EP0018296B1 - Coil or trellis utilisable in variable transformers, adjustable power or precision resistors, coding resistors, wound resistors, electric radiators and heat exchangers - Google Patents

Coil or trellis utilisable in variable transformers, adjustable power or precision resistors, coding resistors, wound resistors, electric radiators and heat exchangers Download PDF

Info

Publication number
EP0018296B1
EP0018296B1 EP19800400543 EP80400543A EP0018296B1 EP 0018296 B1 EP0018296 B1 EP 0018296B1 EP 19800400543 EP19800400543 EP 19800400543 EP 80400543 A EP80400543 A EP 80400543A EP 0018296 B1 EP0018296 B1 EP 0018296B1
Authority
EP
European Patent Office
Prior art keywords
central flange
coil
flange
fact
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800400543
Other languages
German (de)
French (fr)
Other versions
EP0018296A1 (en
Inventor
Serge Ungari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR7910155A external-priority patent/FR2455345A1/en
Priority claimed from FR7910156A external-priority patent/FR2457002A1/en
Application filed by Individual filed Critical Individual
Priority to AT80400543T priority Critical patent/ATE7251T1/en
Publication of EP0018296A1 publication Critical patent/EP0018296A1/en
Application granted granted Critical
Publication of EP0018296B1 publication Critical patent/EP0018296B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/301Adjustable resistors the contact sliding along resistive element consisting of a wire wound resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/04Apparatus or processes specially adapted for manufacturing resistors adapted for winding the resistive element

Definitions

  • the invention relates to a winding of resistive or conductive wire, its support and the slider which, according to the shape which they take, can be used in variable transformers, potentiometers of power or precision, potentiometric encoders and wirewound resistors or heating resistors.
  • An extrapolation of one of the forms of the winding (trellis) finds its application in heat exchangers.
  • the winding support has the shape of a torus.
  • This torus is a ring obtained by stacking magnetic sheets in the form of cylindrical flat rings in the case of variable transformers; in the case of power potentiometers this torus is a ceramic ring.
  • the winding itself is wound on the ring cord in contiguous turns of an enamelled copper wire, in the case of the variable transformer, and an insulated or enamelled resistant wire in the case of the power potentiometer. Miniaturization of such products is difficult because it is difficult to thread the resistant wire into the ring to execute the turns, and this is all the more delicate as the torus is small and the resistant or conductive wire is thin.
  • the enamelled copper wire used is necessarily very fine because indeed the smaller the variable transformer and the more it requires a large number of turns, which makes it very fragile because the wire can be very easily damaged by the cursor (even if the latter has the shape of a roulette).
  • the torus shape does not lend itself well to the establishment of the axis which supports the cursor.
  • the winding method is simpler because the winding is outside its support and therefore adapts to the production of this product in all dimensions.
  • it allows the use of a significantly larger resistant or insulated conductive wire (since it can be accommodated), which makes the product more efficient.
  • the central flange being able to have the form of a gear, which obliges the cursor to have the form of a miniature gear, removes practically all "scraping" of the wire of the winding by the cursor from where a longevity still improved and the possibility of the realization of a potentiometric encoder of very low price.
  • the invention relates to a coil of resistant or conductive wire insulated or enamelled usable in variable transformers or potentiometers on the support, in insulating material , comprises a central hub (3) in the form of a cylindrical tube of large diameter relative to the whole of the coil, two lateral flanges (10) and (13), a central flange (2) comprising on its periphery teeth ( 0) regularly spaced and two metallic seals (1) crimped, and two intermediate flanges (5) and (9) having radial slots (6). All flanges are cylindrical. At the ends of the coil support we apply the flanges (8) and (12) good conductors of electricity. These flanges will serve as collectors.
  • the winding of the coil is obtained by winding a copper or resistant wire, enameled or insulated, according to a method which is shown in Figures 12 and 13.
  • the invention is characterized in that the winding is produced in the following way: the first end of the wire is welded to one of these conductive eyelets (1) crimped in the central flange (2), the wire passes over the central flange (2) in one of the slots (47 ), crosses the flange (5) through one of its slots (6), passes through the groove (7), makes (N1-e) turns around the core (3) in this groove (7), crosses the flange (5 ) through one of its slots (6), go back over the central flange (2) in the slot (48) passes through the flange (9) through one of its slots (6), makes (N2-e) turns in the groove (11), passes through the flange (9) through one of its slots (6), goes back above the central flange (2) in the slot (49) adjacent to the slot (48), crosses the flange (5) by one of its
  • the N1, N2, N3 ... Nk loops can be made either in contiguous or non-contiguous turns, or in honeycombs depending on the size of the windings and the desired quality. They can be performed in the same direction if the coil is used in a variable transformer. In the case of potentiometers we can consider making the latter aselfic by winding N1, N3, N5, N7 etc ... in one direction and N2, N4, N6 etc .... in the other direction (but other methods are possible.). In the case of variable transformers we have the important case:
  • FIGS. 1 and 2 The general appearance of the finished coil is given in FIGS. 1 and 2.
  • the two collectors (8) and (12) are then connected to the eyelets (1) by a conducting wire.
  • Figures 3 and 4 show the particular case where the hub (3) becomes a simple cylindrical axis of small diameter (in insulating or insulated material), that the teeth (0) of the central flange (2) and the intermediate flanges (5) and (9) are deleted and that: and that all the turns are joined on the axis.
  • Figures 7 and 8 show the similarity in the windings by observing Figures 7 and 8:
  • the resistant wire starts from the conductive plate (26), passes over the central flange (2) at point (17), makes a turn in the groove (27) around the axis (3), goes back above the flange central (2) at point (18) just in front of the previous passage (17), makes a turn in the groove (28) around the axis (3), goes back above the central flange (2) at point (19) just in front of the point (18), make a turn in the groove (27), and so on until the winding has covered the desired periphery of the central flange (2).
  • the turns are contiguous on the axis (3), (for example the turns (23) and (24).).
  • the second end is welded to the plate (25).
  • the plates (25) and (26) are then connected to the eyelets (1) crimped in the central flange (2) by a conducting wire and the latter will themselves be connected to the two collectors (8) and (12) by a conducting wire. .
  • the two collectors are made as recesses in the axis (3) and are separated by a wall (34).
  • the arrangement of the strands is well represented by the three strands (30), (31), (32): the strand (30) starts from the point (44) of the collector (15) furthest from the central flange (2) passes to the above the latter at point (45) and terminates at point (46) of the manifold (16) closest to the central flange (2); the strand (32) starts from the point (38) of the collector (15), the point closest to the central flange (2), passes above the latter at point (39) and ends at point (40) of the collector (16 ) point furthest from the central flange (2); the strand (31), which is a strand which occupies an intermediate position, starts from the point (41) of the manifold (15) passes above the central flange (2) at the point (42) intermediate between the points (39) and ( 45) and ends at the point (43) of the axis (3): the more the strands (4) start from the inlet manifold (15) from a point distant from the central flange (2) and the more they will lead to the manifold
  • FIGS 14, 15, 16 and 17 on page 3 show a pouring spout (50) projecting alumina suspended in water (51) through the screen (52) on the periphery of the central flange (2 ) the coils rotating around their axes, in the direction (53) for example.
  • This has the effect of removing the enamel at the point of contact between the conductive or resistant wire with the cursor in the case where these coils are used in variable transformers, potentiometers and potentiometric encoders.
  • the central flange (2) may or may not have teeth.
  • Figure 28 shows the case where the central flange is a gear; the cursor (99) then includes a pinion-shaped wheel (92) made of a material that is good conductor of electricity which comes to touch the strands of the winding which are at the bottom of the teeth: the tooth (93) comes to touch the strand (94) of the winding and, the central flange rotating, the tooth (95) will touch the strand (96).
  • Figures 26 and 27 show a cursor usable in the case where the coil object of the invention according to Figures 1 and 2 is used in variable transformers.
  • Figures 26 and 27 show a cursor holder (84) with its plug (82) and the cursor in two parts (86) and (87) good conductors of electricity and separated by an insulating part (83). These two parts lead either to two Zener diodes (85) and (88) via the tongues (90), or to a carbon plate (91). The two Zener diodes are then joined together on the one hand, and at the output on the other hand as shown in Figure 29. In the case of Figure 27 it is the carbon wafer which is joined to the terminal exit.
  • the springs (89) maintain the contact of the sliders on the manifold (2). It goes without saying that the distance between the two parts (86) and (87) must be such that there is always at least one of the parts in contact with the winding.
  • FIGS. 30 and 31 show the cursor to be used in this case: it has two parts (105) and (106) good conductors of electricity and in the form of gears from which one tooth has been removed in two; the two parts are placed so that together they form a complete gear.
  • FIGs 18 and 19 show a first application of the coil (4) object of the invention in the case of a variable transformer.
  • This coil (4) has the appearance of a coil shown in Figures 1 and 2 and is placed on the same central core (61) of the magnetic circuit as a normal coil (54).
  • the cursors (69) connected to the outputs (66) and (68) and rubbing on the collectors (8) and (12) and the cursor (56) connected to the output (67) and rubbing on the periphery of the central flange (2) of the coil (4) object of the invention.
  • the flanges (62) and the outer frame (63) form the rest of the magnetic circuit.
  • the gear (58) By turning the gear (58) the latter rotates the double pinion (57) and the latter rotates the coil (4), which will vary the output voltage between the terminals (67) and (68) and the terminals (66) and (67).
  • the input voltage is applied to the input terminals (64) and (65) which lead to the coil (54).
  • the plate (60) connected to the gear (58) has graduations which indicate the output voltage.
  • the handle (59) makes it possible to manually rotate the gear.
  • Figures 22 and 23 show a coil (4) used in a variable autotransformer using, for a magnetic circuit (79), sheets cut into E and I.
  • Figures 24 and 25 show the coil (4) used in an autotransformer variable using a magnetic circuit (79) cut (»C « Core).
  • the coil (4) is centered on the axis of the magnetic circuit by a support (80) whose central hole has the shape of the branch of the magnetic circuit which passes through the axis of the coil (4) and whose periphery has the shape of a cylinder.
  • the rotation of the coil is obtained by rotating the axis (77) driving the pinion (78) in rotation.
  • the support (81) maintains the pinion (78) in position.
  • Figures 20 and 21 show an example of the use of the coil (4) in a three-phase variable transformer.
  • the magnetic circuit comprises three magnetic cores (72), (73), (74) parallel and equidistant from each other; the magnetic circuit is closed by the two flanges (70) and (71).
  • Each magnetic core has a coil (4) and a coil (54).
  • the three coils rotate by the same relative angle thanks to the pinion (78), and we have access to this pinion through the axis (77).
  • Figures 32 and 33 show a potentiometer with a coil (4), the obtaining of which was exposed on page (4) of this same patent, from line 6 to line 27.
  • the sliders (69) rub on the collectors (8) and (12) and are connected to the output terminals (66) and (68).
  • the reference voltage is applied between terminals (66) and (68); the cursor (56) senses the intermediate voltage and is connected to the output terminal (67), the assembly is enclosed in a housing (112).
  • the resistor (113) which is shown here outside the housing (112) is applied between the terminal (67) and (68), the latter being connected to the slider rubbing on the collector (12) which itself is connected to the strand (114 ) furthest from the central flange (2). It can be demonstrated that there is a value for the resistance (113) making it possible to obtain a potentiometer whose linearity is acceptable in many applications.
  • Figures 34 and 35 show an electric radiator comprising a coil (4), the winding of which was obtained by winding an enameled copper wire on a central flange (2) of large diameter and an axis (3) of small diameter.
  • the two collectors (8) and (12) of Figures 3 and 4 here become the slip rings (126) isolated from the axis (3) by rings (125) of insulating material.
  • the axis (3) has a gear (124).
  • the coil (4) is rotated, in the direction (53) for example, by the micromotor (122) thanks to its output pinion (123).
  • the mains voltage is brought to the slip rings (126) via the coals (129) placed in their charcoal holder (131).
  • the radiator has two compartments (118) and (120) separated by a wall (119) poor conductor of heat: the compartment (118) contains the coil (4) and the compartment (120) the micromotor and the thermostat (127) .
  • the ambient air enters through the lower part of the two compartments following the arrows (130) and (132) and leaves hot through the upper part of the compartment (118) according to the arrow (135).
  • the ambient air, entering the compartment (120) maintains the engine temperature (122) at a reasonable value and on the other hand gives exact information of the room temperature to the thermostat (127).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Adjustable Resistors (AREA)

Description

L'invention concerne un enroulement de fil résistant ou conducteur, son support et le curseur qui, suivant la forme qu'ils revêtent, sont utilisables dans les transformateurs variables, potentiomètres de puissance ou de précision, codeurs potentiométriques et résistances bobinées ou résistances chauffantes. Une extrapolation d'une des formes de l'enroulement (treillis) trouve son application dans les échangeurs thermiques.The invention relates to a winding of resistive or conductive wire, its support and the slider which, according to the shape which they take, can be used in variable transformers, potentiometers of power or precision, potentiometric encoders and wirewound resistors or heating resistors. An extrapolation of one of the forms of the winding (trellis) finds its application in heat exchangers.

Dans les transformateurs variables et potentiomètres de puissance actuels le support du bobinage possède la forme d'un tore. Ce tore est un anneau obtenu par l'empilage de tôles magnétiques en forme d'anneaux plats cylindriques dans le cas des transformateurs variables; dans le cas des potentiomètres de puissance ce tore est un anneau en céramique. L'enroulement lui même est bobiné sur le cordon de l'anneau en spires jointives d'un fil de cuivre émaillé, dans le cas du transformateur variable, et d'un fil résistant isolé ou émaillé dans le cas du potentiomètre de puissance. La miniaturisation de tels produits est difficile car il est délicat d'enfiler le fil résistant dans l'anneau pour éxécuter les spires, et ceci est d'autant plus délicat que le tore est petit et le fil résistant ou conducteur est fin. D'autre part, dans le cas de transformateurs variables miniatures, le fil des cuivre émaillé utilisé est obligatoirement très fin car en effet plus le transformateur variable est petit et plus il éxige un grand nombre de spires, ce qui le rend très fragile car le fil peut être très facilement détérioré par le curseur (même si ce dernier a la forme d'une roulette). Enfin la forme en tore se prête mal à la mise en place de l'axe qui supporte le curseur.In current variable transformers and power potentiometers the winding support has the shape of a torus. This torus is a ring obtained by stacking magnetic sheets in the form of cylindrical flat rings in the case of variable transformers; in the case of power potentiometers this torus is a ceramic ring. The winding itself is wound on the ring cord in contiguous turns of an enamelled copper wire, in the case of the variable transformer, and an insulated or enamelled resistant wire in the case of the power potentiometer. Miniaturization of such products is difficult because it is difficult to thread the resistant wire into the ring to execute the turns, and this is all the more delicate as the torus is small and the resistant or conductive wire is thin. On the other hand, in the case of miniature variable transformers, the enamelled copper wire used is necessarily very fine because indeed the smaller the variable transformer and the more it requires a large number of turns, which makes it very fragile because the wire can be very easily damaged by the cursor (even if the latter has the shape of a roulette). Finally the torus shape does not lend itself well to the establishment of the axis which supports the cursor.

Dans le cas des potentiomètres bobinés de précision, quelle que soit leur taille, le cordon du tore support de l'enroulement est droit au moment de la réalisation de ce dernier, puis le tore est obtenu par la déformation de ce cordon. Une telle procédure exige beaucoup de soin et d'autre part se prête très mal à la réalisation d'un circuit fermé.In the case of precision wound potentiometers, whatever their size, the cord of the toroid supporting the winding is straight when the latter is produced, then the toroid is obtained by the deformation of this cord. Such a procedure requires great care and on the other hand lends itself very poorly to the realization of a closed circuit.

Dans le cas des codeurs, ces derniers sont obtenus par sérigraphie d'un dessin comportant une multitude de traits sur un disque en verre et ceci exige beaucoup de soin, une qualité de sérigraphie et une stabilité dimensionelle très grandes.In the case of coders, these are obtained by screen printing of a design comprising a multitude of lines on a glass disc and this requires great care, a very good screen printing quality and dimensional stability.

Dans le cas des échangeurs thermiques, ces derniers sont obtenus généralement par l'assemblage d'une multitude de tubes parallèles aboutissant à deux réservoirs collecteurs et véhiculant un fluide dont ils doivent transmettre la chaleur au fluide extérieur à l'échangeur. Ici les problèmes rencontrés sont la rapidité de l'échange thermique et le renouvellement du fluide extérieur.In the case of heat exchangers, these are generally obtained by assembling a multitude of parallel tubes leading to two collecting tanks and conveying a fluid from which they must transmit heat to the fluid outside the exchanger. Here the problems encountered are the speed of the heat exchange and the renewal of the external fluid.

L'invention permet d'éviter ces inconvénients. En effet la méthode de bobinage est plus simple car l'enroulement est extérieur à son support et s'adapte donc à la réalisation de ce produit en toutes dimensions. D'autre part elle permet d'utiliser un fil résistant ou conducteur isolé nettement plus grand (puisqu'il peut être logé), ce qui rend le produit plus performant. Enfin, le flasque central pouvant avoir la forme d'un engrenage, ce qui oblige le curseur à avoir la forme d'un engrenage miniature, supprime pratiquement tout »grattage« du fil de l'enroulement par le curseur d'où une longévité encore améliorée et la possibilité de la réalisation d'un codeur potentiométrique de très bas prix. Le cas limite qui consiste à ne considérer que le treillis de fils que l'on fera tourner autour de son axe trouve son application dans les radiateurs électriques et les échangeurs thermiques, en effet, il est démontré qu'un fil se déplaçant parallélement à lui même dans un fluide transmet la chaleur qu'il crée, ou qu'il véhicule, à ce fluide d'autant plus facilement qu'il est plus fin et qu'il se déplace plus rapidement.The invention makes it possible to avoid these drawbacks. In fact, the winding method is simpler because the winding is outside its support and therefore adapts to the production of this product in all dimensions. On the other hand it allows the use of a significantly larger resistant or insulated conductive wire (since it can be accommodated), which makes the product more efficient. Finally, the central flange being able to have the form of a gear, which obliges the cursor to have the form of a miniature gear, removes practically all "scraping" of the wire of the winding by the cursor from where a longevity still improved and the possibility of the realization of a potentiometric encoder of very low price. The limiting case which consists in considering only the lattice of wires which will be made to rotate around its axis finds its application in electric radiators and heat exchangers, in fact, it has been shown that a wire moving parallel to it even in a fluid transmits the heat that it creates, or that it conveys, to this fluid all the more easily the thinner and the faster it moves.

Dans ce qui suit l'invention est exposée plus en détail à l'aide de dessins représentant plusieurs modes d'exécution de l'enroulement ou du treillis, de leur support et de leur curseur, chaque mode d'exécution ayant sa propre application.In what follows, the invention is explained in more detail with the help of drawings representing several embodiments of the winding or the trellis, of their support and of their cursor, each embodiment having its own application.

Le cas le plus général de la bobine objet de l'invention est présenté par les figures 1 et 2. L'nivention concerne une bobine de fil résistant ou conducteur isolé ou émaillé utilisable dans les transformateurs variables ou potentiometres dant le support, en matière isolante, comporte un moyeu central (3) en forme de tube cylindrique de grand diamètre par rapport à l'ensemble de la bobine, deux flasques latéraux (10) et (13), un flasque central (2) comportant sur sa périphérie des dents (0) régulièrement espacées et deux veillets métalliques (1) sertis, et deux flasques intermédiaires (5) et (9) comportant des fentes radiales (6). Tous les flasques sont cylindriques. Aux extrémités du support de la bobine on vient appliquer les flasques (8) et (12) bons conducteurs de l'électricité. Ces flasques serviront de collecteurs.The most general case of the coil which is the subject of the invention is presented in FIGS. 1 and 2. The invention relates to a coil of resistant or conductive wire insulated or enamelled usable in variable transformers or potentiometers on the support, in insulating material , comprises a central hub (3) in the form of a cylindrical tube of large diameter relative to the whole of the coil, two lateral flanges (10) and (13), a central flange (2) comprising on its periphery teeth ( 0) regularly spaced and two metallic seals (1) crimped, and two intermediate flanges (5) and (9) having radial slots (6). All flanges are cylindrical. At the ends of the coil support we apply the flanges (8) and (12) good conductors of electricity. These flanges will serve as collectors.

L'enroulement de la bobine est obtenu par le bobinage d'un fil de cuivre ou résistant, émaillé ou isolé, suivant une méthode qui est représentée sur les figures 12 et 13. L'invention est caractérisée par le fait que l'enroulement est réalisé de la manière suivante: la première extrémité du fil est soudée sur l'un des ce illets conducteurs (1) sertis dans le flasque central (2), le fil passe au dessus du flasque central (2) dans une des fentes (47), traverse le flasque (5) par une de ses fentes (6), passe dans la gorge (7), fait (N1-e) tours autour du noyau (3) dans cette gorge (7), traverse le flasque (5) par une de ses fentes (6), repasse au dessus du flasque central (2) dans la fente (48), traverse le flasque (9) par une de ses fentes (6), fait (N2-e) tours dans la gorge (11), traverse le flasque (9) par une de ses fentes (6), repasse au dessus du flasque central (2) dans la fente (49) adjacente à la fente (48), traverse le flasque (5) par une de ses fentes (6), fait (N3-s) tours dans la gorge (7), traverse le flasque (5) par une de ses fentes (6), repasse au dessus du flasque central (2) et ainsi de suite jusqu'à ce que le fil résistant ou conducteur isolé ait recouvert la périphérie désirée du flasque (2). Avant le dernier passage au dessus du flasque central (2) le fil fait (NK-e) tours dans la gorge correspondante pius passe au dessus du flasque central dans la ferte correspondante et son extrémité vient se souder sur le deuxième oeillet (1) serti dans le flasque central (2). Les N1, N2, N3 ... Nk boucles peuvent être réalisées soit en spires jointives ou non jointives, soit en nids d'abeilles suivant l'importance des bobinages et la qualité désirée. Elles peuvent être réalisées dans le même sens si la bobine est utilisée dans un transformateur variable. Dans le cas des potentiomètres on peut envisager de rendre ces derniers aselfiques en bobinant N1, N3, N5, N7 etc.... dans un sens et N2, N4, N6 etc.... dans l'autre sens (mais d'autres méthodes sont possibles.). Dans le cas des transformateurs variables nous avons le cas important:The winding of the coil is obtained by winding a copper or resistant wire, enameled or insulated, according to a method which is shown in Figures 12 and 13. The invention is characterized in that the winding is produced in the following way: the first end of the wire is welded to one of these conductive eyelets (1) crimped in the central flange (2), the wire passes over the central flange (2) in one of the slots (47 ), crosses the flange (5) through one of its slots (6), passes through the groove (7), makes (N1-e) turns around the core (3) in this groove (7), crosses the flange (5 ) through one of its slots (6), go back over the central flange (2) in the slot (48) passes through the flange (9) through one of its slots (6), makes (N2-e) turns in the groove (11), passes through the flange (9) through one of its slots (6), goes back above the central flange (2) in the slot (49) adjacent to the slot (48), crosses the flange (5) by one of its slots (6), makes (N3-s) turns in the groove (7 ), crosses the flange (5) through one of its slots (6), goes back over the central flange (2) and so on until the insulated resistant or conducting wire has covered the desired periphery of the flange (2 ). Before the last passage above the central flange (2) the wire makes (NK-e) turns in the corresponding groove pius passes above the central flange in the corresponding bar and its end is welded to the second crimped eyelet (1) in the central flange (2). The N1, N2, N3 ... Nk loops can be made either in contiguous or non-contiguous turns, or in honeycombs depending on the size of the windings and the desired quality. They can be performed in the same direction if the coil is used in a variable transformer. In the case of potentiometers we can consider making the latter aselfic by winding N1, N3, N5, N7 etc ... in one direction and N2, N4, N6 etc .... in the other direction (but other methods are possible.). In the case of variable transformers we have the important case:

Figure imgb0001
L'aspect général de la bobine terminée est donné par les figures 1 et 2. Les deux collecteurs (8) et (12) sont reliés ensuite aux oeillets (1) par un fil conducteur.
Figure imgb0001
The general appearance of the finished coil is given in FIGS. 1 and 2. The two collectors (8) and (12) are then connected to the eyelets (1) by a conducting wire.

Les figures 3 et 4 représentent le cas particulier où le moyeu (3) devient un simple axe cylindrique de petit diamètre (en matière isolante ou isolée), que les dents (0) du flasque central (2) et les flasques intermédiaires (5) et (9) sont supprimés et que:

Figure imgb0002
et que toutes les spires sont jointives sur l'axe. Nous voyons très facilement la similitude dans les bobinages en observant les figures 7 et 8:Figures 3 and 4 show the particular case where the hub (3) becomes a simple cylindrical axis of small diameter (in insulating or insulated material), that the teeth (0) of the central flange (2) and the intermediate flanges (5) and (9) are deleted and that:
Figure imgb0002
and that all the turns are joined on the axis. We can easily see the similarity in the windings by observing Figures 7 and 8:

Le fil résistant part de la plaquette conductrice (26), passe au dessus du flasque central (2) au point (17), fait un tour dans la gorge (27) autour de l'axe (3), repasse au dessus du flasque central (2) au point (18) juste devant le passage précédent (17), fait un tour dans la gorge (28) autour de l'axe (3), repasse au dessus du flasque central (2) au point (19) juste devant le point (18), fait un tour dans la gorge (27), et ainsi de suite jusqu'à ce que l'enroulement ait recouvert la périphérie désirée du flasque central (2). Les spires sont jointives sur l'axe (3), (par exemple les spires (23) et (24).). La deuxième extrémité est soudée sur la plaquette (25). Les plaquettes (25) et (26) sont ensuite reliées aux oeillets (1) sertis dans le flasque central (2) par un fil conducteur et ces derniers seront eux même reliés aux deux collecteurs (8) et (12) par un fil conducteur.The resistant wire starts from the conductive plate (26), passes over the central flange (2) at point (17), makes a turn in the groove (27) around the axis (3), goes back above the flange central (2) at point (18) just in front of the previous passage (17), makes a turn in the groove (28) around the axis (3), goes back above the central flange (2) at point (19) just in front of the point (18), make a turn in the groove (27), and so on until the winding has covered the desired periphery of the central flange (2). The turns are contiguous on the axis (3), (for example the turns (23) and (24).). The second end is welded to the plate (25). The plates (25) and (26) are then connected to the eyelets (1) crimped in the central flange (2) by a conducting wire and the latter will themselves be connected to the two collectors (8) and (12) by a conducting wire. .

L'aspect de la bobine terminée est représenté par les figures 3 et 4: nous constatons qu'au fur et à mesure que nous réalisons l'enroulement les brins réalisés s'éloignent du flasque central; ceci a pour effet de laisser les brins en l'air et ne se touchant entre eux qu'en quelques endroits très localisés et de très faible surface. Cette propriété peut être exploitée en utilisant cette bobine dans un potentiomètre de puissance car en effet nous avons une très grande surface de dissipation (surtout si l'axe central (3) est de faible diamètre et le flasque central (2) de grand diamètre). Cette propriété peut être amplifiée en faisant tourner vette bobine autour de son axe avec une assez grande vitesse de rotation.The appearance of the finished coil is shown in Figures 3 and 4: we note that as we carry out the winding the strands produced move away from the central flange; this has the effect of leaving the strands in the air and only touching them in a few very localized places and of very small area. This property can be exploited by using this coil in a power potentiometer because indeed we have a very large dissipation surface (especially if the central axis (3) is of small diameter and the central flange (2) of large diameter) . This property can be amplified by rotating this coil around its axis with a fairly high speed of rotation.

Les figures 9 et 10 montrent une autre application de la propriété précédente dans le domine des échangeurs thermiques: l'enroulement (4) devient un simple treillis (cas où N1 =N2= ... =Nk=0) dont les brins sont des tubes métalliques d'assez faible diamètre et dans lesquels est véhiculé un fluide (33); ce fluide entre par le collecteur (15) suit les brins (4) et sort par le collecteur (16). Les deux collecteurs sont réalisés comme des évidemments dans l'axe (3) et sont séparés par une paroi (34). La disposition des brins est bien représentée par les trois brins (30), (31), (32): le brin (30) part du point (44) du collecteur (15) le plus éloigné du flasque central (2) passe au dessus de ce dernier au point (45) et aboutit au point (46) du collecteur (16) le plus proche du flasque central (2); le brin (32) part du point (38) du collecteur (15), point le plus proche du flasque central (2), passe au dessus de ce dernier au point (39) et aboutit au point (40) du collecteur (16) point le plus éloigné du flasque central (2); le brin (31), qui est un brin qui occupe une position intermédiaire, part du point (41) du collecteur (15) passe au dessus du flasque central (2) au point (42) intermédiaire entre les points (39) et (45) et aboutit au point (43) de l'axe (3): plus les brins (4) partent du collecteur d'entrée (15) d'un point éloigné du flasque central (2) et plus ils aboutiront au collecteur de sortie (16) à un point rapproché du flasque central (2); les brins (4) peuvent être jointifs ou non jointifs. Cette disposition de ces brins leur donnera la propriété d'être tous presque de la même longueur, ce qui est très important pour équilibrer les pertes de charge dans les différents brins et ces derniers vehiculeront la même quantité de fluide (33). Le flasque central (2) comporte des trous (29). La figure 9 montre que la coupe C-C des brins (4) donne dans la figure 11 des petits cercles presque alignés suivant deux angles et par rapport au flasque (2) et variables suivant la position de la coupe. L'échangeur thermique tournant autour de son axe, dans le sens (53) par exemple, le fluide (35) se trouve d'une part brassé par les brins (4) et d'autre part véhiculé comme indiqué par la flèche dans la figure 11. L'échangeur se comporte donc en même temps comme un ventilateur.Figures 9 and 10 show another application of the above property in the field of heat exchangers: the winding (4) becomes a simple trellis (case where N1 = N2 = ... = Nk = 0) whose strands are metal tubes of fairly small diameter and in which a fluid is conveyed (33); this fluid enters through the collector (15) follows the strands (4) and exits through the collector (16). The two collectors are made as recesses in the axis (3) and are separated by a wall (34). The arrangement of the strands is well represented by the three strands (30), (31), (32): the strand (30) starts from the point (44) of the collector (15) furthest from the central flange (2) passes to the above the latter at point (45) and terminates at point (46) of the manifold (16) closest to the central flange (2); the strand (32) starts from the point (38) of the collector (15), the point closest to the central flange (2), passes above the latter at point (39) and ends at point (40) of the collector (16 ) point furthest from the central flange (2); the strand (31), which is a strand which occupies an intermediate position, starts from the point (41) of the manifold (15) passes above the central flange (2) at the point (42) intermediate between the points (39) and ( 45) and ends at the point (43) of the axis (3): the more the strands (4) start from the inlet manifold (15) from a point distant from the central flange (2) and the more they will lead to the manifold of outlet (16) at a point close to the central flange (2); the strands (4) can be contiguous or non-contiguous. This arrangement of these strands will give them the property of being almost the same length, which is very important for balancing the pressure drops in the different strands and the latter will carry the same amount of fluid (33). The central flange (2) has holes (29). Figure 9 shows that the CC section of the strands (4) gives in Figure 11 small circles almost aligned at two angles and relative to the flange (2) and variable depending on the position of the cut. The heat exchanger rotating around its axis, in the direction (53) for example, the fluid (35) is on the one hand stirred by the strands (4) and on the other hand conveyed as indicated by the arrow in the figure 11. The exchanger is therefore behaves at the same time as a fan.

Les figures 14, 15, 16 et 17 de la page 3 présentent un bec verseur (50) projetant de l'alumine en suspension dans l'eau (51) à travers l'écran (52) sur la périphérie du flasque central (2) les bobines tournant autour de leurs axes, dans le sens (53) par exemple. Ceci a pour effet d'enlever l'émail à l'endroit du contact entre le fil conducteur ou résistant avec le curseur dans le cas où ces bobines sont utilisées dans les transformateurs variables, potentiomètres et codeurs potentiométriques.Figures 14, 15, 16 and 17 on page 3 show a pouring spout (50) projecting alumina suspended in water (51) through the screen (52) on the periphery of the central flange (2 ) the coils rotating around their axes, in the direction (53) for example. This has the effect of removing the enamel at the point of contact between the conductive or resistant wire with the cursor in the case where these coils are used in variable transformers, potentiometers and potentiometric encoders.

Suivant les applications le flasque central (2) peut comporter ou ne pas comporter de dents. La figure 28 présente le cas où le flasque central est un engrenage; le curseur (99) comporte alors une roulette en forme de pignon (92) en matière bonne conductrice de l'électricité qui vient toucher les brins de l'enroulement qui se trouvent au fond des dents: la dent (93) vient toucher le brin (94) de l'enroulement et, le flasque central tournant, la dent (95) viendra toucher le brin (96). Les brins (97) et (98) aboutissant aux oeillets (1), toute la périphérie du flasque central (2) est utilisée et tous les brins peuvent jouer le même rôle et, en particulier, une bobine obtenue comme indiqué sur les figures 7 et 8, avec la particularité de la figure 28, pourra servir de codeur potentiométrique. Suivant le jeu qu'il sera donné entre les dents du flasque (2) et les dents du curseur (92) la dent (95) feurra toucher le brin (96) avant que la dent (93) ne se détache du brin (94) ou après qu'elle ne se soit détachée, ce qui donne deux possibilités d'application différentes dans la commutation.Depending on the applications, the central flange (2) may or may not have teeth. Figure 28 shows the case where the central flange is a gear; the cursor (99) then includes a pinion-shaped wheel (92) made of a material that is good conductor of electricity which comes to touch the strands of the winding which are at the bottom of the teeth: the tooth (93) comes to touch the strand (94) of the winding and, the central flange rotating, the tooth (95) will touch the strand (96). The strands (97) and (98) leading to the eyelets (1), the entire periphery of the central flange (2) is used and all the strands can play the same role and, in particular, a coil obtained as shown in Figures 7 and 8, with the particularity of FIG. 28, could serve as a potentiometric coder. According to the play that will be given between the teeth of the flange (2) and the teeth of the cursor (92) the tooth (95) will have to touch the strand (96) before the tooth (93) detaches from the strand (94 ) or after it is detached, which gives two different applications in switching.

Les figures 26 et 27 présentent un curseur utilisable dans le cas où la bobine objet de l'invention selon les figures 1 et 2 est utilisée dans les transformateurs variables. Les figures 26 et 27 présentent un porte-curseur (84) avec son bouchon (82) et le curseur en deuc parties (86) et (87) bonnes conductrices de l'électricité et séparées par une partie isolante (83). Ces deux parties aboutissent soit à deux diodes Zener (85) et (88) par l'intermédiaire des languettes (90), soit à une plaquette en carbone (91). Les deux diodes Zener sont alors réunies entre elles d'une part, et à la sortie d'autre part comme indiqué sur la figure 29. Dans le cas de la figure 27 c'est la plaquette de carbone qui est réunie à la borne de sortie. Les ressorts (89) maintiennent le contact des curseurs sur le collecteur (2). Il va de soi que la distance entre les deux parties (86) et (87) doit être telle qu'il y a toujours au moins une des parties en contact avec l'enroulement.Figures 26 and 27 show a cursor usable in the case where the coil object of the invention according to Figures 1 and 2 is used in variable transformers. Figures 26 and 27 show a cursor holder (84) with its plug (82) and the cursor in two parts (86) and (87) good conductors of electricity and separated by an insulating part (83). These two parts lead either to two Zener diodes (85) and (88) via the tongues (90), or to a carbon plate (91). The two Zener diodes are then joined together on the one hand, and at the output on the other hand as shown in Figure 29. In the case of Figure 27 it is the carbon wafer which is joined to the terminal exit. The springs (89) maintain the contact of the sliders on the manifold (2). It goes without saying that the distance between the two parts (86) and (87) must be such that there is always at least one of the parts in contact with the winding.

Un tel dispositif évite les courts circuits dans l'enroulement et les coupures de la tension de sortie. Cependant nous avons, par cette méthode, un »grattage« du fil de cuivre de l'enroulement (4) par le curseur et donc une usure qui peut être assez rapide; on évite cet inconvénient en donnant au flasque central (2) la forme d'un engrenage. Les figures 30 et 31 présentent le curseur qui doit être utilisé dans ce cas: il comporte deux parties (105) et (106) bonnes conductrices de l'électricité et en forme d'engrenages auxquels on a enlevé une dent sur deux; les deux parties sont placées de telle sorte qu'ensemble elles forment un engrenage complet. Ces deux parties sont placées sur le même axe (109) en matière isolante, sont séparées par une plaquette isolante (107) et sont mises en contact avec les plaquettes (90), (ces plaquettes aboutiront aux diodes Zener (85) et (88) de la figure 26. Ici le curseur aura un nombre de dents suffisant et le jeu entre les dents du curseur et les dents du flasque central sera tel que la dent (100) puisse toucher le fil (102) avant que la dent (103) n'ait quitté le fil (104). Ici encore le dispositif évitera les courts cicuits dans l'enroulement et les coupures de la tension de sortie.Such a device avoids short circuits in the winding and cuts in the output voltage. However we have, by this method, a "scraping" of the copper wire of the winding (4) by the cursor and therefore a wear which can be quite fast; this disadvantage is avoided by giving the central flange (2) the shape of a gear. Figures 30 and 31 show the cursor to be used in this case: it has two parts (105) and (106) good conductors of electricity and in the form of gears from which one tooth has been removed in two; the two parts are placed so that together they form a complete gear. These two parts are placed on the same axis (109) of insulating material, are separated by an insulating plate (107) and are brought into contact with the plates (90), (these plates will lead to the Zener diodes (85) and (88 ) of Figure 26. Here the cursor will have a sufficient number of teeth and the clearance between the teeth of the cursor and the teeth of the central flange will be such that the tooth (100) can touch the wire (102) before the tooth (103 ) has left the wire (104) Here again the device will avoid short cicuit in the winding and cuts in the output voltage.

Les figures 18 et 19 représentent une première application de la bobine (4) objet de l'invention dans le cas d'un transformateur variable. Cette bobine (4) a l'allure d'une bobine représentée par les figures 1 et 2 et se trouve placée sur le même noyau central (61) du circuit magnétique qu'une bobine normale (54). Nous voyons les curseurs (69) reliés aux sorties (66) et (68) et frottant sur les collecteurs (8) et (12) et le curseur (56) relié à la sortie (67) et frottant sur la périphérie du flasque central (2) de la bobine (4) objet de l'invention. Les flasques (62) et l'armature extérieure (63) forment le reste du circuit magnétique. En tournant l'engrenage (58) ce dernier fait tourner le double pignon (57) et ce dernier fait tourner la bobine (4), ce qui fera varier la tension de sortie entre les bornes (67) et (68) et les bornes (66) et (67). Ici il est supposé que la tension d'entrée est appliquée aux bornes d'entrée (64) et (65) qui aboutissent à la bobine (54). La plaque (60) reliée à l'engrenage (58) comporte des graduations qui indiquent la tension de sortie. La manette (59) permet de faire tourner manuellement l'engrenage.Figures 18 and 19 show a first application of the coil (4) object of the invention in the case of a variable transformer. This coil (4) has the appearance of a coil shown in Figures 1 and 2 and is placed on the same central core (61) of the magnetic circuit as a normal coil (54). We see the cursors (69) connected to the outputs (66) and (68) and rubbing on the collectors (8) and (12) and the cursor (56) connected to the output (67) and rubbing on the periphery of the central flange (2) of the coil (4) object of the invention. The flanges (62) and the outer frame (63) form the rest of the magnetic circuit. By turning the gear (58) the latter rotates the double pinion (57) and the latter rotates the coil (4), which will vary the output voltage between the terminals (67) and (68) and the terminals (66) and (67). Here it is assumed that the input voltage is applied to the input terminals (64) and (65) which lead to the coil (54). The plate (60) connected to the gear (58) has graduations which indicate the output voltage. The handle (59) makes it possible to manually rotate the gear.

Les figures 22 et 23 montrent une bobine (4) utilisée dans un autotransformateur variable utilisant, pour un circuit magnétique (79), des tôles découpées en E et en I. Les figures 24 et 25 montrent la bobine (4) utilisée dans un autotransformateur variable utilisant un circuit magnétique (79) coupé (»C« Core). La bobine (4) est centrée sur l'axe du circuit magnétique par un support (80) dont le trou central a la forme de la branche du circuit magnétique qui passe dans l'axe de la bobine (4) et dont la périphérie a la forme d'un cylindre. La rotation de la bobine est obtenue en faisant tourner l'axe (77) entraînant en rotation le pignon (78). Le support (81) maintient le pignon (78) en position.Figures 22 and 23 show a coil (4) used in a variable autotransformer using, for a magnetic circuit (79), sheets cut into E and I. Figures 24 and 25 show the coil (4) used in an autotransformer variable using a magnetic circuit (79) cut (»C« Core). The coil (4) is centered on the axis of the magnetic circuit by a support (80) whose central hole has the shape of the branch of the magnetic circuit which passes through the axis of the coil (4) and whose periphery has the shape of a cylinder. The rotation of the coil is obtained by rotating the axis (77) driving the pinion (78) in rotation. The support (81) maintains the pinion (78) in position.

Les figures 20 et 21 représentent un exemple d'utilisation de la bobine (4) dans un transformateur variable triphasé. Ici le circuit magnétique comporte trois noyaux magnétiques (72), (73), (74) parallèles et équidistants entre eux; le circuit magnétique est fermé par les deux flasques (70) et (71). Chaque noyau magnétique comporte une bobine (4) et une bobine (54). Les trois bobines tournent d'un même angle relatif grâce au pignon (78), et nous avons accès à ce pignon grâce à l'axe (77). Nous avons, pour chaque branche du circuit magnétique, des sorties et des curseurs analogues à ceux des figures 18 et 19.Figures 20 and 21 show an example of the use of the coil (4) in a three-phase variable transformer. Here the magnetic circuit comprises three magnetic cores (72), (73), (74) parallel and equidistant from each other; the magnetic circuit is closed by the two flanges (70) and (71). Each magnetic core has a coil (4) and a coil (54). The three coils rotate by the same relative angle thanks to the pinion (78), and we have access to this pinion through the axis (77). We have, for each branch of the magnetic circuit, outputs and sliders similar to those in Figures 18 and 19.

Les figures 32 et 33 représentent un potentiomètre avec une bobine (4) dont l'obtention a été exposée à la page (4) de ce même brevet, de la ligne 6 à la ligne 27. Les curseurs (69) frottent sur les collecteurs (8) et (12) et sont reliés aux bornes de sortie (66) et (68). La tension de référence est appliquée entre les bornes (66) et (68); le curseur (56) capte la tension intermédiaire et est relié à la borne de sortie (67), l'ensemble est enfermé dans un boîtier (112). La résistance (113) qui est ici représentée extérieure au boîtier (112) est appliquée entre la borne (67) et (68), cette dernière étant reliée au curseur frottant sur le collecteur (12) qui lui même est relié au brin (114) le plus éloigné du flasque central (2). On peut démontrer qu'il existe une valeur pour la résistance (113) permettant d'obtenir un potentiomètre dont la linéarité est acceptable dans de nombreuses applications.Figures 32 and 33 show a potentiometer with a coil (4), the obtaining of which was exposed on page (4) of this same patent, from line 6 to line 27. The sliders (69) rub on the collectors (8) and (12) and are connected to the output terminals (66) and (68). The reference voltage is applied between terminals (66) and (68); the cursor (56) senses the intermediate voltage and is connected to the output terminal (67), the assembly is enclosed in a housing (112). The resistor (113) which is shown here outside the housing (112) is applied between the terminal (67) and (68), the latter being connected to the slider rubbing on the collector (12) which itself is connected to the strand (114 ) furthest from the central flange (2). It can be demonstrated that there is a value for the resistance (113) making it possible to obtain a potentiometer whose linearity is acceptable in many applications.

Les figures 34 et 35 représentent un radiateur électrique comportant une bobine (4) dont l'enroulement a été obtenu par le bobinage d'un fil de cuivre émaillé sur un flasque central (2) de grand diamètre et un axe (3) de petit diamètre. Les deux collecteurs (8) et (12) des figures 3 et 4 deviennent ici les bagues collectrices (126) isolées par rapport à l'axe (3) par des bagues (125) en matière isolante. L'axe (3) comporte un engrenage (124). La bobine (4) est entraînée en rotation, dans le sens (53) par exemple, par le micromoteur (122) grâce à son pignon de sortie (123). La tension du secteur est amensé aux bagues collectrices (126) par l'intermédiaire des charbons (129) placés dans leur portecharbons (131). Le radiateur comporte deux compartiments (118) et (120) séparés par une paroi (119) mauvaise conductrice de la chaleur: le compartiment (118) contient la bobine (4) et le compartiment (120) le micromoteur et le thermostat (127). L'air ambiant entre par la partie inférieure des deux compartiments suivants les flèches (130) et (132) et sort chaud par le partie supérieure du compartiment (118) suivant la flèche (135). L'air ambiant, entrant dans le compartiment (120), maintient la température du moteur (122) à une valeur raisonnable et donne d'autre part une information exacte de la température de la pièce au thermostat (127).Figures 34 and 35 show an electric radiator comprising a coil (4), the winding of which was obtained by winding an enameled copper wire on a central flange (2) of large diameter and an axis (3) of small diameter. The two collectors (8) and (12) of Figures 3 and 4 here become the slip rings (126) isolated from the axis (3) by rings (125) of insulating material. The axis (3) has a gear (124). The coil (4) is rotated, in the direction (53) for example, by the micromotor (122) thanks to its output pinion (123). The mains voltage is brought to the slip rings (126) via the coals (129) placed in their charcoal holder (131). The radiator has two compartments (118) and (120) separated by a wall (119) poor conductor of heat: the compartment (118) contains the coil (4) and the compartment (120) the micromotor and the thermostat (127) . The ambient air enters through the lower part of the two compartments following the arrows (130) and (132) and leaves hot through the upper part of the compartment (118) according to the arrow (135). The ambient air, entering the compartment (120), maintains the engine temperature (122) at a reasonable value and on the other hand gives exact information of the room temperature to the thermostat (127).

Claims (11)

1. Resistive or insulated or enamelled conductor wire coil useable in variable transformers or in potentiometers the support of which in insulating material includes a boss (3) having the shape of a cylindrical tube with great diameter with regard to the coil set, two side flanges (10) and (13) a central flange (2) and two intermediate flanges (5) and (9) each of them cylindrical, the flanges (5) and (9) have radial slots (6) and the central flange has equally spaced teeth (O) around its periphery and two crimped metal eyelets (1), coil characterized by the fact that the winding is achieved in following manner: the first end of the wire is soldered to one of the conductor eyelets (1) crimped in the central flange (2) in one of the slots (47), crosses the flange (5) through one of its slots (6), passes into the groove (7), makes (N1-e) turns around the boss (3) inside the groove (7), crosses the flange (5) through one of its slots (6), passes one more over the central flange (2) into the slot (48), crosses the flange (9) by one of its slots (6), makes (N2-e) turns in the groove (11), crosses the flange (9) by one of its slots (6), passes again over the central flange (2) into the slots (49) adjacent to the slot (48), crosses the flange (5) by one of its slots (6), makes (N3-e) turns in the groove (7), crosses the flange (5) by one of its slots (6), passes again over the central flange (2) and so on until the insulated resistor or conductor wire covers the desired periphery of the flange (2). Before the last passage over the central flange (2) the wire makes (Nk-s) turns in the corresponding groove, then passes over the central flange into the corresponding slot, and its end is soldered on the second eyelet (1) crimped in the central flange (2).
2. The resistor wire or insulated or enamelled conductor coil useable in the potentiometers, the potentiometric coders and radiators the winding of wich is achieved according to the claim (1) with the special case:
Figure imgb0007
the convolutions being close on the boss (3) characterized by the fact that intermediate flanges (5) and (9) are suppressed, the central boss (3) is a small diameter cylinder and the central flange (2) is a cylindrical disc with large diameter including on its periphery equally spaced teeth that may be, if need be, cancelled.
3. The resistant wire coil or the insulated conductor useable in the variable transformers and the potentiometric coders the winding of which is achieved according to either claim 1 or 2 is characterized by the fact that the central flange (2) is gear-shaped and, in the case of the potentiometric coders the whole periphery of the central flange (2) is utilized for winding purposes.
4. The resistive or insulated or enamelled conductor wire coil useable in variable transformers, potentiometers, potentiometric coders, according to the claims 1, 2 or 3, characterized by the fact that it includes at its both ends two flanges (8) and (12) good electricity conductors acting as collectors and which will be interconnected to eyelets (1) via a conducting wire.
5. Variable transformer including a coil according to the claims (1) characterized by the fact that it utilizes a two parts (86) and (87) cursor, separated by an insulating partition (83) the distance of which is such that there is always at least one in contact with the coil winding.
6. Variable transformer or potentiometer including a coil according the claim 3, characterized by the fact that it utilizes a two parts (105) and (106) cursor having the shape of gears with one on two missing tooth placed on the same axis (109) made in insulating material and separated by an insulating plate (107) and disposed one relatively to the other so that they form a complete gear; the number of teeth (100) of the cursor and the clearance between the teeth (100) of the cursor and the teeth (101) of the central flange (2) will be such that there will always be at least one tooth (100) in contact with the coil winding. t
7. Variable transformer according to both claims 5 or 6 characterized by the fact that the both conducting parts (86) and (87) or (105) and (106) of the cursor are interconnected to the output via two zener diodes (85) and (88) the Zener voltage is just sufficient to avoid the shortcircuits in the winding linking two successive slots.
8. Coil according to the claims 2 and 3 useable for potentiometers and potentiometric coders, characterized by the fact that a resistor (113) is connected between the output corresponding to the cursor (56) and the output corresponding to the cursor sliding on the collector (12) connected to the farthest convolution away from the central flange (2); this resistor (113) has a value allowing to linearize the potentiometer and the potentiometric coder.
9. Metal tube lattice useable in heat exchangers the winding of which is achieved according to the claim 1 with the following special case:
Figure imgb0008
characterized by the fact that the support includes on the one hand a boss (3) comprising two . recesses (15) and (16) called collectors, separated by a partition (34) and on the other hand a large diameter central flange (2) with holes (29). The fluid enters via the collector (15), follows the metallic pipings and gets out via the collector (16).
10. Metal tube lattice according to the claim 9, characterized by the fact that the tubes have the following disposition: the first section starts from the collector (15) at the point (44) which is the farthest away from the central flange (2), passes over the central flange (2) at the point (45) and arrives to the point (46) of the collector (16) which is the nearest from the central flange (2) the next section starts from the collector (15) at the point adjacent to the point (44) but nearer from the central flange (2), passes over this last at a point adjacent to the point (45) and arrives to the point (46) but further away from the central flange, and so on for the next sections may be joined or not and their lenght will practically be the same.
11. Insulated resistor or conductor wire coil, according to the claim 1, or the lattice of metal tubes according to the claims 9 and 10 useable in the electric radiators or in heat exchangers, characterized by the fact that these active items are utilized as rotating.
EP19800400543 1979-04-23 1980-04-21 Coil or trellis utilisable in variable transformers, adjustable power or precision resistors, coding resistors, wound resistors, electric radiators and heat exchangers Expired EP0018296B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80400543T ATE7251T1 (en) 1979-04-23 1980-04-21 WINDING OR WIREGRID USABLE IN REGULATORY TRANSFORMERS, POWER OR PRECISION POTENTIOMETERS, POTENTIOMETERS FOR CODING PURPOSES, WOUND RESISTORS, ELECTRICAL RADIATORS AND HEAT EXCHANGER.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR7910155A FR2455345A1 (en) 1979-04-23 1979-04-23 Variable transformer or potentiometer winding system - has every Nth-turn brought out via slots in bobbin walls to point on periphery of central disc
FR7910156A FR2457002A1 (en) 1979-04-23 1979-04-23 Variable transformer or potentiometer winding system - has every Nth-turn brought out via slots in bobbin walls to point on periphery of central disc
FR7910155 1979-04-23
FR7910156 1979-04-23

Publications (2)

Publication Number Publication Date
EP0018296A1 EP0018296A1 (en) 1980-10-29
EP0018296B1 true EP0018296B1 (en) 1984-04-25

Family

ID=26221123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800400543 Expired EP0018296B1 (en) 1979-04-23 1980-04-21 Coil or trellis utilisable in variable transformers, adjustable power or precision resistors, coding resistors, wound resistors, electric radiators and heat exchangers

Country Status (2)

Country Link
EP (1) EP0018296B1 (en)
DE (1) DE3067608D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2496966A2 (en) * 1979-04-23 1982-06-25 Ungari Serge Winding of enamelled copper or resistance for e.g. heater application - uses segmented winding from axial support rod to edges of disc perpendicular to support rod, on which edge runs slider
FR2495309B1 (en) * 1980-12-03 1985-09-27 Ungari Serge COUNTING SYSTEM FOR THE USE OF POTENTIOMETRIC ENCODERS IN MEASURING DISPLACEMENTS FOR MACHINE TOOLS AND MEASURING ANGLES FOR DIVIDERS
FR2497049A1 (en) * 1980-12-19 1982-06-25 Ungari Serge Resistance wire winding for rotary winding type heater - uses circular former with resistance wire wound in radial loops round its circumference for improved heat transfer
US6933822B2 (en) 2000-05-24 2005-08-23 Magtech As Magnetically influenced current or voltage regulator and a magnetically influenced converter
US7026905B2 (en) 2000-05-24 2006-04-11 Magtech As Magnetically controlled inductive device
GB2407214A (en) * 2003-10-14 2005-04-20 Magtech A S Variable inductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR814458A (en) * 1936-01-20 1937-06-24 Socket for devices with components with different potentials
US2453725A (en) * 1946-02-14 1948-11-16 Magnetic Devices Inc Coil-supporting structure
US2709051A (en) * 1951-09-26 1955-05-24 Western Electric Co Apparatus for coiling filamentary articles
FR1468742A (en) * 1964-07-17 1967-02-10 Asea Ab Switchable coil
DE1765787A1 (en) * 1968-07-17 1971-10-14 Metrawatt Gmbh Decadically adjustable potentiometer
CH506867A (en) * 1969-04-15 1971-04-30 Schmid Kurt El Ing Htl Current collection device, for a variable transformer or a regulating choke coil
FR2344109A1 (en) * 1976-03-08 1977-10-07 Ungari Serge Transformer with laminated cylindrical core - has central core carrying windings and encircled by laminated outer core

Also Published As

Publication number Publication date
EP0018296A1 (en) 1980-10-29
DE3067608D1 (en) 1984-05-30

Similar Documents

Publication Publication Date Title
EP0018296B1 (en) Coil or trellis utilisable in variable transformers, adjustable power or precision resistors, coding resistors, wound resistors, electric radiators and heat exchangers
BE1004731A4 (en) Cigarette and method.
US10206424B1 (en) Radiant heating system for vaporizing tobacco and method of use
FR2545273A1 (en) HEATING TUBULAR LAMP WITH HIGH PERFORMANCE
AU599868B2 (en) Hair curling iron for providing three-dimensional Z-shaped curls
FR2366769A1 (en) RESISTANT FILAMENT HEATING ELEMENT WRAPPED AROUND AN INSULATING PLATE
US4272668A (en) Small round air stream heating unit
US1716743A (en) Heat-transmitting tube
JPH03501522A (en) liquid level sensor
WO1998051128A1 (en) Kitchen range with container detection
EP0369915B1 (en) Electrical heating cable with a heat diffusion element
WO1999046823A1 (en) Method and device for making a plurality of thermocouples, and resulting thermoelectric converter
GB1095018A (en) Improvements in or relating to tubular sheathed electric heating elements
FR2497049A1 (en) Resistance wire winding for rotary winding type heater - uses circular former with resistance wire wound in radial loops round its circumference for improved heat transfer
FR2799886A1 (en) Thermoelectric generator and manufacturing means, comprising set of aggregates connected in parallel
FR2496966A2 (en) Winding of enamelled copper or resistance for e.g. heater application - uses segmented winding from axial support rod to edges of disc perpendicular to support rod, on which edge runs slider
JPS5818411Y2 (en) Wire sheathing cutting device
US1160488A (en) Electrical resistance.
FR2496381A1 (en) HEAT EXCHANGER AND RADIATOR USING SUCH EXCHANGER
JPS5834771B2 (en) Lead wire of resistance temperature sensor
FR2583566A1 (en) WINDING METHOD
FR2631427A1 (en) HEATING ELEMENT FOR AN ELECTRICAL RADIATOR FOR THE HEATING OF PREMISES, ESPECIALLY OF CONTINUOUS TYPE
US898063A (en) Hair crimper and curler.
US1250856A (en) Electric soldering-iron.
US1427596A (en) Electric water heater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810424

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 7251

Country of ref document: AT

Date of ref document: 19840515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3067608

Country of ref document: DE

Date of ref document: 19840530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850430

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860709

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee
GBDL Gb: delete "european patent ceased" from journal

Free format text: 5103,PAGE 6242

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870430

Ref country code: CH

Effective date: 19870430

BERE Be: lapsed

Owner name: UNGARI SERGE

Effective date: 19870430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19871101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890430

EUG Se: european patent has lapsed

Ref document number: 80400543.7

Effective date: 19880906