EP0015873B2 - Oscillator with a low frequency quartz resonator - Google Patents

Oscillator with a low frequency quartz resonator Download PDF

Info

Publication number
EP0015873B2
EP0015873B2 EP80810066A EP80810066A EP0015873B2 EP 0015873 B2 EP0015873 B2 EP 0015873B2 EP 80810066 A EP80810066 A EP 80810066A EP 80810066 A EP80810066 A EP 80810066A EP 0015873 B2 EP0015873 B2 EP 0015873B2
Authority
EP
European Patent Office
Prior art keywords
frequency
oscillator
quartz crystal
crystal oscillator
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80810066A
Other languages
German (de)
French (fr)
Other versions
EP0015873A1 (en
EP0015873B1 (en
Inventor
Alphonse Zumsteg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSIH Management Services SA
Original Assignee
Societe Suisse pour lIindustrie Horlogere Management Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Suisse pour lIindustrie Horlogere Management Services SA filed Critical Societe Suisse pour lIindustrie Horlogere Management Services SA
Publication of EP0015873A1 publication Critical patent/EP0015873A1/en
Application granted granted Critical
Publication of EP0015873B1 publication Critical patent/EP0015873B1/en
Publication of EP0015873B2 publication Critical patent/EP0015873B2/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/02Circuits for deriving low frequency timing pulses from pulses of higher frequency
    • G04G3/022Circuits for deriving low frequency timing pulses from pulses of higher frequency the desired number of pulses per unit of time being obtained by adding to or substracting from a pulse train one or more pulses
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/02Circuits for deriving low frequency timing pulses from pulses of higher frequency
    • G04G3/027Circuits for deriving low frequency timing pulses from pulses of higher frequency by combining pulse-trains of different frequencies, e.g. obtained from two independent oscillators or from a common oscillator by means of different frequency dividing ratios

Definitions

  • the present invention relates to an oscillator with a low-frequency quartz oscillator, the output signal of which is fed to a frequency divider, the division ratio of which is controllable, so that the divided output frequency of the low-frequency quartz oscillator can be varied according to a criterion.
  • US-A-3364439 describes a clock with an oscillator which is controlled by a frequency standard, a so-called atomic clock with a higher frequency, by means of phase locking.
  • a programmable frequency divider is used, the divider ratio of which is controllable.
  • the control by means of phase locking described in this patent is very precise, but also very complex and not suitable for wristwatches or film cameras due to the high power consumption and volume requirement.
  • DE-A-2342701 describes a generator of isochronous reference periods with a 10 MHz high-frequency generator which has means for recognizing and receiving an external signal, as a result of which the generator is readjusted. Autonomous operation is not possible with such a generator, and the 10 MHz high-frequency generator has a power consumption that is too high for a wristwatch.
  • the basic diagram of the oscillator circuit can be seen in FIG.
  • the frequency of, for example, 4.19 MHz, 8.38 MHz or higher of the high-frequency resonator HF with a section according to US-A-4071 797 is reduced to 32 kHz in a frequency divider FT and given at A to a differential frequency generator DFG.
  • the signal from the low-frequency resonator for example a common quartz resonator with 32 kHz, is also applied to the differential frequency generator at point B. given.
  • a correction signal is generated, which is sent to a programmable frequency divider PRFT, which is also fed by the low-frequency signal.
  • the low-frequency signal is corrected in this programmable frequency divider and sent to the output OFF, from where it reaches the known timer circuit, which is not explained in detail here.
  • An electronic switch ES fed by the supply voltage Vs, is controlled by a signal CP from the timer circuit in order to provide a periodic signal S which switches the high-frequency resonator, the frequency divider FT and the differential frequency generator DFG periodically.
  • the switch-off time can be 15 minutes, for example, ie the signal CP is generated every 15 minutes for at least 16 seconds. As a result, the power consumption of the high-frequency resonator is reduced to approximately 1/50.
  • a new learning cycle begins every 15 minutes and if the frequency of the LF generator has changed during this time, the programmable frequency divider PRFT is reset.
  • FIGS. 2 and 4 show two details of an exemplary embodiment for the generation of the correction signal.
  • the high frequency of 4.19 or 8.38 MHz is reduced to kHz by the first frequency divider FT and then to a frequency of 1/16 Hz by a second frequency divider FT1.
  • the low frequency of 32 kHz is also reduced to 1 / by a frequency divider FT2 Brought 16 Hz.
  • a high-frequency resonator with a frequency of 8.38 MHz, however, one could also choose one of 1/8 Hz.
  • the logic LG sends a pulse to the flip-flop FF1, which then changes the pre-calibration and inputs this signal into the counter, whereupon the counter counts in the correct direction.
  • a second flip-flop FFR resets the bidirectional counter at the start of the measurement, the two flip-flops FF1 and FFR in turn being set to zero by the periodic signal S from the electronic switch ES when the high-frequency resonator is switched on.
  • the output from the counter reaches the programmable frequency divider via a decoder DC, as does a sign signal from the logic LG.
  • the programmable frequency divider always receives a correction signal that corresponds to the difference between the frequency response of the high-frequency and the low-frequency resonator, so that on average the output signal OFF in the long-term behavior with regard to accuracy, temperature behavior and aging corresponds to the behavior of the high-frequency quartz resonator behaves while the power consumption corresponds approximately to that of the continuously switched 32 kHz low-frequency quartz resonator.
  • the temperature compensation circuit TE mentioned in the discussion of FIG. 1 could expediently be connected between the bidirectional counter and the decoder.
  • the frequency difference always has the same sign, even with a change in temperature and aging of the quartz crystals, so that the circuit can be simplified considerably.
  • the period in which the frequency comparison takes place can also differ from the specified value; it depends on the highest available frequency and the desired resolution of the frequency setting. Another interval can also be selected within which the high-frequency resonator is switched off.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electric Clocks (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A signal generator includes a high frequency oscillator such as a quartz crystal oscillator at a frequency of 4.19 MHz, a low frequency quartz oscillator with a frequency of 32 kHz, a beat frequency generator for producing a correction signal which is transmitted to a programmable frequency divider, and an electronic switch for periodic switching of the high frequency quartz oscillator. By periodically switching-on the high frequency quartz oscillator, comparing its frequency curve with that of the low frequency quartz oscillator and and appropriately adjusting the programmable frequency divider, the advantages of long term stability, temperature of behavior and aging of a high frequency oscillator are combined with the low current consumption characteristics associated with the low frequency quartz oscillator, whereby the life of a battery powering the signal generator can be substantially extended.

Description

Die vorliegende Erfindung bezieht sich auf einen Oszillator mit einem Niederfrequenz-Quarzoszillator, dessen Ausgangssignal einem Frequenzteiler zugeführt ist, dessen Teilerverhältnis steuerbar ist, so daß die heruntergeteilte Ausgangsfrequenz des Niederfrequenz-Quarzoszillators nach einem Kriterium variierbar ist.The present invention relates to an oscillator with a low-frequency quartz oscillator, the output signal of which is fed to a frequency divider, the division ratio of which is controllable, so that the divided output frequency of the low-frequency quartz oscillator can be varied according to a criterion.

Die US-A-3364439 beschreibt eine Uhr mit einem Oszillator, der von einem Frequenznormal, einer sogenannten Atomuhr mit höherer Frequenz, mittels Phasenverriegelung gesteuert wird. Dabei wird ein programmierbarer Frequenzteiler verwendet, dessen Teilerverhältnis steuerbar ist. Die in dieser Patentschrift beschriebene Steuerung mittels Phasenverriegelung ist sehr genau, jedoch auch sehr aufwendig und für Armbanduhren oder Filmkameras infolge des hohen Stromverbrauchs und Volumenbedarfs nicht geeignet.US-A-3364439 describes a clock with an oscillator which is controlled by a frequency standard, a so-called atomic clock with a higher frequency, by means of phase locking. A programmable frequency divider is used, the divider ratio of which is controllable. The control by means of phase locking described in this patent is very precise, but also very complex and not suitable for wristwatches or film cameras due to the high power consumption and volume requirement.

Die DE-A-2342701 beschreibt einen Generator von isochronen Referenzperioden mit einem 10 MHz-Hochfrequenzerzeuger, der Mittel aufweist, um ein externes Signal zu erkennen und zu empfangen, wodurch der Generator nachgeregelt wird. Mit einem solchen Generator ist ein autonomer Betrieb nicht möglich und der 10 MHz-Hochfrequenzerzeuger weist einen für eine Armbanduhr zu hohen Stromverbrauch auf.DE-A-2342701 describes a generator of isochronous reference periods with a 10 MHz high-frequency generator which has means for recognizing and receiving an external signal, as a result of which the generator is readjusted. Autonomous operation is not possible with such a generator, and the 10 MHz high-frequency generator has a power consumption that is too high for a wristwatch.

Außerdem ist die Verwendung von Hochfrequenz-Quarzresonatoren mit einer Frequenz von 4,19 MHz bekannt, die u. a. in Armbanduhren vemvendet werden. Währen die Frequenzstabilität, die Temperaturstabilität und das Langzeitverhalten (Alterung) wesentlich günstiger sind als bei gebräuchlichen Niederfrequenz-Quarzresonatoren mit einer Frequenz von 32 kHz, ist der Stromverbrauch wesentlich höher, so daß die derzeit erhältlichen Batterien häufiger ausgewechselt werden müssen.In addition, the use of high-frequency quartz resonators with a frequency of 4.19 MHz is known, which u. a. can be used in wristwatches. While the frequency stability, the temperature stability and the long-term behavior (aging) are much cheaper than with conventional low-frequency quartz resonators with a frequency of 32 kHz, the power consumption is much higher, so that the batteries currently available have to be replaced more frequently.

Es ist demgegenüber Aufgabe der vorliegenden Erfindung, insbesondere im Hinblick auf in der Entwicklung stehende Langzeitbatterien mit einer voraussichtlichen Lebensdauer von 5 - 10 Jahren, einen Oszillator anzugeben, der im wesentlichen den Stromverbrauch eines Niederfrequenz-Quarzoszillators und die Vorteile eines Hochfrequenz-Quarzoszillators aufweist und kein wesentlich höheres zusätzliches Volumen beansprucht. Der Oszillator, der diese Aufgabe löst, ist in den Ansprüchen beschrieben.In contrast, it is an object of the present invention, in particular with regard to long-term batteries under development with an expected lifespan of 5 to 10 years, to provide an oscillator which essentially has the power consumption of a low-frequency quartz oscillator and the advantages of a high-frequency quartz oscillator and none much higher additional volume. The oscillator that solves this problem is described in the claims.

Durch die Verwendung eines Niederfrequenz-Quarzresonators mit niedrigem Stromverbrauch und durch das periodische Einschalten des Hochfrequenz-Quarzresonators ist es sogar möglich, einen Hochfrequenz-Quarzresonator mit höherer als bis jetzt verwendeter Frequenz, beispielsweise mit 8,38 MHz, zu verwenden, der bezüglich Temperaturverhalten und Volumen noch bessere Eigenschaften aufweist als der Quarzresonator mit einer Frequenz von 4,19 MHz, falls ein Quarz mit einem Schnitt gemäß US-A-4 071 797 gewählt wird.By using a low-frequency quartz resonator with low power consumption and by periodically switching on the high-frequency quartz resonator, it is even possible to use a high-frequency quartz resonator with a higher frequency than that used up to now, for example at 8.38 MHz, which is suitable for temperature behavior and Volume has even better properties than the quartz resonator with a frequency of 4.19 MHz if a quartz with a cut according to US-A-4 071 797 is selected.

Die Erfindung wird nun anhand einer Zeichnung eines Ausführungsbeispiels einer Schaltung näher erläutert werden.The invention will now be explained in more detail with reference to a drawing of an embodiment of a circuit.

Es zeigt

  • Figur 1 eine Blockschaltung eines erfindungsgemäßen Oszillators,
  • Figur 2 einen Ausschnitt aus einem Ausführungsbeispiel der Schaltung gemäß Figur 1,
  • Figur 3 schematisch ein Zeitdiagramm eines Impulses von beiden Quarzresonatoren und
  • Figur 4 eine Blockschaltung des Schwebungsfrequenz-Generators.
It shows
  • FIG. 1 shows a block circuit of an oscillator according to the invention,
  • FIG. 2 shows a section of an exemplary embodiment of the circuit according to FIG. 1,
  • Figure 3 schematically shows a timing diagram of a pulse from both quartz resonators and
  • Figure 4 is a block circuit of the beat frequency generator.

In Figur 1 erkennt man das Prinzipschema der Oszillatorschaltung. Die Frequenz von beispielsweise 4,19 MHz, 8,38 MHz oder höher des Hochfrequenz-Resonators HF mit einem Schnitt gemäß US-A-4071 797 wird in einem Frequenzteiler FT auf 32 kHz heruntergesetzt und bei A auf einen Differenzfrequenz-Generator DFG gegeben. Das Signal des Niederfrequenz-Resonators, beispielsweise ein gebräuchlicher Quarzresonator mit 32 kHz wird bei Punkt B ebenfalls auf den Differenzfrequenz-Generator . gegeben. In diesem wird, wie noch weiter unten näher erläutert werden wird, ein Korrektursignal erzeugt, das auf einen programmierbaren Frequenzteiler PRFT gegeben wird, der ebenfalls vom Niederfrequenzsignal gespeist wird. Falls notwendig, wird in diesem programmierbaren Frequenzteiler das Niederfrequenzsignal korrigiert und auf den Ausgang AUS gegeben, von wo es in die bekannte und hier nicht näher erläuterte Zeitgeberschaltung gelangt. Ein elektronischer Schalter ES, über die Speisespannung Vs gespeist, wird durch ein Signal CP aus der Zeitgeberschaltung gesteuert, um ein periodisches Signal S zu liefern, das den Hochfrequenz-Resonator, den Frequenzteiler FT und den Differenzfrequenz-Generator DFG periodisch schaltet. Bei der Verwendung eines 4,19 MHz Hochfrequenz-Quarzes haben Berechnungen gezeigt, daß eine Einschaltzeit von mindestens 16 Sekunden notwendig ist, um jedes Mal ein ausreichend genaues Korrektursignal zu erhalten, damit eine Auflösung von 1. 10-8 s/d erreicht wird. Die Abschaltzeit kann beispielsweise 15 Minuten betragen, d. h. das Signal CP wird alle 15 Minuten während mindestens 16 Sekunden erzeugt. Dadurch wird die Herabsetzung des Stromverbrauchs des Hochfrequenz-Resonators auf etwa 1/50 erreicht.The basic diagram of the oscillator circuit can be seen in FIG. The frequency of, for example, 4.19 MHz, 8.38 MHz or higher of the high-frequency resonator HF with a section according to US-A-4071 797 is reduced to 32 kHz in a frequency divider FT and given at A to a differential frequency generator DFG. The signal from the low-frequency resonator, for example a common quartz resonator with 32 kHz, is also applied to the differential frequency generator at point B. given. In this, as will be explained in more detail below, a correction signal is generated, which is sent to a programmable frequency divider PRFT, which is also fed by the low-frequency signal. If necessary, the low-frequency signal is corrected in this programmable frequency divider and sent to the output OFF, from where it reaches the known timer circuit, which is not explained in detail here. An electronic switch ES, fed by the supply voltage Vs, is controlled by a signal CP from the timer circuit in order to provide a periodic signal S which switches the high-frequency resonator, the frequency divider FT and the differential frequency generator DFG periodically. When using a 4.19 MHz high-frequency quartz calculations have shown that an on time of at least 16 seconds is necessary each time to obtain a sufficiently accurate correction signal to a resolution of 1 10 8 s / d is achieved. The switch-off time can be 15 minutes, for example, ie the signal CP is generated every 15 minutes for at least 16 seconds. As a result, the power consumption of the high-frequency resonator is reduced to approximately 1/50.

Alle 15 Minuten beginnt ein neuer Lernzyklus und falls sich während dieser Zeit die Frequenz des NF-Generators geändert hat, wird der programmierbare Frequenzteiler PRFT neu eingestellt.A new learning cycle begins every 15 minutes and if the frequency of the LF generator has changed during this time, the programmable frequency divider PRFT is reset.

Falls eine noch weitergehende Genauigkeit erwünscht ist, kann, wie gestrichelt eingezeichnet, eine Temperaturkompensationsschaltung TC eingeschaltet werden um den Einfluß der Temperatur vernachlässigbar klein zu halten. Da bereits zwei Schwingquarze verwendet werden, drängt sich in diesem Falle eine digitale Temperaturkompensation mittels zweier Quartzresonatoren auf.If an even greater accuracy is desired, a temperature compensation circuit TC can be switched on, as shown in dashed lines, in order to keep the influence of the temperature negligibly small. Since two quartz crystals are already used, digital temperature compensation by means of two is required in this case Quartz resonators.

In den Figuren 2 und 4 sind zwei Details eines Ausführungsbeispiels für die Erzeugung des Klorrektursignals dargestellt. Die Hochfrequenz von 4,19 oder 8,38 MHz wird durch den ersten Frequenzteiler FT auf kHz herabgezstzt und anschließend durch einen zweiten Frequenzteiler FT1 auf eine Frequenz von 1/16 Hz. Die Niederfrequenz von 32 kHz wird durch einen Frequenzteiler FT2 ebenfalls auf 1/16 Hz gebracht. Bei einem Hochfrequenz-Resonator mit einer Frequenz von 8,38 MHz könnte man allerdings auch eine solche von 1/8 Hz wählen. Ein direkter Vergleich der beiden Frequenzen von 1/16 Hz wäre, wie sich leicht ausrechnen läßt, zu ungenau, und es ist deshalb erforderlich, einen Vergleich anzustellen, bei welchem als Einheit ein Zeitintervall von 1: 4,19 MHz - ungefähr 0,2 µs dient. Aus dem Diagramm von Figur 3 kann man entnehmen, daß die Differenz des Impulses bei A' und bei B' genommen wird, wobei die4 Differenz Δt der beiden Impulsanfänge und die Differenz Ate bei den Impulsenden subtrahiert oder aufsummiert werden, um ein Frequenzkorrektursignal zu geben. In Figur 4 ist die zu Figur 3 passende Schaltung gezeigt. Die beiden Signale A' und B' gelangen zu einem EX-ODER Tor, welches nur bei einer Differenz beider Signale anspricht, d. h. wie in Fig. 3 dargestellt, falls ein Δt und ein Äte existiert. Das Signal aus dem EX-ODER Tor gelangt zu einem UND Tor, an welchem das 4,19 MHz Signal anliegt und gelangt von dorf auf einen Zweirichtungszähler ZRZ, dessen Vorzeichen durch einen Flip-Flop FF1 gegeben wird. Im Zweirichtungszähler wird der Unterscheid von Δt; und Δtµ gebildet, wobei Δtµ auch größer als Δti; sein kann. Um auch in diesem Falle den Zähler richtig zu steuern, gelangt das Signal aus dem Zähler beim Null-Durchgang auf eine Logik LG, ebenso das Signal aus dem Flip-Flop FF1 über den Zustand. Im Falle eines NullDurchgangs des Zählers gibt die Logik LG einen Impuls an den Flip-Flop FF1, der daraufhin das Vorseichen wechselt und dieses Signal in den Zähler eingibt woraufhin der Zähler in der richtigen Richtung zählt. Ein zweiter Flip-Flop FFR bewirkt die Nullsetzung des Zweirichtungszählers bei Beginn der Messung, wobei die beiden FlipFlops FF1 und FFR ihrerseits durch das periodische Signal S vom elektronischen Schalter ES beim Einschalten des Hochfrequenz-Resonators auf Null gesetz werden. Der Ausgang aus dem Zähler gelangt über einen Dekoder DC auf den programmierbaren Frequenzteiler, ebenso ein Vorzeichensignal von der Logik LG. Auf diese Weise erhält der programmierbare Frequenzteiler stets ein Korrektursignal, das dem Unterscheid zwischen dem Frequenzgang des Hochfrequenz- und des Niederfrequenz-Resonators entspricht, so daß sich im Mittel das Ausgangssignal AUS im Langzeitverhalten bezüglich Genauigkeit, Temperaturverhalten und Alterung entsprechend dem Verhalten des Hochfrequenz-Quarzresonators verhält, während der Stromverbrauch in etwa demjenigen des dauernd angeschalteten 32 kHz Niederfrequenz-Quarzresonators entspricht. Die bei der Besprechung von Figur 1 erwähnte Temperaturkompensationsschaltung TE könnte zweckmäßigerweise zwischen dem Zweirichtungszähler und dem Dekoder angeschaltet werden.FIGS. 2 and 4 show two details of an exemplary embodiment for the generation of the correction signal. The high frequency of 4.19 or 8.38 MHz is reduced to kHz by the first frequency divider FT and then to a frequency of 1/16 Hz by a second frequency divider FT1. The low frequency of 32 kHz is also reduced to 1 / by a frequency divider FT2 Brought 16 Hz. With a high-frequency resonator with a frequency of 8.38 MHz, however, one could also choose one of 1/8 Hz. A direct comparison of the two frequencies of 1/16 Hz would, as can easily be calculated, be too imprecise, and it is therefore necessary to make a comparison in which a time interval of 1: 4.19 MHz - approximately 0.2 - as a unit µs serves. From the diagram of Figure 3 it can be seen that the difference of the pulse at A 'and at B' is taken, the4 difference Δt of the two pulse starts and the difference At e at the pulse ends being subtracted or summed to give a frequency correction signal . FIG. 4 shows the circuit suitable for FIG. 3. The two signals A 'and B' arrive at an EX-OR gate, which responds only when there is a difference between the two signals, ie as shown in FIG. 3, if there is a Δt and an Et e . The signal from the EX-OR gate arrives at an AND gate, at which the 4.19 MHz signal is present, and passes from there to a bidirectional counter ZRZ, the sign of which is given by a flip-flop FF1. The difference between Δt; and Δt µ are formed, wherein Δt µ is also greater than Δt i ; can be. In order to properly control the counter in this case as well, the signal from the counter passes to a logic LG at zero crossing, as does the signal from the flip-flop FF1 via the state. In the event of a zero crossing of the counter, the logic LG sends a pulse to the flip-flop FF1, which then changes the pre-calibration and inputs this signal into the counter, whereupon the counter counts in the correct direction. A second flip-flop FFR resets the bidirectional counter at the start of the measurement, the two flip-flops FF1 and FFR in turn being set to zero by the periodic signal S from the electronic switch ES when the high-frequency resonator is switched on. The output from the counter reaches the programmable frequency divider via a decoder DC, as does a sign signal from the logic LG. In this way, the programmable frequency divider always receives a correction signal that corresponds to the difference between the frequency response of the high-frequency and the low-frequency resonator, so that on average the output signal OFF in the long-term behavior with regard to accuracy, temperature behavior and aging corresponds to the behavior of the high-frequency quartz resonator behaves while the power consumption corresponds approximately to that of the continuously switched 32 kHz low-frequency quartz resonator. The temperature compensation circuit TE mentioned in the discussion of FIG. 1 could expediently be connected between the bidirectional counter and the decoder.

Man kann es auch einrichten, daß der Frequenzunterschied stets, auch bei Temperaturänderung und Alterung der Quarze, das gleiche Vorzeichen aufweist, so daß die Schaltung wesentlich vereinfacht werden kann.It can also be arranged that the frequency difference always has the same sign, even with a change in temperature and aging of the quartz crystals, so that the circuit can be simplified considerably.

Es ist selbstverständlich, daß sich die Erfindung nicht auf die hier angegebenen Werte von 32 kHz einerseits und 4,19 und 8,38 MHz andererseits beschränkt, sondern daß auch andere Quarzresonatoren mit anderen Werten verwendet werden können. Der vorliegend beschriebene Oszillator kann überall dort, wo eine hohe Ganggenauigkeit und ein günstiges Temperaturund Langzeitverhalten erwünscht ist und wo das dafür verfügbare Volumen klein ist, verwendet werden. Dies trifft beispielsweise bei einer Armbanduhr oder bei einer Filmkamera zu.It goes without saying that the invention is not limited to the values of 32 kHz on the one hand and 4.19 and 8.38 MHz on the other hand, but that other quartz resonators with other values can also be used. The oscillator described here can be used wherever a high degree of accuracy and a favorable temperature and long-term behavior are desired and where the volume available for this is small. This applies, for example, to a wristwatch or a film camera.

Auch kann die Periode, in welcher der Frequenzvergleich stattfindet, vom angegebenen Wert verschieden sein; sie ist von der höchsten verfügbaren Frequenz und der gewünschten Auflösung der Einstellung der Frequenz abhängig. Es kann auch ein anderes Intervall gewählt werden, innerhalb welchem der Hochfrequenz-Resonator abgeschaltet ist.The period in which the frequency comparison takes place can also differ from the specified value; it depends on the highest available frequency and the desired resolution of the frequency setting. Another interval can also be selected within which the high-frequency resonator is switched off.

Claims (5)

1. Oscillator with a low frequency quartz crystal oscillator (NF) the output signal of which is delivered to a frequency divider (PRFT) having a controllable division ratio so that the divided output frequency of the low frequency quartz crystal oscillator (NF) is variabel as a function of a criterion, characterized in that for the use of the oscillator within a wristwatch or a film camera an additional temperature and long-term stable high frequency quartz crystal oscillator (HF) is provided, the divided output frequency of which being compared with the frequency of the low frequency quartz crystal oscillator (NF) for providing a control signal which controls said controllable frequency divider (PRFT) for synchronizing the low frequency quartz crystal oscillator with the high frequency quartz crystal oscillator, whereby the high frequency quartz crystal oscillator (HF) is periodically switched on and off by means of an electronic switch (ES), in order to reduce the current consumption of the high frequency quartz crystal oscillator.
2. Oscillator according to claim 1, wherein said high frequency quartz crystal oscillator (HF) has an oscillating frequency of 4.19 MHz and said low frequency quartz crystal oscillator (NF) an oscillating frequency of 32 kHz.
3. Oscillator according to claim 1, wherein the means for providing a correction signal comprises a beat frequency generator (DFG).
4. Oscillator according to claim 3, wherein said beat frequency generator comprises an EXCLUSIVE-OR gate followed by an AND gate controlled by the frequency of said high frequency quartz crystal oscillator, the output of said AND gate being connected to a bidirectional counter (ZRZ) and the appropriate direction of counting of said bidirectional counter being determined by a logic circuit (LG. FF1, FFR).
5. Oscillator according to one of the claims 1 - 4, wherein a temperature compensating circuit is connected in front of said controllable frequenzy divider (PRFT).
EP80810066A 1979-03-09 1980-02-22 Oscillator with a low frequency quartz resonator Expired EP0015873B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH226779A CH620087B (en) 1979-03-09 1979-03-09 OSCILLATOR WITH A HIGH FREQUENCY QUARTZ RESONATOR.
CH2267/79 1979-03-09

Publications (3)

Publication Number Publication Date
EP0015873A1 EP0015873A1 (en) 1980-09-17
EP0015873B1 EP0015873B1 (en) 1983-04-13
EP0015873B2 true EP0015873B2 (en) 1986-06-11

Family

ID=4229764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80810066A Expired EP0015873B2 (en) 1979-03-09 1980-02-22 Oscillator with a low frequency quartz resonator

Country Status (5)

Country Link
US (1) US4344046A (en)
EP (1) EP0015873B2 (en)
JP (1) JPS55124311A (en)
CH (1) CH620087B (en)
DE (1) DE3062665D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973617A (en) * 1996-05-06 1999-10-26 Stmicroelectronics Gmbh Control circuit with adjustable standby oscillator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH626500B (en) * 1980-01-10 Suisse Horlogerie OSCILLATOR WITH DIGITAL TEMPERATURE COMPENSATION.
CH643106B (en) * 1980-11-26 Suisse Horlogerie TIME-GUARD INCLUDING A CHAIN OF DIVIDERS WITH ADJUSTABLE DIVISION RATIO.
US4443116A (en) * 1981-01-09 1984-04-17 Citizen Watch Company Limited Electronic timepiece
JPS5843187A (en) * 1981-09-03 1983-03-12 Fuji Electric Co Ltd Variable frequency oscillation system
US5428315A (en) * 1985-01-22 1995-06-27 The United States Of America As Represented By The Secreatry Of The Army Method of making radiation hardened quartz crystal oscillators
JPS6238605A (en) * 1985-08-13 1987-02-19 Nec Corp Crystal oscillator
US5179359A (en) * 1992-03-16 1993-01-12 Hughes Aircraft Company Digitally controlled frequency generator including a crystal oscillator
JPH10190568A (en) * 1996-12-27 1998-07-21 Matsushita Electric Ind Co Ltd Radio receiving device
US5844435A (en) * 1997-03-11 1998-12-01 Lucent Technologies Inc Low power, high accuracy clock circuit and method for integrated circuits
US5831485A (en) * 1997-09-04 1998-11-03 Tektronix, Inc. Method and apparatus for producing a temperature stable frequency using two oscillators
EP1117017B1 (en) * 2000-01-10 2009-09-09 ETA SA Manufacture Horlogère Suisse Means for generating a signal having a frequency that is substantially independent from temperature
US6889331B2 (en) * 2001-08-29 2005-05-03 Analog Devices, Inc. Dynamic voltage control method and apparatus
US7019680B2 (en) * 2003-04-25 2006-03-28 Jackson Gregory P Hand-held, continuously variable, remote controller
FR2854992B1 (en) * 2003-05-15 2005-07-01 Suisse Electronique Microtech ARCHITECTURE FOR TIME BASE
EP2525265B1 (en) * 2011-05-14 2015-06-03 Johnson Controls Automotive Electronics GmbH Method of operation of a timepiece device
CN104143961B (en) * 2014-07-25 2018-01-19 广东大普通信技术有限公司 A kind of constant-temperature crystal oscillator transmitting frequency calibration method, apparatus and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364439A (en) * 1966-10-07 1968-01-16 Tele Signal Corp Frequency corrected digital clock with memory in phase control loop
JPS5071362A (en) * 1973-10-24 1975-06-13
JPS6035637B2 (en) * 1975-06-05 1985-08-15 シチズン時計株式会社 electronic clock
GB1570659A (en) * 1976-06-30 1980-07-02 Suwa Seikosha Kk Electronic timepiece
JPS5388762A (en) * 1976-12-27 1978-08-04 Seiko Epson Corp Electronic watch with temperature compensation
JPS5428177A (en) * 1977-08-04 1979-03-02 Seiko Epson Corp Electronic watch
JPS5428178A (en) * 1977-08-04 1979-03-02 Seiko Epson Corp Electronic watch
JPS5550191A (en) * 1978-10-06 1980-04-11 Citizen Watch Co Ltd Electronic timepiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973617A (en) * 1996-05-06 1999-10-26 Stmicroelectronics Gmbh Control circuit with adjustable standby oscillator

Also Published As

Publication number Publication date
DE3062665D1 (en) 1983-05-19
CH620087GA3 (en) 1980-11-14
EP0015873A1 (en) 1980-09-17
EP0015873B1 (en) 1983-04-13
US4344046A (en) 1982-08-10
JPS55124311A (en) 1980-09-25
CH620087B (en)
JPS6347002B2 (en) 1988-09-20

Similar Documents

Publication Publication Date Title
EP0015873B2 (en) Oscillator with a low frequency quartz resonator
DE68916682T2 (en) Electronically corrected electronic watch.
DE3224838A1 (en) ELECTRONIC WATCH WITH A QUARTZ CRYSTAL OSCILLATOR CIRCUIT
DE60212012T2 (en) Clock circuit, which can suppress the phase shift during a switch from active clock to standby cycle
DE2749512C2 (en) Switching device for electronic clocks
DE2233800A1 (en) PULSE GENERATOR WITH ADJUSTABLE FREQUENCY
DE2621532A1 (en) METHOD FOR FREQUENCY CONTROL OF ELECTRIC VIBRATION SIGNALS AND NORMAL FREQUENCY CIRCUITS FOR ELECTRIC WATCHES
DE2318224C3 (en) Electronic watch with a time display correcting device
DE69520326T2 (en) Frequency generator with high stability
DE2633471C2 (en) Adjustable circuit arrangement for an electronic clock
DE2222936A1 (en) Timing device
DE2829131C3 (en) Electronic timepiece with mixed time setting
DE2716387C3 (en) Electronic clock
DE3604965C1 (en) Method and circuit arrangement for synchronizing a voltage-controlled oscillator, in particular a switching device
DE2700359C3 (en) Electronic clock
DE3135228C2 (en) Circuit arrangement for adjusting a pulse frequency of a quartz-controlled clock
DE2730366A1 (en) COMPENSATION CIRCUIT FOR WATCHES
DE2539224B2 (en) Procedure for automatically correcting the time display of a watch and clock to perform this procedure
EP0204851A2 (en) Electric watch
DE2021071C3 (en) Circuit for regulating the mean frequency of an oscillating system
DE69001009T2 (en) Electronic clockwork.
DE69407825T2 (en) Counter circuit for operating a quartz watch with time reset by "single touch" or by "fast" electrical time reset
EP0698968B1 (en) Process to synchronise the output frequencies of a clock generator
DE2651047A1 (en) ELECTRONIC CLOCK
DE4414581A1 (en) Radio time code clock synchronisation circuit for two periodic signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3062665

Country of ref document: DE

Date of ref document: 19830519

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840131

Year of fee payment: 5

26 Opposition filed

Opponent name: SIEMENS AG, BERLIN UND MUENCHEN

Effective date: 19840110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850221

Year of fee payment: 6

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19860611

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB NL

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST