EP0012724B1 - Process for automatically judging the quality of a printed product and apparatus for its carrying out - Google Patents

Process for automatically judging the quality of a printed product and apparatus for its carrying out Download PDF

Info

Publication number
EP0012724B1
EP0012724B1 EP79810178A EP79810178A EP0012724B1 EP 0012724 B1 EP0012724 B1 EP 0012724B1 EP 79810178 A EP79810178 A EP 79810178A EP 79810178 A EP79810178 A EP 79810178A EP 0012724 B1 EP0012724 B1 EP 0012724B1
Authority
EP
European Patent Office
Prior art keywords
dot
image
values
stage
differential values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79810178A
Other languages
German (de)
French (fr)
Other versions
EP0012724A1 (en
Inventor
Josef A. Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gretag AG
Original Assignee
Gretag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gretag AG filed Critical Gretag AG
Priority to AT79810178T priority Critical patent/ATE1304T1/en
Publication of EP0012724A1 publication Critical patent/EP0012724A1/en
Application granted granted Critical
Publication of EP0012724B1 publication Critical patent/EP0012724B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching
    • G07D7/206Matching template patterns

Definitions

  • the invention relates to a method for the mechanical assessment of the print quality of a printed product by point-by-point comparison of the test specimen to be assessed with a template, with the formation of the difference values between the reflectance values of the individual pixels of the test specimen obtained by point-by-point photoelectric scanning and the reflectance values of the pixels of the template corresponding to the specimen pixels Processing and evaluation of the difference values obtained in this way according to certain criteria, and a device for carrying them out.
  • DE-A-26 20 611 states that the minimum threshold should not be the same over the entire image area, but locally, e.g. just in the area of a watermark, could also be chosen higher. Although this procedure already gives very good results, i.e. a relatively low frequency of incorrect assessments has shown that these measures are not always sufficient.
  • the invention is therefore based on the object of improving a method and a device of the type defined at the outset in such a way that it works more reliably and leads to fewer incorrect assessments of the test specimen. According to the invention, this is achieved by the measures specified in claim 1 and in claim 12.
  • the device shown is identical except for the parts with dashed lines with the device described in DE-A-26 20 767, DE-A-26 20 765 and DE-A-2620611 and comprises four devices 1, 2, 3 and 4 for pointwise Photoelectric scanning of the test specimen and three partial image templates, three shift levels 5, 6 and 7 to take account of and compensate for the register deviations (relative positions) between the test specimen and the individual templates, a combination level 8 for electronically combining the image contents of the three templates, a subtraction level 9, in which the Differences in the reflectance values of corresponding pixels from the test object and combined templates are formed, a tint correction stage 10, a minimum threshold correction stage 11, an error evaluation stage 12 working according to the error mountain method described in DE-A-26 20 611 and a decision stage 13 which, depending on the evaluation of the test object generate a "good" or "bad” signal ugt.
  • the device comprises a relative position determination stage 17, an (electronic) switch 14, a multiplier 15 and an error statistics stage 16, which in turn has a memory 101, a shift stage 102, a data switch 103, two accumulators 104 and 105, two correction stages 106 and 107, two averaging and reciprocal value formers 108 and 109, two weighting factor memories 110 and 111, a second data switch 112, a further displacement stage 113 and a sign detector 114.
  • Very high quality printed products e.g. Banknotes and other securities are usually produced in several passes using different printing technologies (gravure, letterpress, offset printing).
  • different printing technologies gravure, letterpress, offset printing
  • the use proposed in DE-A-26 20 767 permits a plurality of sub-templates, the image content of which only corresponds to the image content of the printed product generated with one of the different printing technologies, for a more precise examination.
  • test object and the template are known in relation to any fixed coordinate system (usually the scanning pattern of the test object).
  • any fixed coordinate system usually the scanning pattern of the test object.
  • the remission values of the three sub-templates that have been shifted or corrected in this way are then linked to one another in combination stage 8 by simple multiplication and then result in the overall template, which is compared in stage 9 with the respective test item point by point.
  • the reflectance value differences .DELTA.I i generated by comparison stage 9 form a difference image of the test object compared to the composite template.
  • These reflectance value differences ⁇ I i are first subjected to a tint correction in stage 10, an average value being formed from the difference values of a certain surrounding area of each pixel and subtracted from the difference value of the respective pixel. This tint correction is intended to avoid incorrect assessments due to minor tint deviations of the test specimen.
  • the difference values corrected in this way then arrive via the switch 14 and the multiplier 15, by means of which they are subjected to a weighting or masking process to be explained, to the minimum threshold correction stage 11, in which all those directed (and previously corrected for tone) difference values that have a predetermined minimum threshold not exceed, be eliminated so that they are no longer included in the further evaluation.
  • the minimum threshold can be the same for all pixels due to the masking or weighting of the difference values to be explained. More about tint and minimum threshold correction can be found in DE-A-26 20611, in which the following Starbucksberg evaluation stage 12 is also described in detail.
  • An essential feature of the Starbucksberg method is that the difference values of the individual pixels are not considered in isolation, but always in connection with the difference values of the surrounding points, whereby the respective surrounding points are still given a distance-dependent weight.
  • the difference values of each test specimen are stored in the image 101 via the switch 14 in the memory 101 and then shifted in the shift stage 102 such that they coincide with the pixels of any of the three templates, preferably those with the most pronounced and thus most error-prone image structures.
  • the shift stage 102 is constructed in the same way as stages 5-7. It causes an amount of the same amount but in the opposite direction to level 7.
  • the shifted or position-corrected difference values are now stored in the two accumulators 104 and 105 in the two accumulators 104 and 105, separated by signs, using the data switch 103, which is controlled by the sign detector 114.
  • these points are now assigned a lower error sensitivity, that is to say the device is set such that, at such critical points, it reacts weakly to errors which are expressed in reflectance difference values, the greater the total error or mean determined in the statistical analysis Error in these places is. This is done by multiplying the individual difference values by an individual weighting factor in stage 15, the weighting factors being chosen to be smaller for pixels with a larger statistical error and larger for pixels with a smaller statistical error.
  • the positive and negative total values in the accumulators are first subjected to a correction in stages 106 and 107 and then averaged in stages 108 and 109, and the reciprocal values are formed from the mean values.
  • These resiprok values are now stored in the mask memories 110 and 111, separated by sign, in terms of image.
  • the sum values from the accumulators are corrected in such a way that for each pixel the sum values of the pixels surrounding it are added with distance-dependent weighting to the sum value assigned to them. It may be sufficient to choose the weighting profile so steep that only a few neighboring points are taken into account. This correction amounts to the fact that the peaks of the error image represented by the individual sum values are flattened somewhat and the important factors or the error sensitivity of the device do not change too suddenly from pixel to pixel.
  • a separate error mask is used for positive and negative reflectance value differences. It is e.g. but it is also possible to get by with a single error mask. Instead of the signed errors or difference values, only their absolute amounts would have to be added up and averaged. Alternatively, it would be possible to accumulate and average the difference values by sign, but then only use the absolutely larger of the two positive and negative mean values to form the important factors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • General Factory Administration (AREA)
  • Sorting Of Articles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Facsimiles In General (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

The differences between the scanned values of corresponding image points of a specimen and an original are formed by point-by-point scanning and comparison with an original. The difference values are subjected to a tone or shade correction, and then a weighting process and a minimum threshold correction. In the shade or tone correction, a mean value formed from the difference values in a specific surrounding area of the associated image point is subtracted from each difference value. The weighting process is effected individually for each image point and results in systematic errors and critical image zones not producing faulty assessments. The weighting factors are determined by statistical analysis of specimens which are assessed as good visually. The minimum threshold correction eleminates all those pre-treated difference values which are below a certain minimum threshold. The difference values of the points surrounding each image point are added algebraically with distance-dependent weighting to the remaining difference values of each image point. The resulting values are compared with a threshold value for each image point. If these values exceed the threshold value at least at one image point, the specimen is assessed as faulty.

Description

Die Erfindung betrifft ein Verfahren zur maschinellen Beuerteilung der Druckqualität eines Druckerzeugnisses durch punktweisen Vergleich des zu beurteilenden Prüflings mit einer Vorlage unter Bildung der Differenzwerte zwischen den durch punktweise fotoelektrische Abtastung gewonnenen Remissionswerten der einzelnen Bildpunkte des Prüflings und den Remissionswerten der den Prüflingsbildpunkten entsprechenden Bildpunkte der Vorlage und Verarbeitung und Auswertung der so gewonnenen Differenzwerte nach bestimmten Kriterien, sowie eine Vorrichtung zu dessen Durchführung.The invention relates to a method for the mechanical assessment of the print quality of a printed product by point-by-point comparison of the test specimen to be assessed with a template, with the formation of the difference values between the reflectance values of the individual pixels of the test specimen obtained by point-by-point photoelectric scanning and the reflectance values of the pixels of the template corresponding to the specimen pixels Processing and evaluation of the difference values obtained in this way according to certain criteria, and a device for carrying them out.

Ein solches Beurteilungsverfahren ist z.B. in der DE-A-26 20 611 beschrieben. Wie aus dieser Literaturstelle auch hervorgeht, liegt eine der Schwierigkeiten bei einem solchen automatischen Beurteilungsverfahren darin, tolerierbare Fehler von untolerierbaren zu unterscheiden, um Fehlbeurteilungen des Prüflings zu vermeiden. So werden gemäss der genannten DE-A-2620611 z.B. kleinere Remissionswertdifferenzen wischen Prüfling und Vorlage mittels einer Minimalschwellenkorrektur eliminiert, sodass diese kleinen Fehler gar nicht erst in die weitere Auswertung eingehen. Kritisch ist dabei die Festlegung dieser Minimalschwelle. So gibt es z.B. bei Banknoten Zonen, in denen bereits kleinste Farbabweichungen von Auge als Fehler empfunden werden, und andererseits wiederum Zonen, z.B. beim Wasserzeichen, in denen selbst relativ grosse Abweichungen noch ohne weiteres als tolerierbar erachtet werden. In der DE-A-26 20 611 wird diesbezüglich ausgesagt, dass die Minimalschwelle nicht über die gesamte Bildfläche gleich sein müsste, sondern lokal, z.B. eben im Bereich eines Wasserzeichens, auch höher gewählt werden könnte. Wenngleich dieses Vorgehen bereits sehr gute Resultate, d.h. eine relativ geringe Häufigkeit von Fehlbeurteilungen bringt, hat sich doch gezeigt, dass diese Massnahmen noch nicht in jedem Fall ausreichen.Such an assessment procedure is e.g. described in DE-A-26 20 611. As is also evident from this literature reference, one of the difficulties with such an automatic assessment method is to distinguish tolerable errors from intolerable errors in order to avoid incorrect assessments of the test object. For example, according to DE-A-2620611 mentioned, Smaller differences in remission values between the device under test and the sample are eliminated by means of a minimum threshold correction, so that these small errors do not even enter into the further evaluation. The definition of this minimum threshold is critical. So there is e.g. for banknotes zones in which even the smallest color deviations are perceived by the eye as defects, and on the other hand zones, e.g. for the watermark, in which even relatively large deviations are still easily tolerated. In this regard, DE-A-26 20 611 states that the minimum threshold should not be the same over the entire image area, but locally, e.g. just in the area of a watermark, could also be chosen higher. Although this procedure already gives very good results, i.e. a relatively low frequency of incorrect assessments has shown that these measures are not always sufficient.

Die Erfindung liegt demnach die Aufgabe zugrunde, ein Verfahren und eine Vosrichtung der eingangs definierten Art derart zu verbessern, dass es sicherer arbeitet und zu weniger Fehlbeurteilungen des Prüflings führt. Erfindungsgemäss wird dies durch die im Anspruch 1 sowie im Anspruch 12 angeführten Massnahmen erreicht.The invention is therefore based on the object of improving a method and a device of the type defined at the outset in such a way that it works more reliably and leads to fewer incorrect assessments of the test specimen. According to the invention, this is achieved by the measures specified in claim 1 and in claim 12.

Bei dem in der DE-A-26 20 611 beschriebenen Verfahren werden die Differenzwerte nach einigen vorbereitenden Verarbeitungsschritten dann nach der sogenannten Fehlerberg-Methode verarbeitet und ausgewertet. Ein wesentliches Merkmal dieser Fehlerbergmethode ist, dass die Differenzwerte der einzelnen Bildpunkte nicht isoliert für sich allein, sondern stets im Zusammenhang mit den Differenzwerten der Umgebungspunkte betrachtet werden, wobei den jeweiligen Umgebungspunkten in bezug auf den jeweils betrachteten Bildpunkt noch ein distanzabhängiges Gewicht beigemessen wird. Im Rahmen dieser Fehlerbergmethode finden somit ebenfalls Wichtungsprozesse statt, diese Prozesse arbeiten jedoch mit fest vorgegebenen Wichtfaktoren, die nicht das Ergebnis von Analysen von einer Anzahl von Druckerzeugnissen sind, und behandeln alle Bildpunkte gleich. Sie können keine lokale Beeinflussung der Fehlerempfindlichkeit bewirken und sind daher mit den erfindungsgemässen Wichtungsprozessen nicht vergleichbar.In the method described in DE-A-26 20 611, the difference values are then processed and evaluated after a few preparatory processing steps using the so-called Fehlerberg method. An essential feature of this error mountain method is that the difference values of the individual pixels are not considered in isolation, but always in connection with the difference values of the surrounding points, whereby the respective surrounding points are given a distance-dependent weight in relation to the respective viewed point. Weighting processes therefore also take place within the framework of this error mountain method, but these processes work with predefined weighting factors, which are not the result of analyzes of a number of printed products, and treat all pixels equally. They cannot have a local influence on the error sensitivity and are therefore not comparable with the weighting processes according to the invention.

Im folgenden wird die Erfindung anhand der Zeichnung, die ein Blockschema einer zur Durchführung des Verfahrens geeigneten Vorrichtung zeigt, näher erläutert.The invention is explained in more detail below with reference to the drawing, which shows a block diagram of a device suitable for carrying out the method.

Die dargestellte Vorrichtung ist bis auf die strichliert umrandeten Teile identisch mit der in DE-A-26 20 767, DE-A-26 20 765 und DE-A-2620611 beschriebenen Vorrichtung und umfasst vier Einrichtungen 1, 2, 3 und 4 zum punktweisen fotoelektrischen Abtasten von Prüfling und drei Teilbildvorlagen, drei Verschiebungsstufen 5, 6 und 7 zur Berücksichtigung und Kompensation der Registerabweichtungen (Relativpositionen) zwischen Prüfling und den einzelnen Vorlagen, eine Kombinationsstufe 8 zur elektronischen Vereinigung der Bildinhalte der drei Vorlagen, eine Subtrahierstufe 9, in der die Differenzen der Remissionswerte einander entsprechender Bildpunkte von Prüfling und vereinigten Vorlagen gebildet werden, eine Tönungskorrekturstufe 10, eine Minimalschwellenkorrekturstufe 11, eine nach der in der DE-A-26 20 611 beschriebenen Fehlerbergmethode arbeitende Fehlerauswertungstufe 12 und eine Entscheidungsstufe 13, die je nach Bewertung des Prüflings ein « Gut » - oder ein « Schlecht - Signal erzeugt. Zusätzlich zu den genannten Stufen umfasst die Vorrichtung eine Relativpositionsermittlungsstufe 17, einen (elektronischen) Umschalter 14, einen Multiplizierer 15 und eine Fehlerstatistikstufe 16, die ihrerseits einen Speicher 101, eine Verschiebungsstufe 102, eine Datenweiche 103, zwei Akkumulatoren 104 und 105, zwei Korrekturstufen 106 und 107, zwei Mittel- und Reziprokwertbildner 108 und 109, zwei Wichtfaktorenspeicher 110 und 111, eine zweite Datenweiche 112, eine weitere Verschiebungsstufe 113 und einen Vorzeichendetektor 114 umfasst.The device shown is identical except for the parts with dashed lines with the device described in DE-A-26 20 767, DE-A-26 20 765 and DE-A-2620611 and comprises four devices 1, 2, 3 and 4 for pointwise Photoelectric scanning of the test specimen and three partial image templates, three shift levels 5, 6 and 7 to take account of and compensate for the register deviations (relative positions) between the test specimen and the individual templates, a combination level 8 for electronically combining the image contents of the three templates, a subtraction level 9, in which the Differences in the reflectance values of corresponding pixels from the test object and combined templates are formed, a tint correction stage 10, a minimum threshold correction stage 11, an error evaluation stage 12 working according to the error mountain method described in DE-A-26 20 611 and a decision stage 13 which, depending on the evaluation of the test object generate a "good" or "bad" signal ugt. In addition to the above-mentioned stages, the device comprises a relative position determination stage 17, an (electronic) switch 14, a multiplier 15 and an error statistics stage 16, which in turn has a memory 101, a shift stage 102, a data switch 103, two accumulators 104 and 105, two correction stages 106 and 107, two averaging and reciprocal value formers 108 and 109, two weighting factor memories 110 and 111, a second data switch 112, a further displacement stage 113 and a sign detector 114.

Anstelle der vier separaten Abtasteinrichtungen 1-4 könnten selbstverständlich auch nur eine einzige Abtastvorrichtung und drei geeignete Speicher vorgesehen sein, wobei zunächst die einzelnen Teilbildvorlagen sequentiell abgetastet und die dabei anfallenden Abtastwerte bildmässig in den jeweiligen Speicher eingeschrieben werden müssten.Instead of the four separate scanning devices 1-4, it would of course also be possible to provide only a single scanning device and three suitable memories, the individual partial image templates first having to be scanned sequentially and the resulting sample values having to be written into the respective memory in terms of images.

Sofern es sich um einfachere Druckerzeugnisse handelt, die nur mittels eines einzigen Druckverfahrens hergestellt sind, z.B. nur im Tiefdruck oder im Offset-Druck, genügt selbstverständlich eine einzige Vorlage mit dem Gesamtbildinhalt. In diesem Falle würde sich die Vorrichtung um die entsprechende Anzahl von Abtasteinrichtungen bzw. Speicher und die Kombinationsstufe reduzieren.If it is a matter of simpler printed products which are only produced by means of a single printing process, for example only in gravure printing or in offset printing, a single template with the is of course sufficient Overall picture content. In this case, the device would be reduced by the corresponding number of scanning devices or memories and the combination stage.

Qualitativ sehr hochstehende Druckerzeugnisse, wie z.B. Banknoten und andere Wertpapiere, werden in der Regel in mehreren Durchgängen unter Anwendung verschiedener Drucktechnologien (Tiefdruck, Buchdruck, Offset-Druck) hergestellt. In diesem Falle erlaubt die in der DE-A-26 20 767 vorgeschlagene Verwendung mehrere Teilvorlagen, deren Bildinhalt jeweils nur dem mit jeweils einer der verschiedenen Drucktechnologien erzeugten Bildinhalt des Druckerzeugnisses entspricht, eine präzisere Prüfung.Very high quality printed products, e.g. Banknotes and other securities are usually produced in several passes using different printing technologies (gravure, letterpress, offset printing). In this case, the use proposed in DE-A-26 20 767 permits a plurality of sub-templates, the image content of which only corresponds to the image content of the printed product generated with one of the different printing technologies, for a more precise examination.

Eine wesentliche Voraussetzung für diese Art der Prüfung ist, dass die gegenseitigen Positionen von Prüfling und Vorlagen mit Bezug auf ingendein ortsfestes Koordinatensystem (meistens das Abtastraster des Prüflings) bekannt sind. In der Praxis ist es nämlich fast unmöglich, die Vorlagen und die Prüflinge derart in der Abtasteinrichtung zu positionieren, dass die abgetasteten Rasterpunkte auch mit den jeweiligen Bildpunkten auf Prüfling und Vorlage(n) übereinstimmen.An essential prerequisite for this type of test is that the mutual positions of the test object and the template are known in relation to any fixed coordinate system (usually the scanning pattern of the test object). In practice, it is almost impossible to position the templates and the test objects in the scanning device in such a way that the scanned halftone dots also match the respective pixels on the test object and the template (s).

In der in der DE-A-26 20 765 ausführlichst beschriebenen Positionsbestimmungseinrichtung 17 werden daher drei Paare von Relativkoordinaten Δx, Δy zwischen dem jeweiligen Prüfling und den drei Vorlagen ermittelt. Die direkt ermittelten oder gespeicherten Abtastwerte der drei Vorlagen werden dann in den Verschiebungsstufen 5, 6 und 7 um die ihnen zugeordneten Koordinaten Δx, Δy durch Umrechnung so verschoben, dass alle Bildpunkte aller drei Vorlagen mit denen des jeweiligen Prüflings zur Deckung kommen. Wie dies im einzelnen erfolgt, ist in der schon genannten DE-A-26 20 767 ausführlichst beschrieben.In the position determining device 17 described in detail in DE-A-26 20 765, three pairs of relative coordinates .DELTA.x, .DELTA.y between the respective test specimen and the three templates are therefore determined. The directly ascertained or stored sample values of the three templates are then shifted in the shift stages 5, 6 and 7 by the coordinates Δx, Δy assigned to them so that all pixels of all three templates are congruent with those of the respective test object. How this is done in detail is described in detail in the aforementioned DE-A-26 20 767.

Die derart verschobenen bzw. positionskorrigierten Remissionswerte der drei Teilvorlagen werden dann in der Kombinationsstufe 8 durch einfache Multiplikation miteinander verknüpft und ergeben dann die Gesamtvorlage, die in der Stufe 9 mit dem jeweiligen Prüfling Punkt für Punkt verglichen wird. Die dabei von der Vergleichsstufe 9 erzeugten Remissionswertdifferenzen ΔIi bilden ein Differenzenbild des Prüflings gegenüber der zusammengesetzten Vorlage. Diese Remissionswertdifferenzen ΔIi werden zunächst in Stufe 10 einer Tönungskorrektur unterworfen, wobei aus den Differenzwerten eines gewissen Umgebungsbereichs jedes Bildpunkts ein Mittelwert gebildet und vom Differenzwert des jeweiligen Bildpunktes abgezogen wird. Mit dieser Tönungskorrektur sollen durch kleinere Tönungsabweichungen des Prüflings bedingte Fehlbeurteilungen vermieden werden.The remission values of the three sub-templates that have been shifted or corrected in this way are then linked to one another in combination stage 8 by simple multiplication and then result in the overall template, which is compared in stage 9 with the respective test item point by point. The reflectance value differences .DELTA.I i generated by comparison stage 9 form a difference image of the test object compared to the composite template. These reflectance value differences ΔI i are first subjected to a tint correction in stage 10, an average value being formed from the difference values of a certain surrounding area of each pixel and subtracted from the difference value of the respective pixel. This tint correction is intended to avoid incorrect assessments due to minor tint deviations of the test specimen.

Die derart tönungskorrigierten Differenzwerte gelangen dann über den Schalter 14 und den Multiplizierer 15, mittels welchem sie einem noch zu erklärenden Wichtungs- bzw. Maskierungsprozess unterworfen werden, zur Minimalschwellenkorrekturstufe 11, in welcher alle diejenigen gerichteten (und vorher tönungskorrigierten) Differenzwerte, die eine vorgegebene Minimalschwelle nicht überschreiten, eliminiert werden, sodass sie in die weitere Auswertung nicht mehr eingehen. Die Minimalschwelle kann wegen der noch zu erklärenden Maskierung bzw. Wichtung der Differenzwerte für sämtliche Bildpunkte gleich sein. Näheres über Tönungs- und Minimalschwellenkorrektur ist in der DE-A-26 20611 zu finden, in welcher auch die nachfolgende Fehlerberg-Auswertungsstufe 12 ausführlich beschrieben ist. Ein wesentliches Merkmal der Fehlerbergmethode ist, dass die Differenzwerte der einzelnen Bildpunkte nicht isoliert für sich allein, sondern immer im Zusammenhang mit den Differenzwerten der Umgebungspunkte betrachtet werden, wobei den jeweiligen Umgebungspunkten noch ein distanzabhängiges Gewicht beigemessen wird.The difference values corrected in this way then arrive via the switch 14 and the multiplier 15, by means of which they are subjected to a weighting or masking process to be explained, to the minimum threshold correction stage 11, in which all those directed (and previously corrected for tone) difference values that have a predetermined minimum threshold not exceed, be eliminated so that they are no longer included in the further evaluation. The minimum threshold can be the same for all pixels due to the masking or weighting of the difference values to be explained. More about tint and minimum threshold correction can be found in DE-A-26 20611, in which the following Fehlerberg evaluation stage 12 is also described in detail. An essential feature of the Fehlerberg method is that the difference values of the individual pixels are not considered in isolation, but always in connection with the difference values of the surrounding points, whereby the respective surrounding points are still given a distance-dependent weight.

Die so verarbeiteten Differenzwerte führen dann schliesslich in der Stufe 13 durch Schwellenwertdetektion zum Entscheid « Gut bzw. « Schlecht-.The difference values processed in this way ultimately lead to the decision “good or bad” in stage 13 by means of threshold value detection.

Die Auffindung bzw. Gewinnung der in der Maskierungsstufe 15 verwendeten Wichtfaktoren, mit denen jeder einzelne Differenzwert multipliziert wird, erfolgt anhand einer statistischen Fehleranalyse einer grösseren Anzahl von durch visuelle Prüfung für gut befundenen Druckerzeugnissen. Als « gut werden dabei solche Erzeugnisse verstanden, die keine visuell erkennbaren oder zumindest nur tolerierbare Fehler enthalten. Die « guten Prüflinge werden nun nacheinander punktweise mit den auch für die spätere maschinelle Prüfung der eigentlichen Prüfobjekte vorgesehenen Prüfvorlagen verglichen und die dabei allenfalls entstehenden Differenzwerte ΔIi tönungskorrigiert.The important factors used in masking stage 15, with which each individual difference value is multiplied, are found or obtained on the basis of a statistical error analysis of a larger number of printed products which have been found to be good by visual inspection. Products that do not contain any visually recognizable or at least only tolerable defects are understood as “good”. The "good test objects are then successively compared point by point with the test templates also intended for the later machine testing of the actual test objects and the resulting difference values ΔI i are corrected in terms of tint.

Die Differenzwerte jedes Prüflings werden über den Schalter 14 im Speicher 101 bildmässig abgespeichert und anschliessend in der Verschiebungsstufe 102 so verschoben, dass sie mit den Bildpunkten irgendeiner der drei Vorlagen, vorzugsweise derjenigen mit den ausgeprägtesten und damit fehlergefährdetsten Bildstrukturen, koinzidieren. Die Verschiebungsstufe 102 ist gleich aufgebaut wie die Stufen 5-7. Sie bewirkt eine betragsmässig gleich grosse aber entgegengesetzt gerichtete Verschiebung wie die Stufe 7.The difference values of each test specimen are stored in the image 101 via the switch 14 in the memory 101 and then shifted in the shift stage 102 such that they coincide with the pixels of any of the three templates, preferably those with the most pronounced and thus most error-prone image structures. The shift stage 102 is constructed in the same way as stages 5-7. It causes an amount of the same amount but in the opposite direction to level 7.

Die verschobenen oder positionskorrigierten Differenzwerte werden nun über die Datenweiche 103, die vom Vorzeichendetektor 114 angesteuert ist, nach Vorzeichen getrennt in den beiden Akkumulatoren 104 und 105 bildmässig gespeichert.The shifted or position-corrected difference values are now stored in the two accumulators 104 and 105 in the two accumulators 104 and 105, separated by signs, using the data switch 103, which is controlled by the sign detector 114.

Diese Vorgänge wiederholen sich nun solange, bis alle « guten Prüflinge verarbeitet sind. Dabei werden in den Akkumulatoren für jeden Bildpunkt die positiven bzw. negativen Differenzwerte über alle Prüflinge aufsummiert.These processes are repeated until all «good test objects have been processed. The positive or negative difference values for all test items are added up in the accumulators for each pixel.

Nachdem alle « guten » Prüflinge derart geprüft worden sind, wird sich in den Akkumulatoren ein Abbild der über alle Prüflinge summierten Remissionswertdifferenzen in jedem einzelnen Bildpunkt befinden. Diese Differenzsummen geben nun Aufschluss darüber, welche Stellen des Druckerzeugnisses kritisch und/oder mit systematischen Fehlern behaftet sind bzw. an welchen Stellen an sich tolerierbare Fehler besonders häufig auftreten und deshalb leicht zu Fehlbeurteilungen des Druckerzeugnisses führen können.After all "good" test objects have been tested in this way, the accumulators will show an image of all test objects summed reflectance value differences are located in each individual pixel. These difference totals now provide information about which parts of the printed product are critical and / or have systematic errors or at which points tolerable errors occur particularly frequently and can therefore easily lead to incorrect evaluations of the printed product.

Gemäss der Erfindung wird nun diesen Stellen eine geringere Fehlerempfindlichkeit zugeordnet, d.h., die Vorrichtung wird so eingestellt, dass sie an solchen kritischen Stellen umso schwächer auf Fehler, die sich in Remissionsdifferenzwerten ausdrücken, reagiert, je grösser der bei der statistischen Analyse ermittelte Gesamtfehler oder mittlere Fehler an diesen Stellen ist. Dies geschieht dadurch, dass in der Stufe 15 die einzelnen Differenzwerte mit einem individuellen Wichtfaktor multipliziert werden, wobei die Wichtfaktoren für Bildpunkte mit grösserem statistischem Fehler kleiner und für Bildpunkte mit kleinerem statistischen Fehler grösser gewählt sind.According to the invention, these points are now assigned a lower error sensitivity, that is to say the device is set such that, at such critical points, it reacts weakly to errors which are expressed in reflectance difference values, the greater the total error or mean determined in the statistical analysis Error in these places is. This is done by multiplying the individual difference values by an individual weighting factor in stage 15, the weighting factors being chosen to be smaller for pixels with a larger statistical error and larger for pixels with a smaller statistical error.

Zur Gewinnung der Wichtfaktoren werden die in den Akkumulatoren befindlichen, je einem Bildpunkt zugeordneten positiven und negativen Summenwerte zunächst in den Stufen 106 bzw. 107 einer Korrektur unterworfen und dann in den Stufen 108 und 109 gemittelt und von den Mittelwerten die Reziprokwerte gebildet. Diese Resiprokwerte werden nun wieder bildmässig nach Vorzeichen getrennt in.den Maskenspeichern 110 und 111 abgespeichert.To obtain the important factors, the positive and negative total values in the accumulators, each assigned to a pixel, are first subjected to a correction in stages 106 and 107 and then averaged in stages 108 and 109, and the reciprocal values are formed from the mean values. These resiprok values are now stored in the mask memories 110 and 111, separated by sign, in terms of image.

Die Reziprokwerte werden nun direkt als Wichtfaktoren verwendet. Es ist leicht einzusehen, dass die Gesamtheit der in den Speichern befindlichen Wichtfaktoren gewissermassen eine Fehlermaske (je für positive und negative Differenzwerte) bildet, die dann dem durch die Differenzwerte repräsentierten Fehlerbild des Prüflings überlagert wird.The reciprocal values are now used directly as important factors. It is easy to see that the entirety of the important factors in the memories forms a kind of error mask (for positive and negative difference values), which is then superimposed on the error image of the test object represented by the difference values.

Die Korrektur der Summenwerte aus den Akkumulatoren erfolgt derart, dass für jeden Bildpunkt zum ihnen zugeordneten Summenwert noch die Summenwerte der ihn umgebenden Bildpunkte mit entfernungsabhängiger Wichtung hinzuaddiert werden. Dabei kann es genügen, das Wichtungsprofil so steil zu wählen, dass nur einige wenige Nachbarpunkte mit berücksichtigt werden. Diese Korrektur läuft darauf hinaus, dass die Spitzen des durch die einzelnen Summenwerte dargestellten Fehlerbilds etwas abgeflacht werden und sich die Wichtfaktoren bzw. die Fehlerempfindlichkeit der Vorrichtung nicht zu sprunghaft von Bildpunkt zu Bildpunkt ändern.The sum values from the accumulators are corrected in such a way that for each pixel the sum values of the pixels surrounding it are added with distance-dependent weighting to the sum value assigned to them. It may be sufficient to choose the weighting profile so steep that only a few neighboring points are taken into account. This correction amounts to the fact that the peaks of the error image represented by the individual sum values are flattened somewhat and the important factors or the error sensitivity of the device do not change too suddenly from pixel to pixel.

Es versteht sich, dass die Korrekturstufen 106 und 107 und die Mittelwert- Reziprokwertbildner 108 und 109 nicht doppelt vorhanden sein müssen, sondern dass je eine der beiden genügt, wobei dann die Inhalte der Akkumulatoren sequentuell verarbeitet werden müssten. Ueberhaupt ist klar, dass der gesamte elektronische Teil der Vorrichtung, sofern es sich nicht um rein analoge Bereiche handelt, zweckmässigerweise nicht in Hardware, sondern durch einen geeignet programmierten elektronischen Rechner realisiert ist.It goes without saying that the correction stages 106 and 107 and the mean value reciprocal value formers 108 and 109 need not be present twice, but that one of the two is sufficient, in which case the contents of the accumulators would then have to be processed sequentially. In general, it is clear that the entire electronic part of the device, provided that it is not purely analogue areas, is expediently not implemented in hardware, but rather by means of a suitably programmed electronic computer.

Die Wichtung der (tönungskorrigierten) Differenzwerte bei der maschinellen Prüfung der eigentlichen Prüfobjekte erfolgt nun derart, dass zu jedem Differenzwert abhängig vom Vorzeichen des Differenzwerts der dem betreffenden Bildpunkt zugeordnete Wichtfaktor über die vom Vorzeichendetektor 114 angesteuerte Datenweiche 112 aus dem einen oder anderen der Maskenspeicher 110 und 111 abgerufen wird und im Multiplizierer 15 mit dem betreffenden Differenzwert multipliziert wird. Da jedoch in den Maskenspeichern 110 und 111 die Wichtfaktoren mit den Bildpunkten der in Stufe 4 abgetasteten (oder gespeicherten) Teilvorlage koinzidieren, müssen die einzelnen Wichtfaktoren vorerst noch im selben Sinn und um den gleichen Betrag wie die Remissionswerte dieser Teilvorlage verschoben bzw. positionskorrigiert werden. Dies erfolgt in der Verschiebungsstufe 102, die mit gemeinsam mit der Verschiebungsstufe 7 für die Teilvorlage bzw. den Abtaster 4 synchron über die Relativpositionsermittlungsstufe 17 angesteuert ist.The weighting of the (tint-corrected) difference values during the machine test of the actual test objects is now carried out in such a way that for each difference value, depending on the sign of the difference value, the important factor assigned to the relevant pixel via the data switch 112 controlled by the sign detector 114 from one or the other of the mask memories 110 and 111 is called up and multiplied by the relevant difference value in the multiplier 15. However, since the important factors coincide in the mask memories 110 and 111 with the pixels of the partial template scanned (or stored) in stage 4, the individual important factors must first be shifted or corrected by the same amount as the remission values of this partial template. This takes place in the displacement stage 102, which is controlled synchronously with the displacement stage 7 for the partial original or the scanner 4 via the relative position determination stage 17.

Die vorstehend beschriebene spezielle Wahl (reziproker Mittelwert) der Wichtfaktoren bewirkt, dass der mittlere Fehler bei den «guten Prüflingen über das gesamte Bildfeld gleich ist. Selbstverständlich wäre auch eine andere Wahl möglich, wesentlich ist lediglich, dass die Wichtfaktoren umso kleiner werden, je grösser der mittlere Fehler im betreffenden Bildpunkt ist. Auch ist es z.B. wenngleich vorteilhaft nicht unbedingt nötig, jedem Bildpunkt einen eigenen Wichtfaktor zuzuordnen, sondern es könnten auch mehr oder weniger Bildpunkte zu Zonen oder Gruppen zusammengefasst und mit einem gemeinsamen Wicht faktor versehen werden. Die Anzahl n der für die Auffindung der Wichtfaktoren notwendigen « guten » Prüflinge richtet sich danach, wie genau die statistische Analyse durchgeführt werden soll. Brauchbare Zahlen liegen bei 100-500.The special choice (reciprocal mean) of the important factors described above has the effect that the mean error in the “good test objects” is the same over the entire image field. Of course, another choice would also be possible; the only important thing is that the larger the mean error in the pixel concerned, the smaller the important factors. It is also e.g. although advantageously not absolutely necessary to assign a separate weighting factor to each pixel, more or fewer pixels could also be combined into zones or groups and given a common weighting factor. The number n of "good" test items required to find the important factors depends on how exactly the statistical analysis is to be carried out. Usable numbers are 100-500.

In vorstehend beschriebenem Ausführungsbeispiel wird für positive und negative Remissionswertdifferenzen je eine eigene Fehlermaske verwendet. Es ist z.B. aber durchaus auch möglich, mit einer einzigen Fehlermaske auszukommen. Dazu müssten anstelle der vorzeichenbehafteten Fehler bzw. Differenzwerte nur deren Absolutbeträge aufsummiert und gemittelt werden. Alternativ wäre es möglich, die Differenzwerte zwar nach Vorzeichen getrennt zu akkumulieren und zu mitteln, dann aber jeweils nur den absolut grösseren der beiden positiven und negativen Mittelwerte zur Bildung der Wichtfaktoren zu verwenden.In the exemplary embodiment described above, a separate error mask is used for positive and negative reflectance value differences. It is e.g. but it is also possible to get by with a single error mask. Instead of the signed errors or difference values, only their absolute amounts would have to be added up and averaged. Alternatively, it would be possible to accumulate and average the difference values by sign, but then only use the absolutely larger of the two positive and negative mean values to form the important factors.

Wie schon mehrfach erwähnt, sind mit Ausnahme der Fehlerstatistik-Stufe 16 alle Stufen der Vorrichtung in den drei genannten Literaturstellen DE-A-26 20 611, DE-A-26 20 767 und DE-A-2620765 ausführlichst erläutert. Ebenso erläutert sind in diesen Literaturstellen allgemeine Probleme der fotoelektrischen Abtastung bei der maschinellen Qualitätsprüfung von Druckerzeugnissen sowie geeignete Methoden und Vorrichtungen dazu.As already mentioned several times, with the exception of the error statistics stage 16, all stages of the device are explained in detail in the three cited references DE-A-26 20 611, DE-A-26 20 767 and DE-A-2620765. Also explain In these references, general problems of photoelectric scanning in the mechanical quality inspection of printed products as well as suitable methods and devices for this purpose are discussed.

Claims (17)

1. Method for the mechanical assessment of the print quality of a printed product through dot-by-dot comparison of the specimen under evaluation with a prototype, establishing the differential values between the reflectance values of the individual image dots of the specimen obtained through dot-by-dot photoelectric scanning and the reflectance values of the image dots of the prototype corresponding to the image dots of the specimen, and processing and evaluation of the differential values thus obtained according to specific criteria, characterized in that the differential values are subjected to a weighting process which individually influences the specific sensitivity to error of the respective criteria for processing and evaluation as regards the individual image dots of the printed product, in which they are multiplied by a weight factor assigned individually to each individual image dot or in each case to a group of image dots, whereby the weight factors are obtained by means of an analysis of a plurality of printed products such that for image dots with greater differential values between the prototype and the printed products mentioned the weighting is selected smaller and vice versa.
2. Method according to Claim 1, that the printed products of the plurality mentioned are compared with the prototype through dot-by-dot scanning and for each image dot the reflectance value differences compared with the prototype are added or averaged over the plurality of printed products, whereby the weight factors are selected smaller, the greater the sum or average of the reflectance value differences in the image dots concerned.
3. Method according to Claim 2, characterized in that for each image dot an individual weight factor is used.
4. Method according to Claim 2 or 3, characterized in that the weight factors are selected inversely proportional to the sum or average of the reflectance value differences in the image dots concerned.
5. Method according to one of the preceding Claims, characterized in that prior to the weighting process, a tone correction is carried out, in which an average is established from the differential values in the individual image dots preferably by arithmetical averaging, and is subtracted from the individual differential values.
6. Method according to Claim 5, characterized in that for each image dot a separate average is established and subtracted from the differential value of the respective image dot, whereby to establish the separate average only the differential values of prescribed surrounding dots of the image dot concerned are referred to.
7. Method according to Claim 5 or 6, characterized in that also the reflectance value differences, established for the determination of the weight factors, between the printed products known to be qualitatively satisfactory and the prototype are subjected to a corresponding tone correction.
8. Method according to one of Claims 2-7, characterized in that the differential values after the weighting process are subjected to a minimum threshold correction, in which differential values not exceeding a minimum threshold are eliminated, so that they are not taken into consideration for further processing and evaluation.
9. Method according to Claim 8, characterized in that the minimum threshold is uniform for all image dots.
10. Method according to Claim 2, characterized in that the reflectance value differences are added and/or averaged separately according to sign and that for each group of image dots or each individual image dot corresponding to the two totals or averages relating to the positive and negative reflectance value differences two weight factors are established, and that positive differential values are weighted with the one weight factor and negative differential values are weighted with the other weight factor.
11. Method according to Claim 2 or 10, characterized in that the totals of the reflectance value differences over the total number of the printed products known to be satisfactory are subjected to a correction, in which added to the total value of each image dot are the total values of the image dots surrounding it with weighting dependent on distance.
12. Device to carry out the method according to Claim 1, with a scanning stage (1) for dot-by-dot photoelectric scanning of the specimen under evaluation, with a comparison stage (9), which compares the reflectance values obtained through the dot-by-dot scanning of the specimen with the corresponding reflectance values of a prototype, and thereby for each pair or corresponding image dots establishes the difference between the reflectance values on specimen and prototype, and with a processing and evaluation stage (10-16), which processes the differential values thus obtained according to specific, preset criteria and evaluates them for a decision as to good or bad, characterized in that the processing and evaluation stage (10-16) contains a weighting stage (15, 16) individually influencing its specific sensitivity to error as regards the individual image dots, which multiplies the differential values before their further processing with a weight factor individually assigned to each individual image dot or in each case to a group of image dots.
13. Device according to Claim 12, characterized in that the weighting stage (15, 16) has a statistic stage (16), which adds or averages the differential values for each individual image dot over a given number of scans and establishes and stores an individual weight factor from the totals or averages for each individual image dot or for in each case one group of image dots, which is smaller, the larger the total or average concerned and vice versa.
14. Device according to Claim 13, characterized in that the statistic stage (16) adds or averages the differential values separately according to sign, and for each group of image dots or each individual image dot establishes in each case one weight factor dependent only on the positive differential values and one dependent only on the negative differential values, and that the weighting stage multiplies the differential values dependent on sign in each case with the one or the other individual weight factor.
15. Device according to Claim 13 or 14, characterized in that the statistic stage (16) contains at least one correction stage (106, 107), which adds to the total value of each image dot the total values of the image dots surrounding it with weighting dependent on distance.
16. Device according to one of Claims 13-15, characterized in that the statistic stage (16) determines the weight factors as inversely proportional to the average or to the total or corrected total of the respective image dot.
17. Device according to one of Claims 12-16, characterized in that a tone correction stage (10) . is connected in series to the weighting stage (15, 16), and which establishes an average from the differential values of the individual image dots and substracts this from the differential values before their weighting.
EP79810178A 1978-12-18 1979-12-12 Process for automatically judging the quality of a printed product and apparatus for its carrying out Expired EP0012724B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79810178T ATE1304T1 (en) 1978-12-18 1979-12-12 METHOD FOR MACHINE EVALUATION OF THE PRINT QUALITY OF A PRINT PRODUCT AND DEVICE FOR ITS IMPLEMENTATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH12833/78 1978-12-18
CH1283378 1978-12-18

Publications (2)

Publication Number Publication Date
EP0012724A1 EP0012724A1 (en) 1980-06-25
EP0012724B1 true EP0012724B1 (en) 1982-06-30

Family

ID=4386795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79810178A Expired EP0012724B1 (en) 1978-12-18 1979-12-12 Process for automatically judging the quality of a printed product and apparatus for its carrying out

Country Status (6)

Country Link
US (1) US4311914A (en)
EP (1) EP0012724B1 (en)
JP (1) JPS5585992A (en)
AT (1) ATE1304T1 (en)
CA (1) CA1128771A (en)
DE (1) DE2963279D1 (en)

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3174234D1 (en) * 1981-06-22 1986-05-07 Toshiba Kk System for identifying currency note
US4464787A (en) * 1981-06-23 1984-08-07 Casino Technology Apparatus and method for currency validation
JPS5881165A (en) * 1981-11-11 1983-05-16 Dainippon Printing Co Ltd Inspection of print
US4587434A (en) * 1981-10-22 1986-05-06 Cubic Western Data Currency note validator
US4482971A (en) * 1982-01-18 1984-11-13 The Perkin-Elmer Corporation World wide currency inspection
JPS5999592A (en) * 1982-11-29 1984-06-08 大日本印刷株式会社 Pattern inspection method and apparatus for printed matter
JPS5957108A (en) * 1982-09-27 1984-04-02 Toshiba Corp System for judging damage of paper
JPS59111589A (en) * 1982-12-17 1984-06-27 ロ−レルバンクマシン株式会社 Sheet paper discriminator
US4827531A (en) * 1983-04-11 1989-05-02 Magnetic Peripherals Inc. Method and device for reading a document character
US4571635A (en) * 1984-02-17 1986-02-18 Minnesota Mining And Manufacturing Company Method of image enhancement by raster scanning
US4745562A (en) * 1985-08-16 1988-05-17 Schlumberger, Limited Signal processing disparity resolution
JPH0614384B2 (en) * 1987-04-13 1994-02-23 ローレルバンクマシン株式会社 Bill validator
US4783840A (en) * 1987-12-04 1988-11-08 Polaroid Corporation Method for enhancing image data by noise reduction or sharpening
US5467406A (en) * 1990-02-05 1995-11-14 Cummins-Allison Corp Method and apparatus for currency discrimination
US5751840A (en) * 1990-02-05 1998-05-12 Cummins-Allison Corp. Method and apparatus for currency discrimination
US5652802A (en) * 1990-02-05 1997-07-29 Cummins-Allison Corp. Method and apparatus for document identification
US5905810A (en) * 1990-02-05 1999-05-18 Cummins-Allison Corp. Automatic currency processing system
US6311819B1 (en) 1996-05-29 2001-11-06 Cummins-Allison Corp. Method and apparatus for document processing
US5875259A (en) * 1990-02-05 1999-02-23 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US6539104B1 (en) 1990-02-05 2003-03-25 Cummins-Allison Corp. Method and apparatus for currency discrimination
US5633949A (en) * 1990-02-05 1997-05-27 Cummins-Allison Corp. Method and apparatus for currency discrimination
US5992601A (en) * 1996-02-15 1999-11-30 Cummins-Allison Corp. Method and apparatus for document identification and authentication
US5724438A (en) * 1990-02-05 1998-03-03 Cummins-Allison Corp. Method of generating modified patterns and method and apparatus for using the same in a currency identification system
US5960103A (en) * 1990-02-05 1999-09-28 Cummins-Allison Corp. Method and apparatus for authenticating and discriminating currency
US5790693A (en) * 1990-02-05 1998-08-04 Cummins-Allison Corp. Currency discriminator and authenticator
US6636624B2 (en) 1990-02-05 2003-10-21 Cummins-Allison Corp. Method and apparatus for currency discrimination and counting
US5870487A (en) * 1990-02-05 1999-02-09 Cummins-Allison Corp. Method and apparatus for discriminting and counting documents
US5815592A (en) * 1990-02-05 1998-09-29 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US6241069B1 (en) 1990-02-05 2001-06-05 Cummins-Allison Corp. Intelligent currency handling system
US5790697A (en) * 1990-02-05 1998-08-04 Cummins-Allion Corp. Method and apparatus for discriminating and counting documents
US6959800B1 (en) 1995-12-15 2005-11-01 Cummins-Allison Corp. Method for document processing
US5966456A (en) * 1990-02-05 1999-10-12 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US6913130B1 (en) 1996-02-15 2005-07-05 Cummins-Allison Corp. Method and apparatus for document processing
US5295196A (en) 1990-02-05 1994-03-15 Cummins-Allison Corp. Method and apparatus for currency discrimination and counting
US7248731B2 (en) * 1992-05-19 2007-07-24 Cummins-Allison Corp. Method and apparatus for currency discrimination
US5237621A (en) * 1991-08-08 1993-08-17 Philip Morris Incorporated Product appearance inspection methods and apparatus employing low variance filter
DE69221798T2 (en) * 1991-09-18 1998-03-26 Komori Printing Mach Method and device for detecting defective printed matter in a printing press
US6866134B2 (en) * 1992-05-19 2005-03-15 Cummins-Allison Corp. Method and apparatus for document processing
CA2100324C (en) * 1992-08-06 2004-09-28 Christoph Eisenbarth Method and apparatus for determining mis-registration
WO1995000337A1 (en) * 1993-06-17 1995-01-05 The Analytic Sciences Corporation Automated system for print quality control
US6220419B1 (en) 1994-03-08 2001-04-24 Cummins-Allison Method and apparatus for discriminating and counting documents
US6915893B2 (en) * 2001-04-18 2005-07-12 Cummins-Alliston Corp. Method and apparatus for discriminating and counting documents
US5748780A (en) * 1994-04-07 1998-05-05 Stolfo; Salvatore J. Method and apparatus for imaging, image processing and data compression
US6980684B1 (en) 1994-04-12 2005-12-27 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US6628816B2 (en) 1994-08-09 2003-09-30 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US6081608A (en) * 1995-02-09 2000-06-27 Mitsubishi Jukogyo Kabushiki Kaisha Printing quality examining method
US6748101B1 (en) * 1995-05-02 2004-06-08 Cummins-Allison Corp. Automatic currency processing system
US5982918A (en) * 1995-05-02 1999-11-09 Cummins-Allison, Corp. Automatic funds processing system
US6363164B1 (en) 1996-05-13 2002-03-26 Cummins-Allison Corp. Automated document processing system using full image scanning
US6880692B1 (en) 1995-12-15 2005-04-19 Cummins-Allison Corp. Method and apparatus for document processing
US6278795B1 (en) 1995-12-15 2001-08-21 Cummins-Allison Corp. Multi-pocket currency discriminator
US6661910B2 (en) 1997-04-14 2003-12-09 Cummins-Allison Corp. Network for transporting and processing images in real time
US8950566B2 (en) 1996-05-13 2015-02-10 Cummins Allison Corp. Apparatus, system and method for coin exchange
US20050276458A1 (en) 2004-05-25 2005-12-15 Cummins-Allison Corp. Automated document processing system and method using image scanning
US6860375B2 (en) 1996-05-29 2005-03-01 Cummins-Allison Corporation Multiple pocket currency bill processing device and method
US7903863B2 (en) * 2001-09-27 2011-03-08 Cummins-Allison Corp. Currency bill tracking system
US8162125B1 (en) 1996-05-29 2012-04-24 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US7232024B2 (en) 1996-05-29 2007-06-19 Cunnins-Allison Corp. Currency processing device
US7187795B2 (en) * 2001-09-27 2007-03-06 Cummins-Allison Corp. Document processing system using full image scanning
US6026175A (en) * 1996-09-27 2000-02-15 Cummins-Allison Corp. Currency discriminator and authenticator having the capability of having its sensing characteristics remotely altered
US6573983B1 (en) 1996-11-15 2003-06-03 Diebold, Incorporated Apparatus and method for processing bank notes and other documents in an automated banking machine
US7513417B2 (en) * 1996-11-15 2009-04-07 Diebold, Incorporated Automated banking machine
US7584883B2 (en) * 1996-11-15 2009-09-08 Diebold, Incorporated Check cashing automated banking machine
US7559460B2 (en) * 1996-11-15 2009-07-14 Diebold Incorporated Automated banking machine
US5923413A (en) * 1996-11-15 1999-07-13 Interbold Universal bank note denominator and validator
US8478020B1 (en) 1996-11-27 2013-07-02 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
CA2288624C (en) 1997-05-07 2003-08-05 Cummins-Allison Corp. Intelligent currency handling system
US6039645A (en) * 1997-06-24 2000-03-21 Cummins-Allison Corp. Software loading system for a coin sorter
US5940623A (en) * 1997-08-01 1999-08-17 Cummins-Allison Corp. Software loading system for a coin wrapper
US5999636A (en) * 1997-10-10 1999-12-07 Printprobe Technology, Llc Apparatus and process for inspecting print material
US6493461B1 (en) 1998-03-17 2002-12-10 Cummins-Allison Corp. Customizable international note counter
JP4149575B2 (en) * 1998-08-24 2008-09-10 株式会社東芝 Printed material contamination inspection system
AU4679400A (en) 1999-04-28 2000-11-10 Cummins-Allison Corp. Currency processing machine with multiple coin receptacles
US6637576B1 (en) 1999-04-28 2003-10-28 Cummins-Allison Corp. Currency processing machine with multiple internal coin receptacles
US6402986B1 (en) 1999-07-16 2002-06-11 The Trustees Of Boston University Compositions and methods for luminescence lifetime comparison
US20050264832A1 (en) * 1999-08-31 2005-12-01 Baum Daniel R Printing images in an optimized manner
US6843418B2 (en) * 2002-07-23 2005-01-18 Cummin-Allison Corp. System and method for processing currency bills and documents bearing barcodes in a document processing device
US6588569B1 (en) 2000-02-11 2003-07-08 Cummins-Allison Corp. Currency handling system having multiple output receptacles
US8701857B2 (en) 2000-02-11 2014-04-22 Cummins-Allison Corp. System and method for processing currency bills and tickets
US6398000B1 (en) 2000-02-11 2002-06-04 Cummins-Allison Corp. Currency handling system having multiple output receptacles
US6601687B1 (en) 2000-02-11 2003-08-05 Cummins-Allison Corp. Currency handling system having multiple output receptacles
US20020020603A1 (en) * 2000-02-11 2002-02-21 Jones, William, J. System and method for processing currency bills and substitute currency media in a single device
US7000828B2 (en) 2001-04-10 2006-02-21 Cummins-Allison Corp. Remote automated document processing system
US7647275B2 (en) * 2001-07-05 2010-01-12 Cummins-Allison Corp. Automated payment system and method
US8437530B1 (en) 2001-09-27 2013-05-07 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8428332B1 (en) 2001-09-27 2013-04-23 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8437529B1 (en) 2001-09-27 2013-05-07 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8944234B1 (en) 2001-09-27 2015-02-03 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8433123B1 (en) 2001-09-27 2013-04-30 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US7873576B2 (en) * 2002-09-25 2011-01-18 Cummins-Allison Corp. Financial document processing system
US6896118B2 (en) 2002-01-10 2005-05-24 Cummins-Allison Corp. Coin redemption system
US7158662B2 (en) * 2002-03-25 2007-01-02 Cummins-Allison Corp. Currency bill and coin processing system
US7269279B2 (en) * 2002-03-25 2007-09-11 Cummins-Allison Corp. Currency bill and coin processing system
US7551764B2 (en) * 2002-03-25 2009-06-23 Cummins-Allison Corp. Currency bill and coin processing system
US8171567B1 (en) 2002-09-04 2012-05-01 Tracer Detection Technology Corp. Authentication method and system
US8627939B1 (en) 2002-09-25 2014-01-14 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US20040182675A1 (en) * 2003-01-17 2004-09-23 Long Richard M. Currency processing device having a multiple stage transport path and method for operating the same
US7016767B2 (en) * 2003-09-15 2006-03-21 Cummins-Allison Corp. System and method for processing currency and identification cards in a document processing device
KR101333278B1 (en) * 2004-03-09 2013-12-02 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 Improved fake currency detector using visual and reflective spectral response
JP4700293B2 (en) * 2004-05-25 2011-06-15 株式会社小森コーポレーション Method and apparatus for adjusting ink supply amount of printing press
US7376269B2 (en) * 2004-11-22 2008-05-20 Xerox Corporation Systems and methods for detecting image quality defects
US20060170996A1 (en) * 2005-02-02 2006-08-03 Steven Headley Color control of a web printing press utilizing intra-image color measurements
US7946406B2 (en) * 2005-11-12 2011-05-24 Cummins-Allison Corp. Coin processing device having a moveable coin receptacle station
US7980378B2 (en) * 2006-03-23 2011-07-19 Cummins-Allison Corporation Systems, apparatus, and methods for currency processing control and redemption
US7929749B1 (en) 2006-09-25 2011-04-19 Cummins-Allison Corp. System and method for saving statistical data of currency bills in a currency processing device
US8538123B1 (en) 2007-03-09 2013-09-17 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8417017B1 (en) 2007-03-09 2013-04-09 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
GB2459223B (en) 2007-03-09 2012-07-11 Cummins Allison Corp Document imaging and processing system
US8116585B2 (en) * 2007-08-09 2012-02-14 Xerox Corporation Background noise detection on rendered documents
ITMI20071659A1 (en) 2007-08-09 2009-02-10 Campagnolo Srl SPROCKET ASSEMBLY FOR A REAR BICYCLE WHEEL AND SPROCKET PACK INCLUDING SUCH ASSEMBLY
US10528925B2 (en) 2008-01-18 2020-01-07 Mitek Systems, Inc. Systems and methods for mobile automated clearing house enrollment
US8983170B2 (en) 2008-01-18 2015-03-17 Mitek Systems, Inc. Systems and methods for developing and verifying image processing standards for mobile deposit
US9842331B2 (en) 2008-01-18 2017-12-12 Mitek Systems, Inc. Systems and methods for mobile image capture and processing of checks
US8929640B1 (en) 2009-04-15 2015-01-06 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8391583B1 (en) 2009-04-15 2013-03-05 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US8437532B1 (en) 2009-04-15 2013-05-07 Cummins-Allison Corp. Apparatus and system for imaging currency bills and financial documents and method for using the same
US10891475B2 (en) 2010-05-12 2021-01-12 Mitek Systems, Inc. Systems and methods for enrollment and identity management using mobile imaging
US9141876B1 (en) 2013-02-22 2015-09-22 Cummins-Allison Corp. Apparatus and system for processing currency bills and financial documents and method for using the same
US9536139B2 (en) * 2013-03-15 2017-01-03 Mitek Systems, Inc. Systems and methods for assessing standards for mobile image quality

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275985A (en) * 1962-06-14 1966-09-27 Gen Dynamics Corp Pattern recognition systems using digital logic
CH555071A (en) * 1970-10-20 1974-10-15 Peyer Siegfried BANKNOTE VALIDATOR.
AT311097B (en) * 1972-03-21 1973-10-25 Gao Ges Automation Org Method for measuring the degree of soiling of banknotes or the like.
FR2196494B1 (en) * 1972-07-28 1979-08-03 Titn
CH615031A5 (en) * 1976-04-30 1979-12-28 Gretag Ag
US4143279A (en) * 1976-04-30 1979-03-06 Gretag Aktiengesellschaft Method and apparatus for testing the print quality of printed texts, more particularly banknotes
IT1068657B (en) * 1976-11-03 1985-03-21 Nuovo Pignone Spa PERFECTED METHOD FOR CHECKING BANKNOTES AND EQUIPMENT TO MAKE IT
JPS5951031B2 (en) * 1976-11-12 1984-12-12 株式会社日立製作所 Signal ternary method

Also Published As

Publication number Publication date
CA1128771A (en) 1982-08-03
ATE1304T1 (en) 1982-07-15
DE2963279D1 (en) 1982-08-19
US4311914A (en) 1982-01-19
EP0012724A1 (en) 1980-06-25
JPS5585992A (en) 1980-06-28

Similar Documents

Publication Publication Date Title
EP0012724B1 (en) Process for automatically judging the quality of a printed product and apparatus for its carrying out
DE2620765C2 (en)
DE10314071B3 (en) Procedure for the qualitative assessment of a material with at least one identifier
DE69109935T2 (en) Procedure for checking prints.
DE3937950C2 (en)
DE2620611C2 (en)
DE3110222C2 (en) Process for partial smoothing retouching in electronic color image reproduction
DE19724066B4 (en) Method for correcting geometry errors when transferring information to a substrate
DE2853509A1 (en) PROCEDURE FOR COLOR EVALUATION OF SAMPLES OF TEXTILE, DECORATIVE OR PACKAGING PRINTING AND COLOR EVALUATION FACILITIES
EP0012723B1 (en) Process for mechanically assessing the print quality of a printed product and device for performing the same
EP0475897B1 (en) Method for producing photographic colour copies
DE3028942A1 (en) METHOD AND INSPECTION DEVICE FOR INSPECTING AN OBJECT, IN PARTICULAR A BOTTLE
DE102016213111B4 (en) Inspection system with multiple detection areas
DE19848243A1 (en) Bending angle detector for workpieces such as metal plate
DE10261221A1 (en) Method and device for real-time control of printed images
DE102019208257A1 (en) Print quality analysis with neural networks
DE102017105704B3 (en) Method for checking a printing form, in particular a gravure cylinder
DE3831688C2 (en)
DE3010559C2 (en) Facilities for detecting errors in regular patterns
EP1741060A2 (en) Method for comparing an image to at least one reference image
EP1139285B1 (en) Method and apparatus for testing or inspection of articles
DE3110517C2 (en) Method and circuit arrangement for the partial electronic correction of the structuring in color image reproduction
EP0060312B1 (en) Method of partially smoothing a retouch during the electronic reproduction of colour images
EP4205091B1 (en) Device for generating a digital identifier of a copy of a printed object, said copy having at least one printed image, smartphone or tablet comprising said device, and method for using said device
DE102008033171A1 (en) Method and device for inline quality assurance on printing machines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: FIAMMENGHI - DOMENIGHETTI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL

DB1 Publication of patent cancelled
REF Corresponds to:

Ref document number: 1304

Country of ref document: AT

Date of ref document: 19820715

Kind code of ref document: T

PUAC Information related to the publication of a b1 document modified or deleted

Free format text: ORIGINAL CODE: 0009299EPPU

REF Corresponds to:

Ref document number: 2963279

Country of ref document: DE

Date of ref document: 19820819

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL

RB1 B1 document published (corrected)

Effective date: 19820922

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19831104

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841107

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871231

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881212

Ref country code: AT

Effective date: 19881212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19891231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT