EP0019669B1 - Verfahren und Vorrichtung für die elektrochemische Behandlung einer Blechdose - Google Patents
Verfahren und Vorrichtung für die elektrochemische Behandlung einer Blechdose Download PDFInfo
- Publication number
- EP0019669B1 EP0019669B1 EP79300914A EP79300914A EP0019669B1 EP 0019669 B1 EP0019669 B1 EP 0019669B1 EP 79300914 A EP79300914 A EP 79300914A EP 79300914 A EP79300914 A EP 79300914A EP 0019669 B1 EP0019669 B1 EP 0019669B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cell
- mandrel
- side wall
- electrolyte
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/005—Contacting devices
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/02—Tanks; Installations therefor
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/04—Tubes; Rings; Hollow bodies
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F7/00—Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
Definitions
- This invention relates to the electro-chemical treatment of a surface of a container and more particularly but not exclusively to a method and apparatus for electrolytically treating a container body drawn from sheet metal.
- Container bodies which are drawn from sheet metal to have a cylindrical side wall closed at one end by an end wall. During the drawing process the surfaces of the sheet metal are subjected to frictional engagement with the drawing tools and the surface may become scratched or generally disturbed. This disturbance is more apparent on containers which have been wall ironed than on containers which have been redrawn with a positive clearance between punch and die.
- the tinplates used for the manufacture of drawn containers, comprise a layer of tin on the mild steel substrate.
- the surface of the tin is usually passivated by a known chemical treatment.
- the passivated tinplate is drawn, in a press tool, the tin layer is subjected to frictional engagement with the tool surface and so the passivated layer is liable to be destroyed.
- the degree of drawing or redrawing is severe, as could be the case in a wall ironing operation, the tin layer may be broken to leave the steel beneath, exposed and vulnerable to attack when the container is packed with certain food products, as is well known in the art.
- One known remedy is to use tinplate having a thicker layer of tin but this is a costly remedy.
- aluminium sheet used for manufacture of containers is often anodised, etched or treated with chromates because such surface treatments help subsequent organic coatings to adhere to the sheet.
- these surface finishes for aluminium sheet may also be spoiled in the press tool and so with both drawn aluminium containers and drawn tinplate containers there is a need for a method and apparatus for repairing the surfaces of the containers after the metal working operations; such operations may include drawing; re-drawing with a positive clearance; redrawing with a negative clearance herein called wall ironing; flanging or beading.
- Tin plate container bodies having a side seam are commonly soldered. However, certain products require that the side seam be protected after forming, the usual remedy being the application of a stripe of organic lacquer. Tinplate container bodies having a welded side seam also suffer damage to the metal surface adjacent the weld and again there is a need for a method of repairing the interrupted surfaces of the metal of the side seam.
- British Patent Number 1498 795 describes a method and apparatus for cleaning can bodies by means of a solvent or detergent which removes the greasy lubricants.
- the method described therein comprises mounting the container in a cavity in a body; the cavity having a shape corresponding approximately to that of the container, with the wall of the cavity spaced close to the surfaces of the container; and the container sub-dividing the cavity into two chambers; and passing the cleaning fluid through the chambers so that the cleaning fluid fills the chambers and flows along the surfaces of the container.
- the flow is preferably turbulent to obtain a good cleaning action, in contrast to the galvanic actions which are the subject of this specification.
- U.S. Patent No. 4,094,760 discloses an arrangement for simultaneously electrocoating both the interior and the exterior of a can body. This arrangement features a cell having a side wall and a mandrel disposed to receive a can body therebetween in close spaced relationship in such a manner that a continuous passageway exists permanently, when the can body is present, from the mandrel to the interior of the body to the exterior of the body.
- the invention provides a method of treating a can body formed from sheet metal, said method including the steps of placing the can body on a mandrel in a cell such that the interior and exterior surfaces of the can body are in closed spaced relationship respectively with the mandrel and with a side wall of the cell, introducing an electrolyte into the cell, and applying a potential difference between the cell and the can body, characterized in that the electrolyte is directed within the cell selectively between the interior surface of the can body and the mandrel for treating the interior surface of the can body, between the exterior surface of the can body and the side wall of the cell for treating the exterior surface of the can body, or both between the interior surface of the can body and the mandrel and between the exterior surface of the can body and the side wall of the cell for treating both the interior and the exterior surfaces of the can body.
- the method may including anionic or cationic treatment or treatments of the surface of the can.
- the surface of the can is electrocleaned and repassivated.
- a coating of an electrocoating material is preferablly applied to the repassivated surface.
- said method includes the steps of electrocleaning and electrodetinning.
- the detinned surface is preferably electroplated with a coating containing chromium and thereafter electrocoated with an organic coating material.
- the invention provides apparatus for treating a can body formed from sheet metal, said apparatus comprising a cell which has a side wall and a mandrel arranged to define a cavity within the cell and to receive therebetween in close spaced relationship within the cavity a can body, passage means for introducing an electrolyte into and conducting the electrolyte from the cell, the passage means including first passage means in communication with a first portion of the cavity for the passage of electrolyte flowing, in use, between the exterior surface of the can body and the side wall and second passage means in communication with a second portion of the cavity for the passage of electrolyte flowing, in use, between the interior surface of the can body and the mandrel, and means for applying a potential difference between the cell and the can body, characterised by means which are selectively adjustable between a first position sealing the first passage means for the second passage means and a second position permitting communication between the first passage means and the second passage means whereby the electrolyte may be selectively directed within the cell, in use, between the interior surface of
- the can body 1 of Fig. 1 has a concave end wall 2 and a side wall 3 extending from the periphery of the end wall to terminate in a flange 4, which defines the open end of the can body.
- the can body 1 has been drawn from a single piece of sheet metal and thereafter been wall ironed so that the side wall 3 is thinner than the end wall 2.
- the side wall is therefore in need of repair treatment to restore the surface while the surfaces of the concave end wall are substantially unaltered from the sheet condition.
- Fig. 2 the can body 1 has been placed in apparatus which has passageways as arrowed to conduct treating fluid first across the exterior surface of the can body and then across the interior surface of the can body.
- the apparatus of Fig. 2 comprises a cell 21 and a cover 22.
- the cell has a bottom wall 23 and a side wall 24.
- a mandrel 25 extends centrally upwards from the bottom wall 23 within the side wall 24 to define therewith, an annular cavity and to further define, with the cover 22, a space above the mandrel 25.
- An insulating locator ring 26 having triangular ribs 27 surrounds the mandrel 25 and rests on the bottom wall 23.
- the can body 1 is located centrally by the ribs 27 to be substantially equidistant from the side wall 24 and the mandrel 25.
- a contact post 28 extends through an insulating grommet 29 to press on the end wall 2 the can body and so make good electrical contact.
- the treating fluid enters the cell through the bottom wall 23 via the passage 30 and passes as arrowed, between the exterior surface of the can body 1 and the interior surface of the cell side wall 24, to leave through the passage 31 which leads the treating fluid back towards the bottom wall 23 for entry into a central passage 32 in the mandrel 25.
- the fluid Upon emerging from the passage 32 the fluid impinges on the interior surface of the end wall 2 and passes on between the interior surface of the side wall of the can and the mandrel 25 to leave through the bottom wall 23 via a passage 23.
- the cell is given a negative polarity, so that a direct current may be passed through a fluid in the cell. Therefore, when an electrocoating material is introduced as arrowed into the cell and a current is passed through the electrocoating material, the can body becomes coated with a surface coating. After coating the can body, the spent electrocoating material is drained from the cell and the coated can body is removed from the cell.
- a first electrolyte can be used to treat the interior only of the can body, and a second electrolyte can be used to treat the exterior only of the body. These treatments may be carried out simultaneously or sequentially.
- Removal of the plug 36A also permits the use of a valved supply of compressed air to eject the can body from the cell 21.
- the feed and exit conduits are preferably annular and arranged to distribute the treating fluid around the surface of the can.
- the apparatus of Fig. 2 is particularly suitable for incorporation in a rotary machine having a plurality of such cells, such as is shown in Figs. 3 and 4. Each cell is fed with fluids from supply means in the base 38 of the machine 37.
- the machine 37 can be seen to have a base plate 38 from which extends a centre post 39 which supports a drum cam 40.
- a turret 41 rotates on the base plate 38, about the centre post 39.
- the turret comprises a top plate 42, a spacer 43 and a cell block 44.
- the equispaced arrangement of the cells 45 around the turret 41 is best seen in Fig. 4.
- Each cell 45 is closed by a cover 46 supported on a rod 47 which is urged to reciprocate by a follower 48, at the upper end, which engages with the drum cam 40, the rod being insulated from the cover, turret and cam.
- An entry star wheel 49 acting with an entry guide 50 brings each can body 1 in sequence to be fitted in a cell and after treatment an exit star wheel 51, acting with an exit guide 52 removes each can from the apparatus.
- a positive polarity is imparted to the cans 1 in the cells and a negative polarity is put upon the cell block 44.
- each cell is being used to perform a like treatment on each can body.
- the can body 1 is therefore placed in the cell 45A (beneath it as shown in Fig. 3) and as the turret 41 rotates about the central post 39 the co-operation of the follower 48A with the cam 40 causes the rod 47 to close the cover 46A into the cell 45A.
- the cell is then filled in a manner described with reference to Fig. 2.
- the rod 47 conducts this polarity to the can body 1 in the cell so that for approximately 180° of rotation the galvanic treatment may be continued. If a cell, such as that shown in Fig. 2 is in use both the internal and external surfaces of the can body will be treated.
- a 40 head unit with a throughput of 1,000 can/minute could be constructed to fulfill the following requirements:-
- FIG. 5 shows diagrammatically how a machine 60 having eight cells may be fitted with two sets of four different treatment cells 61, 62, 63, 64.
- a transfer turret 72 is used to recycle each can from exit star wheel 71 back into the entry star wheel 73 for delivery to the next cell until the four stage treatment is completed.
- a finished coated can may be detected by an electrical conductivity test to prevent continuous cycling through the apparatus.
- the dissolution treatments such as tin stripping or cleaning may be accelerated if desired by applying ultrasonic vibration to the can body.
- the transducer for such vibration may be situated in the mandrel or in the wall of each cell.
- Figs. 2 to 5 may also be used to carry out a sequence of repair and metal finishing treatments as already described and examples of such sequences follow:-
- Electrocleaning as a separate first stage improves the efficiency and uniformity of treatment of the subsequent stages.
- the surface treatment chosen could be either the equivalent of the known "311" electrochemical process of passivation or the known "300” chemical immersion process of passivation. The choice depending upon the specific application and need for electrocoating.
- the tin is stripped from the can by anodic dissolution.
- the additional surface treatment step 1 would be used to replace the tin coating by a film approximately equivalent to that on known steels bearing chromium/chromium oxide layers.
- the second surface treatment (2) could, if desired, be a passivation treatment.
- the final stage would be electrocoating with an organic lacquer or the like.
- the coating composition used for electrocoating may be a water-dispersed coating composition, such as a partially neutralized acrylic interpolymer and an amine-aldehyde condensation product of polyepoxide or both. Examples of such interpolymers are found listed in patent issued to Donald P. Hart, U.S. Patent No. 3,403,088, and assigned to P.P.G. Industries, Inc.
- the apparatus of the invention may alternatively be used as a means to examine the quality of the electrochemical treatment or as a separate apparatus for testing coatings applied by conventional means.
- the invention has been described in terms of cans formed from tin plate and aluminium it is not limited thereto, for example the cans may be built up from components made of blackplate or other mild steel sheets. Furthermore the cans may be drawn from an uncoated steel so that the method and apparatus described provide the all or part of the can finishing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP79300914A EP0019669B1 (de) | 1979-05-23 | 1979-05-23 | Verfahren und Vorrichtung für die elektrochemische Behandlung einer Blechdose |
DE7979300914T DE2965983D1 (en) | 1979-05-23 | 1979-05-23 | A method and apparatus for electrochemical treatment of a can body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP79300914A EP0019669B1 (de) | 1979-05-23 | 1979-05-23 | Verfahren und Vorrichtung für die elektrochemische Behandlung einer Blechdose |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0019669A1 EP0019669A1 (de) | 1980-12-10 |
EP0019669B1 true EP0019669B1 (de) | 1983-07-27 |
Family
ID=8186376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79300914A Expired EP0019669B1 (de) | 1979-05-23 | 1979-05-23 | Verfahren und Vorrichtung für die elektrochemische Behandlung einer Blechdose |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0019669B1 (de) |
DE (1) | DE2965983D1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3436513A1 (de) * | 1984-10-05 | 1986-04-10 | Eisenmann Maschinenbaugesellschaft mbH, 7030 Böblingen | Haltevorrichtung fuer dosenruempfe oder einendig offene dosen zum transport auf foerderern |
GB2192407B (en) * | 1986-07-07 | 1990-12-19 | Metal Box Plc | Electro-coating apparatus and method |
GB8719816D0 (en) * | 1987-08-21 | 1987-09-30 | Sb Plating Ltd | Electro-plating techniques |
DE4127740A1 (de) * | 1991-08-22 | 1993-03-04 | Klaus Joergens | Verfahren und vorrichtung zum pruefen der porositaet von beschichteten gegenstaenden |
DE102010013723A1 (de) | 2010-03-31 | 2011-10-06 | Gdf Suez | Verfahren zum Betrieb einer Horizontalbohrvorrichtung und Horizontalbohrvorrichtung |
DE102019204553A1 (de) * | 2019-04-01 | 2020-10-01 | Robert Bosch Gmbh | Beschichtungsvorrichtung zum Beschichten von Bauteilen |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4094760A (en) * | 1977-07-25 | 1978-06-13 | Aluminum Company Of America | Method and apparatus for differentially and simultaneously electrocoating the interior and exterior of a metal container |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR895968A (fr) * | 1943-03-06 | 1945-02-08 | Procédé pour la fabrication de boîtes métalliques, notamment pour conserves, et produit obtenu | |
CH405042A (fr) * | 1962-01-15 | 1965-12-31 | D Emballages Metalliques Socie | Procédé pour l'oxydation anodique d'objets creux en un métal oxydable anodiquement |
US3716468A (en) * | 1971-04-09 | 1973-02-13 | Continental Can Co | Method for electrodeposition of cans |
-
1979
- 1979-05-23 DE DE7979300914T patent/DE2965983D1/de not_active Expired
- 1979-05-23 EP EP79300914A patent/EP0019669B1/de not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4094760A (en) * | 1977-07-25 | 1978-06-13 | Aluminum Company Of America | Method and apparatus for differentially and simultaneously electrocoating the interior and exterior of a metal container |
Also Published As
Publication number | Publication date |
---|---|
EP0019669A1 (de) | 1980-12-10 |
DE2965983D1 (en) | 1983-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4246088A (en) | Method and apparatus for electrolytic treatment of containers | |
EP0140469B1 (de) | Vorrichtung und Verfahren zum Anbringen einer Einschnürung an einem Behälterkörper | |
US4094760A (en) | Method and apparatus for differentially and simultaneously electrocoating the interior and exterior of a metal container | |
US3196819A (en) | Method of producing seamless metal bottles and an apparatus for carrying the method | |
US4107016A (en) | Method and apparatus for electro-phorectic coating | |
US9254514B2 (en) | Methods and processes of manufacturing two piece cans | |
EP0019669B1 (de) | Verfahren und Vorrichtung für die elektrochemische Behandlung einer Blechdose | |
US4502313A (en) | Tooling adjustment | |
JPH03155419A (ja) | 再絞り方法 | |
US4400251A (en) | Method and apparatus for simultaneously electrocoating the interior and exterior of a metal container | |
US2125387A (en) | Protective coating | |
MXPA06014558A (es) | Percha comun para operaciones de recubrimiento por electrodeposicion y deposicion fisica de vapor. | |
US4659445A (en) | Process for coating hollow bodies, which are open on one end | |
US6168691B1 (en) | Device for electrochemical treatment of elongate articles | |
CA1157456A (en) | Lubricant for deep drawn cans | |
GB1604035A (en) | Method and apparatus for electrolytically treating a container body | |
EP0050045B1 (de) | Verfahren und Vorrichtung zur elektrolytischen Beschichtung | |
US3847786A (en) | Roll-through method and apparatus for electrocoating can ends | |
US5575400A (en) | Containers | |
US3694336A (en) | Method for can electrodeposition | |
US4436594A (en) | Method of treating the surface of a metal container | |
US20060118411A1 (en) | Process and apparatus for multiple surface treatments of battery cans | |
US4081344A (en) | Method for electrodeposition repair coating of the end of an easy-open can | |
JP2001220685A (ja) | 樹脂密着性と樹脂積層後の耐食性に優れた樹脂被覆容器用表面処理鋼板およびその製造方法 | |
US3647675A (en) | Automatic rotary electrodeposition apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR LU NL SE |
|
17P | Request for examination filed |
Effective date: 19810224 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: METAL BOX P.L.C. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR LU NL SE |
|
REF | Corresponds to: |
Ref document number: 2965983 Country of ref document: DE Date of ref document: 19830901 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19840531 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19900410 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19900417 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19900423 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19900427 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19900430 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19900531 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19910524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19910531 |
|
BERE | Be: lapsed |
Owner name: METAL BOX P.L.C. Effective date: 19910531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19911201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920303 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 79300914.3 Effective date: 19911209 |