the production of catalyst electrodes for fuel elements
DE1421613A1 (en) Process for the production of porous electrodes for current-supplying cells, in particular for fuel elements
DE3612790C2 (en)
DE1533319B1 (en) Process for the powder metallurgical production of porous zinc bodies from surface oxidized zinc particles
DE1927093A1 (en) Air-breathing electrode
DE3437472C2 (en)
DE2905180C2 (en)
DE2905168A1 (en) Porous electrode mfr. - by sintering ground PTFE and graphite powder onto metal wire mesh
WO1983003105A1 (en) Method for manufacturing a large surface current collector for an electrochemical cell in the form of a porous titanium plate or sheet
DD208998A5 (en) CATALYTIC PARTICLES FROM A CATALYST AND A TRAILER MATERIAL
DE2504194C3 (en) Process for the production of thin, large-area electrode layers for fuel cells consisting of a solidified catalytic powder substance and a plastic binder, and a device for carrying out the process
DE1533319C (en) Process for the powder metallurgical production of porous zinc bodies from surface oxidized zinc particles
DE2114606A1 (en) Microporous fuel-cell electrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR IT

17P Request for examination filed

Effective date: 19810421

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC AKTIENGESELLSCHAFT BROWN, BOVERI & CIE.

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR IT

REF Corresponds to:

Ref document number: 3068409

Country of ref document: DE

Date of ref document: 19840809

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: OZONIA AG

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;OZONIA AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: OZONIA AG

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950320

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950324

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19960331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST