EP0014208A1 - Edge-sealing of plate materials - Google Patents

Edge-sealing of plate materials

Info

Publication number
EP0014208A1
EP0014208A1 EP79900411A EP79900411A EP0014208A1 EP 0014208 A1 EP0014208 A1 EP 0014208A1 EP 79900411 A EP79900411 A EP 79900411A EP 79900411 A EP79900411 A EP 79900411A EP 0014208 A1 EP0014208 A1 EP 0014208A1
Authority
EP
European Patent Office
Prior art keywords
resin composition
edge
moisture
resistant
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP79900411A
Other languages
German (de)
French (fr)
Inventor
Robert Thor Nielsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0014208A1 publication Critical patent/EP0014208A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/74Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
    • B29C70/76Moulding on edges or extremities of the preformed part
    • B29C70/763Moulding on edges or extremities of the preformed part the edges being disposed in a substantial flat plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/045Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/06Unsaturated polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/14Mineral wool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/16Wood, e.g. woodboard, fibreboard, woodchips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2386/00Specific polymers obtained by polycondensation or polyaddition not provided for in a single one of index codes B32B2363/00 - B32B2383/00

Definitions

  • This invention relates to a method for sealing the edge of plate material as well as edge-sealed plate materials.
  • the method according to the invention for edge- sealing of a plate material comprises that the edge surfaces of said material are provided with a circum ⁇ ferential layer of a curable resin composition, said resin composition being of a nature which shrinks during curing, and that said layer of resin compo- . sition is cured to form a peripheral, coherent and fixed edge moulding.
  • edge-seal Materials which it is of particular interest to edge-seal according to the invention are plate mate- ' rials comprising an ordinarily non-moisture-resistant core or base material, f.ex. chipboard, the surfaces of which have been made moisture-resistant, f.ex. by coverage with a moisture-resistant, laminate.
  • f.ex. chipboard an ordinarily non-moisture-resistant core or base material
  • the surfaces of which have been made moisture-resistant, f.ex. by coverage with a moisture-resistant, laminate To en ⁇ sure that such plates having moisture-resistant surf- aces may be useful under moist conditions, it is of decisive importance that also the edge can be made moisture-resistant.
  • This invention provides a method for sealing the edge of plate materials, whereby there is obtained an edge-sealing having great resistance to moisture and changing weather conditions.
  • Plates having moisture and weather-resistant surfaces and having the edges sealed according to the invention have wide utility, such as for different types of structural and building materials with parti ⁇ cular requirements to moisture-resistance, such as building facings, shower rooms and the like, equipment for boats and ships, furniture for outdoor use, etc.
  • plates being edge-sealed according to the invention may also be used for purposes requiring no particular moisture-resistance, but where use of the edge-sealed plates is desirable , f.ex. for aesthe- tical reasons.
  • the resin composition used for the edge-sealing is of a nature which shrinks during curing. It has been found appropriate to use a resin composition with a shrinkage of preferably not less than 2%, preferably 2 to 10%, and most preferred 5 to 8%.
  • the plate material t the edge of which is to be sealed is provided on the edge surface with a circumferential layer of the resin composition which, if desired, may contain a filling material and/or a reinforcing material.
  • the sealing operation may take place for example by placing the plate material in a frame surrounding the edge, said frame serving as a mould for moulding the resin composition, then the mould is filled, pre ⁇ ferably under pressure, with a flowable resin compo ⁇ sition which is then cured, preferably under addition of heat so as to form a peripheral, coherent and fixed edge moulding around the edge of the plate material.
  • the edge-sealed plate can hereafter be withdrawn from the mould, part of the shrinkage possibly taking place by post-curing outside the mould. Although it is pre-, ferred to fill the mould under pressure, the filling operation may also take place by pouring or by means of vacuum.
  • Examples of plate materials which may be edge- sealed according to the invention are: chipboard, straw- board, flaxboard, boards of different types of fibres such as mineral wool fibres, plastic foam boards, etc.
  • the top and bottom surfaces of the plate materi ⁇ als may be made moisture-resistant for example by application, such as by glueing or welding, of moist ⁇ ure-resistant laminates, such as malamine laminate, plastic sheet, such as malamine sheet, possibly with decorative paper, application of lacquer film, f.ex. by stopping, filling or spraying or any other method known to those skilled in the art.
  • the edge moulding of the cured resin material may have numerous different profiles.
  • Figure 1 is a sectional view showing the edge portion of a plate element comprising a core material, such as for example chipboard, which on the two oppo ⁇ site surfaces is covered with moisture-resistant lami ⁇ nate sheets.
  • the core material terminates a certain distance from the edges of the laminate sheets, and the resin moulding is moulded in the space defined by the core material and the laminate sheets.
  • Figure 2 shows the above plate, partly from the top, and partly in sectional view.
  • the space de ⁇ fined by the core material and the laminate sheets may for example be provided by removing the corresponding part of the core material by milling.
  • a core material comprising a plast ⁇ ic foam material, f.ex. rigid polyurethane foam, may be moulded between possibly primed laminate sheets in a press, whereby strong solid steel profiles are in- serted between the marginal sections of the laminate sheets to a certain distance, for example 5 mm, from the border of the laminates.
  • a certain distance for example 5 mm
  • the desired gap or space which may then be sealed according to the invention. Nailing and screwing points may, if desired, be strengthened by inserting blocks of wood or similar bodies prior to the foaming operation.
  • Resins useful for the resin composition or mould ⁇ ing compound used according to the invention are in particular polyesters, but also other resins which shrink during curing may be used, such as for example cellulose acetate, epoxy resins, silicone rubbers, and acrylic resins.
  • polyester types may be mentioned un- saturated polyesters based on isophthalic acid, ortho- phthalic acid, bis-phenol and vinyl esters.
  • the curing of the polyester resin is initiated by adding an accelerator and a catalyst.
  • accelerator may for example be used an organic cobalt compound, such as cobaltoctoate, or an amine compound such as-dimethyl aniline
  • catalyst may for example be used methylethylketone peroxide or other peroxide compounds, such as benzoyl peroxide or tert.-butylperoxyethylhexanoate.
  • Polyesters useful in the moulding compound which is used for edge-sealing according to the invention typically shrink 5 to 8% by curing, and typically they have an elongation at rupture of 2.5 to 6%.
  • the amount and type of catalyst and accelerator is typically so selected that there is obtained a gel time of 1.5 to 8 minutes at 80 - 90°C and a potlife at room tempera-
  • the moulding compound may be dyed, in case of a polyester resin for example with a co ⁇ loured gel coat polyester and, furthermore, there may be added light filtering agents and fire-proofing agents.
  • edge-moulding and for example the laminate sheet, with which the plate material is cover- ed obtain the same light sensitivity.
  • light filtering agents may for example be used "TINUVIN 320" or "TINUVIN P" which are added in an amount of about 0.02 to about 0.05% based on the poly ⁇ ester resin.
  • fire-proofing agents may for example be used chlorparaffin and antimony trioxide, and polyester moulding compounds to which has been added 4% chlor ⁇ paraffin and 4% antimony trioxide may be character ⁇ ised as being self-extinguishing according to the standard of ASTM D 635-68.
  • the primer may be a poly ⁇ ester resin of the same type as used in the moulding compound whereto has been added styrene, and the primer may conveniently consist of two parts of polyester and one part of styrene whereto there is added about 2% of a commercial 10% dimethylaniline product as accelera ⁇ tor and about 1% of a commercial 50% benzoyl peroxide product as catalyst.
  • the priming is appropriately per ⁇ formed 1 to 3 hours before moulding of the resin compo ⁇ sition.
  • OMPI. /,, IPO -v, In the edge moulding may, if desired, be cast a layer of decorative paper by applying this ' to the mould with primer prior to the moulding operation.
  • Jotun Group which is an isophthalic acid polyester, is mixed with 2 parts coboltoctoate (1%) as accelerator. Next there is added 15 parts "NORPOL GI” (distributed by the Jotun Group) , which is a dyed gel coat based on isophthalic acid polyester, as well as 1.2 parts methylethyIketone peroxide (50%) as catalyst.
  • the resin composition thus obtained has a volume shrinkage on curing (ASTM D-2566) of 7 to 8% and a gel time at 20°C of 17-23 minutes. _
  • Example 1 is repeated, with the exception that dimethylaniline (10%) 'is substituted for the accelera ⁇ tor and benzoyl peroxide (50%) is substituted for the catalyst, and there is obtained a resin composition having a volume shrinkage on curing (ASTM D-2566) of 7 to 8% and a gel time at 20°C of 23 - 30 min.
  • the resin composition thus obtained has a gel time at 20°C of 25 - 32 min.
  • Example 1 is repeated, with the exception that 1 part dimethylaniline (10%) is substituted for the accelerator and 1.2 parts “TRIGONOX S-21” (distributed by Akzo Chemie) (95% tert.butylperoxy-2-ethylhexanoate) are substituted for the catalyst, and there is obtained * .
  • a resin composition having a volume shrinkage on curing " of 7 to 8% and a gel time at 80-90°C of 2 - 3 min.
  • a plate material is edge-sealed in laboratory scale as follows.
  • elamine laminate there is cut a circular test sample having a diameter of 190 mm.
  • the chipboard material is removed between the laminate sheets to a depth of 5 mm by milling, corresponding to the embodiment shown in the drawing.
  • the sample is set up in a mould encircling the edge of the plate.
  • the mould is filled with the resin composi ⁇ tion of example 1 after addition hereto of about 1 volume glass powder per 4 volumes and the moulding com pound is cured at room temperature (21-22°C) for 45 minutes. Then the sample is withdrawn from the mould and post-cured for at least 24 hours at room tempera ⁇ ture before testing.
  • test sample is subjected to accelerated test ⁇ ing in a climate box whith 100% relative humidity, whereby the temperature varies between room temperatur and 40°C according to the following 6 hours cycle: during half an hour heating from room temperature to 40°C, which is maintained for l,5h, with subsequent cooling during 0.5h to room temperature which is main ⁇ tained for 3.5h.

Abstract

Methode pour assurer une protection etanche des bords d'un materiau en plaque, en particulier d, un materiau en plaque comprenant un noyau ou materiau de base non resistant a l'humidite, dont les surfaces ont ete rendues resistantes a l'humidite, par exemple en les recouvrant avec un lamine resistant a l'humidite. La methode consiste a deposer sur les surfaces des bords dudit materiau une couche circonferentielle d'une composition de resine durcissable, ladite composition de resine subissant un retrait lors de son durcissement, et a laisser durcir ladite couche d'une composition de resine pour former un moulage fixe et coherent sur le pour tour des bords.Method for providing waterproof protection of the edges of a plate material, in particular of a plate material comprising a core or non-moisture-resistant base material, the surfaces of which have been made resistant to humidity, by example by covering them with a moisture resistant laminate. The method includes depositing on the edge surfaces of said material a circumferential layer of a curable resin composition, said resin composition being shrunk upon curing, and allowing said layer of a resin composition to cure to form a fixed and coherent molding around the edges.

Description

Title of invention: Edge-sealing of Plate Materials.
This invention relates to a method for sealing the edge of plate material as well as edge-sealed plate materials. The method according to the invention for edge- sealing of a plate material comprises that the edge surfaces of said material are provided with a circum¬ ferential layer of a curable resin composition, said resin composition being of a nature which shrinks during curing, and that said layer of resin compo- . sition is cured to form a peripheral, coherent and fixed edge moulding.
By using a resin composition which shrinks during curing there is obtained the particular ad- vantage that the edge moulding formed by the resin composition during curing contracts along the entire edge of the plate material to provide a sealed edge.
Materials which it is of particular interest to edge-seal according to the invention are plate mate- ' rials comprising an ordinarily non-moisture-resistant core or base material, f.ex. chipboard, the surfaces of which have been made moisture-resistant, f.ex. by coverage with a moisture-resistant, laminate. To en¬ sure that such plates having moisture-resistant surf- aces may be useful under moist conditions, it is of decisive importance that also the edge can be made moisture-resistant.
In the past such an edge has mainly been finished by glueing thereon plastic coatings, metal profiles or lists of solid wood. However, it has* turned out to be difficult to find glues which could resist moisture and provide sufficient sealing between the plate ele¬ ment and the edge finishing material, with the result that moisture could penetrate into the element and
OMPI
&*£ & result in swelling of the plate and loosening of the edge finish.
This invention provides a method for sealing the edge of plate materials, whereby there is obtained an edge-sealing having great resistance to moisture and changing weather conditions.
Plates having moisture and weather-resistant surfaces and having the edges sealed according to the invention have wide utility, such as for different types of structural and building materials with parti¬ cular requirements to moisture-resistance, such as building facings, shower rooms and the like, equipment for boats and ships, furniture for outdoor use, etc. Obviously, plates being edge-sealed according to the invention may also be used for purposes requiring no particular moisture-resistance, but where use of the edge-sealed plates is desirable , f.ex. for aesthe- tical reasons.
As mentioned above, the resin composition used for the edge-sealing is of a nature which shrinks during curing. It has been found appropriate to use a resin composition with a shrinkage of preferably not less than 2%, preferably 2 to 10%, and most preferred 5 to 8%. The plate material t the edge of which is to be sealed, is provided on the edge surface with a circumferential layer of the resin composition which, if desired, may contain a filling material and/or a reinforcing material.
The sealing operation may take place for example by placing the plate material in a frame surrounding the edge, said frame serving as a mould for moulding the resin composition, then the mould is filled, pre¬ ferably under pressure, with a flowable resin compo¬ sition which is then cured, preferably under addition of heat so as to form a peripheral, coherent and fixed edge moulding around the edge of the plate material.
O The edge-sealed plate can hereafter be withdrawn from the mould, part of the shrinkage possibly taking place by post-curing outside the mould. Although it is pre-, ferred to fill the mould under pressure, the filling operation may also take place by pouring or by means of vacuum.
Examples of plate materials which may be edge- sealed according to the invention are: chipboard, straw- board, flaxboard, boards of different types of fibres such as mineral wool fibres, plastic foam boards, etc. The top and bottom surfaces of the plate materi¬ als may be made moisture-resistant for example by application, such as by glueing or welding, of moist¬ ure-resistant laminates, such as malamine laminate, plastic sheet, such as malamine sheet, possibly with decorative paper, application of lacquer film, f.ex. by stopping, filling or spraying or any other method known to those skilled in the art.
The edge moulding of the cured resin material may have numerous different profiles.
A particularly preferred embodiment is shown in Figures 1 and 2 of the drawing.
Figure 1 is a sectional view showing the edge portion of a plate element comprising a core material, such as for example chipboard, which on the two oppo¬ site surfaces is covered with moisture-resistant lami¬ nate sheets. The core material terminates a certain distance from the edges of the laminate sheets, and the resin moulding is moulded in the space defined by the core material and the laminate sheets.
Figure 2 shows the above plate, partly from the top, and partly in sectional view. When the core mate¬ rial is chipboard or a similar product, the space de¬ fined by the core material and the laminate sheets may for example be provided by removing the corresponding part of the core material by milling.
PREA
OMPI IPO Alternatively, a core material comprising a plast¬ ic foam material, f.ex. rigid polyurethane foam, may be moulded between possibly primed laminate sheets in a press, whereby strong solid steel profiles are in- serted between the marginal sections of the laminate sheets to a certain distance, for example 5 mm, from the border of the laminates. After foaming and casting there is hereby provided the desired gap or space which may then be sealed according to the invention. Nailing and screwing points may, if desired, be strengthened by inserting blocks of wood or similar bodies prior to the foaming operation.
Resins useful for the resin composition or mould¬ ing compound used according to the invention are in particular polyesters, but also other resins which shrink during curing may be used, such as for example cellulose acetate, epoxy resins, silicone rubbers, and acrylic resins.
As examples of polyester types may be mentioned un- saturated polyesters based on isophthalic acid, ortho- phthalic acid, bis-phenol and vinyl esters.
The curing of the polyester resin is initiated by adding an accelerator and a catalyst.
As accelerator may for example be used an organic cobalt compound, such as cobaltoctoate, or an amine compound such as-dimethyl aniline, and as catalyst may for example be used methylethylketone peroxide or other peroxide compounds, such as benzoyl peroxide or tert.-butylperoxyethylhexanoate. Polyesters useful in the moulding compound which is used for edge-sealing according to the invention typically shrink 5 to 8% by curing, and typically they have an elongation at rupture of 2.5 to 6%. The amount and type of catalyst and accelerator is typically so selected that there is obtained a gel time of 1.5 to 8 minutes at 80 - 90°C and a potlife at room tempera-
i
O W ture (21 - 22°C) of at least 15 minutes.
If desired, the moulding compound may be dyed, in case of a polyester resin for example with a co¬ loured gel coat polyester and, furthermore, there may be added light filtering agents and fire-proofing agents.
By the addition of light filtering agents it is preferred that the edge-moulding and for example the laminate sheet, with which the plate material is cover- ed, obtain the same light sensitivity.
As light filtering agents may for example be used "TINUVIN 320" or "TINUVIN P" which are added in an amount of about 0.02 to about 0.05% based on the poly¬ ester resin. As fire-proofing agents may for example be used chlorparaffin and antimony trioxide, and polyester moulding compounds to which has been added 4% chlor¬ paraffin and 4% antimony trioxide may be character¬ ised as being self-extinguishing according to the standard of ASTM D 635-68.
Furthermore, it has been found appropriate to perform a priming of the free edge of the plate mate¬ rial prior to application of the polyester moulding compound. This prevents the inhibitive effect of free phenol groups which may be present on the side of phenol resin bonded laminate sheets not being covered with melamine as well as of ammonium salts in the urea resin in the plate material. The primer may be a poly¬ ester resin of the same type as used in the moulding compound whereto has been added styrene, and the primer may conveniently consist of two parts of polyester and one part of styrene whereto there is added about 2% of a commercial 10% dimethylaniline product as accelera¬ tor and about 1% of a commercial 50% benzoyl peroxide product as catalyst. The priming is appropriately per¬ formed 1 to 3 hours before moulding of the resin compo¬ sition.
TREX "
OMPI. /,, IPO -v, In the edge moulding may, if desired, be cast a layer of decorative paper by applying this'to the mould with primer prior to the moulding operation.
The present invention is further illustrated in the following examples, of which examples 1-4 illustrate the preparation of the resin composition, examples 5-6 illustrate the preparation of primer, and examples 7-8 illustrate the method according to the invention.
Example 1
100 parts "NORPOL 73-00" (distributed by the
Jotun Group) which is an isophthalic acid polyester, is mixed with 2 parts coboltoctoate (1%) as accelerator. Next there is added 15 parts "NORPOL GI" (distributed by the Jotun Group) , which is a dyed gel coat based on isophthalic acid polyester, as well as 1.2 parts methylethyIketone peroxide (50%) as catalyst.
The resin composition thus obtained has a volume shrinkage on curing (ASTM D-2566) of 7 to 8% and a gel time at 20°C of 17-23 minutes. _
Example 2
Example 1 is repeated, with the exception that dimethylaniline (10%) 'is substituted for the accelera¬ tor and benzoyl peroxide (50%) is substituted for the catalyst, and there is obtained a resin composition having a volume shrinkage on curing (ASTM D-2566) of 7 to 8% and a gel time at 20°C of 23 - 30 min.
Example 3
100 parts "DERAKANE 470-45" (distributed by the Jotun Group) which is a vinyl ester, is mixed with 1 part coboltoctoate (1%) and 0.5 parts dimethylaniline
(10%) . Next there is added 15 parts "NORPOL GI" as well as 2.3 parts methylethyIketone peroxide (50%)-.
The resin composition thus obtained has a gel time at 20°C of 25 - 32 min.
Example 4
Example 1 is repeated, with the exception that 1 part dimethylaniline (10%) is substituted for the accelerator and 1.2 parts "TRIGONOX S-21" (distributed by Akzo Chemie) (95% tert.butylperoxy-2-ethylhexanoate) are substituted for the catalyst, and there is obtained *. a resin composition having a volume shrinkage on curing " of 7 to 8% and a gel time at 80-90°C of 2 - 3 min.
Exemple 5
Preparation of Primer.
2 parts "NORPOL 73-00" 1 part styrene and
0.06 parts dimethylaniline (10%) are mixed and there is added ;
0.03 parts benzoyl peroxide (50%)..
Example 6
Similar to example 5 there is made a primer by replacing benzoyl peroxide by either cyclohexamon per¬ oxide or acetyl acetone peroxide.
Example 7
A plate material is edge-sealed in laboratory scale as follows.
From a 22 mm chipboard plate bonded with urea resin and covered on both surfaces with a water.proof
- θRE OMPI Λ. IPO
^J^flATlQ 8
elamine laminate there is cut a circular test sample having a diameter of 190 mm. Along the periphery of th test sample the chipboard material is removed between the laminate sheets to a depth of 5 mm by milling, corresponding to the embodiment shown in the drawing.
On the surfaces opened by milling there is applie the primer made in example 5, and after 1 to 3 hours, the sample is set up in a mould encircling the edge of the plate. The mould is filled with the resin composi¬ tion of example 1 after addition hereto of about 1 volume glass powder per 4 volumes and the moulding com pound is cured at room temperature (21-22°C) for 45 minutes. Then the sample is withdrawn from the mould and post-cured for at least 24 hours at room tempera¬ ture before testing.
The test sample is subjected to accelerated test¬ ing in a climate box whith 100% relative humidity, whereby the temperature varies between room temperatur and 40°C according to the following 6 hours cycle: during half an hour heating from room temperature to 40°C, which is maintained for l,5h, with subsequent cooling during 0.5h to room temperature which is main¬ tained for 3.5h.
After_ 50 such 6h cycles the edge moulding is stil coherently fixed to the plate material, and there is thus obtained an effective sealing of the edge against moisture.
Exemple 8
Similar results are obtained for a plate material which is edge-sealed in similar manner in a pilot plan by using a resin composition to which there has been added 1 volume glass powder per 2 volumes polyester, t moulding compound being filled into the mould by means of a piston pump and cured by heating of the mould to 80-90°C for 5 to 7 minutes and subsequent post-curing for at least 24 hours at room temperature outside the mo

Claims

Claims :-
1. A method for edge-sealing of a plate material t characterized in comprising that the edge surfaces of said material are provided with a circumferential layer of a curable resin composition, said resin composition being of a nature which shrinks during curing and that said layer of resin composition is cured to form a peri¬ pheral coherent and fixed edge moulding.
2. A method according to claim le characterized in using a resin composition with a shrinkage of not less - than 2%.
3. A method according to claim 2,.. characterized in using a resin composition with a shrinkage of 2 to 10%.
4. A method according to claim 3, characterized in using a resin composition with a shrinkage of 5 to 8%.
5. A method according to claim 1, characterized in using a resin composition comprising a resin selected from the group consisting of polyesters, cellulose acetate, epoxy resins, silicone rubbers, and acrylic resins.
6. A method according to claim 5, characterized in using a resin composition comprising a polyester resin.
7. A method according to claim 6, characterized in that the polyester is selected from the group consisting of unsaturated polyesters based on isophthalic acid, ortho- phthalic acid, bis-phenol, and vinyl esters.
8. A method accordin- to claim 6 or 7, characterized in that the polyester resin has an elongation at rupture of 2.5 to 6%.
9. A method according to claims 6, 7 or 8, characterized in that the polyester resin is initiated by adding an accelerator and a catalyst to provide a gel time of 1.5 to 8 minutes at 80-90°C and a potlife at room temperature (21-22°C) of at least 15 minutes.
10. A method according to claim 1, characterized in using a resin composition containing a filling ma¬ terial and/or a reinforcing material.
11. A method according to claim 1, characterized in that the plate material comprises an ordinarily non-
"" moisture-resistant core or base material, the surfaces of which have been made moisture-resistant.
12. A method according to claim 11, characterized in that the surfaces have been made moisture-resistant by application of moisture-resistant laminates.
13. A method according to claim 12, characterized in that the core material terminates at a certain dis¬ tance from the edges of the laminate sheets providing a gap into which the resin composition is moulded.
14. A method according to claim 11, characterized in priming the free edge of the plate material prior to moulding the resin composition.
15. The plate material edge-sealed in accordance with any of the preceding claims.
EP79900411A 1978-04-08 1979-11-08 Edge-sealing of plate materials Withdrawn EP0014208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1385378 1978-04-08
GB1385378 1978-04-08

Publications (1)

Publication Number Publication Date
EP0014208A1 true EP0014208A1 (en) 1980-08-20

Family

ID=10030564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79900411A Withdrawn EP0014208A1 (en) 1978-04-08 1979-11-08 Edge-sealing of plate materials

Country Status (7)

Country Link
EP (1) EP0014208A1 (en)
JP (1) JPS55500259A (en)
DE (1) DE2945434A1 (en)
DK (1) DK523079A (en)
GB (1) GB2035898A (en)
SE (1) SE7910043L (en)
WO (1) WO1979000904A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175820B (en) * 1985-12-20 1989-10-11 Strand Furniture Limited Plastics laminated worktop
IT1318513B1 (en) * 2000-05-11 2003-08-27 Pozzi Arosio Ind Vernici Speci METHOD FOR PRODUCING COMPOSITE MANUFACTURES AND COMPOSITE MANUFACTURE OBTAINED.
ITMI20012064A1 (en) * 2001-10-05 2003-04-05 Sacea Spa PROCESS FOR THE BEVELING OF WOOD CHIPBOARD PANELS OR SIMILAR MATERIAL AND BEVELED PANELS SO OBTAINED
GB2418174B (en) * 2003-09-19 2008-12-24 Kingspan Res & Dev Ltd A composite insulating panel and its method of manufacture
DE102015219108A1 (en) 2015-10-02 2017-04-06 Homag Gmbh Method and device for narrow-surface coating
CN111945975A (en) * 2020-06-17 2020-11-17 程建平 Manufacturing method and structure of melamine veneer without seam edge
CN113083646B (en) * 2021-04-06 2022-09-16 嵊州市艺匠木艺股份有限公司 Method for coating paint on side surface of aluminum-wood composite board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388651A (en) * 1966-01-28 1968-06-18 Top Flite Models Inc Covering for airplanes and method for applying same
SE381071B (en) * 1974-01-11 1975-11-24 Casco Ab COATING AND SEALING OF SPANISH EDGES
SE396199B (en) * 1975-03-11 1977-09-12 Casco Ab KIT FOR COATING THE EDGES OF SPANGE AND WOOD FIBER SHEETS AND SIMILAR CELLULOSA-BASED SHAPE BODIES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO7900904A1 *

Also Published As

Publication number Publication date
SE7910043L (en) 1979-12-06
JPS55500259A (en) 1980-05-01
DE2945434A1 (en) 1980-12-11
DK523079A (en) 1979-12-07
GB2035898A (en) 1980-06-25
WO1979000904A1 (en) 1979-11-15

Similar Documents

Publication Publication Date Title
EP1097278B1 (en) Compression molded door assembly
US6226958B1 (en) Insulated door assembly with low thermal deflection
AU621884B2 (en) Foam composite and method of forming same
EP0157681B1 (en) Polycarbonate molded articles having excellent weather resistance and abrasion resistance and a process for the preparation thereof
US6113199A (en) Laboratory countertop
US4364879A (en) Method for forming a coated article including ultra-violet radiation of the coating
EP0014208A1 (en) Edge-sealing of plate materials
US5688602A (en) Method for producing laminated articles
CA2246181A1 (en) Improved insulated door assembly with low thermal deflection
US6200686B1 (en) Unsaturated polyester resin composition, molding using the same, and production process thereof
US4729919A (en) Protective barrier coating for styrofoam using an unsaturated thermosettable resin composition
US4562103A (en) Weather resistant boards
US4690848A (en) Weather-resistant lignocellulose or other organic or inorganic material boards and process for their production
WO1999019153A1 (en) Compression molded, inserted thermoset door light frames, plant-on moldings, and decorative panels
EP0727304B1 (en) Method of making a structural element and the element so made
CA2295816A1 (en) Panel-shaped material
GB1563410A (en) Process for manufacturing moulded plastics artefacts
KR20180021523A (en) Reinforced composition for corrugated board and corrugated board the same
AU732825B2 (en) Method for producing laminated articles
TW202112959A (en) Eco-friendly polyester molding composition and manufacturing method of plastic board
AU2003203706B2 (en) Entry Way Door Members
US20070277462A1 (en) Composite Board
EA046255B1 (en) METHOD FOR MANUFACTURING MOISTURE-RESISTANT FURNITURE OR CONSTRUCTION PART
EP0912343A1 (en) Method for producing laminated articles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): FR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19810801

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NIELSEN, ROBERT THOR