EP0012914B1 - Coolant transfer coupling for an electric machine with superconducting rotor winding - Google Patents

Coolant transfer coupling for an electric machine with superconducting rotor winding Download PDF

Info

Publication number
EP0012914B1
EP0012914B1 EP79105068A EP79105068A EP0012914B1 EP 0012914 B1 EP0012914 B1 EP 0012914B1 EP 79105068 A EP79105068 A EP 79105068A EP 79105068 A EP79105068 A EP 79105068A EP 0012914 B1 EP0012914 B1 EP 0012914B1
Authority
EP
European Patent Office
Prior art keywords
sealing
coolant
connection head
rotating
sealing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79105068A
Other languages
German (de)
French (fr)
Other versions
EP0012914A3 (en
EP0012914A2 (en
Inventor
Dieter Dipl.-Ing. Kullmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0012914A2 publication Critical patent/EP0012914A2/en
Publication of EP0012914A3 publication Critical patent/EP0012914A3/en
Application granted granted Critical
Publication of EP0012914B1 publication Critical patent/EP0012914B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/185Adjustable joints, joints allowing movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S285/00Pipe joints or couplings
    • Y10S285/904Cryogenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/876Electrical generator or motor structure
    • Y10S505/877Rotary dynamoelectric type
    • Y10S505/878Rotary dynamoelectric type with cooling

Definitions

  • the invention relates to a coolant connection head for an electrical machine, which contains a rotor rotatably mounted about an axis with a superconducting winding to be frozen by a coolant, with a device for feeding the coolant from a non-rotating coolant line part into a rotating, with the Runner-connected coolant line part, which contains at least one sealing device which serves to seal an intermediate space formed between these line parts, and which in the operating state of the machine. predetermined leakage rate dependent on the prevailing pressure difference.
  • the couplings must have rotating seals with relatively low friction, which on the one hand seal the coolant, in particular the liquid helium, against the outside and on the other hand separate the input and output sides within the rotating system.
  • the sealing devices required for this must also allow radial and axial shaft play of the rotor and work trouble-free over longer periods, for example a few years.
  • the known coolant connection head contains a corresponding helium coupling. It is provided with a hollow cylindrical, stationary housing, into the interior of which a tubular feed line protrudes. The open end piece of this feed pipe is surrounded concentrically by an end piece of a conduit pipe which is firmly connected to the rotating parts of the machine, so that an annular space is formed between these two pipes. The concentric position of the two pipe sections within the housing is ensured by means of bearings provided for this purpose. In order to prevent the fed-in helium from escaping to the outside via the intermediate space, a seal with a predetermined gap is provided, for example (see FIG. 3).
  • the gap is dimensioned such that contact between rotating and stationary parts of the transfer device is avoided in the event of radial and axial vibrations of the rotor shaft, so as to prevent frictional heat and wear of sealing parts. Since, in general, the seal gap cannot be made arbitrarily small, a certain leakage rate at the seal has to be accepted.
  • FR-A-1 350 388 shows a sealing device with which a water circuit for the rotor of a turbogenerator is to be sealed from the outside air.
  • a further sealing device comes into operation, in which a sealing gap existing between the associated sealing surfaces is closed.
  • This seal has u. a. Rubber beads, which is why the seal is unsuitable from the outset for sealing a cryogenic coolant, as is required for cooling superconducting windings.
  • the object of the present invention is to provide the coolant connection head of the type mentioned at the beginning with a device for transferring tion of a coolant from non-rotating to rotating coolant line parts so that the coolant losses at the sealing devices of its transfer device are relatively small during the cooling phase of the machine.
  • At least one further sealing device is provided for sealing the intermediate space, in which an existing sealing gap between the associated sealing surfaces can be adjusted from the outside in such a way that during the cooling phase of the machine at a relatively low speed and compared to the rated operation relatively high coolant throughput, a smallest sealing gap is set with a significantly increased flow resistance compared to the rest of the sealing device, which sealing gap is widened to a predetermined level before the transition to nominal operation.
  • the advantages of this design of the coolant connection head are, in particular, that during the cooling phase of the winding the sealing gap of the further sealing device can be kept so small that a correspondingly good sealing of the coolant takes place on it.
  • the rotor of the machine is generally kept at a relatively low speed at most, so that only correspondingly low friction losses and wear devices can occur.
  • the sealing gap of the further sealing device can be widened again to a predetermined level. The sealing on the transfer device then takes place essentially only on the first sealing device, and the rotor of the machine can easily be brought to the nominal speed of the operating state.
  • the coolant line parts contain concentrically arranged, partially enclosing pipe end pieces and the further sealing device is provided on the end face of one of the pipe end pieces.
  • the additional sealing device with its adjustable sealing gap can be arranged in a particularly simple manner.
  • the further sealing device can advantageously contain a non-rotating sealing part which contains the non-rotating sealing part which is mechanically connected to the non-rotating pipe end piece, and this pipe end piece can be displaceable in the axial direction within the non-rotating coolant line part.
  • the sealing gap formed between the non-rotating sealing part and a rotating sealing part can thus be adjusted in a simple manner with the aid of a corresponding displacement of the non-rotating pipe end piece.
  • the further sealing device can also advantageously be a mechanical seal.
  • Such seals are simple in construction and their sealing gap can be easily adjusted by choosing an appropriate distance between their sealing parts.
  • a coolant connection head for the machine is illustrated as a longitudinal section.
  • This machine which is not shown in more detail in the figure, can in particular be a turbogenerator which contains a rotor with a superconducting field winding to be deep-frozen, which is surrounded by at least one co-rotating damper shield, which is generally also to be cooled. To reduce the heat input into the frozen winding, it is also surrounded by vacuum spaces.
  • the entire rotor can be enclosed in a rotating vacuum housing (cf. DE-A1-2339772 and "Siemens Research and Development Reports", Volume 5 (1976), No. 1, pages 10 to 16). The rotor can also rotate in a vacuum room.
  • the coolant connection head of the machine which is only partially shown in the figure, contains a fixed head part 2, into which the lateral end piece 3 of a shaft of the rotor rotatably mounted about an axis of rotation 4 projects.
  • This shaft end piece is rigidly connected to the rotor (not shown in the figure) and is generally located on the side of the machine which is opposite the drive side.
  • the shaft end piece 3 contains an outer hollow cylinder 6 at room temperature, which is arranged concentrically around an inner hollow cylinder 7, the end piece 8 of which projects a predetermined distance from the open end face 9 of the outer hollow cylinder 6.
  • two double tubes 11 and 12 are arranged concentrically so that an outer ring channel 13 between the outer double tube 11 and the outer hollow cylinder 6 and an inner ring channel 14 between the inner double tube 12 and the inner hollow cylinder 7 are trained.
  • the two double tubes 11 and 12 delimit an annular space 16 radially outward. They each consist of two concentrically arranged hollow cylinders, which are sealed against one another on their end faces in a vacuum-tight manner.
  • the inner spaces 17 and 18 thus formed between the two hollow cylinders of each double tube are for the sake of thermal insulation evacuated.
  • connection head part 2 also contains a substantially hollow cylindrical, non-rotating outer housing 20, which encloses the end of the rotating outer hollow cylinder 6 of the shaft end piece 3 to a certain extent in the axial direction and is supported on this hollow cylinder 6 via a main bearing 22.
  • connection head part 2 contains an inner, essentially hollow cylindrical housing part 23 which concentrically surrounds the end piece 8 of the inner, rotating hollow cylinder 7 of the shaft end piece 3 and which is supported on the end piece 8 via a sub-bearing 25.
  • This housing part 23 is rigidly connected to the outer housing 20 via an essentially annular disk-shaped end part 26.
  • connection head part 2 delimits an interior lying essentially in front of the end face 9 of the outer hollow cylinder 6 of the shaft end piece 3 within the connection head part 2.
  • a sealing system 29 is provided for the rotating hollow cylinder 6.
  • the inner housing part 23 is also sealed off from the end piece 8 of the inner hollow cylinder 7 by means of a sealing system 30.
  • sealing systems can be, for example, ferrofluidic seals, as are known from DE-A1-2 034 213.
  • connection head part 2 the supply and discharge of the coolant required for cooling the superconducting excitation winding, which is generally helium, is provided into and from the shaft section 3 of the rotor.
  • liquid helium A is introduced into the annular space 16 between the double tubes 11 and 12 via a feed device 32.
  • This device contains two double pipe pieces 33 and 34 protruding into the annular space 16 and arranged concentrically to the axis of rotation 4, between which an annular feed channel 35 is formed.
  • This axially parallel feed channel is connected at its end projecting into the interior of the connection head part 2 to a radially extending feed channel 37 which is formed between two annular disk-shaped, double-walled line parts 38 and 39.
  • This radial feed channel 37 is connected to a further feed channel 41, which runs parallel to the axis and whose distance from the axis of rotation 4 is greater than the corresponding distance of the feed channel 35.
  • This feed channel 41 which is annular in cross section, is formed between two double pipe pieces 42 and 43 which protrude from the end part 26 of the connection head part 2 provided with a corresponding, sealed passage 44 and which are provided with a connection flange 45, to which by means of a connection not shown in the figure Connection line can be connected to a refrigeration device supplying the liquid helium A. Since all helium-carrying parts of the feed device 32 are double-walled, the spaces 47 and 48 between the adjacent walls can be evacuated to reduce the heat input to the liquid helium A.
  • the supply device 32 divides the interior space formed in the connection head part 2 and delimited by the components 20, 23, 26 into two separate subspaces 50 and 51. If necessary, however, these two subspaces can also be connected to one another, for example by providing, instead of the two double-walled line parts 38 and 39 of the feed device 32, a plurality of radially extending, mutually spaced-apart double pipe pieces.
  • annular sealing device 56 or 57 is provided in order to prevent a direct backflow of the liquid helium A fed into the annular space 16 into the partial spaces 50 and 51 of the interior of the connection head part 2.
  • These sealing devices which are only indicated in the figure, can be, for example, labyrinth seals or lip seals.
  • the helium which is heated in the rotor of the machine and is labeled A 3 and A 4, is also fed into these interior spaces 50 and 51 via the ring channels 13 and 14 and mixes there with the helium A and A 2 , respectively.
  • a flange 59 is provided on the outer housing 20 of the connection head part 2.
  • the helium mixture A 2 , A 4 is removed from the interior 51 via a flange 60 in the end part 26 of the connection head part 2
  • Return lines for the coolant are connected to these flanges.
  • the inner hollow cylinder 7 of the shaft end piece 3 serves as a rotating evacuation tube.
  • the end piece 8 of this hollow cylinder therefore opens into a sub-chamber 62 of the connection head part 2 which is close to the axis and which is formed by the inner housing part 23, the end part 26 and the secondary bearing 25 or the Sealing system 30 is limited.
  • the end part 26 is provided with a corresponding connecting flange 63, to which an external evacuation device can be connected.
  • the sealing system 30 located between the hollow cylindrical housing part 23 and the end piece 8 of the evacuation tube 7 serves for the vacuum-tight sealing of the subspace 62 with respect to the interior 51 of the connection head part 2.
  • thermosiphon loops For cooling the excitation winding of the rotor of the machine is in the operating state, ie at a predetermined speed of the cooled rotor of for example 50 sec-I, the so-called self-pumping effect advantageous in thermosiphon loops are utilized.
  • an appropriately designed cooling system must be provided with heat exchangers that are located over a large radius. The coolant emerging from the excitation winding enters this heat exchanger cold and warms up there to temperatures which are, for example, between about 100 and 300 K, before it is then returned to a smaller radius and discharged to the outside via the coolant transfer device of the connection head becomes.
  • the pressure drop in this heat exchanger must remain limited to values below approximately 40 mbar so that the self-pumping effect leads to a desired temperature reduction in the field winding.
  • the coolant connection head is therefore provided with further sealing devices which are intended to be effective during the cooling phase of the rotor.
  • the annular space 53 containing the sealing device 56 and the annular space 54 containing the sealing device 57 are each additionally sealed with a mechanical seal 65 or 66 with respect to the interior 50 or 51.
  • These mechanical seals are advantageously designed in such a way that they have sealing surfaces or sealing gaps located in planes that are radial with respect to the axis of rotation. They therefore each contain an annular disk-shaped component 67 or 68, which extends in the radial direction and slidably abuts the annular disk-shaped end face of the double tube 11 or the double tube 12.
  • the mechanical seals 65 and 66 are advantageously fastened to the helium supply device 32.
  • This feed device is designed to be displaceable in the direction parallel to the axis, so that it can be used to set the sealing gaps formed between the mechanical seals and the corresponding double pipes.
  • the double pipe pieces 42 and 43 of the feed device 32 are therefore slidably guided through the sealed passage 44 of the end part 26.
  • O-rings 71 and 72 are used between the double pipe pieces and the front part.
  • the helium supply apparatus is then so far axially pushed 32 to the connection head portion 2 in the direction of the rotor, until the annular members 67 and 68 of the mechanical seals 65 and 66 lie sealingly on the end faces of the double tubes 11 and 12, respectively.
  • appropriately preloaded, bellows 74 and 75 arranged concentrically to one another can serve between the end part 26 and the connecting flange 45.
  • the travel of the bellows can be limited to a predetermined, minimum length L via a stop 76. Since the cooling process takes place at a low rotor speed, the mechanical seals are not subject to any particular wear. Their sealing force is also maintained during the cooling phase with the aid of bellows 74 and 75, shrinkage effects due to the cooling being compensated for.
  • the feed device 32 with its mechanical seals 65 and 66 is then retracted so far in the axial direction, for example by correspondingly adjusting the stop 76 that a predetermined, minimum distance between the sealing surfaces on the mechanical seals 65 and 66 is maintained.
  • the throughput quantity of coolant is then already reduced to a lower, stationary final value, and the leakage losses at the sealing devices 56 and 57 remain tolerable.
  • the mechanical seal 65 is rigidly attached to the double tube 33, while the mechanical seal 66 on the double tube 34 is displaceable to a predetermined extent.
  • a prestressed bellows 78 which extends in the axial direction, is used between the annular disk-shaped line part 39 of the feed device 32 and the annular disk-shaped component 68 of the seal 66. This bellows also serves to seal the mechanical seal 66 with respect to the double pipe 34 Bellows or the advancement of the seal 66 on the double tube 12, a stop element 79 is attached to the double tube 12.
  • the coolant A is fed at a predetermined distance from the axis of rotation in the direction parallel to the axis from a stationary part into a rotating line.
  • additional adjustable sealing devices can also be provided for a coolant connection head with a central coolant feed.
  • annular spaces 53 and 54 were to be additionally sealed with a single sealing device 65 and 66 during the cooling phase. If necessary, however, several such sealing devices can also be provided for sealing each annular space.
  • the coolant connection head according to the invention is particularly suitable for runners with superconducting excitation windings, for the cooling of which the self-pumping effect is to be used and whose additional sealing devices have largely contactless gaps between rotating and non-rotating parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

Die Erfindung bezieht sich auf einen Kühlmittelanschlußkopf für eine elektrische Maschine, die einen um eine Achse drehbar gelagerten Läufer mit einer von einem Kühlmittel tiefzukühlenden, supraleitenden Wicklung enthält, mit einer Vorrichtung zur Einspeisung des Kühlmittels aus einem nicht-rotierenden Kühlmittelleitungsteil in einen rotierenden, mit dem Läufer verbundenen Kühlmittelleitungsteil, die mindestens eine Dichtungseinrichtung enthält, welche zur Abdichtung eines zwischen diesen Leitungsteilen ausgebildeten Zwischenraumes dient, und die im Betriebszustand der Maschine eine . vorbestimmte, von der an ihr herrschenden Druckdifferenz abhängige Leckrate zuläßt.The invention relates to a coolant connection head for an electrical machine, which contains a rotor rotatably mounted about an axis with a superconducting winding to be frozen by a coolant, with a device for feeding the coolant from a non-rotating coolant line part into a rotating, with the Runner-connected coolant line part, which contains at least one sealing device which serves to seal an intermediate space formed between these line parts, and which in the operating state of the machine. predetermined leakage rate dependent on the prevailing pressure difference.

Derartige Kühlmittelanschlußköpfe sind aus der Literaturstelle »Advances in Cryogenic Engineering«, Vol. 23, New York 1978, Seiten 125 bis 131 und aus US-A-3 991 588 bekannt.Such coolant connection heads are known from the literature "Advances in Cryogenic Engineering", vol. 23, New York 1978, pages 125 to 131 and from US-A-3 991 588.

Zur Kühlung einer supraleitenden Wicklung im Läufer einer elektrischen Maschine, insbesondere eines Turbogenerators, müssen Vorrichtungen zur Überleitung eines Kühlmittels zwischen dem Läufer und feststehenden Anschlußleitungen vorgesehen werden. Über eine solche Vorrichtung wird das Kühlmittel, beispielsweise flüssiges oder gasförmiges Helium, der Wicklung im Läufer zugeführt bzw. aus diesem wieder abgeleitet. Die Maschine ist deshalb mit einem Anschlußkopf versehen, der eine entsprechende Überleitungsvorrichtung enthält. Die Gestaltung dieser Vorrichtung, die auch als Kupplung bezeichnet wird, ist vor allem im Hinblick auf möglichst geringe thermische Verluste des Kühlmittelkreislaufs für die supraleitende Wicklung und im Hinblick auf kleine Leckraten des Kühlmittels besonders schwierig. Die Kupplungen müssen nämlich rotierende Dichtungen mit verhältnismäßig geringer Reibung haben, die das Kühlmittel, insbesondere das flüssige Helium, einerseits gegen den Außenraum abdichten und die andererseits innerhalb des rotierenden Systems die Eingangs- von der Ausgangsseite trennen. Die hierfür erforderlichen Dichtungseinrichtungen müssen darüber hinaus radiale und axiale Wellenspiele des Läufers zulassen und über längere Zeiten, beispielsweise einige Jahre, störungsfrei arbeiten.To cool a superconducting winding in the rotor of an electrical machine, in particular a turbogenerator, devices for transferring a coolant between the rotor and fixed connecting lines must be provided. Via such a device, the coolant, for example liquid or gaseous helium, is fed to the winding in the rotor or is removed therefrom. The machine is therefore provided with a connection head which contains a corresponding transfer device. The design of this device, which is also referred to as a coupling, is particularly difficult, particularly with regard to the lowest possible thermal losses of the coolant circuit for the superconducting winding and with regard to small leakage rates of the coolant. The couplings must have rotating seals with relatively low friction, which on the one hand seal the coolant, in particular the liquid helium, against the outside and on the other hand separate the input and output sides within the rotating system. The sealing devices required for this must also allow radial and axial shaft play of the rotor and work trouble-free over longer periods, for example a few years.

Der bekannte Kühlmittelanschlußkopf enthält eine entsprechende Helium-Kupplung. Er ist mit einem hohlzylindrischen, ortsfesten Gehäuse versehen, in dessen Innenraum eine rohrförmige Zuführungsleitung hineinragt. Das offene Endstück dieses Zuführungsrohres ist von einem Endstück eines mit den rotierenden Teilen der Maschine fest verbundenen Leitungsrohres konzentrisch umgeben, so daß zwischen diesen beiden Rohren ein ringförmiger Zwischenraum ausgebildet ist. Die konzentrische Lage der beiden Rohrstücke innerhalb des Gehäuses ist über hierfür vorgesehene Läger gewährleistet. Um ein Austreten des eingespeisten Heliums über den Zwischenraum nach außen zu verhindern, ist beispielsweise eine Dichtung mit einem vorbestimmten Spalt vorgesehen (vgl. F i g. 3). Der Spalt ist dabei so bemessen, daß bei radialen und axialen Schwingungen der Läuferwelle eine Berührung zwischen rotierenden und feststehenden Teilen der Überleitungsvorrichtung vermieden wird, um so Reibungswärmen und Verschleiß von Dichtungsteilen auszuschließen. Da im allgemeinen der Dichtungsspalt nicht beliebig klein gemacht werden kann, muß jedoch eine gewisse Leckrate an der Dichtung in Kauf genommen werden.The known coolant connection head contains a corresponding helium coupling. It is provided with a hollow cylindrical, stationary housing, into the interior of which a tubular feed line protrudes. The open end piece of this feed pipe is surrounded concentrically by an end piece of a conduit pipe which is firmly connected to the rotating parts of the machine, so that an annular space is formed between these two pipes. The concentric position of the two pipe sections within the housing is ensured by means of bearings provided for this purpose. In order to prevent the fed-in helium from escaping to the outside via the intermediate space, a seal with a predetermined gap is provided, for example (see FIG. 3). The gap is dimensioned such that contact between rotating and stationary parts of the transfer device is avoided in the event of radial and axial vibrations of the rotor shaft, so as to prevent frictional heat and wear of sealing parts. Since, in general, the seal gap cannot be made arbitrarily small, a certain leakage rate at the seal has to be accepted.

Diese Leckraten an Dichtungseinrichtungen mit Spalten zwischen rotierenden und nicht-rotierenden, weitgehend berührungslosen Dichtungsteilen können dann verhältnismäßig klein gehalten werden, wenn für das Kühlsystem der Wicklung der Läufer ein sogenannter Selbstpump-Effekt in Thermosyphon-Schleifen ausgenutzt wird (vgl. die Zeitschrift »Cryogenics«, Juli 1977, Seiten 429 bis 433 und die DE-A1-2 530 100). Dann ist nämlich das Kühlmittel nur mit einem verhältnismäßig geringen Überdruck an der Überleitungsvorrichtung in den Läufer einzuspeisen, so daß an den Dichtungseinrichtungen ein entsprechend geringer Druckunterschied herrscht. Dies trifft jedoch nur für das Kühlsystem im abgekühlten Zustand zu. Während der Abkühlphase der Wicklung und insbesondere während der Anfangsphase ist nämlich der Strömungswiderstand des Kühlsystems noch sehr hoch. Da zur Realisierung von akzeptablen Abkühlzeiten erheblich höhere Kühlmitteldurchsatzmengen benötigt werden als im abgekühlten Zustand, d. h. das Kühlmittel während dieser Zeiten mit entsprechend höherem Druck in das Kühlsystem eingeleitet werden muß, ergeben sich während dieser Abkühlphase an diesen Dichtungseinrichtungen entsprechend große Leckverluste an Kühlmittel.These leak rates on sealing devices with gaps between rotating and non-rotating, largely non-contact sealing parts can be kept relatively small if a so-called self-pumping effect in thermosiphon loops is used for the cooling system of the winding of the rotor (see the magazine "Cryogenics" , July 1977, pages 429 to 433 and DE-A1-2 530 100). Then the coolant is only to be fed into the rotor with a relatively low overpressure at the transfer device, so that there is a correspondingly small pressure difference at the sealing devices. However, this only applies to the cooling system in the cooled state. During the cooling phase of the winding and especially during the initial phase, the flow resistance of the cooling system is still very high. Since significantly higher coolant throughput rates are required to achieve acceptable cooling times than in the cooled state, i. H. the coolant must be introduced into the cooling system at a correspondingly higher pressure during these times, correspondingly large leakage losses of coolant occur during this cooling phase at these sealing devices.

Es ist der FR-A-1 350 388 eine Dichtungseinrichtung zu entnehmen, mit der ein Wasserkreislauf für den Rotor eines Turbogenerators gegenüber der Außenluft abgedichtet werden soll. Bei nachlassendem Wasserdruck tritt dabei eine weitere Dichtungseinrichtung in Funktion, bei der ein zwischen den zugehörigen Dichtungsflächen vorhandener Dichtungsspalt geschlossen wird. Zweck dieser bekannten Maßnahme ist es, auch im Stillstand der Maschine eine vollständige Dichtheit des Kühlkreislaufes gegen die äußere Atmosphäre zu erzielen und ein Evakuieren des Kühlkreislaufes zu ermöglichen. Diese Dichtung weist u. a. Kautschukwülste auf, weshalb die Dichtung von vornherein ungeeignet für eine Abdichtung eines kryogenen Kühlmittels ist, wie es zur Kühlung von supraleitenden Wicklungen benötigt wird.FR-A-1 350 388 shows a sealing device with which a water circuit for the rotor of a turbogenerator is to be sealed from the outside air. When the water pressure drops, a further sealing device comes into operation, in which a sealing gap existing between the associated sealing surfaces is closed. The purpose of this known measure is to achieve complete tightness of the cooling circuit against the external atmosphere even when the machine is at a standstill and to enable the cooling circuit to be evacuated. This seal has u. a. Rubber beads, which is why the seal is unsuitable from the outset for sealing a cryogenic coolant, as is required for cooling superconducting windings.

Aufgabe der vorliegenden Erfindung ist es, den Kühlmittelanschlußkopf der eingangs genannten Art mit einer Vorrichtung zur Überleitung eines Kühlmittels von nicht-rotierenden auf rotierende Kühlmittelleitungsteile so auszubilden, daß die Kühlmittelverluste an den Dichtungseinrichtungen seiner Überleitungsvorrichtung während der Abkühlphase der Maschine verhältnismäßig klein sind.The object of the present invention is to provide the coolant connection head of the type mentioned at the beginning with a device for transferring tion of a coolant from non-rotating to rotating coolant line parts so that the coolant losses at the sealing devices of its transfer device are relatively small during the cooling phase of the machine.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zur Abdichtung des Zwischenraumes mindestens eine weitere Dichtungseinrichtung vorgesehen ist, bei der ein zwischen den zugehörigen Dichtungsflächen vorhandener Dichtungsspalt in der Weise von außen einstellbar ist, daß während der Abkühlphase der Maschine bei gegenüber dem Nennbetrieb verhältnismäßig geringer Drehzahl und verhältnismäßig hoher Kühlmitteldurchsatzmenge ein kleinster Dichtungsspalt mit gegenüber der übrigen Dichtungseinrichtung wesentlich erhöhtem Strömungswiderstand eingestellt ist, welcher Dichtungsspalt vor dem Übergang zum Nennbetrieb auf ein vorbestimmtes Maß erweitertwird.This object is achieved in that at least one further sealing device is provided for sealing the intermediate space, in which an existing sealing gap between the associated sealing surfaces can be adjusted from the outside in such a way that during the cooling phase of the machine at a relatively low speed and compared to the rated operation relatively high coolant throughput, a smallest sealing gap is set with a significantly increased flow resistance compared to the rest of the sealing device, which sealing gap is widened to a predetermined level before the transition to nominal operation.

Die Vorteile dieser Gestaltung des Kühlmittelanschlußkopfes bestehen insbesondere darin, daß während der Abkühlphase der Wicklung der Dichtungsspalt der weiteren Dichtungseinrichtung so klein gehalten werden kann, daß eine entsprechend gute Abdichtung des Kühlmittels an ihm erfolgt. Während dieser Abkühlphase wird im allgemeinen der Läufer der Maschine höchstens auf einer verhältnismäßig geringen Drehzahl gehalten, so daß nur entsprechend geringe Reibungsverluste und Abnützungseinrichtung auftreten können. Ist die Wicklung dann auf Betriebstemperatur abgekühlt und die Kühlmitteldurchsatzmenge auf einen niedrigen Endwert reduziert, kann der Dichtungsspalt der weiteren Dichtungseinrichtung wieder auf ein vorbestimmtes Maß erweitert werden. Die Abdichtung an der Überleitungsvorrichtung erfolgt dann im wesentlichen nur an der ersten Dichtungseinrichtung, und der Läufer der Maschine kann ohne weiteres auf die Nenndrehzahl des Betriebszustandes gebracht werden.The advantages of this design of the coolant connection head are, in particular, that during the cooling phase of the winding the sealing gap of the further sealing device can be kept so small that a correspondingly good sealing of the coolant takes place on it. During this cooling phase, the rotor of the machine is generally kept at a relatively low speed at most, so that only correspondingly low friction losses and wear devices can occur. Once the winding has cooled to the operating temperature and the coolant throughput has been reduced to a low final value, the sealing gap of the further sealing device can be widened again to a predetermined level. The sealing on the transfer device then takes place essentially only on the first sealing device, and the rotor of the machine can easily be brought to the nominal speed of the operating state.

Gemäß einer vorteilhaften Weiterbildung des Kühlmittelanschlußkopfes nach der Erfindung enthalten die Kühlmittelleitungsteile konzentrisch zueinander angeordnete, sich zum Teil umschließende Rohrendstücke und ist an der Stirnseite eines der Rohrendstücke die weitere Dichtungseinrichtung vorgesehen. An dieser Stelle kann nämlich die weitere Dichtungseinrichtung mit ihrem einstellbaren Dichtungsspalt auf besonders einfache Weise angeordnet werden.According to an advantageous development of the coolant connection head according to the invention, the coolant line parts contain concentrically arranged, partially enclosing pipe end pieces and the further sealing device is provided on the end face of one of the pipe end pieces. At this point, the additional sealing device with its adjustable sealing gap can be arranged in a particularly simple manner.

Ferner kann die weitere Dichtungseinrichtung vorteilhaft ein nicht-rotierendes Dichtungsteil enthalten, das mit dem nicht-rotierendes Dichtungsteil enthalten, das mit dem nicht-rotierenden Rohrendstück mechanisch verbunden ist, und kann dieses Rohrendstück in axialer Richtung innerhalb des nicht-rotierenden Kühlmittelleitungsteiles verschiebbar sein. Der zwischen dem nicht-rotierenden Dichtungsteil und einem rotierenden Dichtungsteil ausgebildeten Dichtungsspalt läßt sich so auf einfache Weise mit Hilfe einer entsprechenden Verschiebung des nicht-rotierenden Rohrendstückes einstellen.Furthermore, the further sealing device can advantageously contain a non-rotating sealing part which contains the non-rotating sealing part which is mechanically connected to the non-rotating pipe end piece, and this pipe end piece can be displaceable in the axial direction within the non-rotating coolant line part. The sealing gap formed between the non-rotating sealing part and a rotating sealing part can thus be adjusted in a simple manner with the aid of a corresponding displacement of the non-rotating pipe end piece.

Die weitere Dichtungseinrichtung kann außerdem vorteilhaft eine Gleitringdichtung sein. Solche Dichtungen haben einen einfachen Aufbau, und ihr Dichtungsspalt kann leicht durch die Wahl eines entsprechenden Abstandes zwischen ihren Dichtungsteilen eingestellt werden.The further sealing device can also advantageously be a mechanical seal. Such seals are simple in construction and their sealing gap can be easily adjusted by choosing an appropriate distance between their sealing parts.

Weitere Ausgestaltungen des Kühlmittelkopfes gemäß der Erfindung sind in abhängigen Ansprüchen gekennzeichnet.Further configurations of the coolant head according to the invention are characterized in the dependent claims.

Anhand der Figur der schematischen Zeichnung wird ein Ausführungsbeispiel eines Kühlmittelanschlußkopfes gemäß der Erfindung nachfolgend erläutert.An exemplary embodiment of a coolant connection head according to the invention is explained below with reference to the figure of the schematic drawing.

In der Figur ist nur die obere Hälfte eines Kühlmittelanschlußkopfes für die Maschine als Längsschnitt veranschaulicht. Diese in der Figur nicht näher ausgeführte Maschine kann insbesondere ein Turbogenerator sein, der einen Läufer mit einer tiefzukühlenden, supraleitenden Erregerwicklung enthält, die von mindestens einem mitrotierenden, im allgemeinen ebenfalls zu kühlenden Dämpferschild umgeben ist. Zur Reduzierung der Wärmeeinleitung in die tiefgekühlte Wicklung ist diese ferner von Vakuumräumen umgeben. Hierzu kann der gesamte Läufer von einem mitrotierenden Vakuumgehäuse umschlossen sein (vgl. DE-A1-2339772 und »Siemens-Forschungs- und Entwicklungsberichte«, Band 5 (1976), Nr. 1, Seiten 10 bis 16). Der Läufer kann aber auch in einem Vakuumraum rotieren.In the figure, only the upper half of a coolant connection head for the machine is illustrated as a longitudinal section. This machine, which is not shown in more detail in the figure, can in particular be a turbogenerator which contains a rotor with a superconducting field winding to be deep-frozen, which is surrounded by at least one co-rotating damper shield, which is generally also to be cooled. To reduce the heat input into the frozen winding, it is also surrounded by vacuum spaces. For this purpose, the entire rotor can be enclosed in a rotating vacuum housing (cf. DE-A1-2339772 and "Siemens Research and Development Reports", Volume 5 (1976), No. 1, pages 10 to 16). The rotor can also rotate in a vacuum room.

Der in der Figur nur teilweise ausgeführte Kühlmittelanschlußkopf der Maschine enthält ein feststehendes Kopfteil 2, in welches das seitliche Endstück 3 einer Welle des um eine Rotationsachse 4 drehbar gelagerten Läufers ragt. Dieses Wellenendstück ist starr mit dem in der Figur nicht gezeigten Läufer verbunden und befindet sich im allgemeinen auf der Seite der Maschine, die der Antriebsseite gegenüberliegt. Das Wellenendstück 3 enthält einen äußeren Hohlzylinder 6 auf Raumtemperatur, der konzentrisch um einen inneren Hohlzylinder 7 angeordnet ist, dessen Endstück 8 aus der offenen Stirnseite 9 des äußeren Hohlzylinders 6 ein vorbestimmtes Stück weit hervorsteht. Zwischen dem äußeren Hohlzylinder 6 und dem inneren Hohlzylinder 7 sind konzentrisch zwei Doppelrohre 11 und 12 so angeordnet, daß zwischen dem äußeren Doppelrohr 11 und dem äußeren Hohlzylinder 6 ein äußerer Ringkanal 13 und zwischen dem inneren Doppelrohr 12 und dem inneren Hohlzylinder 7 ein innerer Ringkanal 14 ausgebildet sind. Die beiden Doppelrohre 11 und 12 begrenzen radial nach außen einen Ringraum 16. Sie bestehen jeweils aus zwei konzentrisch zueinander angeordneten Hohlzylindern, die an ihrer Stirnseite untereinander vakuumfest abgeschlossen ist. Die so zwischen den beiden Hohlzylindern jedes Doppelrohres ausgebildeten Innenräume 17 bzw. 18 sind aus Gründen der thermischen Isolation evakuiert.The coolant connection head of the machine, which is only partially shown in the figure, contains a fixed head part 2, into which the lateral end piece 3 of a shaft of the rotor rotatably mounted about an axis of rotation 4 projects. This shaft end piece is rigidly connected to the rotor (not shown in the figure) and is generally located on the side of the machine which is opposite the drive side. The shaft end piece 3 contains an outer hollow cylinder 6 at room temperature, which is arranged concentrically around an inner hollow cylinder 7, the end piece 8 of which projects a predetermined distance from the open end face 9 of the outer hollow cylinder 6. Between the outer hollow cylinder 6 and the inner hollow cylinder 7, two double tubes 11 and 12 are arranged concentrically so that an outer ring channel 13 between the outer double tube 11 and the outer hollow cylinder 6 and an inner ring channel 14 between the inner double tube 12 and the inner hollow cylinder 7 are trained. The two double tubes 11 and 12 delimit an annular space 16 radially outward. They each consist of two concentrically arranged hollow cylinders, which are sealed against one another on their end faces in a vacuum-tight manner. The inner spaces 17 and 18 thus formed between the two hollow cylinders of each double tube are for the sake of thermal insulation evacuated.

Das Anschlußkopfteil 2 enthält ferner ein im wesentlichen hohlzylindrisches, nicht-rotierendes Außengehäuse 20, welches das Ende des rotierenden äußeren Hohlzylinders 6 des Wellenendstückes 3 ein Stück weit in axialer Richtung umschließt und sich über ein Hauptlager 22 an diesem Hohlzylinder 6 abstützt. Darüber hinaus enthält das Anschlußkopfteil 2 ein konzentrisch das Endstück 8 des inneren, rotierenden Hohlzylinders 7 des Wellenendstückes 3 umgebendes inneres, im wesentlichen hohlzylindrisches Gehäuseteil 23, das sich über ein Nebenlager 25 an dem Endstück 8 abstützt. Dieses Gehäuseteil 23 ist über ein im wesentlichen ringscheibenförmiges Stirnteil 26 mit dem Außengehäuse 20 starr verbunden. Die Teile 20, 23 und 26 des Anschlußkopfteiles 2 begrenzen einen im wesentlichen vor der Stirnseite 9 des äußeren Hohlzylinders 6 des Wellenendstückes 3 liegenden Innenraum innerhalb des Anschlußkopfteiles 2. Zur Abdichtung dieses Innenraumes ist parallel zu dem Lager 22 zwischen dem nicht-rotierenden Außengehäuse 20 und dem rotierenden Hohlzylinder 6 ein Dichtungssystem 29 vorgesehen. In entsprechender Weise ist auch das innere Gehäuseteil 23 gegenüber dem Endstück 8 des inneren Hohlzylinders 7 mittels eines Dichtungssystems 30 abgedichtet. Diese Dichtungssysteme können beispielsweise Ferrofluidikdichtungen sein, wie sie aus der DE-A1-2 034 213 bekannt sind.The connection head part 2 also contains a substantially hollow cylindrical, non-rotating outer housing 20, which encloses the end of the rotating outer hollow cylinder 6 of the shaft end piece 3 to a certain extent in the axial direction and is supported on this hollow cylinder 6 via a main bearing 22. In addition, the connection head part 2 contains an inner, essentially hollow cylindrical housing part 23 which concentrically surrounds the end piece 8 of the inner, rotating hollow cylinder 7 of the shaft end piece 3 and which is supported on the end piece 8 via a sub-bearing 25. This housing part 23 is rigidly connected to the outer housing 20 via an essentially annular disk-shaped end part 26. The parts 20, 23 and 26 of the connection head part 2 delimit an interior lying essentially in front of the end face 9 of the outer hollow cylinder 6 of the shaft end piece 3 within the connection head part 2. To seal this interior, parallel to the bearing 22 between the non-rotating outer housing 20 and a sealing system 29 is provided for the rotating hollow cylinder 6. In a corresponding manner, the inner housing part 23 is also sealed off from the end piece 8 of the inner hollow cylinder 7 by means of a sealing system 30. These sealing systems can be, for example, ferrofluidic seals, as are known from DE-A1-2 034 213.

An dem Anschlußkopfteil 2 ist die Zu- und Abführung des zur Kühlung der supraleitenden Erregerwicklung erforderlichen Kühlmittels, das im allgemeinen Helium ist, in das bzw. aus dem Wellenstück 3 des Läufers vorgesehen. Hierzu wird flüssiges Helium A in den Ringraum 16 zwischen den Doppelrohren 11 und 12 über eine Zuleitungsvorrichtung 32 eingeleitet. Diese Vorrichtung enthält zwei in den Ringraum 16 hineinragende, konzentrisch zur Rotationsachse 4 angeordnete Doppelrohrstücke 33 und 34, zwischen denen ein ringförmiger Zuführungskanal 35 ausgebildet ist. Dieser achsenparallel verlaufende Zuführungskanal ist an seinem in den Innenraum des Anschlußkopfteiles 2 ragenden Ende mit einem radial verlaufenden Zuführungskanal'37 verbunden, der zwischen zwei ringscheibenförmigen, doppelwandig gestalteten Leitungsteilen 38 und 39 ausgebildet ist. Dieser radiale Zuführungskanal 37 ist an einen weiteren, achsenparallel verlaufenden Zuführungskanal 41 angeschlossen, dessen Abstand zur Rotationsachse 4 größer als vergleichsweise der entsprechende Abstand des Zuführungskanals 35 ist. Dieser im Querschnitt ringförmige Zuführungskanal 41 ist zwischen zwei Doppelrohrstücken 42 und 43 ausgebildet, die aus dem mit einer entsprechenden, abgedichteten Durchführung 44 versehenen Stirnteil 26 des Anschlußkopfteils 2 hinausragen und die mit einem Anschlußflansch 45 versehen sind, an den mittels einer in der Figur nicht dargestellten Verbindungsleitung eine das flüssige Helium A liefernde Kälteeinrichtung angeschlossen werden kann. Da alle heliumführenden Teile der Zuführungsvorrichtung 32 doppelwandig ausgeführt sind, können zur Reduzierung der Wärmeeinleitung auf das flüssige Helium A die zwischen jeweils benachbarten Wänden vorhandenen Räume 47 bzw. 48 evakuiert werden.At the connection head part 2, the supply and discharge of the coolant required for cooling the superconducting excitation winding, which is generally helium, is provided into and from the shaft section 3 of the rotor. For this purpose, liquid helium A is introduced into the annular space 16 between the double tubes 11 and 12 via a feed device 32. This device contains two double pipe pieces 33 and 34 protruding into the annular space 16 and arranged concentrically to the axis of rotation 4, between which an annular feed channel 35 is formed. This axially parallel feed channel is connected at its end projecting into the interior of the connection head part 2 to a radially extending feed channel 37 which is formed between two annular disk-shaped, double-walled line parts 38 and 39. This radial feed channel 37 is connected to a further feed channel 41, which runs parallel to the axis and whose distance from the axis of rotation 4 is greater than the corresponding distance of the feed channel 35. This feed channel 41, which is annular in cross section, is formed between two double pipe pieces 42 and 43 which protrude from the end part 26 of the connection head part 2 provided with a corresponding, sealed passage 44 and which are provided with a connection flange 45, to which by means of a connection not shown in the figure Connection line can be connected to a refrigeration device supplying the liquid helium A. Since all helium-carrying parts of the feed device 32 are double-walled, the spaces 47 and 48 between the adjacent walls can be evacuated to reduce the heat input to the liquid helium A.

Gemäß dem Ausführungsbeispiel wird durch die Zuleitungsvorrichtung 32 der in dem Anschlußkopfteil 2 ausgebildete, von den Bauteilen 20, 23, 26 begrenzte Innenraum in zwei getrennte Teilräume 50 und 51 unterteilt. Gegebenenfalls können jedoch diese beiden Teilräume auch untereinander verbunden sein, indem beispielsweise statt der beiden doppelwandigen Leitungsteile 38 und 39 der Zuleitungsvorrichtung 32 mehrere radial verlaufende, untereinander beabstandete Doppelrohrstücke vorgesehen werden.According to the exemplary embodiment, the supply device 32 divides the interior space formed in the connection head part 2 and delimited by the components 20, 23, 26 into two separate subspaces 50 and 51. If necessary, however, these two subspaces can also be connected to one another, for example by providing, instead of the two double-walled line parts 38 and 39 of the feed device 32, a plurality of radially extending, mutually spaced-apart double pipe pieces.

Um ein direktes Zurückfließen des in den Ringraum 16 eingespeisten flüssigen Heliums A in die Teilräume 50 und 51 des Innenraumes des Anschlußkopfteiles 2 zu verhindern, ist in dem zwischen den Rohren 11 und 33 ausgebildeten Ringraum 53 sowie in dem entsprechenden Ringraum 54 zwischen den Rohren 12 und 34 jeweils mindestens eine ringförmige Dichtungseinrichtung 56 bzw. 57 vorgesehen. Diese in der Figur nur angedeuteten Dichtungseinrichtungen können beispielsweise Labyrinthdichtungen oder Lippendichtungen sein. Über ihre Dichtungsspalte gelangt bei verhältnismäßig kleinen Druckunterschieden zwischen beiden Seiten jeder Dichtungseinrichtung nur ein verhältnismäßig geringer, mit A1 bzw. A2 bezeichneter Anteil des Heliums A in den Innenraum 50 bzw. 51 des Anschlußkopfteils 2.In order to prevent a direct backflow of the liquid helium A fed into the annular space 16 into the partial spaces 50 and 51 of the interior of the connection head part 2, there is in the annular space 53 formed between the tubes 11 and 33 and in the corresponding annular space 54 between the tubes 12 and 34 at least one annular sealing device 56 or 57 is provided. These sealing devices, which are only indicated in the figure, can be, for example, labyrinth seals or lip seals. When the pressure gaps between the two sides of each sealing device are relatively small, only a relatively small portion of the helium A, designated A 1 or A 2 , enters its interior 50 or 51 of the connection head part 2 via its sealing gaps.

In diese Innenräume 50 und 51 wird darüber hinaus das in dem Läufer der Maschine erwärmte, mit A3 und A4 bezeichnete Helium über die Ringkanäle 13 und 14 eingespeist und vermischt sich dort mit dem Helium A, bzw. A2. Zur Abführung des Heliumgemisches A" A3 aus dem Innenraum 50 ist ein Flansch 59 an dem Außengehäuse 20 des Anschlußkopfteiles 2 vorgesehen. In entsprechender Weise wird das Heliumgemisch A2, A4 aus dem Innenraum 51 über einen Flansch 60 im Stirnteil 26 des Anschlußkopfteiles 2 ausgeleitet. An diesen Flanschen sind in der Figur nicht dargestellte und mit der Kälteeinrichtung verbundene Rückführungsleitungen für das Kühlmittel angeschlossen.The helium, which is heated in the rotor of the machine and is labeled A 3 and A 4, is also fed into these interior spaces 50 and 51 via the ring channels 13 and 14 and mixes there with the helium A and A 2 , respectively. To discharge the helium mixture A "A 3 from the interior 50, a flange 59 is provided on the outer housing 20 of the connection head part 2. In a corresponding manner, the helium mixture A 2 , A 4 is removed from the interior 51 via a flange 60 in the end part 26 of the connection head part 2 Return lines for the coolant, not shown in the figure and connected to the cooling device, are connected to these flanges.

Bei der Maschine gemäß dem Ausführungsbeispiel nach der Figur ist angenommen, daß die zur thermischen Isolation der kalten Teile des Läufers, insbesondere der supraleitenden Erregerwicklung, erforderlichen Vakua durch ständiges Abpumpen entsprechender Vakuumräume aufrechterhalten werden. Hierzu dient der innere Hohlzylinder 7 des Wellenendstücks 3 als mitrotierendes Evakuierungsrohr. Das Endstück 8 dieses Hohlzylinders mündet deshalb in einen achsnahen Teilraum 62 des Anschlußkopfteiles 2, der von dem inneren Gehäuseteil 23, dem Stirnteil 26 und dem Nebenlager 25 bzw. dem Dichtungssystem 30 begrenzt ist. Zur Evakuierung dieses Teilraumes 62 ist das Stirnteil 26 mit einem entsprechenden Anschlußflansch 63 versehen, an den eine externe Evakuierungsvorrichtung angeschlossen werden kann. Das zwischen dem hohlzylindrischen Gehäuseteil 23 und dem Endstück 8 des Evakuierungsrohres 7 befindliche Dichtungssystem 30 dient dabei zur vakuumfesten Abdichtung des Teilraumes 62 gegenüber dem Innenraum 51 des Anschlußkopfteiles 2.In the machine according to the exemplary embodiment according to the figure, it is assumed that the vacuums required for the thermal insulation of the cold parts of the rotor, in particular the superconducting field winding, are maintained by constantly pumping out corresponding vacuum spaces. For this purpose, the inner hollow cylinder 7 of the shaft end piece 3 serves as a rotating evacuation tube. The end piece 8 of this hollow cylinder therefore opens into a sub-chamber 62 of the connection head part 2 which is close to the axis and which is formed by the inner housing part 23, the end part 26 and the secondary bearing 25 or the Sealing system 30 is limited. To evacuate this subspace 62, the end part 26 is provided with a corresponding connecting flange 63, to which an external evacuation device can be connected. The sealing system 30 located between the hollow cylindrical housing part 23 and the end piece 8 of the evacuation tube 7 serves for the vacuum-tight sealing of the subspace 62 with respect to the interior 51 of the connection head part 2.

Zur Kühlung der Erregerwicklung des Läufers der Maschine soll im Betriebszustand, d. h. bei einer vorbestimmten Drehzahl des abgekühlten Läufers von beispielsweise 50 sec-I, vorteilhaft der sogenannte Selbstpump-Effekt in Thermosyphon-Schleifen ausgenutzt werden. Hierzu muß ein entsprechend ausgelegtes Kühlsystem mit Wärmetauschern versehen sein, die sich auf einem großen Radius befinden. Das aus der Erregerwicklung austretende Kühlmittel tritt noch kalt in diese Wärmetauscher ein und erwärmt sich dort auf Temperaturen, die beispielsweise zwischen etwa 100 und 300 K liegen, bevor es dann wieder auf einen kleineren Radius zurückgeführt und über die Kühlmittel- überleitungsvorrichtung des Anschlußkopfes nach außen abgeleitet wird. Zum Beispiel muß im Betriebszustand eines 2000 MVA-Generators mit einem Helium-Durchsatz von etwa 5 bis 10 g/sec der Druckabfall in diesem Wärmeaustauschern auf Werte unter etwa 40 mbar begrenzt bleiben, damit der Selbstpump-Effekt zu einer erwünschten Temperaturabsenkung der Erregerwicklung führt.For cooling the excitation winding of the rotor of the machine is in the operating state, ie at a predetermined speed of the cooled rotor of for example 50 sec-I, the so-called self-pumping effect advantageous in thermosiphon loops are utilized. For this purpose, an appropriately designed cooling system must be provided with heat exchangers that are located over a large radius. The coolant emerging from the excitation winding enters this heat exchanger cold and warms up there to temperatures which are, for example, between about 100 and 300 K, before it is then returned to a smaller radius and discharged to the outside via the coolant transfer device of the connection head becomes. For example, in the operating state of a 2000 MVA generator with a helium throughput of approximately 5 to 10 g / sec, the pressure drop in this heat exchanger must remain limited to values below approximately 40 mbar so that the self-pumping effect leads to a desired temperature reduction in the field winding.

Während der Abkühlphase der Maschine müssen jedoch insbesondere die Strömungswiderstände dieser Wärmeaustauscher überwunden werden. So sind beispielsweise Druckdifferenzen in der Größenordnung von 1 bis 2 bar erforderlich, um die in der Anfangsphase benötigten Abkühlmengen von zum Beispiel etwa 100 g/sec durch das Kühlsystem der Maschine pumpen zu können. Solche Druckdifferenzen führen aber an den Dichtungseinrichtungen 56 und 57 zunächst zu einer etwa 10 bis 20 mal größeren Leckrate im Vergleich zum Betriebszustand, bei dem beispielsweise nur eine Druckdifferenz von etwa 0,1 bar über den Dichtungseinrichtungen herrscht. Durch die eintretende Abkühlung der Spalte der Dichtungseinrichtungen kann ferner noch eine weitere Verkleinerung ihrer Strömungswiderstände und damit eine weitere Zunahme der Leckverluste eintreten.During the cooling phase of the machine, however, the flow resistances of these heat exchangers in particular have to be overcome. For example, pressure differences of the order of 1 to 2 bar are required in order to be able to pump the cooling quantities of approximately 100 g / sec required in the initial phase through the cooling system of the machine. However, such pressure differences initially lead to an approximately 10 to 20 times greater leak rate at the sealing devices 56 and 57 compared to the operating state, in which, for example, there is only a pressure difference of approximately 0.1 bar above the sealing devices. As a result of the cooling of the gaps in the sealing devices, a further reduction in their flow resistance and thus a further increase in leakage losses can occur.

Gemäß der Erfindung ist deshalb der Kühlmittelanschlußkopf noch mit weiteren Dichtungseinrichtungen versehen, die während der Abkühlphase des Läufers wirksam sein sollen. Hierzu wird der die Dichtungseinrichtung 56 enthaltende Ringraum 53 sowie der die Dichtungseinrichtung 57 enthaltende Ringraum 54 jeweils zusätzlich noch mit einer Gleitringdichtung 65 bzw. 66 gegenüber dem Innenraum 50 bzw. 51 abgedichtet. Diese Gleitringdichtungen sind dabei vorteilhaft so gestaltet, daß sie in bezüglich der Rotationsachse radialen Ebenen liegende Dichtungsflächen bzw. Dichtungsspalte haben. Sie enthalten deshalb jeweils ein ringscheibenförmiges, sich in radialer Richtung erstreckendes Bauteil 67 bzw. 68, das an der ringscheibenförmigen Stirnseite des Doppelrohres 11 bzw. des Doppelrohres 12 gleitend anliegt. Die Gleitringdichtungen 65 und 66 sind vorteilhaft an der Helium-Zuleitungsvorrichtung 32 befestigt. Diese Zuleitungsvorrichtung ist in achsenparalleler Richtung verschiebbar gestaltet, so daß mit ihrer Hilfe die zwischen den .Gieitringdichtungen und den entsprechenden Doppelrohren ausgebildeten Dichtungsspalte einstellbar sind. Die Doppelrohrstücke 42 und 43 der Zuleitungsvorrichtung 32 sind deshalb durch die abgedichtete Durchführung 44 des Stirnteils 26 verschiebbar hindurchgeführt. Zur Abdichtung dienen beispielsweise O-Ringe 71 und 72 zwischen den Doppelrohrstücken und dem Stirnteil.According to the invention, the coolant connection head is therefore provided with further sealing devices which are intended to be effective during the cooling phase of the rotor. For this purpose, the annular space 53 containing the sealing device 56 and the annular space 54 containing the sealing device 57 are each additionally sealed with a mechanical seal 65 or 66 with respect to the interior 50 or 51. These mechanical seals are advantageously designed in such a way that they have sealing surfaces or sealing gaps located in planes that are radial with respect to the axis of rotation. They therefore each contain an annular disk-shaped component 67 or 68, which extends in the radial direction and slidably abuts the annular disk-shaped end face of the double tube 11 or the double tube 12. The mechanical seals 65 and 66 are advantageously fastened to the helium supply device 32. This feed device is designed to be displaceable in the direction parallel to the axis, so that it can be used to set the sealing gaps formed between the mechanical seals and the corresponding double pipes. The double pipe pieces 42 and 43 of the feed device 32 are therefore slidably guided through the sealed passage 44 of the end part 26. For sealing, for example, O-rings 71 and 72 are used between the double pipe pieces and the front part.

Während der Abkühlphase der Erregerwicklung, bei welcher der Läufer der Maschine höchstens mit niedrigen Drehzahlen von beispielsweise 2 sec-l rotiert, wird dann die Helium-Zuleitungsvorrichtung 32 soweit axial in Richtung auf den Läufer zu in den Anschlußkopfteil 2 hineingeschoben, bis die ringförmigen Bauteile 67 und 68 der Gleitringdichtungen 65 und 66 an den Stirnseiten der Doppelrohre 11 bzw. 12 abdichtend anliegen. Hierzu können beispielsweise entsprechend vorgespannte, konzentrisch zueinander angeordneter Federbälge 74 und 75 zwischen dem Stirnteil 26 und dem Anschlußflansch 45 dienen. Über einen Anschlag 76 kann dabei der Federweg der Bälge auf eine vorbestimmte, minimale Länge L begrenzt werden. Da der Abkühlungsvorgang bei niedriger Drehzahl des Läufers verläuft, unterliegen die Gleitringdichtungen keinen besonderen Abnutzungen. Ihre Dichtkraft wird auch während der Abkühlphase mit Hilfe der Federbälge 74 und 75 aufrechterhalten, wobei Schrumpfungseffekte aufgrund der Abkühlung kompensiert werden.During the cooling of the excitation winding, wherein the rotor of the machine at most rotates sec- l at low speeds, for example 2, the helium supply apparatus is then so far axially pushed 32 to the connection head portion 2 in the direction of the rotor, until the annular members 67 and 68 of the mechanical seals 65 and 66 lie sealingly on the end faces of the double tubes 11 and 12, respectively. For this purpose, appropriately preloaded, bellows 74 and 75 arranged concentrically to one another can serve between the end part 26 and the connecting flange 45. The travel of the bellows can be limited to a predetermined, minimum length L via a stop 76. Since the cooling process takes place at a low rotor speed, the mechanical seals are not subject to any particular wear. Their sealing force is also maintained during the cooling phase with the aid of bellows 74 and 75, shrinkage effects due to the cooling being compensated for.

In der Endphase des Abkühlungsvorganges, d. h. unmittelbar vor Erhöhung der Drehzahl des Läufers auf die Nenndrehzahl von beispielsweise 50 sec-I, wird dann die Zuleitungsvorrichtung 32 mit ihren Gleitringdichtungen 65 und 66, beispielsweise durch ein entsprechendes Verstellen des Anschlages 76, in axialer Richtung soweit zurückgezogen, daß ein vorbestimmter, minimaler Abstand der Dichtungsflächen an den Gleitringdichtungen 65 und 66 eingehalten wird. Die Durchsatzmenge an Kühlmittel ist dann schon auf einen niedrigeren, stationären Endwert reduziert, und die Leckverluste an den Dichtungseinrichtungen 56 und 57 bleiben tolerierbar. Bei Rotieren der Maschine mit Nenndrehzahl können auf diese Weise eine Reibungswärme an den Dichtungsflächen der Gleitringdichtungen 65 und 66 und somit entsprechende Abnützungen dieser Dichtungen vermieden werden.In the final phase of the cooling process, ie immediately before increasing the speed of the rotor to the nominal speed of, for example, 50 sec- 1 , the feed device 32 with its mechanical seals 65 and 66 is then retracted so far in the axial direction, for example by correspondingly adjusting the stop 76 that a predetermined, minimum distance between the sealing surfaces on the mechanical seals 65 and 66 is maintained. The throughput quantity of coolant is then already reduced to a lower, stationary final value, and the leakage losses at the sealing devices 56 and 57 remain tolerable. When the machine rotates at the nominal speed, frictional heat on the sealing surfaces of the mechanical seals 65 and 66 and thus corresponding wear of these seals can be avoided in this way.

Um ein gleichmäßiges Anliegen der ringscheibenförmigen Bauteile 67 und 68 der Gleitringdichtungen 65 und 66 an den Stirnflächen des Doppelrohres 11 bzw. des Doppelrohres 12 und damit zumindest annähernd gleiche Abdichtungseigenschaften dieser Dichtungen zu gewährleisten, ist die Gleitringdichtung 65 starr auf dem Doppelrohr 33 befestigt, während die Gleitringdichtung 66 auf dem Doppelrohr 34 in einem vorbestimmten Maße verschiebbar ist. Hierzu dient ein sich in axialer Richtung erstreckender, vorgespannter Federbalg 78 zwischen dem ringscheibenförmigen Leitungsteil 39 der Zuleitungsvorrichtung 32 und dem ringscheibenförmigen Bauteil 68 der Dichtung 66. Dieser Federbalg dient auch mit zur Abdichtung der Gleitringdichtung 66 gegenüber dem Doppelrohr 34. Zur Begrenzung der maximalen Ausdehnung des Federbalges bzw. des Vorrückens der Dichtung 66 auf das Doppelrohr 12 ist ein Anschlagselement 79 auf dem Doppelrohr 12 befestigt.To ensure that the ring ring is evenly attached ben-shaped components 67 and 68 of the mechanical seals 65 and 66 on the end faces of the double tube 11 and the double tube 12 and thus to ensure at least approximately the same sealing properties of these seals, the mechanical seal 65 is rigidly attached to the double tube 33, while the mechanical seal 66 on the double tube 34 is displaceable to a predetermined extent. For this purpose, a prestressed bellows 78, which extends in the axial direction, is used between the annular disk-shaped line part 39 of the feed device 32 and the annular disk-shaped component 68 of the seal 66. This bellows also serves to seal the mechanical seal 66 with respect to the double pipe 34 Bellows or the advancement of the seal 66 on the double tube 12, a stop element 79 is attached to the double tube 12.

Bei dem Ausführungsbeispiel gemäß der Figur wurde angenommen, daß das Kühlmittel A in einem vorbestimmten Abstand zur Rotationsachse in achsenparalleler Richtung von einem feststehenden in ein rotierendes Leitungsteil eingespeist wird. Gemäß der Erfindung können jedoch ebensogut auch zusätzliche einstellbare Dichtungseinrichtungen für einen Kühlmittelanschlußkopf mit zentraler Kühlmitteleinspeisung vorgesehen werden.In the exemplary embodiment according to the figure, it was assumed that the coolant A is fed at a predetermined distance from the axis of rotation in the direction parallel to the axis from a stationary part into a rotating line. According to the invention, however, additional adjustable sealing devices can also be provided for a coolant connection head with a central coolant feed.

Im Ausführungsbeispiel der Figur wurde ferner angenommen, daß die Ringräume 53 und 54 jeweils mit einer einzigen Dichtungseinrichtung 65 bzw. 66 zusätzlich während der Abkühlphase abzudichten sind. Gegebenenfalls können jedoch auch mehrere solcher Dichtungseinrichtungen zum Abdichten jedes Ringraumes vorgesehen werden.In the exemplary embodiment of the figure, it was also assumed that the annular spaces 53 and 54 were to be additionally sealed with a single sealing device 65 and 66 during the cooling phase. If necessary, however, several such sealing devices can also be provided for sealing each annular space.

Der Kühlmittelanschlußkopf gemäß der Erfindung ist insbesondere für Läufer mit supraleitenden Erregerwicklungen geeignet, zu deren Kühlung der Selbstpump-Effekt ausgenutzt werden soll und dessen zusätzliche Dichtungseinrichtungen weitgehend berührungslose Spalte zwischen rotierenden und nicht-rotierenden Teilen haben.The coolant connection head according to the invention is particularly suitable for runners with superconducting excitation windings, for the cooling of which the self-pumping effect is to be used and whose additional sealing devices have largely contactless gaps between rotating and non-rotating parts.

Claims (9)

1. A coolant connection head for an electrical maschine which includes a rotor mounted for rotation about an axis and having a superconductive winding which is to be cooled to a low temperature by a coolant, comprising apparatus for feeding the coolant from a non-rotating coolant supply line component into a rotating coolant supply line component which is connected to the rotor, which apparatus includes at least one sealing device (56, 57) which serves to seal an interspace (53, 54) located between these supply line components, and which, when the maschine is in the operating state, permits a predetermined rate of leakage which is dependent upon the pressure difference prevailing thereat, characterised in that for the sealing of the interspace (53 or 54), there is provides at least one further sealing device (65 or 66 respectively), in which a sealing gap present between the associated sealing surface can be adjusted from the exterior; in that during the cooling phase of the maschine, when, in contrast with normal operation, the rotation speed is relatively low and the coolant throughput is relatively high, a minimum sealing gap is set with a flow resistance which is substantially increased in comparison with the remainder of the sealing device, which sealing gap is widened to a predetermined extent before the transition to normal operation.
2. A coolant connection head according to Claim 1, characterised in that the coolant supply line components include tubular end components (33, 34 and 11, 12) which are arranged coaxially to one another and which partially surround one another; and that the additional sealing device (65,66) is arranged at the end face of one of the tubular end components.
3. A coolant connection head according to Claim 1 or Claim 2, characterised in that the additional sealing device (65, 66) is a sliding ring seal.
4. A coolant connection head according to one of Claims 1 to 3, characterised in that the additional sealing device (65, 66) has a sealing gap which runs in a plane radial to the axis of rotation (4).
5. A coolant connection head according to one of Claims 2 to 4, characterised in that the additional sealing device (65, 66) contains a non-rotating sealing element (67, 68) which is mechanically connected to the non-rotating tubular end component (33, 34); and that this tubular end component (33, 34) is displaceable in the axial direction in the non-rotating coolant supply line component (2).
6. A coolant connection head according to one of Claims 2 to 5, characterised in that the rotating sealing surface of the additional sealing device (65, 66) is located at the end face of the rotating tubular end component (11, 12).
7. A coolant connection head according to Claim 5 or Claim 6, characterised by a predetermined axial pressure of the sealing elements of the additional sealing device (65, 66), at a low rotation speed of the machine, on their common sealing surface produced by means of an appropriately prestressed spring system (74, 75) which acts upon the non-rotating tubular end component (33, 34).
8. A coolant connection head as claimed in Claim 7, characterised in that the maximum spring travel of the spring system (74, 75) is limited to a predetermined lenght (L) by an adjustable stop means (76).
9. A coolant connection head according to one of Claims 1 to 8, characterised in that the sealing gab of the additional sealing device (65, 66) can be adjusted, at the rated rotational speed of the maschine, by an adjustable stop means (76) to a determinate minimum interval between the sealing surfaces.
EP79105068A 1978-12-27 1979-12-10 Coolant transfer coupling for an electric machine with superconducting rotor winding Expired EP0012914B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2856128A DE2856128C3 (en) 1978-12-27 1978-12-27 Coolant connection head for an electrical machine, which contains a rotor which is rotatably mounted about an axis and has a superconducting winding which is to be frozen by a coolant
DE2856128 1978-12-27

Publications (3)

Publication Number Publication Date
EP0012914A2 EP0012914A2 (en) 1980-07-09
EP0012914A3 EP0012914A3 (en) 1980-07-23
EP0012914B1 true EP0012914B1 (en) 1983-04-13

Family

ID=6058382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79105068A Expired EP0012914B1 (en) 1978-12-27 1979-12-10 Coolant transfer coupling for an electric machine with superconducting rotor winding

Country Status (4)

Country Link
US (1) US4289986A (en)
EP (1) EP0012914B1 (en)
JP (1) JPS5588546A (en)
DE (1) DE2856128C3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736556A (en) * 1980-08-14 1982-02-27 Toshiba Corp Liquid cooling type rotary electric machine
DE3207061C2 (en) * 1982-02-26 1986-09-18 Siemens AG, 1000 Berlin und 8000 München Sealing device with a magnetizable sealing liquid
DE19938986B4 (en) * 1999-08-17 2008-02-14 Siemens Ag Superconducting device with a refrigeration unit for a rotating superconducting winding
US6657333B2 (en) * 2001-09-17 2003-12-02 Reliance Electric Technologies, Llc Vacuum coupling of rotating superconducting rotor
DE102020205249B3 (en) * 2020-04-24 2021-10-07 Kocks Technik Gmbh & Co Kg Device for cooling long products

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH402147A (en) * 1962-03-10 1965-11-15 Licentia Gmbh Coolant connection head for supplying and removing the coolant on the liquid-cooled rotor of an electrical machine, in particular a turbo generator
US3242418A (en) * 1962-08-31 1966-03-22 Dynatech Corp Low temperature electromechanical transducer
US3207533A (en) * 1963-01-17 1965-09-21 Donald A Van Gundy Double bayonet insulated transfer line coupling
DE2034213C3 (en) * 1969-10-10 1985-04-25 Ferrofluidics Corp., Burlington, Mass. Magnetic seal for sealing sealing gaps
GB1330144A (en) * 1970-02-27 1973-09-12 Int Research & Dev Co Ltd Fluid transfer means
US3845639A (en) * 1972-05-30 1974-11-05 Massachusetts Inst Technology Relatively rotatable cryogenic transfer system
DE2339772C3 (en) * 1973-08-06 1979-10-04 Kraftwerk Union Ag, 4330 Muelheim Arrangement for fastening a superconducting excitation winding in the rotor of a turbo generator
DE2449430C2 (en) * 1974-10-17 1986-11-06 Hochtemperatur-Reaktorbau GmbH, 4600 Dortmund Expansion joint of pipe parts
US3991588A (en) * 1975-04-30 1976-11-16 General Electric Company Cryogenic fluid transfer joint employing a stepped bayonet relative-motion gap
DE2525693A1 (en) * 1975-06-10 1976-12-30 Berg Fritz Hinrich Dipl Ing Connector for protective tubing surrounding pipes - has expansion joint between tube and base member supporting pipes
DE2530100A1 (en) * 1975-07-05 1977-02-03 Kernforschung Gmbh Ges Fuer Cooling for rotating magnet with superconducting windings - using convection generated in closed cooling channels forming thermosiphon
FR2382641A1 (en) * 1977-03-03 1978-09-29 Bbc Brown Boveri & Cie IMPROVEMENTS TO HELIUM TRANSFER DEVICES BETWEEN A REFRIGERANT MACHINE AND THE ROTOR OF A ROTATING ELECTRIC MACHINE WITH SUPPRACONDUCTOR ROTORIC WINDING
FR2382638A1 (en) * 1977-03-03 1978-09-29 Bbc Brown Boveri & Cie IMPROVEMENTS TO DEVICES MAINTAINING VACUUM IN THE ENCLOSURE OF A ROTATING CRYOSTAT

Also Published As

Publication number Publication date
JPS5588546A (en) 1980-07-04
EP0012914A3 (en) 1980-07-23
DE2856128A1 (en) 1980-07-03
DE2856128B2 (en) 1980-10-16
US4289986A (en) 1981-09-15
DE2856128C3 (en) 1981-08-13
EP0012914A2 (en) 1980-07-09

Similar Documents

Publication Publication Date Title
DE2631896C2 (en) Electric machine with superconducting rotor winding
DE60129172T2 (en) POWER TRANSPORT SYSTEM WITH A COLD DIELECTRIC SUPERCONDUCTING CABLE
EP1206667B1 (en) Supraconducting device comprising a cooling unit for a rotating supraconductive coil
EP0693233A1 (en) Motor spindle for a machine tool
DE2339772B2 (en) Arrangement for fastening a superconducting excitation winding in the rotor of a turbo generator
DE2841163C2 (en) Electric machine with a rotor with a superconducting field winding
EP1310035A1 (en) Supraconductor device comprising a cooling unit for cooling a rotating supraconductive coil
EP0398156B1 (en) Method and device for precooling the helium vessel of a cryostat
DE2830887C3 (en) Cooling device for the rotor of an electrical machine with a superconducting excitation winding
EP0012914B1 (en) Coolant transfer coupling for an electric machine with superconducting rotor winding
DE2830852C3 (en) Cooling device for the rotor of an electrical machine
DE2826501B1 (en) Evacuation device for generating an insulating vacuum around the superconducting winding of a rotor
DE2121295A1 (en) Heatable roller for heat treatment of synthetic fibers and tapes
EP0038504B1 (en) Arrangement for cooling a superconductive magnet winding
WO2003079522A1 (en) Superconducting device with a cold head of a refrigeration unit with a thermosyphon effect thermally coupled to a rotating superconducting winding
DE3207061C2 (en) Sealing device with a magnetizable sealing liquid
DE2829555C3 (en) Device for transferring a cryogenic medium
DE2742477C3 (en) Arrangement for cooling the rotor of an electrical machine, in particular a turbo generator
DE2753459C3 (en) Electric machine with cryogenic cooling
EP0401323B1 (en) Guide mounting for a pressure-roller shell
DE3838949C2 (en)
DE2920742C2 (en) Arrangement for cooling a "to be cooled" in particular superconducting excitation winding in the rotor of an electrical machine
DE2803229C3 (en) Device for supplying coolant to the rotating superconducting winding of an electrical machine with cryogenic cooling
DE2717580B2 (en) Rotor of an electrical machine with a superconducting excitation winding
CH516250A (en) Alternating current synchronous machine system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH FR GB

AK Designated contracting states

Designated state(s): CH FR GB

17P Request for examination filed

Effective date: 19801202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840224

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841220

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19841231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT