EP0018491A2 - Fibrous reinforcement for cement or bitumen bonded building elements and coverings - Google Patents

Fibrous reinforcement for cement or bitumen bonded building elements and coverings Download PDF

Info

Publication number
EP0018491A2
EP0018491A2 EP80101468A EP80101468A EP0018491A2 EP 0018491 A2 EP0018491 A2 EP 0018491A2 EP 80101468 A EP80101468 A EP 80101468A EP 80101468 A EP80101468 A EP 80101468A EP 0018491 A2 EP0018491 A2 EP 0018491A2
Authority
EP
European Patent Office
Prior art keywords
fibers
fiber
fibrous reinforcement
different
reinforcement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80101468A
Other languages
German (de)
French (fr)
Other versions
EP0018491B1 (en
EP0018491A3 (en
Inventor
Adolf Arnheiter
Rudolf Enzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTER-FORTA AG
Original Assignee
Inter-Forta AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter-Forta AG filed Critical Inter-Forta AG
Priority to AT80101468T priority Critical patent/ATE4337T1/en
Publication of EP0018491A2 publication Critical patent/EP0018491A2/en
Publication of EP0018491A3 publication Critical patent/EP0018491A3/en
Application granted granted Critical
Publication of EP0018491B1 publication Critical patent/EP0018491B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31815Of bituminous or tarry residue
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/184Nonwoven scrim
    • Y10T442/188Metal or metal-coated fiber-containing scrim

Definitions

  • the invention relates to a fibrous reinforcement for cement and bitumen-bound components and coverings.
  • fibers for the reinforcement and reinforcement of materials, the so-called fiber reinforcement, is generally known.
  • the following fibers in general, in the form of monofilament fibers, are currently considered to be particularly useful for the use mentioned: steel fibers, glass fibers, plastic fibers (e.g. polypropylene, polyethylene, polyamide, aramid (highly aromatic polyamide), PVC, carbon fibers, asbestos fibers, natural fibers.
  • plastic fibers e.g. polypropylene, polyethylene, polyamide, aramid (highly aromatic polyamide), PVC, carbon fibers, asbestos fibers, natural fibers.
  • the fibrous reinforcement is selected such that at least two different groups of fiber structures are present, at least one of which is in the form of a closed fiber network, the fibers of which are resilient and have a gathered shape in the state before being introduced into the mix.
  • the advantages achieved by the invention are essentially to be seen in the fact that the reinforcement elements can be introduced into the mix together with the additives.
  • the reinforcement elements are evenly distributed over the cross-section of the reinforced component. Aggregations do not occur.
  • This reinforcement element has the shape of a closed fiber network made of polypropylene and is shown in FIGS. 1 and 2.
  • This fiber network is a one-piece structure, two different fiber thicknesses being present in the embodiment shown.
  • First fibers 1 are each connected to one another by second fibers 2, the cross section of the second fibers 2 being smaller than the cross section of the first fibers 1.
  • These fiber nets added to the mix now also tend to stick to one another, in particular due to the mixing, for example due to the static charging thereof, such that no uniform distribution in the concrete would occur.
  • the fine polypropylene fibers are resilient, for example all the second fibers 2 act as springs which keep the first fibers 1 apart from one another, overcoming the mutual attraction forces, so that the fibers self-distribute in the mix or in the concrete.
  • individual fiber ends 3 loop around the grains of the material to be mixed, which additionally counteract the aggregation of the fiber network during and immediately after mixing.
  • the net-shaped reinforcement element in the final state does not describe the flat plane shown in FIG. 1, but is deformed in space in all three dimensions.
  • the state of the reinforcement element before it is introduced into the mix is shown in FIG. 2.
  • the reinforcement element is wound wound in a string, the number of turns being predetermined.
  • the reinforcement element in the gathered form shown in FIG. 2 is entered together with the mix into the concrete mixing machine and the mixing is then carried out carried out in the usual manner and during the standardized period. During this period, the cord shape of the reinforcement element is opened and after this time period the reinforcement element is in the three-dimensionally distributed network form.
  • the mixing time in the production of concrete is standardized. Therefore, the number of turns of the cord piece in order to obtain a three-dimensional network after mixing can be precisely determined. If the mesh is not completely open after the mixing process has ended, its effect on the reinforcement is limited.
  • the mesh If the mesh is fully open before mixing is complete, it will be torn apart during the remaining mixing period, take the form of the known split fibers, and also lose its effect as a reinforcement element.
  • the reinforcement element in the present gathered form according to FIG. 2, it is now possible to use the reinforcement element in practice without difficulty, since it does not require any additional devices for introducing it into the mix (in particular it does not have to be sprinkled in) and, in addition, there is no additional monitoring of time periods necessary.
  • the insertion form twisted into the cord is only pure, for example.
  • the gathered form can be formed by other deformations, and water-soluble adhesives can also be arranged to hold the gathered form together.
  • Such a uniform distribution can now be achieved when using such self-distributing mesh-shaped reinforcement elements, this together, ie in combination with other known fibrous reinforcement elements in the form of individual fibers such as glass fibers, steel fibers, plastic fibers, carbon fibers, asbestos fibers, natural fibers etc.
  • One or more of these types of fibers can be used together with the mesh reinforcement element, whereby the fiber lengths can be different, as will be explained in more detail below.
  • reinforcing fibers which are individual fibers
  • the fiber network self-distributing during mixing, the individual fibers are evenly distributed by the spreading networks.
  • the nets also prevent the individual fibers from clumping together, since the nets prevent the individual fibers from doing so purely mechanically.
  • the individual fibers are thus guided through the networks in such a way that a uniform distribution of the individual fibers, and obviously also of the fiber networks, is achieved in the reinforced concrete piece.
  • a test specimen was first made from unreinforced concrete. A bending tensile strength of approximately 32 kg / cm 2 was measured for this concrete body, which value is a common average value for concrete. Then another concrete test piece was produced, to which a calculated optimal amount of steel fibers, namely 144 kg, was added. A bending tensile strength of this concrete steel specimen, which was reinforced only with steel fibers, was measured at approximately 68 kp / cm 2 . Thus, the steel fibers caused the bending tensile strength to be improved by approximately 36 kp / cm 2 .
  • Another concrete test specimen was produced, in which a calculated optimal amount of 1 kg of the reticulated polypropylene fiber reinforcement of a plastic reticulated concrete test specimen of approximately 36 kp / cm 2 was measured. So the improvement in bending tensile strength was 4 kp / cm 2 .
  • the quality of the concrete also depends on the even distribution of the aggregates with different grain sizes. It is not only important how evenly a certain grain size (i.e. e.g. gravel bodies with a diameter of only 5 mm) is distributed in the poured concrete, but also what the proportions of the different grain sizes are.
  • a certain grain size i.e. e.g. gravel bodies with a diameter of only 5 mm
  • the aggregates for the production of concrete have to follow certain rules, among other things, with regard to grain sizes.
  • the curve the grain structure of the aggregates ie the so-called sieve curve
  • A denotes the residue in percent by weight
  • B the mesh size or round hole size in mm
  • C passage in percent by weight.
  • curve S indicates mean values with respect to permissible scatter ranges, which is known to the person skilled in the art. (The corresponding curve S according to DIN 1045 is defined as "particularly good”.)
  • This sieve curve which is based on purely technical conditions and knowledge, determines the percentage distribution of the aggregates of different grain sizes in order to obtain a (unreinforced) high-quality concrete.
  • fiber length instead of using only a predetermined length of the respective fibers, fibers of the same material with different lengths are used, however, analogously to the different grain sizes of the additives.
  • the percentage distribution of the amounts of the respective fiber lengths with respect to the grain sizes of the additives follows the recognized law.
  • Another property to be considered for reinforcement fibers is the modulus of elasticity of the materials from which the fibers are made. This means that the fiber reinforcement not only has to consist of only two fiber groups in accordance with the above (but can also be used in practice), but the polypropylene network together with steel fibers and / or glass fibers and / or carbon fibers and / or asbestos fibers and / or other plastic fibers, e.g. Aramid etc. is to be used.
  • the known sieve curve S according to FIG. 3 forms the basis of the percentage quantity distribution of the fiber reinforcements with respect to the elastic modulus, as shown in FIG. 5.
  • F means the amount in%
  • G the modulus of elasticity in kp / cm 2 , representing different substances
  • curve U again corresponds to curve S in FIG. 3.
  • the diagram in FIG. 5 shows that an optimal distribution of the quantities of respective reinforcement elements with respect to the modulus of elasticity is as follows:
  • the regularity of the quantity distribution with respect to the fiber length according to curve T of FIG. 4 is now combined with the regularity of the quantity distribution with regard to the modulus of elasticity according to curve U of FIG. 5.
  • predetermined proportions of fibers are selected with regard to fiber length and modulus of elasticity of the different materials.
  • the fibers are usually produced by (e.g. in the case of plastic fibers) dividing or cutting a film, so that either the closed fiber network, open fiber networks or individual fibers are produced, or (e.g. in the case of steel fibers or glass fibers), continuously produced wires are cut.
  • the fiber structures can now be twisted before cutting to produce the fibers of a predetermined length (the wires are twisted before cutting or are connected to one another by means of adhesives), so that there are several cord-shaped structures with different materials. All these cord-like structures are then twisted together again, so that a thicker cord made of the most varied reinforcement materials is present, which cord is then finally cut into individual pieces. will cut.
  • these pieces of cord retain their shape due to the pretension, friction etc. imparted during twisting, or water-soluble adhesives are used.
  • the number of twists, the adhesive etc. is predetermined from tests and selected in such a way that the reinforcement cords can be entered into the concrete mixing machine together with the additives, and after the standardized concrete mixing time has ended due to the self-distributing fiber network that is always present, uniform over the Cross section of the reinforced concrete body are distributed.
  • the fiber reinforcement described can also be used for tar and bitumen coverings in order to prevent large cracks from forming and a crack pattern. to produce fine cracks, into which cracks no water can enter and freeze, so that frost damage can largely be prevented on roads etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Road Paving Structures (AREA)

Abstract

Durch die Bewehrung soll eine verbesserte Feinrissverteilung und höhere Festigkeit des bewehrten Bauteiles erzielt werden, indem ein Zusammenballen von Einzelfasern verhindert und eine gleichmässige Verteilung derselben selbst über den Querschnitt des Bauteils erzielt wird. Die Einzelfasern werden zusammen mit einem Fasernetz und den Zuschlagstoffen in die Mischmaschine eingebracht. Vor dem Einbringen weist das Fasernetz eine geraffte, schnurförmige Form auf und verteilt sich während des Mischens selbst. Es werden Fasern unterschiedlicher Länge und aus unterschiedlichen Stoffen verwendet. Dabei sind die Relationsmengen bezüglich der Faserlänge und bezüglich der E-module der Fasern derart gewählt, dass sie der Gesetzmässigkeit folgen, die durch die Siebkurve bezüglich der Korngrössen der Zuschlagstoffe zur Erzeugung der optimalen relativen Korngrössenverteilung im Beton gegeben ist.The reinforcement is intended to achieve an improved fine crack distribution and higher strength of the reinforced component by preventing individual fibers from clumping together and achieving an even distribution of the same even over the cross section of the component. The individual fibers are fed into the mixing machine together with a fiber network and the additives. Before being introduced, the fiber net has a gathered, cord-like shape and distributes itself during mixing. Fibers of different lengths and made of different materials are used. The relation quantities with regard to the fiber length and with respect to the elastic modulus of the fibers are selected in such a way that they follow the law that is given by the sieve curve with regard to the grain sizes of the aggregates in order to produce the optimal relative grain size distribution in the concrete.

Description

Die Erfindung betrifft eine faserförmige Bewehrung für zement- und bitumengebundene Bauteile und Beläge.The invention relates to a fibrous reinforcement for cement and bitumen-bound components and coverings.

Die Verwendung von Fasern zur Bewehrung und Verstärkung von Werkstoffen, die sogenannte Faserbewehrung ist allgemein bekannt. Gegenwärtig werden insbesondere folgende Fasern, allgemein, in der Form von monofilen Fasern, zur genannten Verwendung als zweckdienlich erachtet: Stahlfasern, Glasfasern, Kunststoffasern (z.B. Polypropylen, Polyäthylen, Polyamid, Aramid (hocharomatisches Polyamid), PVC, Kohlenstoffasern, Asbestfasern, Naturfasern.The use of fibers for the reinforcement and reinforcement of materials, the so-called fiber reinforcement, is generally known. The following fibers, in general, in the form of monofilament fibers, are currently considered to be particularly useful for the use mentioned: steel fibers, glass fibers, plastic fibers (e.g. polypropylene, polyethylene, polyamide, aramid (highly aromatic polyamide), PVC, carbon fibers, asbestos fibers, natural fibers.

'Eine offensichtliche Forderung an Bewehrungsfasern ist die gleichmässige Verteilung derselben über den Querschnitt des damit bewehrten Bauteiles, um dessen Rissbild zweckmässig zu verbessern. Jedoch weisen die bekannten Fasern üblicherweise den Nachteil auf, dass sie sich im zu bewehrenden Stoff, beispielsweise aufgrund elektrostatischer Aufladung, zusammenballen und daher keine gleichmässige Verteilung derselben entsteht. Somit wird ihre Dosierung im Querschnitt verhältnismässig hocHBewählt und die Einbringungstechniken, z.B. Einrieseln, wohl unter Laborbedingungen durchführbar, jedoch sehr aufwendig und in der Praxis nur schwer, falls überhaupt, durchführbar. Somit sind wirtschaftlich tragbare Lösungen bezüglich Faserbewehrungen äusserst beschränkt anwendbar.'' An obvious requirement for reinforcement fibers is the even distribution of the same across the cross-section of the component reinforced with it, in order to improve its crack pattern. However, the known fibers usually have the disadvantage that they clump together in the material to be reinforced, for example due to electrostatic charging, and therefore there is no uniform distribution thereof. In this way, their dosage is selected to be relatively high in cross-section and the application techniques, e.g. Pouring in, probably feasible under laboratory conditions, but very complex and in practice difficult, if at all, feasible. As a result, economically viable solutions with regard to fiber reinforcement are extremely limited.

Hier will die Erfindung Abhilfe schaffen. Dazu ist die faserförmige Bewehrung derart gewählt, dass mindestens zwei unterschiedliche Gruppen Fasergebilde vorhanden sind, wovon mindestens eine die Form eines geschlossenen Fasernetzes aufweist, dessen Fasern federelastisch sind und im Zustand vor dem Einbringen in das Mischgut eine geraffte Form aufweist.The invention seeks to remedy this. For this purpose, the fibrous reinforcement is selected such that at least two different groups of fiber structures are present, at least one of which is in the form of a closed fiber network, the fibers of which are resilient and have a gathered shape in the state before being introduced into the mix.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass die Bewehrungselemente zusammen mit den Zuschlagstoffen in das Mischgut eingebracht werden können. Die Bewehrungselemente verteilen sich von selbst gleichmässig über den Querschnitt des bewehrten Bauteils. Zusammenballungen treten nicht auf.The advantages achieved by the invention are essentially to be seen in the fact that the reinforcement elements can be introduced into the mix together with the additives. The reinforcement elements are evenly distributed over the cross-section of the reinforced component. Aggregations do not occur.

Nachfolgend wird die Erfindung anhand der Zeichnungen beispielsweise näher erläutert.The invention is explained in more detail below with reference to the drawings, for example.

Es zeigt:

  • Fig. 1 ein Bewehrungselement in Form eines Kunststofffasernetzes,
  • Fig. 2 das Bewehrungselement der Fig. 1 in der Zustandsform vor dem Einbringen,
  • Fig. 3 eine genormte Siebkurve für die Zuschlagstoffe zur Betonherstellung,
  • Fig. 4 ein Diagramm der Verteilung des prozentualen Anteils verschiedener Bewehrungsfasern bezogen auf die Faserlänge, und
  • Fig. 5 ein Diagramm der Verteilung des prozentualen Anteils verschiedener Bewehrungsfasern bezogen auf der E-Modul.
It shows:
  • 1 is a reinforcement element in the form of a plastic fiber network,
  • 2 the reinforcement element of FIG. 1 in the state before insertion,
  • 3 is a standardized sieve curve for the aggregates for concrete production,
  • Fig. 4 is a diagram of the distribution of the percentage of different reinforcing fibers based on the fiber length, and
  • Fig. 5 is a diagram of the distribution of the percentage of different reinforcement fibers based on the modulus of elasticity.

Es ist einleitend erwähnt worden, dass eine der grossen Schwierigkeiten von Faserbewehrungen ,z.B. des Betons darin liegt, dass es in der Praxis wirtschaftlich kaum möglich ist, eine auf den Querschnitt des zu bewehrenden Bauteils gleichförmige Verteilung derselben zu erreichen, um unter anderem eine gleichförmige Rissbildung zu.erzeugen. Dies rührt daher, dass sich die einzelnen Fasern aufgrund von elektrostatischen Anziehungskräften zusammenballen, oder aufgrund anderer technischer Einflüsse, z.B.. unterschiedlichem, spezifischem Gewicht, entweder auf den Grund eines soeben gegossenen Körpers absinken, oder bei seiner Oberfläche oben aufschwimmen.It has been mentioned in the introduction that one of the great difficulties of fiber reinforcement, e.g. of the concrete is that in practice it is hardly economically feasible to achieve a uniform distribution of the same across the cross-section of the component to be reinforced, in order to produce, among other things, uniform crack formation. This is due to the fact that the individual fibers clump together due to electrostatic attractive forces or due to other technical influences, e.g. different specific weights, either sink to the bottom of a body that has just been cast, or float on the surface at the top.

Um nun diese aus Einzelfasern bestehenden Bewehrungselemente gleichmässig über den Querschnitt zu verteilen, werden sie gemäss des Erfindungsgedankens erstlich zusammen mit einem besonders ausgebildeten Bewehrungselement verwendet, das nachfolgend beschrieben wird.In order to distribute these reinforcement elements consisting of individual fibers evenly over the cross-section, According to the concept of the invention, they are first used together with a specially designed reinforcement element, which is described below.

Dieses Bewehrungselement weist die Form eines geschlossenen Fasernetzes aus Polypropylen auf, und ist in den Fig. 1 und 2 dargestellt. Dieses Fasernetz ist ein einstückiges Gebilde, wobei bei der gezeigten Ausführungsform zwei unterschiedliche Faserdicken vorhanden sind. Dabei sind erste Fasern 1 jeweils durch zweite Fasern 2 miteinander verbunden, wobei der Querschnitt der zweiten Fasern 2 ein kleineres Mass als der Querschnitt der ersten Fasern l aufweist. Auch diese dem Mischgut zugegebenen Fasernetze neigen nun dazu, insbesondere aufgrund des Mischens, aneinanderzuhaften, beispielsweise durch dieistatische Aufladung derselben, derart, dass keine gleichmässige Verteilung im Beton auftreten würde. Weil jedoch die feinen Polypropylenfasern federelastisch sind, wirken beispielsweise alle zweiten Fasern 2 als Federn, die die ersten Fasern l, die gegenseitigen Anziehkräfte überwindend, im Abstand voneinander halten, so dass eine Selbstverteilung der Fasern im Mischgut, bzw. im Beton erfolgt. Zudem schlingen sich einzelne Faserenden 3 um die Körner des Mischgutes, welche zusätzlich dem Zusammenballen des Fasernetzes während des Mischens und unmittelbar nachher entgegenwirken. Offensichtlich beschreibt das netzförmige Bewehrungselement im Endzustand nicht die in der Fig. 1 gezeigte, flache Ebene, sondern ist in allen drei Dimensionen im Raum verformt.This reinforcement element has the shape of a closed fiber network made of polypropylene and is shown in FIGS. 1 and 2. This fiber network is a one-piece structure, two different fiber thicknesses being present in the embodiment shown. First fibers 1 are each connected to one another by second fibers 2, the cross section of the second fibers 2 being smaller than the cross section of the first fibers 1. These fiber nets added to the mix now also tend to stick to one another, in particular due to the mixing, for example due to the static charging thereof, such that no uniform distribution in the concrete would occur. However, because the fine polypropylene fibers are resilient, for example all the second fibers 2 act as springs which keep the first fibers 1 apart from one another, overcoming the mutual attraction forces, so that the fibers self-distribute in the mix or in the concrete. In addition, individual fiber ends 3 loop around the grains of the material to be mixed, which additionally counteract the aggregation of the fiber network during and immediately after mixing. Obviously, the net-shaped reinforcement element in the final state does not describe the flat plane shown in FIG. 1, but is deformed in space in all three dimensions.

Der Zustand des Bewehrungselementes vor dem Einbringen in das Mischgut ist in der Fig. 2 gezeigt. Das Bewehrungselement ist schnurförmig zusammengerollt verwunden, wobei die Anzahl Windungen vorbestimmt ist. Zur Herstellung des bewehrten Bauteils wird das Bewehrungselement in der in der Fig. 2 gezeigten, gerafften Form zusammen mit dem Mischgut in die Betonmischmaschine eingegeben und darauf das Mischen in der üblichen Weise und während der genormten Zeitspanne durchgeführt. Während dieser Zeitspanne wird die Schnurform des Bewehrungselementes geöffnet und nach Ablauf dieser Zeitdauer liegt das Bewehrungselement in der drei dimensional verteilten Netzform vor. Bekanntlich ist die Mischdauer bei der Betonherstellung genormt. Daher lässt sich die Zahl der Windungen des Schnurstücks, um nach dem Mischen ein dreidimensionales Netz zu erhalten, genau bestimmen. Ist nämlich das Netz nach Beendigung des Mischvorganges nicht vollständig geöffnet, ist seine Wirkung bezüglich der Bewehrung eingeschränkt. Ist das Netz vor Beendigung des Mischens vollständig geöffnet, wird es während der verbleibenden Mischzeitspanne zerrissen, nimmt die Form der bekannten Splitfibres an, und büsst ebenfalls seine Wirkung als Bewehrungselement ein. In der vorliegenden gerafften Form gemäss Fig. 2 ist es nun möglich, das Bewehrungselement ohne Schwierigkeiten in der Praxis zu verwenden, da es keine zusätzliche Vorrichtungen zum Einbringen in das Mischgut benötigt, (insbesondere muss es nicht eingerieselt werden) und zudem ist keine zusätzliche Ueberwachung von Zeitspannen notwendig. Es muss noch erwähnt werden, dass die zur Schnur verzwirnte Einbringform lediglich rein beispielsweise ist. Die geraffte Form kann durch andere Verformungen gebildet sein, und es können auch wasserlösliche Haftstoffe zum Zusammenhalten der gerafften Form angeordnet sein.The state of the reinforcement element before it is introduced into the mix is shown in FIG. 2. The reinforcement element is wound wound in a string, the number of turns being predetermined. To produce the reinforced component, the reinforcement element in the gathered form shown in FIG. 2 is entered together with the mix into the concrete mixing machine and the mixing is then carried out carried out in the usual manner and during the standardized period. During this period, the cord shape of the reinforcement element is opened and after this time period the reinforcement element is in the three-dimensionally distributed network form. As is well known, the mixing time in the production of concrete is standardized. Therefore, the number of turns of the cord piece in order to obtain a three-dimensional network after mixing can be precisely determined. If the mesh is not completely open after the mixing process has ended, its effect on the reinforcement is limited. If the mesh is fully open before mixing is complete, it will be torn apart during the remaining mixing period, take the form of the known split fibers, and also lose its effect as a reinforcement element. In the present gathered form according to FIG. 2, it is now possible to use the reinforcement element in practice without difficulty, since it does not require any additional devices for introducing it into the mix (in particular it does not have to be sprinkled in) and, in addition, there is no additional monitoring of time periods necessary. It must also be mentioned that the insertion form twisted into the cord is only pure, for example. The gathered form can be formed by other deformations, and water-soluble adhesives can also be arranged to hold the gathered form together.

Es ist bereits erwähnt worden, dass an die faserförmigen Bewehrungen die Forderung gestellt wird, dass sie gleichmässig über den Querschnitt des bewehrten Bauteils verteilt werden, da schliesslich die Rissbildung, das Rissbild gleichmässig sein muss.It has already been mentioned that the fibrous reinforcements are required to be evenly distributed over the cross-section of the reinforced component, since ultimately the crack formation, the crack pattern, must be uniform.

Eine solche gleichmässige Verteilung lässt sich nun bei einer Verwendung solcher sich selbst verteilender netzförmiger Bewehrungselemente erzielen, dies zusammen, d.h. in Kombination mit anderen bekannten faserförmigen Bewehrungselementen in der Form von Einzelfasern so z.B. Glasfasern, Stahlfasern, Kunststoffasern, Kohlonstofasern, Asbestfasern, Naturfasern etc.Dabei können eine oder mehrere dieser genannten Faserarten zusammen mit dem netzförmigen Bewehrungselement verwendet werden, wobei die Faserlängen unterschiedlich sein können, wie dies weiter unten noch im Einzelnen erläutert sein wird. Werden Bewehrungsfasern, die Einzelfasern sind, zusammen mit dem Fasernetz in das Mischgut eingebracht, wobei sich das Fasernetz beim Mischen selbstverteilt, werden die Einzelfasern durch die sich ausbreitenden Netze gleichmässig verteilt. Auch hindern die Netze ein Zusammenballen der Einzelfasern, da letztere rein mechanisch durch die Netze daran gehindert werden. Die Einzelfasern werden somit durch die Netze geführt, derart, dass eine gleichförmige Verteilung der Einzelfasern, und offensichtlich auch der Fasernetze, im bewehrten Betonstück erreicht wird.Such a uniform distribution can now be achieved when using such self-distributing mesh-shaped reinforcement elements, this together, ie in combination with other known fibrous reinforcement elements in the form of individual fibers such as glass fibers, steel fibers, plastic fibers, carbon fibers, asbestos fibers, natural fibers etc. One or more of these types of fibers can be used together with the mesh reinforcement element, whereby the fiber lengths can be different, as will be explained in more detail below. If reinforcing fibers, which are individual fibers, are introduced into the mix together with the fiber network, the fiber network self-distributing during mixing, the individual fibers are evenly distributed by the spreading networks. The nets also prevent the individual fibers from clumping together, since the nets prevent the individual fibers from doing so purely mechanically. The individual fibers are thus guided through the networks in such a way that a uniform distribution of the individual fibers, and obviously also of the fiber networks, is achieved in the reinforced concrete piece.

Es wird nun nachfolgend ein Ausführungsbeispiel beschrieben, bei dem in Beton netzförmige Bewehrungselemente aus Polypropylen mit Stahlfasern kombiniert sind.An exemplary embodiment is now described below in which mesh-like reinforcement elements made of polypropylene are combined with steel fibers in concrete.

Es wurde zuerst ein Prüfkörper aus unbewehrtem Beton hergestellt. Bei diesem Betonkörper wurde eine Biegezugfestigkeit von ungefähr 32 kp/cm2 gemessen, welcher Wert ein üblicher Durchschnittswert für Beton ist. Dann wurde ein weiterer Betonprüfling hergestellt, dem eine rechnerisch ermittelte optimale Menge Stahlfasern, nämlich 144 kg zugegeben wurde. Es wurde eine Biegezugfestigkeit dieses ausschliesslich stahlfasernbewehrten Betonprüflings von ungefähr 68 kp/cm2 gemessen. Somit bewirkten die Stahlfasern eine Verbesserung der Biegezugfestigkeit um ungefähr 36 kp/cm2. Ein weiterer Betonprüfling wurde hergestellt, in welchem eine rechnerisch ermittelte optimale Menge von 1 kg der netzförmigen Polypröpylenfasernbewehrung eines kunststoffnetzbewehrten Betonprüflings von ungefähr 36 kp/cm2 gemessen. Also war die Verbesserung der Biegezugfestigkeit 4 kp/cm2.A test specimen was first made from unreinforced concrete. A bending tensile strength of approximately 32 kg / cm 2 was measured for this concrete body, which value is a common average value for concrete. Then another concrete test piece was produced, to which a calculated optimal amount of steel fibers, namely 144 kg, was added. A bending tensile strength of this concrete steel specimen, which was reinforced only with steel fibers, was measured at approximately 68 kp / cm 2 . Thus, the steel fibers caused the bending tensile strength to be improved by approximately 36 kp / cm 2 . Another concrete test specimen was produced, in which a calculated optimal amount of 1 kg of the reticulated polypropylene fiber reinforcement of a plastic reticulated concrete test specimen of approximately 36 kp / cm 2 was measured. So the improvement in bending tensile strength was 4 kp / cm 2 .

Eine Verwendung von Kunststoffnetzen zusammen mit Stahlfasern ergäbe somit rechnerisch eine Verbesserung der Biegezugfestigkeit von 36 + 4 = 40 kp/cm2, also hätte ein Betonprüfling mit beiden genannten Bewehrungen eine Biegezugfestigkeit von 32 + 40 = 72 kp/cm 2.The use of plastic nets together with steel fibers This would result in an arithmetical improvement in the bending tensile strength of 36 + 4 = 40 kp / cm 2 , so a concrete test piece with both reinforcements would have a bending tensile strength of 32 + 40 = 72 kp / cm 2 .

Jetzt erzeugt aber die erfindungsgemässe Verwendung von Stahlfasern zusammen mit Fasernetzen aufgrund der verteilenden Wirkung der Fasernetze eine nicht zu erwartende, bedeutsame Verbesserung der Biegezugfestigkeit.Now, however, the use of steel fibers according to the invention together with fiber nets produces an unexpected, significant improvement in the bending tensile strength due to the distributing effect of the fiber nets.

Es wurde nun ein Betonprüfling hergestellt, der mit 144 kg der obigen Stahlfasern und mit 1 kg der Fasernetze bewehrt wurde, und dann die Biegefestigkeit gemessen. Der gemessene Wert betrug ungefähr 100 kp/cm2, welcher Wert im Vergleich mit den rechnerisch ermittelten 72 kp/cm2 unvergleichlich höher ist. Diese Prüfergebnisse sind zusammen mit weiteren gemessenen Daten in der nachstehenden Tabelle dargestellt:

Figure imgb0001
A concrete test piece was now produced, which was reinforced with 144 kg of the above steel fibers and with 1 kg of the fiber nets, and then the bending strength was measured. The measured value was approximately 100 kp / cm 2 , which value is incomparably higher in comparison with the calculated 72 kp / cm 2 . These test results, along with other measured data, are shown in the table below:
Figure imgb0001

Aus dieser Tabelle geht hervor, dass die in den Versuchen ermittelten, tatsächlichen Daten des Betons, der mit den genannten unterschiedlichen Fasern bewehrt ist, von den rechnerisch zu erwartenden überraschend abweicht.This table shows that the actual data of the concrete determined in the tests, which is reinforced with the different fibers mentioned, surprisingly deviates from the calculations to be expected.

Aus dem obigen Beispiel geht also hervor, dass eine Bewehrung eines m3 Betons mit 144 kg Stahlfasern und mit 1 kg Kunststoffasernetzen eine Biegezugfestigkeit von 100 kp/cm2 ergibt, wobei die sich genannten Anteile der unterschiedlichen Fasern als optimal erwiesen haben.The example above shows that reinforcing an m 3 concrete with 144 kg steel fibers and with 1 kg plastic fiber mesh results in a bending tensile strength of 100 kp / cm 2 , whereby the proportions of the different fibers mentioned have proven to be optimal.

Es wurden weitere Versuche durchgeführt mit folgenden Bewehrungselementer: 67% "Splitfibre" (Kunststoffasern, in offener Netzform), 29% Kunststoffasern der eingangs genannten, geschlossenen Netzform und 4% monofile Aramidfasern (Aramid = hocharomatisches Polyamid). Diese Kombination ergab eine Verdoppelung der Biegezugfestigkeit des unbewehrten Betons, also wieder ein rechnerisch nicht erwartetes Ergebnis.Further tests were carried out with the following reinforcement elements: 67% "split fiber" (plastic fibers, in open mesh form), 29% plastic fibers of the above-mentioned, closed mesh form and 4% monofilament aramid fibers (aramid = highly aromatic polyamide). This combination resulted in a doubling of the bending tensile strength of the unreinforced concrete, again a result that was not calculated.

Aus den mit den vorgenannten Ausführungsbeispielen gemachten Versuchen geht hervor, dass eine zwangsweise erfolgende, gleichförmige Verteilung der Bewehrungseinzelnfasern eine unerwartete Verbesserung der Güte des bewehrten Betons zur Folge hat.It is evident from the tests carried out with the aforementioned exemplary embodiments that a compulsory uniform distribution of the individual reinforcement fibers leads to an unexpected improvement in the quality of the reinforced concrete.

Zurückkehrend zum unbewehrten Beton ist nun weiter in Betracht zu ziehen, dass die Güte des Betons auch von der gleichmässigen Verteilung der Zuschlagstoffe mit unterschiedlichen Korngrössen abhängt. Es ist nicht nur entscheidend, wie gleichmässig eine bestimmte Korngrösse (d.h., z. B. Kieskörper von ausschliesslich einem Durchmesser von 5 mm) im gegossenen Beton verteilt ist, sondern auch welches die Mengenverhältnisse der verschiedenen Korngrössen sind.Returning to the unreinforced concrete, it must now be considered that the quality of the concrete also depends on the even distribution of the aggregates with different grain sizes. It is not only important how evenly a certain grain size (i.e. e.g. gravel bodies with a diameter of only 5 mm) is distributed in the poured concrete, but also what the proportions of the different grain sizes are.

Bekanntlich müssen die Zuschlagstoffe für die Herstellung von Beton unter anderem in bezug auf die Korngrössen bestimmten Regeln folgen. Insbesondere muss die Kurve des Kornaufbaus der Zuschlagstoffe, d.h., die sogenannte Siebkurve, innerhalb vorbestimmten Grenzen liegen und einen vorbestimmten Verlauf nachweisen, wie beispielsweise in der Schweiz im Art. 2.02 der SIA-Normen festgelegt ist, welche Siebkurve ihrem Verlauf nach auch der DIN-Norm l045 bezüglich der Zuschlagstoffe für Beton entspricht.As is known, the aggregates for the production of concrete have to follow certain rules, among other things, with regard to grain sizes. In particular, the curve the grain structure of the aggregates, ie the so-called sieve curve, lie within predetermined limits and demonstrate a predetermined course, as is defined, for example, in Switzerland in Art. 2.02 of the SIA standards, which sieve curve also follows the DIN standard l045 with regard to the Aggregates for concrete corresponds.

Die in der Fig. 3 gezeichnete Siebkurve S, die auch Granulationskurve genannt wird, schreibt die nach SIA anzustrebende prozentuelle Verteilung der Korngrössen also die Kornverteilung vor.The sieve curve S drawn in FIG. 3, which is also called the granulation curve, prescribes the percentage distribution of the grain sizes to be aimed for according to SIA, ie the grain distribution.

In der Fig. 3 bezeichnet A: den Rückstand in Gewichtsprozenten, B: die Maschenweite, bzw. Rundlochweite in mm, C: Durchgang in Gewichtsprozenten. Der Vollständigkeithalber soll erwähnt sein, dass die Kurve S Mittelwerte bezüglich zulässiger Streubereiche angibt, welches dem Fachmann bekannt ist. (Die entsprechende Kurve S nach DIN 1045 ist als "besonders gut" definiert.)In FIG. 3, A: denotes the residue in percent by weight, B: the mesh size or round hole size in mm, C: passage in percent by weight. For the sake of completeness, it should be mentioned that curve S indicates mean values with respect to permissible scatter ranges, which is known to the person skilled in the art. (The corresponding curve S according to DIN 1045 is defined as "particularly good".)

Diese Siebkurve, die auf rein technischen Gegebenheiten und Erkenntnissen hervorgegangen ist, bestimmt also die prozentuelle Mengenverteilung der Zuschlagstoffe unterschiedlicher Korngrösse um einen (unbewehrten) Beton hoher Güte zu erhalten.This sieve curve, which is based on purely technical conditions and knowledge, determines the percentage distribution of the aggregates of different grain sizes in order to obtain a (unreinforced) high-quality concrete.

Nun ist erkannt worden, dass dieselbe Gesetzmässigkeit ebenfalls auf die Faserbewehrungen zutrifft.It has now been recognized that the same law also applies to fiber reinforcement.

Eine der dabei in Betracht zu ziehenden Eigenschaften ist die Faserlänge. Anstatt nur eine vorbestimmte Länge der jeweiligen Fasern zu verwenden, werden Fasern aus demselben Werkstoff jedoch mit unterschiedlichen Längen verwendet, analog zu den unterschiedlichen Korngrössen der Zuschlagstoffe. Dabei folgt nun die prozentuelle Verteilung der Mengen jeweiliger Faserlängen bezüglich der Korngrössen der Zuschlagstoffe erkannten Gesetzmässigkeit.One of the properties to consider is fiber length. Instead of using only a predetermined length of the respective fibers, fibers of the same material with different lengths are used, however, analogously to the different grain sizes of the additives. The percentage distribution of the amounts of the respective fiber lengths with respect to the grain sizes of the additives follows the recognized law.

Dieses ist in der Fig. 4 dargestellt. Dabei bezeichnet D die Menge in % und E die Faserlänge in mm. Die Kurve T, deren Verlauf geometrisch gleich der Siebkurve S der Fig. 3 ist, kann als "Längengranulationskurve" bezeichnet werden. Entsprechend dieser Kurve T hat eine beispielsweise optimale Faserlängenverteilung wie folgt zu sein:

Figure imgb0002
This is shown in FIG. 4. D denotes the quantity in% and E the fiber length in mm. The curve T, the course of which is geometrically identical to the sieve curve S in FIG. 3, can be called a "length granulation curve". According to this curve T, an optimal fiber length distribution has to be as follows:
Figure imgb0002

Beim vorerwähnten Ausführungsbeispiel enthaltend das Plypropylenfasernetz und die Stahlfasern bedeutet dies,dass man sowohl beim Fasernetz, als auch bei den Stahlfasern unterschiedliche Faserlängen anwendet, wobei die prozentuellen Mengenanteile jeweiliger Faserlängen der "Längengranulationskurve" T entsprechen müssen, so dass die Güte des faserbewehrten Betons weiter verbessert ist.In the aforementioned embodiment containing the plypropylene fiber network and the steel fibers, this means that different fiber lengths are used both in the fiber network and in the steel fibers, the percentage proportions of the respective fiber lengths corresponding to the "length granulation curve" T, so that the quality of the fiber-reinforced concrete is further improved is.

Eine weitere in Betracht zu ziehende Eigenschaft der Bewehrungsfasern ist der E-Modul der Stoffe, aus denen die Fasern hergestellt sind. Das heisst, dass die Faserbewehrung nicht nur gemäss den obigen (in der Praxis jedoch auch verwendbaren) lediglich zwei Fasergruppen zu bestehen hat, sondern das Polypropylennetz zusammen mit Stahlfasern und/ oder Glasfasern und/oder Kohlenstoffasern und/oder Asbestfasern und/oder weiterer Kunststoffasern, z.B. Aramid etc. zu verwenden ist.Another property to be considered for reinforcement fibers is the modulus of elasticity of the materials from which the fibers are made. This means that the fiber reinforcement not only has to consist of only two fiber groups in accordance with the above (but can also be used in practice), but the polypropylene network together with steel fibers and / or glass fibers and / or carbon fibers and / or asbestos fibers and / or other plastic fibers, e.g. Aramid etc. is to be used.

Auch hier bildet die bekannte Siebkurve S nach Fig. 3 die Grundlage der prozentuellen Mengenverteilung der Faserbewehrungen bezüglich des Elastizitätsmoduls, wie in der Fig. 5 gezeigt ist. In der Fig. 5 bedeutet F die Menge in %, G den E-Modul in kp/cm2, vertretend verschiedene Stoffe, und die Kurve U entspricht wieder der Kurve S der Fig. 3. Aus dem Diagramm der Fig. 5 geht hervor, dass eine optimale Verteilung der Mengen jeweiliger Bewehrungselemente bezüglich des E-Moduls die folgende ist:

Figure imgb0003
Here, too, the known sieve curve S according to FIG. 3 forms the basis of the percentage quantity distribution of the fiber reinforcements with respect to the elastic modulus, as shown in FIG. 5. 5, F means the amount in%, G the modulus of elasticity in kp / cm 2 , representing different substances, and curve U again corresponds to curve S in FIG. 3. The diagram in FIG. 5 shows that an optimal distribution of the quantities of respective reinforcement elements with respect to the modulus of elasticity is as follows:
Figure imgb0003

Also sind die Bewehrungsfasern unterschiedlicher Stoffe gemäss obiger Gesetzmässigkeit zu verwenden.So the reinforcement fibers of different materials are to be used according to the above law.

Zur optimalen Bewehrung mittels der Fasern wird nun die Gesetzmässigkeit der Mengenverteilung bezüglich der Faserlänge gemäss der Kurve T der Fig. 4 mit der Gesetzmässigkeit der Mengenverteilung bezüglich des E-Moduls gemäss der Kurve U der Fig. 5 kombiniert. D.h., dass zur optimalen Bewehrung vorbestimmte Mengenanteile von Fasern bezüglich Faserlänge und E-Modul der verschiedenen Stoffe gewählt werden.For optimal reinforcement by means of the fibers, the regularity of the quantity distribution with respect to the fiber length according to curve T of FIG. 4 is now combined with the regularity of the quantity distribution with regard to the modulus of elasticity according to curve U of FIG. 5. This means that for optimal reinforcement, predetermined proportions of fibers are selected with regard to fiber length and modulus of elasticity of the different materials.

Weil immer mindestens ein geschlossenes Fasernetz vorhanden ist, welches alle Fasern während des Mischens gleichförmig verteilt und Zusammenballungen verhindert, ist das Einbringen jeglichen Faserstoffes und jeglicher Faserlänge ohne besonderen Aufwand durchführbar. Es müssen keine praxisfernen Einbringverfahren oder Beimischzeitspannen berücksichtigt werden.Because there is always at least one closed fiber network that uniformly distributes all fibers during mixing and prevents agglomeration, the introduction of any fiber material and any fiber length can be carried out without any particular effort. No practical application procedures or mixing periods have to be taken into account.

Nachfolgend werden nun zwei Ausführungsbeispiele des Einbringens der Bewehrungsfasern beschrieben.Two exemplary embodiments of the introduction of the reinforcement fibers are now described below.

Ueblicherweise werden die Fasern hergestellt, indem (z. B. bei Kunststoffasern) eine Folie aufgeteilt, bzw. zerschnitten wird, so dass entweder das geschlossene Fasernetz, offene Fasernetze oder Einzelfasern erzeugt werden, oder (z.B. bei Stahlfasern oder Glasfasern) kontinuierlich hergestellte Drähte zerschnitten werden. Wie dies schon bei gewissen Kunststoffasern bekannt ist, können nun die Fasergebilde vor dem Schneiden zum Erzeugen der Fasern vorbestimmter Länge verzwirnt werden (die Drähte vor dem Zerschneiden verzwirnt oder mittels Haftstoffen miteinander verbunden werden), so dass mehrere bezüglich des Stoffes unterschiedliche schnurförmige Gebilde vorliegen. Alle diese schnurförmigen Gebilde werden dann miteinander nochmals verzwirnt, so dass eine dickere Schnur aus den unterschiedlichsten Bewehrungsstoffen vorliegt, welche Schnur dann endlich in einzelne Stücke zer-. schnitten wird. Je nach den verwendeten Stoffen behalten diese Schnurstücke ihre Form aufgrund der beim Verzwirnen erteilten Vorspannung, Reibung etc., oder es werden wasserlösliche Haftstoffe verwendet. Dabei ist die Zahl der Verwindungen, ist der Haftstoff etc. aus Versuchen vorbestimmt und derart gewählt, dass die Bewehrungsschnüre zusammen mit den Zuschlagstoffen in die Betonmischmaschine eingegeben werden können, und nach dem Beendigen der genormten Betonmischzeit aufgrund des immer vorhandenen, selbstverteilenden Fasernetzes gleichförmig über den Querschnitt des bewehrten Betonkörpers verteilt sind.The fibers are usually produced by (e.g. in the case of plastic fibers) dividing or cutting a film, so that either the closed fiber network, open fiber networks or individual fibers are produced, or (e.g. in the case of steel fibers or glass fibers), continuously produced wires are cut. As is already known with certain plastic fibers, the fiber structures can now be twisted before cutting to produce the fibers of a predetermined length (the wires are twisted before cutting or are connected to one another by means of adhesives), so that there are several cord-shaped structures with different materials. All these cord-like structures are then twisted together again, so that a thicker cord made of the most varied reinforcement materials is present, which cord is then finally cut into individual pieces. will cut. Depending on the materials used, these pieces of cord retain their shape due to the pretension, friction etc. imparted during twisting, or water-soluble adhesives are used. The number of twists, the adhesive etc. is predetermined from tests and selected in such a way that the reinforcement cords can be entered into the concrete mixing machine together with the additives, and after the standardized concrete mixing time has ended due to the self-distributing fiber network that is always present, uniform over the Cross section of the reinforced concrete body are distributed.

Bei einem anderen Ausführungsbeispiel, bei dem der zu vergiessende Beton in bekannter Weise durch ein Druckrohr gefördert wird, werden zusammen mit den Zuschlagstoffen lediglich die geschlossenen Fasernetze in die Betonmischmaschine eingegeben. Unmittelbar vor dem Druckrohrende werden die restlichen Bewehrungsfasern in den Betonstrom eingebracht, dies'in ebenfalls bekannter Weise mittels einer strahlpumpenförmigen Anordnung. Auch hier ist die gleichmässige Verteilung der Einzelfasern sichergestellt, weil die Fasernetze ein Zusammenballen, ein Absinken oder Aufsteigen der Einzelfasern verhindern.In another embodiment, in which the concrete to be poured is conveyed through a pressure pipe in a known manner, only the closed fiber networks are entered into the concrete mixing machine together with the additives. Immediately before the end of the pressure pipe, the remaining reinforcement fibers are introduced into the concrete stream, likewise in a known manner by means of a jet pump arrangement. The uniform distribution of the individual fibers is also ensured here because the fiber networks prevent the individual fibers from clumping, sinking or rising.

Obwohl die obige beispielsweise Beschreibung auf die Herstellung eines bewehrten Betonkörpers gerichtet ist, soll festgehalten werden, dass die beschriebene Faserbewehrung auch für Teer- und Bitumenbeläge verwendbar ist, um ein Entstehen grosser Risse zu verhindern und ein Rissbild aus. feinen Rissen zu erzeugen, in welche Risse kein Wasser eintreten und darin gefrieren kann, so dass bei Strassen etc. Frostschäden weitgehend verhindert werden können.For example, although the above description is directed to the manufacture of a reinforced concrete body It should be noted that the fiber reinforcement described can also be used for tar and bitumen coverings in order to prevent large cracks from forming and a crack pattern. to produce fine cracks, into which cracks no water can enter and freeze, so that frost damage can largely be prevented on roads etc.

Claims (14)

1. Faserförmige Bewehrung für zement- und bitumengebundene Bauteile und Beläge, dadurch gekennzeichnet, dass mindestens zwei unterschiedliche Gruppen Fasergebilde vorhanden sind, wovon mindestens eine die Form eines geschlossenen Fasernetzes aufweist, dessen Fasern federelastisch sind und vor dem Einbringen in das Mischgut eine geraffte Form aufweist.1. Fibrous reinforcement for cement and bitumen-bonded components and coverings, characterized in that at least two different groups of fiber structures are present, at least one of which has the shape of a closed fiber network, the fibers of which are resilient and have a gathered shape before being introduced into the mix . 2. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass zwei unterschiedliche Gruppen Fasergebilde die Form eines geschlossenen Fasernetzes mit federelastischen Fasern aufweisen, wobei die Länge der Fasern der einen Gruppe von der der anderen Gruppe verschieden ist.2. Fibrous reinforcement according to claim 1, characterized in that two different groups of fiber structures have the shape of a closed fiber network with resilient fibers, the length of the fibers of one group being different from that of the other group. 3. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass die Fasergebilde unterschiedliche Faserlängen aufweisen.3. Fibrous reinforcement according to claim 1, characterized in that the fiber structures have different fiber lengths. 4. Faserförmige Bewehrung nach Anspruch l, dadurch gekennzeichnet, dass das Fasergebilde in Form eines geschlossenen Fasernetzes aus Kunststoff ist.4. Fibrous reinforcement according to claim 1, characterized in that the fiber structure is in the form of a closed fiber network made of plastic. 5. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass der Kunststoff Polypropylen ist.5. Fibrous reinforcement according to claim 1, characterized in that the plastic is polypropylene. 6. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass zwei unterschiedliche Gruppen Fasergebil- de vorhanden sind, wovon die erste Gruppe die Form des geschlossenen Fasernetzes mit federelastischen Fasern aufweist und die zweite Gruppe Stahifasern enthält.6. Fibrous reinforcement according to claim 1, characterized in that two different groups F asergebil- de are present, of which the first group has the shape of the closed fiber network with resilient fibers and the second group contains steel fibers. 7. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass mindestens drei unterschiedliche Gruppen Fasergebilde vorhanden sind, wovon die erste Gruppe die Form des geschlossenen Fasernetzes mit federelastischen Fasern aufweist, und von den weiteren Gruppen mindestens zwei jeweils Fasern aus demselben Stoff jedoch unterschiedlichen Längen und/oder Formen enthalten.7. Fibrous reinforcement according to claim 1, characterized in that at least three different groups of fiber structures are present, of which the first group has the shape of the closed fiber network with resilient fibers, and of the other groups at least two fibers each made of the same material but different lengths and / or contain shapes. 8. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass mehr als zwei unterschiedliche Gruppen von Fasern aus jeweils verschiedenen Stoffen vorhanden sind.8. Fibrous reinforcement according to claim 1, characterized in that more than two different groups of fibers made of different materials are present. 9. Faserförmige Bewehrung nach Anspruch 8, dadurch gekennzeichnet, dass die mehr als zwei unterschiedliche Gruppen Glasfasern und/oder Stahlfasern und/oder Kunststoffasern und/oder Naturfasern aufweisen.9. Fibrous reinforcement according to claim 8, characterized in that the more than two different groups have glass fibers and / or steel fibers and / or plastic fibers and / or natural fibers. 10. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass vor dem Einbringen in das Mischgut alle Gruppen Fasergebilde miteinander verbunden sind.10. Fibrous reinforcement according to claim 1, characterized in that all groups of fiber structures are connected to one another before being introduced into the mix. ll. Faserförmige Bewehrung nach Anspruch lO, dadurch gekennzeichnet, dass die Gruppen miteinander mechanisch verbunden sind.ll. Fibrous reinforcement according to claim 10, characterized in that the groups are mechanically connected to one another. 12. Faserförmige Bewehrung nach Anspruch 11, dadurch gekennzeichnet, dass die Gruppen miteinander verzwirnt sind.12. Fibrous reinforcement according to claim 11, characterized in that the groups are twisted together. 13. Faserförmige Bewehrung nach Anspruch 3, dadurch gekennzeichnet, dass die Verteilung der prozentuellen Anteile der Gruppen Fasergebilde unterschiedlichen Faserlän- ` ge gleich der Verteilung der prozentuellen Anteile der verwendeten Zuschlagstoffe unterschiedlicher Korngrösse sind.13. Fibrous reinforcement according to claim 3, characterized in that the distribution of the percentages of the groups of fiber structures of different fiber lengths are equal to the distribution of the percentages of the aggregates used of different grain sizes. 14. Faserförmige Bewehrung nach Anspruch 1, dadurch gekennzeichnet, dass die Fasergebilde unterschiedliche Elastizitätsmodule aufweisen, und dass die Verteilung der prozentuellen Anteile der Gruppen Fasergebilde mit.unterschiedlichem Elastizitätsmodul gleich der Verteilung der prozentuellen Anteile der verwendeten Zuschlagstoffe unterschiedlicher Korngrösse sind.14. Fibrous reinforcement according to claim 1, characterized in that the fiber structures have different elasticity modules, and that the distribution of the percentages of the groups of fiber structures with different elasticity modulus equal to the distribution of the percentages actual proportions of the aggregates used are of different grain sizes.
EP80101468A 1979-05-03 1980-03-20 Fibrous reinforcement for cement or bitumen bonded building elements and coverings Expired EP0018491B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80101468T ATE4337T1 (en) 1979-05-03 1980-03-20 FIBROUS REINFORCEMENT FOR CEMENT AND BITUMEN COMPONENTS AND COVERINGS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4153/79 1979-05-03
CH415379A CH640593A5 (en) 1979-05-03 1979-05-03 FIBER-SHAPED REINFORCEMENT FOR CEMENT AND BITUMEN-TIED COMPONENTS.

Publications (3)

Publication Number Publication Date
EP0018491A2 true EP0018491A2 (en) 1980-11-12
EP0018491A3 EP0018491A3 (en) 1981-01-07
EP0018491B1 EP0018491B1 (en) 1983-07-27

Family

ID=4270796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80101468A Expired EP0018491B1 (en) 1979-05-03 1980-03-20 Fibrous reinforcement for cement or bitumen bonded building elements and coverings

Country Status (5)

Country Link
US (1) US4346135A (en)
EP (1) EP0018491B1 (en)
AT (1) ATE4337T1 (en)
CH (1) CH640593A5 (en)
DE (1) DE3064358D1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662946A (en) * 1982-10-05 1987-05-05 Mercer Frank B Strengthening a matrix
US7168232B2 (en) * 2001-02-21 2007-01-30 Forta Corporation Fiber reinforcement material, products made thereform, and method for making the same
US6753081B1 (en) 2001-02-21 2004-06-22 Forta Corporation Fiber reinforcement material, products made therefrom, and method for making the same
US20090075073A1 (en) * 2006-11-13 2009-03-19 Biddle Daniel T Light weight concrete product containing synthetic fibers
US8114514B1 (en) 2009-08-12 2012-02-14 Forta Corporation Reinforcement composition and method thereof
US9321686B2 (en) 2013-03-15 2016-04-26 Forta Corporation Reinforcement fiber coating compositions, methods of making and treating, and uses for improved adhesion to asphalt and portland cement concrete
KR102003670B1 (en) * 2018-08-03 2019-07-25 한국건설기술연구원 Textile reinforced concrete structure using textile grid fixing apparatus, and construction method for the same
AU2019240725B1 (en) * 2019-10-07 2020-08-27 Duy Huu Nguyen Fiber-reinforced concrete – guided distribution methods for fibers in conventional construction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2447816A1 (en) * 1974-01-24 1975-07-31 Arnheiter Ag Forta Seilwerke REINFORCEMENT ELEMENT, USE AND METHOD OF MANUFACTURING THE SAME
GB1429167A (en) * 1972-03-22 1976-03-24 Univ Toronto fibre reinforced composites
US4021258A (en) * 1972-09-25 1977-05-03 Teijin Limited Concrete structure and method of preparing same
FR2389583A1 (en) * 1977-05-05 1978-12-01 Eternit Fab Dansk As

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133928A (en) * 1972-03-22 1979-01-09 The Governing Council Of The University Of Toronto Fiber reinforcing composites comprising portland cement having embedded therein precombined absorbent and reinforcing fibers
CA1056178A (en) * 1976-01-19 1979-06-12 Morris Schupack Reinforced panel structures and methods for producing them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1429167A (en) * 1972-03-22 1976-03-24 Univ Toronto fibre reinforced composites
US4021258A (en) * 1972-09-25 1977-05-03 Teijin Limited Concrete structure and method of preparing same
DE2447816A1 (en) * 1974-01-24 1975-07-31 Arnheiter Ag Forta Seilwerke REINFORCEMENT ELEMENT, USE AND METHOD OF MANUFACTURING THE SAME
FR2389583A1 (en) * 1977-05-05 1978-12-01 Eternit Fab Dansk As

Also Published As

Publication number Publication date
EP0018491B1 (en) 1983-07-27
EP0018491A3 (en) 1981-01-07
ATE4337T1 (en) 1983-08-15
CH640593A5 (en) 1984-01-13
US4346135A (en) 1982-08-24
DE3064358D1 (en) 1983-09-01

Similar Documents

Publication Publication Date Title
EP0313603B2 (en) Process for preparing bituminous compositions
DE69428708T2 (en) REINFORCEMENT ELEMENTS FOR POURABLE MIXTURES
DE2819794C2 (en)
DE2232665B2 (en) PROCESS FOR PRODUCING A TWO-PHASE MATERIAL WITH A PRESET BENDING STRENGTH FROM A MIXTURE OF CONCRETE AND FIBERS
DE2416633A1 (en) REINFORCEMENT
CH640777A5 (en) REINFORCING FIBERS BASED ON PLASTIC AND METHOD FOR THEIR PRODUCTION.
DE2845150A1 (en) METHOD AND DEVICE FOR SPRAYING FIBER-REINFORCED BUILDING CONSTRUCTIONS, PLASTERING ETC.
DE102005029479A1 (en) Process for producing bonded mineral wool and binder therefor
EP0314622A2 (en) Sports- or playground
DD299327A5 (en) CONSTRUCTION COVERS FROM CEMENT MATERIAL, AMPLIFIED BY PLASTS AND GLASS FIBERS
EP0018491B1 (en) Fibrous reinforcement for cement or bitumen bonded building elements and coverings
EP0024539B1 (en) Polyolefine fibres or filaments, their production, their use as reinforcing fibres in building elements, and building element
DE3110356C2 (en) Method and device for the production of fiberglass cement mortar
EP1753919A1 (en) Erosion protection mat comprising a cellulose-based fibre matrix and method for producing erosion protection mats of this type
DE2447816C2 (en) Reinforcement element for cement-bound concrete components
DD208385A5 (en) STEEL FIBERS FOR CONCRETE REINFORCEMENT
DE2727012A1 (en) Process for the production of fiber-reinforced cement panels
DE2354553A1 (en) REINFORCED FIBER MATS, PREFERABLY FOR ROOF COVERS, AND METHOD OF MANUFACTURING THE SAME
Galuška Keramik des Marchtyps
EP2841388A1 (en) Reinforcement for a material consisting of a mouldable compound
DE851477C (en) Process for the production of artificial stones
EP1520871B1 (en) Granulate and process for the preparation thereof
Söderberg Beitrag zur Kenntnis der Bárány'schen Stirnhöhlenoperation
DE2533240A1 (en) SLOTTED SCREEN PLATE
DE1796069A1 (en) Reinforced composite castings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT DE FR IT

AK Designated contracting states

Designated state(s): AT DE FR IT

17P Request for examination filed

Effective date: 19801213

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTER-FORTA AG

AK Designated contracting states

Designated state(s): AT DE FR IT

REF Corresponds to:

Ref document number: 4337

Country of ref document: AT

Date of ref document: 19830815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3064358

Country of ref document: DE

Date of ref document: 19830901

ET Fr: translation filed
KL Correction list

Free format text: 83/05 ZEICHNUNG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920309

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920326

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST