EP0007850A1 - Installation de récupération d'énergie - Google Patents

Installation de récupération d'énergie Download PDF

Info

Publication number
EP0007850A1
EP0007850A1 EP79400491A EP79400491A EP0007850A1 EP 0007850 A1 EP0007850 A1 EP 0007850A1 EP 79400491 A EP79400491 A EP 79400491A EP 79400491 A EP79400491 A EP 79400491A EP 0007850 A1 EP0007850 A1 EP 0007850A1
Authority
EP
European Patent Office
Prior art keywords
condenser
exchanger
series
evaporator
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP79400491A
Other languages
German (de)
English (en)
Inventor
Jean Tillequin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creusot Loire SA
Original Assignee
Creusot Loire SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creusot Loire SA filed Critical Creusot Loire SA
Publication of EP0007850A1 publication Critical patent/EP0007850A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/185Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant

Definitions

  • the present invention relates to energy recovery installations, in particular to installations aiming to recover energy originating from low-temperature heat, for example from an isotopic separation plant. uranium and transfer this recovered energy into electrical energy.
  • Isotopic separation of uranium is currently carried out by passing part of the flow of uranium hexafluoride through porous barriers called diffusers.
  • This operation requires pressurization, carried out using compressors which compress the uranium hexafluoride before directing it towards the diffusers.
  • These compressors require cooling by circulation of water, the temperature of which is raised, at the outlet of the cooling circuit, to relatively low values, of the order of 90 to 120 ° C. in general.
  • This cooling water is sent to an exchanger from which it leaves at a lower temperature, adjusted for its reuse, the energy coming from this cooling can then be recovered thanks to the exchanger and supply for example a turbine connected to an alternator. .
  • the present invention relates to an energy recovery installation at low temperature with a higher efficiency than that of installations known hitherto.
  • the installation of the invention is of the type with two loops each comprising an exchanger-evaporator, at least one expansion turbine providing external work, and a condenser, installation in which the two exchanger-evaporators are traversed in series by the liquid.
  • the two loops use identical fluids working at different pressures and temperatures in each loop, each downstream evaporator or condenser being adjusted to a pressure and temperature lower than that of the upstream evaporator or condenser, considered in the direction of circulation of the hot liquid or the coolant.
  • references 1 and 2 designate two conventional exchangers operating by evaporation of an auxiliary fluid, such as ammonia taken from the same tank 25.
  • the amonl exchanger has an upper inlet 3 of water from the circuit for cooling the compressors of the separation plant, and a lower outlet 4 for water cooled to a determined temperature T 1 .
  • the downstream exchanger 2 has a water inlet 5 and a water outlet 6 at a determined temperature T 2 . Water enters in 3 at a relatively low temperature T 0 , of the order of 95 ° C. for example.
  • the outlet 4 and the inlet 5 are connected to each other, the exchangers 1 and 2 therefore being supplied in series with the cooling water coming from the compressors.
  • the water circulates in each of the exchangers 1 and 2 through a bundle of tubes 7 connecting two end plates 8, 9.
  • the water outlet temperatures (T 1 , T 2 ) of each of the exchangers 1 and 2 are regulated by means of a temperature measuring device (respectively 10 and 11) acting on a regulating valve (respectively 12 and 13) of the evaporation fluid.
  • Each of the upstream 1 or downstream 2 exchangers is part of an auxiliary fluid working loop comprising respectively a steam turbine 18 or 19, a condenser 20 or 21, a circulation pump 16 or 17 and a control valve 12 or 13
  • Each of the loops is filled with the same ammonia fluid by means of feed pumps 23 or 24 from the same tank 25.
  • the ammonia circulates, in a conventional manner, according to the following cycle:
  • the ammonia issuing, in the liquid state, and at low temperature from the condenser 14, 15 is brought to a high pressure using a pump 16, 17 and introduced, through the regulating valve 12, 13 into the lower part of the exchanger 1, 2 in which it circulates between the heating tubes 7. It is thus heated, vaporized, then superheated, and feeds, at the outlet of the exchanger 1, 2 a steam turbine 18, 19 After its expansion in the turbine, the steam is sent to the condenser 14, 15 where it is brought back to the liquid state by the in through a cooling coil 20, 21 with water circulation.
  • the water circulation cooling circuits 20, 21 of the two condensers 14, 15 are also arranged in series.
  • the energy recovery circuit of the invention makes it possible to obtain a non-negligible increase in yield compared to the circuits known hitherto.
  • the series connection of the water circulation circuits both in the exchangers and in the condensers makes it possible to obtain a more rational use of the steam produced and a reduction in the pumping power for the water supply to the condensers , so that the energy recovery gain is increased.
  • the upstream exchanger 1 operates at an ammonia pressure higher than that under which the downstream exchanger operates.
  • the intermediate temperature T 1 is advantageously chosen as being the median temperature between the inlet temperature T 0 corresponding to that of the water at the outlet of the compressors and the outlet temperature T 2 , the value of which is fixed either by optimization of the recovery system either by requirements from the separation plant.
  • the pressure and temperature of the upstream condenser 14 are slightly higher than those of the downstream condenser 15, which allows an improvement in the distribution of the detents between the two machines, and which also makes it possible to obtain a less humid vapor at the exhaust. of the higher pressure turbine 18.
  • the invention finds its use for energy recovery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Perfectionnement aux installations ayant pour but de récupérer l'énergie provenant de chaleurs à basse température. Elle comporte deux échangeurs par évaporation 1, 2 placés en série. Les circuits de fluide d'évaporation 14, 16, 12, 1, 18 et 15, 17, 13, 2, 19 sont chacun muni d'un condenseur 14, 15 dont les circuits de refroidissement 20, 21 sont également branchés en série. L'invention trouve son utilisation dans l'industrie de la récupération d'énergie.

Description

  • tation d'énen présente invention se rapporte aux installations de récupé- rat on d'énergie, en particulier aux installations ayant pour but de récupérer l'énergie provenant de chaleurs à basse température issues par exemple d'une usine de séparation isotopique de l'uranium et de transor- mer cette énergie récupérée en énergie électrique.
  • La séparation isotopique de l'uranium est actuellement réalisée en faisant passer une partie du flux d'hexafluorure d'uranium à travers des barrières poreuses appelées diffuseurs. Cette opération nécessite une mise en pression, effectuée à l'aide de compresseurs qui compriment l'hexafluorure d'uranium avant de le diriger vers les diffuseurs. Ces compresseurs nécessitent un refroidissement par circulation d'eau, dont la température se trouve relevée, en sortie de circuit de refroidissement, à des valeurs relativement basses, de l'ordre de 90 à 120°C en général. Cette eau de refroidissement est envoyée dans un échangeur d'où elle sort à une température inférieure, ajustée pour sa réutilisation, l'énergie provenant de ce refroidissement pouvant alors être récupérée grâce à l'échangeur et alimenter par exemple une turbine reliée à un alternateur.
  • En raison du faible niveau des températures mises en jeu, le rendement de la transformation est relativement faible avec les dispositifs de récupération utilisés actuellement.
  • La présente invention se rapporte à une installation de récupération d'énergie à basse température de rendement supérieur à celui des installations connues jusqu'alors. L'installation de l'invention est du type à deux boucles comportant chacune un échangeur-évaporateur, au moins une turbine de détente fournissant un travail extérieur, et un condenseur, installation dans laquelle les deux échangeurs-évaporateurs sont parcourus en série par le liquide chaud dont on veut récupérer l'énergie, et dans laquelle les deux condenseurs sont également parcourus en série par un liquide de refroidissement, Sion l'invention, les deux boucles utilisent des fluides identiques travaillant à des pressions et températures différentes dans chaque boucle, chaque évaporateur ou condenseur aval étant réglé à une pression et température inférieures à celles de l'évaporateur ou condenseur amont, considéré dans le sens de circulation du liquide chaud ou du liquide de refroidissement.
  • L'invention sera mieux comprise à l'aide de la description suivante d'un exemple de réalisation, en référence à la figure unique annexée qui représente schématiquement une installation de récupération de chaleur à basse température conforme à l'invention.
  • Sur la figure, les références 1 et 2 désignent deux échangeurs classiques fonctionnant par évaporation d'un fluide auxiliaire, tel que de l'ammoniaque prélevé sur un même réservoir 25. L'échangeur amonl possède une entrée supérieure 3 d'eau provenant du circuit de refroidissement des compresseurs de l'usine de séparation, et une sortie inférieure 4 d'eau refroidie à une température T1 déterminée. De même l'échangeur aval 2 possède une entrée d'eau 5 et une sortie d'eau 6 à une température T2 déterminée. L'eau entre en 3 à une température T0 relativement basse, de l'ordre de 95°C par exemple. Conformément à l'une des deux caractéristiques combinées de l'invention, la sortie 4 et l'entrée 5 sont reliées l'une à l'autre, les échangeurs 1 et 2 étant donc alimentés en série par l'eau de refroidissement provenant des compresseurs.
  • De manière connue en soi, l'eau circule dans chacun des échangeurs 1 et 2 à travers un faisceau de tubes 7 reliant deux plaques d'extrémité 8, 9. De manière classique également, les températures de sortie d'eau (T1, T2) de chacun des échangeurs 1 et 2 sont réglées par l'intermédiaire d'un appareil de mesure de température (respectivement 10 et 11) agissant sur une vanne de régulation (respectivement 12 et 13) du fluide d'évaporation.
  • Chacun des échangeurs amont 1 ou aval 2 fait partie d'une boucle de travail du fluide auxiliaire comportant respectivement une turbine à vapeur 18 ou 19, un condenseur 20 ou 21, une pompe de circulation 16 ou 17 et une vanne de régulation 12 ou 13. Chacune des boucles est remplie par un même fluide ammoniaque au moyen des pompes d'alimentation 23 ou 24 à partir du même réservoir 25. Dans chaque boucle l'ammoniaque circule, de manière classique, suivant le cycle suivant :
  • L'ammoniaque issu, à l'état liquide, et à basse température du condenseur 14, 15 est amené à une pression élevée à l'aide d'une pompe 16, 17 et introduit, à travers la vanne de régulation 12, 13 dans la partie basse de l'échangeur 1, 2 dans lequel il circule entre les tubes de réchauffage 7. Il est ainsi réchauffé, vaporisé, puis surchauffé, et alimente, en sortie de l'échangeur 1, 2 une turbine à vapeur 18, 19. Après sa détente dans la turbine, la vapeur est envoyée dans le condenseur 14, 15 où elle est ramenée à l'état liquide par l'intermédiaire d'un serpentin de refroidissement 20, 21 à circulation d'eau. Conforméme à la seconde caractéristique combinée de l'invention, les circuits de refroidissement par circulation d'eau 20, 21 des deux condenseurs 14, 15 sont également disposés en série.
  • Le circuit de récupération d'énergie de l'invention permet d'obtenir une augmentation de rendement non négligeable par rapport aux circuits connus jusqu'alors. La mise en série des circuits de circulation d'eau aussi bien dans les échangeurs que dans les condenseurs permet en effet d'obtenir une utilisation plus rationnelle de la vapeur produite et une diminution de la puissance de pompage pour l'alimentation en eau des condenseurs, de sorte que le gain de récupération d'énergie s'en trouve augmenté. L'échangeur amont 1 fonctionne à une pression d'ammoniaque supérieure à celle sous laquelle fonctionne l'échangeur aval. La température intermédiaire T1 est avantageusement choisie comme étant la température médiane entre la température d'entrée T0 correspondant à celle de l'eau à la sortie des compresseurs et la température de sortie T2 dont la valeur est fixée soit par l'optimisation du dispositif de récupération soit par des impératifs provenant de l'usine de séparation. Les pression et température du condenseur amont 14 sont légèrement supérieures à celles du condenseur aval 15, ce qui permet une amélioration de la répartition des détentes entre les deux machines, et ce qui .permet également d'obtenir une vapeur moins humide à l'échappement de la turbine 18 à plus haute pression.
  • L'invention trouve son utilisation pour la récupération d'énergie.

Claims (1)

  1. Installation de récupération d'énergie à deux boucles comportant chacune un échangeur-évaporateur, au moins une turbine de détente fournissant un travail extérieur, et un condenseur,
    installation dans laquelle les deux échangeurs-évaporateurs sont parcou- rus en série par le liquide chaud dont on veut récupérer l'énergie, et dans laquelle les deux condenseurs sont également parcourus en séril par un liquide de refroidissement,
    caractérisé par le fait que les deux boucles utilisent des fluides identiques travaillant à des pressions et températures différentes dans chaque boucle, chaque évaporateur ou condenseur aval étant réglé à une pression et température inférieures à celle de l'évaporateur ou condenseur amont, considéré dans le sens de circulation du liquide chaud ou du liquide de refroidissement.
EP79400491A 1978-07-13 1979-07-11 Installation de récupération d'énergie Withdrawn EP0007850A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7820956A FR2431025A1 (fr) 1978-07-13 1978-07-13 Installation de recuperation d'energie
FR7820956 1978-07-13

Publications (1)

Publication Number Publication Date
EP0007850A1 true EP0007850A1 (fr) 1980-02-06

Family

ID=9210724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400491A Withdrawn EP0007850A1 (fr) 1978-07-13 1979-07-11 Installation de récupération d'énergie

Country Status (5)

Country Link
EP (1) EP0007850A1 (fr)
JP (1) JPS5519985A (fr)
BE (1) BE877702A (fr)
FR (1) FR2431025A1 (fr)
IT (1) IT1119039B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329919A (en) * 1978-11-13 1982-05-18 Andersen Ariel A Time-energy conserving low cost home pressure cooking system
CN102536363A (zh) * 2010-11-19 2012-07-04 通用电气公司 与有机朗肯循环和吸收冷却器循环结合的朗肯循环
WO2010016825A3 (fr) * 2008-08-04 2013-01-03 United Technologies Corporation Condenseur en cascade pour cycle de rankine organique géothermique à unité multiple
US10830217B2 (en) 2017-03-24 2020-11-10 Ihi Corporation Binary power generation system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149507A (ja) * 1984-12-24 1986-07-08 Hisaka Works Ltd 熱回収装置
JP4808006B2 (ja) * 2005-11-04 2011-11-02 株式会社荏原製作所 駆動システム
JP5862133B2 (ja) 2011-09-09 2016-02-16 国立大学法人佐賀大学 蒸気動力サイクルシステム
JP5843391B2 (ja) * 2011-12-14 2016-01-13 株式会社タクマ 廃棄物発電システム
JP7328101B2 (ja) * 2019-09-25 2023-08-16 メタウォーター株式会社 熱電併給システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH239086A (fr) * 1939-04-15 1945-09-15 D Amelio Luigi Procédé pour l'utilisation de la chaleur contenue dans des eaux chaudes dans le but de produire de l'énergie mécanique.
CH251501A (de) * 1946-06-04 1947-10-31 Skoda Kp Verfahren und Einrichtung zur Abwärmeverwertung.
FR1128733A (fr) * 1955-07-09 1957-01-09 Francoise Des Const Babcock & Récupération de chaleur de masses de gaz
GB1137484A (en) * 1964-12-30 1968-12-18 Power Gas Ltd Improvements in or relating to the recovery of waste heat in the form of mechanical energy
US3795103A (en) * 1971-09-30 1974-03-05 J Anderson Dual fluid cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH239086A (fr) * 1939-04-15 1945-09-15 D Amelio Luigi Procédé pour l'utilisation de la chaleur contenue dans des eaux chaudes dans le but de produire de l'énergie mécanique.
CH251501A (de) * 1946-06-04 1947-10-31 Skoda Kp Verfahren und Einrichtung zur Abwärmeverwertung.
FR1128733A (fr) * 1955-07-09 1957-01-09 Francoise Des Const Babcock & Récupération de chaleur de masses de gaz
GB1137484A (en) * 1964-12-30 1968-12-18 Power Gas Ltd Improvements in or relating to the recovery of waste heat in the form of mechanical energy
US3795103A (en) * 1971-09-30 1974-03-05 J Anderson Dual fluid cycle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329919A (en) * 1978-11-13 1982-05-18 Andersen Ariel A Time-energy conserving low cost home pressure cooking system
WO2010016825A3 (fr) * 2008-08-04 2013-01-03 United Technologies Corporation Condenseur en cascade pour cycle de rankine organique géothermique à unité multiple
CN102536363A (zh) * 2010-11-19 2012-07-04 通用电气公司 与有机朗肯循环和吸收冷却器循环结合的朗肯循环
EP2455591A3 (fr) * 2010-11-19 2014-02-19 General Electric Company Cycle de Rankine intégré avec un cycle de Rankine organique et cycle de dispositif frigorifique d'absorption
US8904791B2 (en) 2010-11-19 2014-12-09 General Electric Company Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
CN102536363B (zh) * 2010-11-19 2015-05-20 通用电气公司 与有机朗肯循环和吸收冷却器循环结合的朗肯循环
US10830217B2 (en) 2017-03-24 2020-11-10 Ihi Corporation Binary power generation system

Also Published As

Publication number Publication date
BE877702A (fr) 1980-01-14
JPS5519985A (en) 1980-02-13
IT7968471A0 (it) 1979-07-13
FR2431025A1 (fr) 1980-02-08
IT1119039B (it) 1986-03-03
FR2431025B1 (fr) 1982-03-19

Similar Documents

Publication Publication Date Title
FR2551181A1 (fr) Centrale a cycle mixte et deux combustibles
EP2379848B1 (fr) Dispositif de production d'électricité avec plusieurs pompes à chaleur en série
RU2124672C1 (ru) Котел-утилизатор и способ его эксплуатации
EP0007850A1 (fr) Installation de récupération d'énergie
FR2502417A1 (fr) Installation de production d'energie electrique
US4896496A (en) Single pressure steam bottoming cycle for gas turbines combined cycle
FR2463358A1 (fr) Chaudiere a circulation forcee de centrale electrique, pouvant fonctionner avec soutirage d'eau
FR2503335A1 (fr) Installation pour utiliser la chaleur perdue de faible potentiel d'une station de compression pour pipelines de gaz
CH516212A (fr) Procédé pour produire de l'énergie à partir de la chaleur engendrée dans un réacteur nucléaire
FR2659727A1 (fr) Installation geothermique pour l'approvisionnement en chaleur et en eau.
EP2873916B1 (fr) Procédé et dispositif pour prévenir l'assèchement dans une chaudière de centrale solaire à concentration de type tour
WO1998021474A1 (fr) Systeme de stockage d'energie par air sous pression entraine par eolienne
US4093514A (en) Method of bringing nuclear power plant to fractional electrical load conditions
BE1010594A3 (fr) Procede de conduite d'une chaudiere a circulation forcee et chaudiere pour sa mise en oeuvre.
CN110220177B (zh) 太阳能光热发电熔盐蒸汽发生系统的水侧系统及运行方法
US4398392A (en) System for separation of water from the working fluid in low temperature difference power plants
CN210153753U (zh) 太阳能光热发电熔盐蒸汽发生系统的水侧系统
FR2489477A1 (fr) Procede d'exploitation de dispositifs de compression de gaz
GB2083601A (en) A method and plant for refrigeration
FR2523221A1 (fr) Procede et dispositif pour la production d'une energie directement utilisable a partir de deux sources de chaleur chaude et froide, situees dans une zone de temperature relativement basse
EP0192918A1 (fr) Réchauffeurs pour installations de transformation d'énergie thermique
EP0034628A1 (fr) Procede et appareil de production de chaleur et d'electricite par l'energie solaire
CN108870503A (zh) 对间歇性用汽用户长距离工业供汽的余热综合利用系统
SU1254179A1 (ru) Энергетическа установка
FR2501842A1 (fr) Procede de recuperation de l'energie degagee par la combustion des dechets, et dispositif pour la mise en oeuvre de ce procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19810102

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TILLEQUIN, JEAN