EP0001520A1 - Flat high-precision electrical resistor having an adjustable ohmic value and method of adjusting this ohmic value - Google Patents

Flat high-precision electrical resistor having an adjustable ohmic value and method of adjusting this ohmic value Download PDF

Info

Publication number
EP0001520A1
EP0001520A1 EP78400081A EP78400081A EP0001520A1 EP 0001520 A1 EP0001520 A1 EP 0001520A1 EP 78400081 A EP78400081 A EP 78400081A EP 78400081 A EP78400081 A EP 78400081A EP 0001520 A1 EP0001520 A1 EP 0001520A1
Authority
EP
European Patent Office
Prior art keywords
circuits
ohmic value
sheet
value
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78400081A
Other languages
German (de)
French (fr)
Other versions
EP0001520B1 (en
Inventor
Bernard Frere
Jean Morlet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FRANCAISE DE L'ELECTRO-RESISTANCE Ste
Electro Resistance
Original Assignee
Electro Resistance
FRANCAISE DE L'ELECTRO-RESISTANCE Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Resistance, FRANCAISE DE L'ELECTRO-RESISTANCE Ste filed Critical Electro Resistance
Publication of EP0001520A1 publication Critical patent/EP0001520A1/en
Application granted granted Critical
Publication of EP0001520B1 publication Critical patent/EP0001520B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/23Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by opening or closing resistor geometric tracks of predetermined resistive values, e.g. snapistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for

Definitions

  • the present invention relates to a planar electrical resistance of high precision and adjustable ohmic value.
  • the invention also relates to a method for adjusting the ohmic value of the above-mentioned electrical resistance.
  • High precision resistors are already known which are obtained by etching, by electrolytic machining or ion bombardment, a sheet of metal or of alloy so as to obtain a multitude of electric resistant filaments separated by grooves or slots.
  • Such resistors and their manufacturing process are described in French patent applications No. 76 07889 filed March 18, 1976 and No. 76 17269 filed June 8, 1976, both in the name of the Applicant.
  • the aforementioned methods make it possible to obtain a resistive circuit of sinuous contour and of great length.
  • the electrical resistance filaments etched in the sheet, of metal or of alloy have a thickness which does not exceed a few microns, so that these resistors have a very high ohmic value per unit of surface.
  • resistors After mass production, these resistors must be adjusted to a precise resistance value which is sometimes 50 to 150% higher than the initial resistance value.
  • this value is adjusted by making, between the edge of the resistor and the grooves which separate the electric resistant filaments from the cutouts intended to switch on a predetermined number of these filaments, so as to increase the ohmic value.
  • This adjustment of the resistance by cutting is very delicate. Indeed, this operation must be carried out under a microscope by scraping, sand blasting or laser. Furthermore, this operation is very long, because it is often necessary to make a very large number of cuts, taking into account the high number of electric resistant filaments contained in each resistor. Thus, for example, to adjust to 42 Kiloohms the resistance value of a resistor having an initial value of 23 Kiloohms, it is necessary to make 102 cuts on the sides of the resistor.
  • the object of the present invention is to provide a planar electrical resistance, the ohmic value of which can be adjusted in a much more convenient and rapid manner than in the case of the above-mentioned resistors.
  • the planar electrical resistance targeted by the invention comprises a metal or alloy sheet deposited or glued on a support comprising a series of electrical resistant filaments separated by grooves so as to define a sinuous electrical resistance circuit, this resistance comprising a series electric resistant circuits short-circuited by conductive strips made of the metal or the sheet alloy.
  • this resistor is characterized in that the ratio between the increase 0 R of the ohmic value RTn when one has connected n resistive auxiliary circuits in series, and the ohmic value RTn-1 of the resistance when we connected n-1 resistant auxiliary circuits, follows the relationship: where Un is the nth term of an absolutely convergent series in the sense of Cauchy and
  • cutouts are made in the sheet intended to put in series with the rest of the circuit, the additional electric resistance circuit (s) whose value ohmic corresponds to the ohmic adjustment value desired for the resistance.
  • K is an adjustable numerical coefficient less than 1.
  • the invention also relates to a high precision electrical resistance as defined above, in which the metal or alloy sheet is deposited or sealed on a substrate having a coefficient of thermal conductivity, generally equal to or higher than that alumina, sufficient to avoid a too high temperature gradient between the resistive parts in circuit and those still short-circuited.
  • the invention also relates to the method for adjusting the ohmic value of the above-mentioned electrical resistance.
  • cuts are made in conductive strips which short-circuit the auxiliary electrical resistance circuits.
  • This process is characterized in that such a cut is made first in the conductive strip corresponding to an additional circuit such that the increase in the ohmic value is as close as possible to the desired adjustment value, then one refines the adjustment by successively switching on additional circuits giving rise to increasingly small increases in the ohmic value.
  • each annex circuit is generally constituted by several parallel resistant filaments which extend over a relatively large width, the cutting requires a precision which is much less than in the known method.
  • a planar electrical resistance obtained from a square sheet 10, of a metal alloy having a thickness of a few microns, such as nickel-chromium.
  • the electrical resistance circuit of this resistance is obtained in a manner known per se, preferably by electrolytic machining or by ion bombardment through a mask comprising windows defining the outline of the electrical circuit to engrave on sheet 10.
  • This sheet 10 is deposited or sealed on an electrical insulating support, not shown, having a coefficient of thermal conductivity equal to or greater than that of alumina of purity equal to 96%.
  • the electrical resistant filaments 11 are shown in FIG. 1 between parallel lines which designate the grooves or slots 12 of the resistor.
  • An actual representation of part of the electrical resistance circuit is shown in Figure 2.
  • the resistor comprises a multitude of parallel filaments 11 which define a sinuous electric circuit of great length and consequently of great ohmic value per unit of surface.
  • the sheet 10 comprises a series of additional resistant circuits A 1 , A 2 , A 3 ; B 1 , B 2 , B 3 ; C 1 , C2, C 3 , across C 8 ; D 1 , D 2 , ?? D 9 whose increase ⁇ R in intrinsic ohmic values follows the relationship: where Un is the nth term of an absolutely convergent series in the sense of Cauchy and where: RTn being the ohmic value of n additional resistive circuits and RTn-1 being the ohmic value of n-1 additional resistive circuits.
  • circuit A 1 has a number of filaments 11 which is greater than that of the circuit A 2 which itself has a greater number of filaments 11 than the other circuits A 3 , B 1 , B 21 etc.
  • the converging series can be such that: where K is an adjustable numerical coefficient less than 1.
  • This converging series can be a geometric progression.
  • the resistance obtained after manufacture has an initial resistance RT o constituted by the ohmic value of all the electrical resistant filaments which do not belong to the annex circuits A1, ??, B1, .... .., C 1 , ising, D 1 .
  • This operation is carried out by making in the conductive strips such as 13, 14, 15, 16, 17 or 18, a cutout 19 (see Figure 2) which extends between the side A or B, C, D of the sheet 10 and the corresponding annex A 3 circuit.
  • These cuts such as 19 are made in a manner known per se, for example by scraping by means of a point, by sandblasting or by laser.
  • the electrical resistive circuits annexes A 1 , ?? B 1 , ?? C 1 , Across D 1 , «, are grouped in four rectangular blocks 21, 22, 23, 24, arranged along each of the sides A, B, C, D of the sheet 10. This arrangement further facilitates the identification of the auxiliary circuits.
  • This nonlimiting example shows how to create a resistance adjustment law according to the method according to the invention.
  • This resistance is characterized by a number of adjustment points equal to 23 and a multiplying coefficient M equal to 2.
  • the multiplying coefficient is the ratio between the value of the resistance when all the points have been adjusted and its initial value.
  • the resistance has an initial ohmic value RTo equal to 15 kiloohms. We want to adjust this value to 25,000 ohms ⁇ 0.1%. The initial value must therefore be increased from 66.51% to 66.83%, in order to to be within tolerance + 0.1%.
  • points A 1 and A 2 have respective weights equal to 33.6% and 22.6%.
  • a cut such as 19 is therefore carried out, as indicated above.
  • the adjustment of the resistance can still be carried out by a simple scraping between the number in question and the adjacent edge of the resistor.
  • the invention therefore makes it possible to considerably facilitate the adjustment of the ohmic value of a resistor of the kind described.
  • the invention also makes it possible to limit the risks of error so that the reliability of the precision obtained is statistically much greater than in the case of the known method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Electronic Switches (AREA)
  • Adjustable Resistors (AREA)

Abstract

1. A high-precision flat electric resistor having an adjustable resistance value and comprising a sheet of metal or metal alloy deposited on or bonded to a support comprising several electric, resistive, sinuous and interconnectable circuits, each of them being constituted by a series of electrical resistance filaments separated by grooves, some of the said resistive circuits being short-circuited by conductive strips of the metal or metal alloy of the sheet, these circuits being interconnectable by means of cut-out portions made in the conductive strips, the resistance value of a resistor having n electric circuits interconnected in serie being RTn and that of a resistor having n-1 electric circuits interconnected in series being RTn-1, characterized in that the ratio DELTA R = RTn - RTn-1 to the resistance value RTn-1 follows the relation : DELTA R/RTn-1 = 1.3...2n-1/2.4...2n K**2n where K is an adjustable numerical coefficient having a value smaller than 1.

Description

La présente invention concerne une résistance électrique plane de haute précision et de valeur ohmique ajustable.The present invention relates to a planar electrical resistance of high precision and adjustable ohmic value.

L'invention vise également un procédé pour ajuster la valeur ohmique de la résistance électrique précitée.The invention also relates to a method for adjusting the ohmic value of the above-mentioned electrical resistance.

On connaît déjà des résistances de haute précision obtenues en gravant, par usinage électrolytique ou bombardement ionique, une feuille de métal ou d'alliage de façon à obtenir une multitude de filaments résistants électriques séparés par des sillons ou fentes. De telles résistances et leur procédé de fabrication sont décrits dans les demandes de brevets français N° 76 07889 déposée le 18 Mars 1976 et N° 76 17269 déposée le 8 Juin 1976, toutes deux au nom de la Demanderesse.High precision resistors are already known which are obtained by etching, by electrolytic machining or ion bombardment, a sheet of metal or of alloy so as to obtain a multitude of electric resistant filaments separated by grooves or slots. Such resistors and their manufacturing process are described in French patent applications No. 76 07889 filed March 18, 1976 and No. 76 17269 filed June 8, 1976, both in the name of the Applicant.

Les procédés précités permettent d'obtenir un circuit résistant de contour sinueux et de grande longueur. Les filaments résistants électriques gravés dans la feuille, de métal ou d'alliage ont une épaisseur qui ne dépasse pas quelques microns, de sorte que ces résistances présentent une très grande valeur ohmique par unité de surface.The aforementioned methods make it possible to obtain a resistive circuit of sinuous contour and of great length. The electrical resistance filaments etched in the sheet, of metal or of alloy have a thickness which does not exceed a few microns, so that these resistors have a very high ohmic value per unit of surface.

Après fabrication en série, ces résistances doivent être ajustées à une valeur ohmique précise qui est parfois supérieure de 50 à 150 % à la valeur ohmique initiale.After mass production, these resistors must be adjusted to a precise resistance value which is sometimes 50 to 150% higher than the initial resistance value.

Dans les procédés connus, on ajuste cette valeur en réalisant entre le bord de la résistance et les sillons qui séparent les filaments résistants électriques des découpes destinées à mettre en circuit un nombre prédéterminé de ces filaments, de manière à augmenter la valeur ohmique. Cette opération d'ajustage de la résistance par découpe est très délicate. En effet, cette opération doit être réalisée sous microscope par grattage, jet de sable ou laser. Par ailleurs, cette opération est très longue, car il est souvent nécessaire de procéder à un très grand nombre de découpes, compte tenu du nombre élevé de filaments résistants électriques contenus dans chaque résistance. Ainsi, par exemple, pour ajuster à 42 Kiloohms la valeur ohmique d'une résistance présentant une valeur initiale de 23 Kiloohms, il est nécessaire d'effectuer 102 découpes sur les côtés de la résistance.In known methods, this value is adjusted by making, between the edge of the resistor and the grooves which separate the electric resistant filaments from the cutouts intended to switch on a predetermined number of these filaments, so as to increase the ohmic value. This adjustment of the resistance by cutting is very delicate. Indeed, this operation must be carried out under a microscope by scraping, sand blasting or laser. Furthermore, this operation is very long, because it is often necessary to make a very large number of cuts, taking into account the high number of electric resistant filaments contained in each resistor. Thus, for example, to adjust to 42 Kiloohms the resistance value of a resistor having an initial value of 23 Kiloohms, it is necessary to make 102 cuts on the sides of the resistor.

Le but de la présente invention est de fournir une résistance électrique plane dont la valeur ohmique peut être ajustable d'une manière beaucoup plus commode et rapide que dans le cas des résistances précitées.The object of the present invention is to provide a planar electrical resistance, the ohmic value of which can be adjusted in a much more convenient and rapid manner than in the case of the above-mentioned resistors.

La résistance électrique plane visée par l'invention comprend une feuille de métal ou d'alliage déposée ou collée sur un support comportant une série de filaments résistants électriques séparés par des sillons de manière à définir un circuit résistant électrique sinueux, cette résistance comprenant une série de circuits résistants électriques court-circuités par des bandes conductrices constituées par le métal ou l'alliage de la feuille.The planar electrical resistance targeted by the invention comprises a metal or alloy sheet deposited or glued on a support comprising a series of electrical resistant filaments separated by grooves so as to define a sinuous electrical resistance circuit, this resistance comprising a series electric resistant circuits short-circuited by conductive strips made of the metal or the sheet alloy.

Suivant l'invention, cette résistance est caractérisée en ce que le rapport entre l'accroissement 0 R de la valeur ohmique RTn lorsque l'on a branché en série n circuits annexes résistants, et la valeur ohmique RTn-1 de la résistance lorsqu'on a branché n-1 circuits annexes résistants, suit la relation :

Figure imgb0001
où Un est le nième terme d'une série absolument convergente au sens de Cauchy et
Figure imgb0002
According to the invention, this resistor is characterized in that the ratio between the increase 0 R of the ohmic value RTn when one has connected n resistive auxiliary circuits in series, and the ohmic value RTn-1 of the resistance when we connected n-1 resistant auxiliary circuits, follows the relationship:
Figure imgb0001
where Un is the nth term of an absolutely convergent series in the sense of Cauchy and
Figure imgb0002

Pour ajuster la valeur ohmique finale de la résistance, on pratique dans la feuille des découpes destinées à mettre en série avec le reste du circuit, le ou les circuit(s) résistant(s) électrique(s) annexe(s) dont la valeur ohmique correspond à la valeur ohmique d'ajustage désirée pour la résistance.To adjust the final ohmic value of the resistance, cutouts are made in the sheet intended to put in series with the rest of the circuit, the additional electric resistance circuit (s) whose value ohmic corresponds to the ohmic adjustment value desired for the resistance.

On a constaté que lorsque l'accroissement ΔR suit la relation précitée, il était possible de réduire considérablement le nombre des découpes à réaliser dans la feuille pour ajuster la valeur ohmique de la résistance.It was found that when the increase ΔR follows the above-mentioned relationship, it was possible to considerably reduce the number of cuts to be made in the sheet to adjust the ohmic value of the resistance.

Selon une version préférée de l'invention :

Figure imgb0003
où K est un coefficient numérique ajustable inférieur à 1.According to a preferred version of the invention:
Figure imgb0003
where K is an adjustable numerical coefficient less than 1.

L'invention concerne également une résistante électrique de haute précision telle que définie ci-dessus, dans laquelle la feuille de métal ou d'alliage est déposée ou scellée sur un substrat ayant un coefficient de conductibilité thermique, en général égal ou plus élevé que celui de l'alumine, suffisant pour éviter un gradient de température trop élevé entre les parties résistantes en circuit et celles encore court-circuitées.The invention also relates to a high precision electrical resistance as defined above, in which the metal or alloy sheet is deposited or sealed on a substrate having a coefficient of thermal conductivity, generally equal to or higher than that alumina, sufficient to avoid a too high temperature gradient between the resistive parts in circuit and those still short-circuited.

L'invention vise également le procédé pour ajuster la valeur ohmique de la résistance électrique précitée..The invention also relates to the method for adjusting the ohmic value of the above-mentioned electrical resistance.

Dans ce procédé, on pratique des découpes dans des bandes conductrices qui court-circuitent les circuits résistants électriques annexes. Ce procédé est caractérisé en ce qu'on pratique une telle découpe d'abord dans la bande conductrice correspondant à un circuit annexe tel que l'accroissement de la valeur ohmique soit le plus proche possible de la valeur d'ajustage désirée, puis on affine l'ajustage en mettant en circuit successivement des circuits annexes donnant lieu à des accroissements de la valeur ohmique de plus en plus faibles.In this process, cuts are made in conductive strips which short-circuit the auxiliary electrical resistance circuits. This process is characterized in that such a cut is made first in the conductive strip corresponding to an additional circuit such that the increase in the ohmic value is as close as possible to the desired adjustment value, then one refines the adjustment by successively switching on additional circuits giving rise to increasingly small increases in the ohmic value.

De cette façon, on ne réalise qu'une seule découpe par circuit résistant annexe, de sorte que le nombre maximum de découpes à réaliser ne dépasse pas celui du nombre de ces circuits. De plus, étant donné que chaque circuit annexe est constitué en général par plusieurs filaments résistants parallèles qui s'étendent sur une largeur relativement grande, la découpe nécessite une précision qui est beaucoup moins grande que dans le procédé connu.In this way, you only roll one die cutting by additional resistive circuit, so that the maximum number of cuts to be made does not exceed that of the number of these circuits. In addition, since each annex circuit is generally constituted by several parallel resistant filaments which extend over a relatively large width, the cutting requires a precision which is much less than in the known method.

Il est avantageux en outre de graver dans les bandes précitées, en même temps que les différents circuits résistants électriques, un numéro de repère ainsi qu'une fente s'étendant entre ce numéro de repère et le circuit résistant annexe correspondant et, pour ajuster la valeur ohmique finale de la résistance, ladite découpe est réalisée entre le côté de la feuille et le numéro de repère précité.It is also advantageous to engrave in the aforementioned bands, at the same time as the various electrical resistance circuits, a reference number as well as a slot extending between this reference number and the corresponding additional resistance circuit and, to adjust the final ohmic value of the resistance, said cutting is carried out between the side of the sheet and the aforementioned reference number.

Ces numéros facilitent considérablement le repérage des circuits annexes à mettre en circuit et la réalisation des découpes.These numbers considerably facilitate the identification of the additional circuits to be circuited and the making of the cuts.

D'autres particularités et avantages de l'invention apparaîtront encore dans la description ci-après. Aux dessins annexés, donnés à titre d'exemples non limitatifs :

  • - la Figure 1 est une vue schématique en plan d'une résistance électrique obtenue selon l'invention,
  • - la Figure 2 est une vue à grande échelle, d'une partie de la résistance de la Figure 1, montrant un circuit résistant électrique annexe connecté avec le reste de la résistance, après découpe effectuée sur le bord de la feuille.
Other features and advantages of the invention will appear in the description below. In the appended drawings, given by way of nonlimiting examples:
  • FIG. 1 is a schematic plan view of an electrical resistance obtained according to the invention,
  • - Figure 2 is a large-scale view of part of the resistor of Figure 1, showing an additional electrical resistance circuit connected with the rest of the resistor, after cutting performed on the edge of the sheet.

Sur les Figures annexées, on voit une résistance électrique plane obtenue à partir d'une feuille 10 carrée, en un alliage métallique ayant une épaisseur de quelques microns, tel que du nickel-chrome. Le circuit résistant électrique de cette résistance est obtenu d'une manière connue en soi, de préférence par usinage électrolytique ou par bombardement ionique au travers d'un masque comportant des fenêtres définissant le contour du circuit électrique à graver sur la feuille 10.In the accompanying Figures, we see a planar electrical resistance obtained from a square sheet 10, of a metal alloy having a thickness of a few microns, such as nickel-chromium. The electrical resistance circuit of this resistance is obtained in a manner known per se, preferably by electrolytic machining or by ion bombardment through a mask comprising windows defining the outline of the electrical circuit to engrave on sheet 10.

Cette feuille 10 est déposée ou scellée sur un support isolant électrique non représenté possédant un coefficient de conductibilité thermique égal ou supérieur à celui de l'alumine de pureté égale à 96 %.This sheet 10 is deposited or sealed on an electrical insulating support, not shown, having a coefficient of thermal conductivity equal to or greater than that of alumina of purity equal to 96%.

Pour la clarté de la représentation, les filaments résistants électriques 11 sont représentés sur la Figure 1 entre des traits parallèles qui désignent les sillons ou fentes 12 de la résistance. Une représentation réelle d'une partie du circuit résistant électrique est montrée sur la Figure 2.For the clarity of the representation, the electrical resistant filaments 11 are shown in FIG. 1 between parallel lines which designate the grooves or slots 12 of the resistor. An actual representation of part of the electrical resistance circuit is shown in Figure 2.

Comme on le voit sur la Figure 1, la résistance comprend une multitude de filaments parallèles 11 qui définissent un circuit électrique sinueux de grande longueur et par suite de grande valeur ohmique par unité de surface.As can be seen in FIG. 1, the resistor comprises a multitude of parallel filaments 11 which define a sinuous electric circuit of great length and consequently of great ohmic value per unit of surface.

La feuille 10 comprend une série de circuits résistants annexes A1, A2, A3 ; B1, B2, B3 ; C1, C2, C3,..... C8 ; D1, D2, ..... D9 dont l' accroissement Δ R des valeurs ohmiques intrinsèques suit la relation :

Figure imgb0004
où Un est le nième terme d'une série absolument convergente au sens de Cauchy et où :
Figure imgb0005
RTn étant la valeur ohmique de n circuits résistants annexes et RTn-1 étant la valeur ohmique de n-1 circuits résistants annexes.The sheet 10 comprises a series of additional resistant circuits A 1 , A 2 , A 3 ; B 1 , B 2 , B 3 ; C 1 , C2, C 3 , ..... C 8 ; D 1 , D 2 , ..... D 9 whose increase Δ R in intrinsic ohmic values follows the relationship:
Figure imgb0004
where Un is the nth term of an absolutely convergent series in the sense of Cauchy and where:
Figure imgb0005
RTn being the ohmic value of n additional resistive circuits and RTn-1 being the ohmic value of n-1 additional resistive circuits.

On voit, sur la Figure 1, que le circuit A1 possède un nombre de filaments 11 qui est plus important que celui du circuit A2 qui présente lui-même un nombre de filaments 11 plus grand que les autres circuits A3, B1, B21 etc..We see, in Figure 1, that the circuit A 1 has a number of filaments 11 which is greater than that of the circuit A 2 which itself has a greater number of filaments 11 than the other circuits A 3 , B 1 , B 21 etc.

La série convergente peut être telle que :

Figure imgb0006
où K est un coefficient numérique ajustable inférieur à 1.The converging series can be such that:
Figure imgb0006
where K is an adjustable numerical coefficient less than 1.

Cette série convergente peut être une progression géométrique.This converging series can be a geometric progression.

Comme on le voit en outre sur la Figure 1, lors de la fabrication, on laisse entre les côtés A, B, C, D de la feuille 10 et chacun des circuits annexes A1,...., B1...., C1 ......, D1 des bandes telles que 13, 14, 15, 16, 17, 18 qui court-circuitent ces circuits annexes par rapport au reste de la résistance.As can also be seen in FIG. 1, during manufacture, between the sides A, B, C, D of the sheet 10 and each of the auxiliary circuits A 1 , ...., B1, is left. , C1 ......, D 1 bands such as 13, 14, 15, 16, 17, 18 which short-circuit these additional circuits with respect to the rest of the resistor.

Par conséquent, la résistance obtenue après fabrication présente une résistance initiale RTo constituée par la valeur ohmique de l'ensemble des filaments résistants électriques qui n'appartiennent pas aux circuits annexes A1, ......, B1, ......, C1, ......, D1.Consequently, the resistance obtained after manufacture has an initial resistance RT o constituted by the ohmic value of all the electrical resistant filaments which do not belong to the annex circuits A1, ......, B1, .... .., C 1 , ......, D 1 .

Pour ajuster la valeur ohmique de la résistance à la valeur désirée, on commence par mettre en circuit d'abord le circuit annexe A1, ......, B1, ......, C1, ou D1 qui présente la valeur ohmique la plus proche de la valeur d'ajustage désirée, puis on affine l'ajustage en mettant en circuit des circuits annexes présentant des valeurs ohmiques de plus en plus faibles.To adjust the ohmic value of the resistance to the desired value, we start by first switching on the annex circuit A 1 , ......, B 1 , ......, C 1 , or D 1 which presents the ohmic value closest to the desired adjustment value, then the adjustment is refined by switching on additional circuits having increasingly lower ohmic values.

Cette opération est réalisée en pratiquant dans les bandes conductrices telles que 13, 14, 15, 16, 17 ou 18, une découpe 19 (voir Figure 2) qui s'étend entre le côté A ou B, C, D de la feuille 10 et le circuit annexe A3 correspondant. Ces découpes telles que 19 sont réalisées d'une manière connue en soi, par exemple par grattage au moyen d'une pointe, par jet de sable ou par laser.This operation is carried out by making in the conductive strips such as 13, 14, 15, 16, 17 or 18, a cutout 19 (see Figure 2) which extends between the side A or B, C, D of the sheet 10 and the corresponding annex A 3 circuit. These cuts such as 19 are made in a manner known per se, for example by scraping by means of a point, by sandblasting or by laser.

Pour pouvoir ajuster la résistance selon une gamme assez étendue de valeurs ohmiques, on choisira généralement un coefficient multiplicateur M égal au rapport RTn (RTn étant la valeur ohmique obtenue lorsque tous les RTo circuits annexes sont mis en circuit) voisin de 2.To be able to adjust the resistance according to a fairly wide range of ohmic values, we will generally choose a multiplier coefficient M equal to the ratio RTn (RTn being the ohmic value obtained when all the RTo additional circuits are connected) close to 2.

Comme on le voit d'autre part sur les Figures 1 et 2, on a gravé dans les bandes 13, 14, 15, 16, 17 ou 18, en même temps que les différents circuits résistants électriques A1, ..... B1, ...... C1, ...... D1, ......, des numéros de repère 1, 2, 3, ......, 9 ainsi qu'une fente telle que 20 (voir Figure 2) qui s'étend entre ces numéros et le circuit annexe A3 correspondant.As seen on the other hand in Figures 1 and 2, we engraved in the bands 13, 14, 15, 16, 17 or 18, in same time as the various electrical resistance circuits A 1 , ..... B 1 , ...... C 1 , ...... D 1 , ......, reference numbers 1, 2, 3, ......, 9 as well as a slot such as 20 (see Figure 2) which extends between these numbers and the corresponding annex circuit A 3 .

Par conséquent, pour ajuster la résistance, il suffit de repérer le numéro du circuit annexe A1, ...... B1, .... C1, ...... D1, ...... destiné à être mis en circuit, puis de réa-. liser une découpe, comme désigné en 19 sur la Figure 2, entre le côté A (ou B, C, D) de la feuille 10 et le numéro repère du circuit annexe correspondant.Consequently, to adjust the resistance, it suffices to locate the number of the annex circuit A 1 , ...... B 1 , .... C 1 , ...... D 1 , ..... intended to be switched on, then to react. read a cutout, as designated in 19 in Figure 2, between side A (or B, C, D) of sheet 10 and the reference number of the corresponding annex circuit.

Dans la réalisation de la Figure 1, les circuits résistants électriques annexes A1, ..... B1, ...... C1, ..... D1, ......, sont groupés en quatre blocs rectangulaires 21, 22, 23, 24 distincts, disposés le long de chacun des côtés A, B, C, D de la feuille 10. Cette disposition facilite encore le repérage des circuits annexes.In the embodiment of Figure 1, the electrical resistive circuits annexes A 1 , ..... B 1 , ...... C 1 , ..... D 1 , ......, are grouped in four rectangular blocks 21, 22, 23, 24, arranged along each of the sides A, B, C, D of the sheet 10. This arrangement further facilitates the identification of the auxiliary circuits.

On donne ci-après quelques exemples numériques.Some numerical examples are given below.

Exemple I.Example I.

Cet exemple, non limitatif, montre la manière de créer une loi d'ajustement d'une résistance suivant le procédé selon l'invention.This nonlimiting example shows how to create a resistance adjustment law according to the method according to the invention.

Cette résistance se caractérise par un nombre de points d'ajustage égal à 23 et un coefficient multiplicateur M égal à 2. Le coefficient multiplicateur est le rapport entre la valeur de la résistance lorsque tous les points ont été ajustés et sa valeur initiale. On adopte la loi :

Figure imgb0007
This resistance is characterized by a number of adjustment points equal to 23 and a multiplying coefficient M equal to 2. The multiplying coefficient is the ratio between the value of the resistance when all the points have been adjusted and its initial value. We pass the law:
Figure imgb0007

On a donc le tableau suivant, pour une valeur RTo = 15 kiloohms.

Figure imgb0008
We therefore have the following table, for a value RTo = 15 kiloohms.
Figure imgb0008

Lorsque toutes les résistances sont mises en circuit c'est-à-dire lorsqu'on a réalisé 23 découpes telles que 19, la résistance maximum ajustée est égale à 14 212 ohms + 15 000 ohms (valeur initiale) = 29 212,11 ohms, soit un coefficient multiplicateur de 1,9474.When all the resistors are switched on, i.e. when 23 cuts such as 19 have been made, the maximum adjusted resistance is equal to 14,212 ohms + 15,000 ohms (initial value) = 29,212.11 ohms , i.e. a multiplier of 1.9474.

Exemple II.Example II.

La résistance, selon cet exemple, présente une valeur ohmique initiale RTo égale à 15 kiloohms. On veut ajuster cette valeur à 25 000 ohms ± 0,1 %. La valeur initiale doit donc être augmentée de 66,51 % à 66,83 %, afin d'être dans la tolérance + 0,1 %.The resistance, according to this example, has an initial ohmic value RTo equal to 15 kiloohms. We want to adjust this value to 25,000 ohms ± 0.1%. The initial value must therefore be increased from 66.51% to 66.83%, in order to to be within tolerance + 0.1%.

A cet effet, on choisit tout d'abord le (les) circuit(s) dont la (les) valeur(s) ohmique(s) est (sont) la (les) plus proche(s) en % de la valeur que l'on veut obtenir.To this end, we first choose the circuit (s) whose ohmic value (s) is (are) the closest in% of the value that we want to get.

Il s'agit dans cet exemple des points A1 et A2 de poids respectifs égaux à 33,6 % et 22,6 %. On réalise donc une découpe telle que 19, comme indiqué précédemment.In this example, points A 1 and A 2 have respective weights equal to 33.6% and 22.6%. A cut such as 19 is therefore carried out, as indicated above.

On procède ensuite de la même manière successivement :

  • . Pour B1 qui représente 9
  • · Pour C2 qui représente 1,4 %.
  • · Pour D1 qui représente 0,07%.
We then proceed in the same way successively:
  • . For B 1 which represents 9
  • · For C 2 which represents 1.4%.
  • · For D 1 which represents 0.07%.

On obtient donc 66,67 %. Ce résultat est donc atteint en réalisant seulement 5 découpes telles que désignées en 19, sur la Figure 2.66.67% are therefore obtained. This result is therefore achieved by making only 5 cuts as designated in 19, in Figure 2.

S'il était nécessaire d'affiner davantage la valeur ohmique de la résistance, il faudrait réaliser d'autres découpes pour mettre en circuit des résistances annexes dont la valeur ohmique est de plus en plus faible.If it were necessary to further refine the ohmic value of the resistance, it would be necessary to carry out other cuts to put in circuit additional resistances whose ohmic value is increasingly low.

Exemple III (comparatif).Example III (comparative).

Dans le cas d'une résistance réalisée à l'aide d'une méthode d'ajustage classique, présentant la même valeur ohmique initiale que dans le cas de l'exemple II, pour obtenir une résistance finale égale à 25 kiloohms ± 0,1 %, il est nécessaire de réaliser 27 découpes.In the case of a resistance produced using a conventional adjustment method, having the same initial ohmic value as in the case of Example II, to obtain a final resistance equal to 25 kiloohms ± 0.1 %, it is necessary to make 27 cuts.

Bien entendu, l'invention n'est pas limitée aux exemples que l'on vient de décrire, et on peut apporter à ceux-ci de nombreuses modifications sans sortir du cadre de l'invention.Of course, the invention is not limited to the examples just described, and many modifications can be made to them without departing from the scope of the invention.

Ainsi, la résistance peut être ajustée en l'incorporant de façon connue dans un pont de Wheastone ou de Kelvin et en utilisant un voltmètre digital. On peut également utiliser un ordinateur comprenant en mémoire les valeurs ohmiques correspondant à chaque circuit annexe A1, ...... B1, ...... C1, ..... D1, ...... Un programme de calcul simple permet ainsi :

  • · soit d'indiquer à l'opérateur au moyen d'un micro-afficheur digital, la découpe à réaliser, l'image de la résistance étant observée dans une binoculaire ;
  • . soit de commander une table XY portant un dispositif automatique de découpe connu en soi (jet de sable ou laser), et piloté par l'ordinateur. Ceci peut être réalisé grâce au fait que les chiffres de repérage 1, 2, 3, ......, des circuits annexes sont relativement peu nombreux et suffisamment grands pour qu'il n'existe aucun problème mécanique pour guider le dispositif de découpe.
Thus, the resistance can be adjusted by incorporating it in a known manner into a Wheastone or Kelvin bridge and using a digital voltmeter. It is also possible to use a computer comprising in memory the ohmic values corresponding to each additional circuit. A 1 , ...... B 1 , ...... C 1 , ..... D 1 , ...... A simple calculation program thus allows:
  • · Or to indicate to the operator by means of a digital micro-display, the cut to be made, the image of the resistance being observed in a binocular;
  • . either to order an XY table carrying an automatic cutting device known per se (sand jet or laser), and controlled by the computer. This can be achieved thanks to the fact that the locating digits 1, 2, 3, ..., auxiliary circuits are relatively few and large enough that there is no mechanical problem to guide the device. cutting.

Par ailleurs, grâce aux numéros de repérage et aux bandes de métal existant entre ces numéros et les côtés A, B, C, ou D de la résistance, l'ajustage de la résistance peut encore être réalisé par un simple grattage entre le numéro en question et le bord adjacent de la résistance.Furthermore, thanks to the tracking numbers and the metal bands existing between these numbers and the sides A, B, C, or D of the resistance, the adjustment of the resistance can still be carried out by a simple scraping between the number in question and the adjacent edge of the resistor.

L'invention permet, par conséquent, de faciliter considérablement l'ajustage de la valeur ohmique d'une résistance du genre décrit.The invention therefore makes it possible to considerably facilitate the adjustment of the ohmic value of a resistor of the kind described.

L'invention permet de plus de limiter les risques d'erreur de sorte que la fiabilité de la précision obtenue est statistiquement beaucoup plus grande que dans le cas du procédé connu.The invention also makes it possible to limit the risks of error so that the reliability of the precision obtained is statistically much greater than in the case of the known method.

Claims (6)

1. Résistance électrique plane de haute précision et de valeur ohmique ajustable comprenant une feuille de métal ou d'alliage déposée ou collée sur un support comportant une série de filaments résistants électriques séparés par des sillons de manière à définir un circuit résistant électrique sinueux, cette résistance comprenant une série de circuits résistants électriques court-circuités par des bandes conductrices constituées par le métal ou l'alliage de la feuille, caractérisée en ce que le rapport entre l'accroissement Δ R de la valeur ohmique lorsque Ion a branché en série les circuits annexes résistants, et la valeur ohmique RTn-1 de la résistance lorsqu'on a branché n-1 circuits annexes résistants suit la relation :
Figure imgb0009
où Un est le nième terme d'une série absolument convergente au sens de Cauchy et
Figure imgb0010
1. Planar electrical resistance of high precision and adjustable ohmic value comprising a metal or alloy sheet deposited or glued on a support comprising a series of electrical resistant filaments separated by grooves so as to define a sinuous electrical resistant circuit, this resistor comprising a series of electrical resistant circuits short-circuited by conductive strips formed by the metal or the alloy of the sheet, characterized in that the ratio between the increase Δ R of the ohmic value when Ion is connected in series the resistant auxiliary circuits, and the ohmic value RTn-1 of the resistance when n-1 connected auxiliary circuits is connected follows the relationship:
Figure imgb0009
where Un is the nth term of an absolutely convergent series in the sense of Cauchy and
Figure imgb0010
2. Résistance conforme à la revendication 1, caractérisée en ce que :
Figure imgb0011
où K est un coefficient numérique ajustable inférieur à 1.
2. Resistor according to claim 1, characterized in that:
Figure imgb0011
where K is an adjustable numerical coefficient less than 1.
3. Résistance conforme à l'une quelconque des revendications 1 ou 2, la feuille étant carrée ou rectangulaire, caractérisée en ce que les circuits résistants électriques annexes sont groupés en quatre blocs rectangulaires distincts disposés le long de chacun des côtés de la Quille.3. Resistor according to any one of claims 1 or 2, the sheet being square or rectangular, characterized in that the additional electrical resistance circuits are grouped in four distinct rectangular blocks arranged along each of the sides of the keel. 4. Résistance conforme à la revendication 3, caractérisée en ce que les circuits résistants de chaque bloc sont repérés par un numéro inférieur ou égal à 9 gravé dans une bande conductrice située entre les circuits annexes et le côté adjacent de la feuille.4. Resistor according to claim 3, characterized in that the resistive circuits of each block are identified by a number less than or equal to 9 etched in a conductive strip located between the annex circuits and the adjacent side of the sheet. 5. Résistance conforme à la revendication 1, caractérisée en ce que le support sur lequel est déposée ou scellée la feuille résistante a un coefficient de conductibilité thermique égal ou supérieur à celui de l'alumine de pureté égale à 96 %.5. Resistor according to claim 1, ca characterized in that the support on which the resistant sheet is deposited or sealed has a coefficient of thermal conductivity equal to or greater than that of alumina of purity equal to 96%. 6. Procédé pour ajuster la valeur ohmique de la résistance électrique conforme à la revendication 1, dans lequel on pratique des découpes dans les bandes conductrices qui court-circuitent les circuits résistants électriques annexes, caractérisé en ce qu'on pratique une telle découpe d'abord dans la bande conductrice correspondant à un circuit annexe tel que l'accroissement de la valeur ohmique soit le plus proche possible de la valeur d'ajustage désirée, puis on affine l'ajustage en mettant en circuit successivement des circuits annexes donnant lieu à des accroissements de la valeur ohmique de plus en plus faibles.6. Method for adjusting the ohmic value of the electrical resistance according to claim 1, in which cutouts are made in the conductive strips which short-circuit the auxiliary electrical resistive circuits, characterized in that such a cutout is practiced first in the conductive strip corresponding to an additional circuit such that the increase in the ohmic value is as close as possible to the desired adjustment value, then the adjustment is refined by successively switching on additional circuits giving rise to increasingly small increases in ohmic value.
EP78400081A 1977-09-29 1978-08-29 Flat high-precision electrical resistor having an adjustable ohmic value and method of adjusting this ohmic value Expired EP0001520B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7729381A FR2404902A1 (en) 1977-09-29 1977-09-29 PROCESS FOR THE MANUFACTURING OF HIGH PRECISION FLAT ELECTRIC RESISTORS AND RELATED RESISTORS
FR7729381 1977-09-29

Publications (2)

Publication Number Publication Date
EP0001520A1 true EP0001520A1 (en) 1979-04-18
EP0001520B1 EP0001520B1 (en) 1981-09-09

Family

ID=9195928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78400081A Expired EP0001520B1 (en) 1977-09-29 1978-08-29 Flat high-precision electrical resistor having an adjustable ohmic value and method of adjusting this ohmic value

Country Status (13)

Country Link
EP (1) EP0001520B1 (en)
JP (1) JPS5824001B2 (en)
AT (1) AT366510B (en)
CS (1) CS243452B2 (en)
DD (1) DD139324A5 (en)
DE (1) DE2861056D1 (en)
DK (1) DK144778C (en)
ES (1) ES473467A1 (en)
FR (1) FR2404902A1 (en)
HU (1) HU176711B (en)
IL (1) IL55475A (en)
IT (1) IT1106584B (en)
NO (1) NO782918L (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006442A2 (en) * 1978-07-03 1980-01-09 International Business Machines Corporation Adjustable thin-film resistor
FR2473214A1 (en) * 1980-01-04 1981-07-10 Thomson Csf VERY LOW LINE ONLINE RESISTANCE PLATE AND THERMAL PRINTING BAR USING THIS ONLINE RESISTANCE PLATE
US4862136A (en) * 1983-04-13 1989-08-29 Birkner John M Programmable resistance network
US7408437B2 (en) 2004-05-18 2008-08-05 Ngk Spark Plug Co., Ltd. Resistance element, its precursor, and resistance value adjusting method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375056A (en) * 1980-02-29 1983-02-22 Leeds & Northrup Company Thin film resistance thermometer device with a predetermined temperature coefficent of resistance and its method of manufacture
JPS5965408A (en) * 1982-10-05 1984-04-13 松下電器産業株式会社 Method of producing thick film resistance
US11901850B2 (en) 2019-12-18 2024-02-13 Milwaukee Electric Tool Corporation Power tool having stamped brake resistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2058583A5 (en) * 1969-09-17 1971-05-28 Bochkarev Boris
FR2267616A1 (en) * 1974-04-10 1975-11-07 Crl Electronic Bauelemente Trimmable resistor has spatially-parallel resistance paths - which are electrically in series and short circuited by breakable metal strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2058583A5 (en) * 1969-09-17 1971-05-28 Bochkarev Boris
FR2267616A1 (en) * 1974-04-10 1975-11-07 Crl Electronic Bauelemente Trimmable resistor has spatially-parallel resistance paths - which are electrically in series and short circuited by breakable metal strip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOLID STATE TECHNOLOGY, vol. 18, no. 7, juillet 1975, Washington. S. SCHILLER et al: "Electron-Beam Trimming of Thin and Thick Film Resistor Networks", pages 38-44 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006442A2 (en) * 1978-07-03 1980-01-09 International Business Machines Corporation Adjustable thin-film resistor
EP0006442A3 (en) * 1978-07-03 1980-01-23 International Business Machines Corporation Adjustable thin-film resistor
FR2473214A1 (en) * 1980-01-04 1981-07-10 Thomson Csf VERY LOW LINE ONLINE RESISTANCE PLATE AND THERMAL PRINTING BAR USING THIS ONLINE RESISTANCE PLATE
EP0032087A2 (en) * 1980-01-04 1981-07-15 Thomson-Csf Plate with a row of resistors with very small spacing
EP0032087A3 (en) * 1980-01-04 1981-07-29 Thomson-Csf Plate with a row of resistors with very small spacing and thermal print head using it
US4862136A (en) * 1983-04-13 1989-08-29 Birkner John M Programmable resistance network
US7408437B2 (en) 2004-05-18 2008-08-05 Ngk Spark Plug Co., Ltd. Resistance element, its precursor, and resistance value adjusting method

Also Published As

Publication number Publication date
ATA698078A (en) 1981-08-15
IL55475A0 (en) 1978-12-17
CS609378A2 (en) 1985-08-15
JPS5461661A (en) 1979-05-18
DD139324A5 (en) 1979-12-19
DE2861056D1 (en) 1981-11-26
ES473467A1 (en) 1979-05-01
IT1106584B (en) 1985-11-11
IT7851189A0 (en) 1978-09-21
NO782918L (en) 1979-03-30
HU176711B (en) 1981-04-28
DK376578A (en) 1979-03-30
DK144778B (en) 1982-06-01
FR2404902A1 (en) 1979-04-27
JPS5824001B2 (en) 1983-05-18
EP0001520B1 (en) 1981-09-09
AT366510B (en) 1982-04-26
IL55475A (en) 1980-09-16
DK144778C (en) 1982-10-18
FR2404902B1 (en) 1980-08-01
CS243452B2 (en) 1986-06-12

Similar Documents

Publication Publication Date Title
EP0828145B1 (en) Infrared detector and process for manufacturing it
EP0001520B1 (en) Flat high-precision electrical resistor having an adjustable ohmic value and method of adjusting this ohmic value
FR2463978A1 (en) INTEGRATED SOLAR CELL WITH A DERIVATION DIODE AND METHOD FOR MANUFACTURING THE SAME
EP2541770B1 (en) Delay generator using a programmable resistance made of phase-change material
FR2463489A1 (en) POTENTIOMETER PRODUCED ACCORDING TO THICK-LAYER RESISTANCE TECHNOLOGY
EP0006474A1 (en) Method of compensating for the voltage coefficient of ion-implanted or diffused semiconductor resistors
EP0199424A2 (en) Planar semiconductor device with a guard ring structure, family of such devices and method of manufacture
FR2985606A1 (en) PROCESS FOR PRODUCING A PHOTOVOLTAIC MODULE WITH TWO ETCHES OF ETCHING P2 AND P3 AND CORRESPONDING PHOTOVOLTAIC MODULE.
EP2240318B1 (en) Method for making a heating element by depositing thin layers onto an insulating substrate, the resulting element and use thereof
FR2616263A1 (en) LASER ADJUSTMENT METHOD OF ELECTRICAL COMPONENTS
FR2611402A1 (en) COMPOSITE RESISTANCE AND MANUFACTURING METHOD THEREOF
CN101223611A (en) Film resistor and a method for forming and trimming a film resistor
FR2545660A1 (en) HIGH CAPACITY MULTI-LAYER OMNIBUS BAR
EP0339069B1 (en) Process for detecting the end of polishing of a thin-layer magnetic head
FR2650925A1 (en) DEVICE FOR REMOVING INTERFERENCE SIGNALS ON NARROW BAND
EP3579151B1 (en) Method for manufacturing a computer with recurrent neural networks
EP0114431B1 (en) Thermal collimator target for the testing of an infrared camera
WO1981003714A1 (en) Method for regulating the value of a thick layer resistor,and corresponding resistor
EP0032087B1 (en) Plate with a row of resistors with very small spacing
CH676056A5 (en)
FR2533753A1 (en) METHOD FOR EQUALIZING THIN FILM RESISTORS
WO2014195630A1 (en) Temperature sensor
US3621441A (en) Film resistor adjustable by isolating portions of the film
EP0031283B1 (en) Protective circuit for a switching circuit
EP0045258B1 (en) Photovoltaic detector sensitive in the near infrared range

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB LU NL SE

17P Request for examination filed
DET De: translation of patent claims
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB LU NL SE

REF Corresponds to:

Ref document number: 2861056

Country of ref document: DE

Date of ref document: 19811126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19820831

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890809

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890823

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890831

Year of fee payment: 12

Ref country code: GB

Payment date: 19890831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890901

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890908

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891012

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900831

Ref country code: BE

Effective date: 19900831

BERE Be: lapsed

Owner name: SOC. FRANCAISE DE L' ELECTRO-RESISTANCE

Effective date: 19900831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 78400081.2

Effective date: 19910410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT