EP0000909B1 - Lateral transistor - Google Patents
Lateral transistor Download PDFInfo
- Publication number
- EP0000909B1 EP0000909B1 EP78100655A EP78100655A EP0000909B1 EP 0000909 B1 EP0000909 B1 EP 0000909B1 EP 78100655 A EP78100655 A EP 78100655A EP 78100655 A EP78100655 A EP 78100655A EP 0000909 B1 EP0000909 B1 EP 0000909B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- region
- base
- collector
- transistor
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000295 complement effect Effects 0.000 claims description 5
- 230000010354 integration Effects 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010405 reoxidation reaction Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H01L27/0233—
-
- H01L27/0821—
-
- H01L29/735—
Definitions
- the invention relates to a lateral transistor according to the first part of claim 1, which can be produced in particular integrated together with complementary vertical transistors.
- Lateral transistors in conjunction with complementary vertical transistors are used, for example, in the known 1 2 L structures (Integrated Injection Logic).
- a complementary vertical transistor is also integrated in a lateral transistor, the collector zone of the lateral transistor being in position and of the base zone of the vertical transistor Corresponds to the type of conduction, and in which the emitter zone is introduced into the base zone of the vertical transistor.
- the tolerances in the thickness of the epitaxial layer have an unfavorable effect on the properties of both the vertical and the lateral transistor, since the base zone of the vertical transistor is formed by the epitaxial layer itself and the intrinsic base zone of the lateral transistor by the entire thickness the collector zone comprising the epitaxial layer is determined.
- the invention seeks to remedy this.
- the invention as characterized in the claims, achieves the object of specifying a lateral transistor which can be produced with complementary, vertical transistors with the smallest space requirement and optimal properties, the base zone, the collector zone and the emitter zone of the lateral transistor in this Order are compatible with the collector contacting zone, the base zone and the base connection zone of the vertical transistor and in particular a defined base width of the lateral transistor can be achieved.
- the invention can be seen essentially in that the
- Epitaxial layer has the first conduction type, that the collector zone in the surface of the epitaxial layer is arranged at a distance from the sub-base zone and that the base zone extends through the collector zone which partially surrounds it and the epitaxial layer extends into the sub-base zone so that the active intrinsic base zone extends through the side faces the emitter zone and the collector zone (44) is defined.
- Particular embodiments of the invention are characterized in the subclaims.
- the sub-base zone serves for the low-resistance electrical connection of the base zone, the epitaxial layer being regarded as an extrinsic base zone, via which the active intrinsic base zone is connected to the surface.
- the emitter zone is introduced into the base zone with the aid of the same mask window, preferably by implantation.
- This double-diffused base-emitter structure enables an exact base width of the intrinsic base of the lateral transistor to be maintained. In this way, a lateral PNP transistor having optimal properties and a vertical NPN transistor also having optimal properties can be integrated in the same semiconductor body, the feature of the self-alignment of the zones with one another being ensured.
- the figures 1 a to 1 i essentially sectional views of the structure of the exemplary embodiment in successive method steps.
- a lateral PNP transistor according to the invention is produced simultaneously with a vertical NPN transistor.
- a silicon dioxide layer 12 is first applied to the epitaxial layer, and a silicon nitride layer 14 is applied above it.
- FIG. 1 b all mask windows 18, 20, 22, 24, 26 and 28 are etched into the silicon nitride layer 14 using an etching mask 16 made of photoresist.
- the top view of this etching mask is shown in Fig. 1 c.
- the windows in the area of which the silicon dioxide layer 12 is to be etched are defined with the aid of a blocking mask 50 made of photoresist.
- the N-type contacting zones 34 and 36 to the N + -doped buried zones 6 and 8 and the base zone 36 of the lateral transistor are formed by implantation of, for example, phosphorus.
- Low-resistance N-doped resistors (75 ohms / unit area) can be formed at the same time. The implantation is carried out with low energy, so that the mask windows 18, 20 and 28 defined by the silicon dioxide layer and the silicon nitride layer define the doped zones produced in the process.
- 18, 20 and 28 oxide layers are formed in the area of these windows, which have a somewhat smaller thickness than the original silicon dioxide layer 12.
- the N-doped zones 34, 36 and 38 diffuse further into the epitaxial layer 4, so that they meet with the diffusing buried zones 6 and 8.
- the silicon dioxide layer 41 is only slightly reinforced in the area of the windows 22, 24 and 26, so that there is a braking effect for the ions which corresponds to that of the silicon dioxide layer 12 including the silicon nitride layer 14.
- 1 e shows how the base zone 40 of the vertical NPN transistor, the collector zone 44 of the lateral PNP transistor and the upper isolation zones 42 are introduced using a photoresist mask.
- the P-doped zones 40 and 44 have a high sheet resistance (1000 ohms / unit area), so that there is a low emitter base capacitance for the vertical NPN transistor and a high collector base breakdown voltage for the lateral PNP transistor. These zones are also suitable for realizing resistances.
- all mask windows 18, 20, 22, 24, 26 and 28 are etched through the silicon dioxide layer 39, 41 using the silicon nitride layer 14 as an etching mask. No separate mask is required for this etching step.
- FIG. 1 shows the top view of the mask windows 18, 20, 22, 24, 26 and 28 defined by the silicon nitride layer 14 in the silicon dioxide layer.
- a heating process is carried out in which the implanted regions are activated and the N + and P + -doped zones are diffused out to their final depth.
Landscapes
- Bipolar Integrated Circuits (AREA)
- Bipolar Transistors (AREA)
Description
Die Erfindung betrifft einen lateralen Transistor gemäß dem ersten Teil des Anspruchs 1, der sich insbesondere zusammen mit komplementären vertikalen Transistoren integriert herstellen läßt.The invention relates to a lateral transistor according to the first part of claim 1, which can be produced in particular integrated together with complementary vertical transistors.
Laterale Transistoren in Verbindung mit komplementären vertikalen Transistoren werden beispielsweise in den bekannten 12L-Strukturen (Integrated Injection Logic) verwendet.Lateral transistors in conjunction with complementary vertical transistors are used, for example, in the known 1 2 L structures (Integrated Injection Logic).
Beispielsweise ist in der Veröffentlichung "IEEE Solid State Conference", 1976, von Y. Tokumaru, et al., unter dem Titel "12L with Self-Aligned Double Diffused Injector" auf den Seiten 100 und 101 eine Struktur mit einem lateralen PNP-Transistor und einem vertikalen NPN-Transistor beschrieben, die in einer P-dotierten Epitaxieschicht gebildet sind. Die Basiszone des NPN-Transistors wird dabei durch die Epitaxieschicht selbst gebildet. Hierbei handelt es sich um eine typische, kostengünstige, keine optimale Eigenschaften aufweisende bipolare Struktur, bei der sich die relativ großen Toleranzen in der Dicke der Epitaxieschicht und damit die großen Schwankungen in den Eigenschaften des vertikalen NPN-Transistors ungünstig auswirken.For example, in the publication "IEEE Solid State Conference", 1976, by Y. Tokumaru, et al., Entitled "1 2 L with Self-Aligned Double Diffused Injector" on pages 100 and 101, there is a structure with a lateral PNP -Transistor and a vertical NPN transistor described, which are formed in a P-doped epitaxial layer. The base zone of the NPN transistor is formed by the epitaxial layer itself. This is a typical, inexpensive, non-optimal bipolar structure in which the relatively large tolerances in the thickness of the epitaxial layer and thus the large fluctuations in the properties of the vertical NPN transistor have an unfavorable effect.
Aus der FR-A-2 337 433 ist es über den ersten Teil des Anspruchs 1 hinaus bekannt, daß bei einem lateralen Transistor ein zu ihm komplimentärer, vertikaler Transistor mitintegriert ist, wobei die Kollektorzone des lateralen Transistors der Basiszone des vertikalen Transistors in Lage und Leitungstyp entspricht, und bei dem in die Basiszone des vertikalen Transistors dessen Emitterzone eingebracht ist.From FR-A-2 337 433 it is known beyond the first part of claim 1 that a complementary vertical transistor is also integrated in a lateral transistor, the collector zone of the lateral transistor being in position and of the base zone of the vertical transistor Corresponds to the type of conduction, and in which the emitter zone is introduced into the base zone of the vertical transistor.
Auch hier wirken sich die Toleranzen in der Dicke der Epitaxieschicht auf die Eigenschaften sowohl des vertikalen als auch des lateralen Transistors ungünstig aus, da die Basiszone des vertikalen Transistors durch die Epitaxieschicht selbst gebildet wird und die intrinsische Basiszone des lateralen Transistors durch die ebenfalls die gesamte Dicke der Epitaxieschicht umfassende Kollektorzone bestimmt wird.Here, too, the tolerances in the thickness of the epitaxial layer have an unfavorable effect on the properties of both the vertical and the lateral transistor, since the base zone of the vertical transistor is formed by the epitaxial layer itself and the intrinsic base zone of the lateral transistor by the entire thickness the collector zone comprising the epitaxial layer is determined.
Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst die Aufgabe, einen lateralen Transistor anzugeben, der bei kleinstem Flächenbedarf und optimalen Eigenschaften gleichzeitig mit komplementären, vertikalen Transistoren herstellbar ist, wobei die Basiszone, die Kollektorzone und die Emitterzone des lateralen Transistors in dieser Reihenfolge mit der Kollektorkontaktierungszone, der Basiszone und der Basisanschlußzone des vertikalen Transistors kompatibel sind und insbesondere eine definierte Basisweite des lateralen Transistors erzielbar ist.The invention seeks to remedy this. The invention, as characterized in the claims, achieves the object of specifying a lateral transistor which can be produced with complementary, vertical transistors with the smallest space requirement and optimal properties, the base zone, the collector zone and the emitter zone of the lateral transistor in this Order are compatible with the collector contacting zone, the base zone and the base connection zone of the vertical transistor and in particular a defined base width of the lateral transistor can be achieved.
Zusammenfassend kann die Erfindung im wesentlichen darin gesehen werden, daß dieIn summary, the invention can be seen essentially in that the
Epitaxieschicht den ersten Leitungstyp aufweist, daß die Kollektorzone in der Oberfläche der Epitaxieschicht von der Subbasiszone beabstandet angeordnet ist und daß sich die Basiszone durch die sie teilweise umgebende Kollektorzone und die Epitaxieschicht hindurch bis in die Subbasiszone erstreckt, so daß die aktive intrinsische Basiszone durch die Seitenflächen der Emitterzone und der Kollektorzone (44) definiert ist. Besondere Ausführungsarten der Erfindung sind in den Unteransprüchen gekennzeichnet.Epitaxial layer has the first conduction type, that the collector zone in the surface of the epitaxial layer is arranged at a distance from the sub-base zone and that the base zone extends through the collector zone which partially surrounds it and the epitaxial layer extends into the sub-base zone so that the active intrinsic base zone extends through the side faces the emitter zone and the collector zone (44) is defined. Particular embodiments of the invention are characterized in the subclaims.
Die Subbasiszone dient dem niederohmigen elektrischen Anschluß der Basiszone, wobei die Epitaxieschicht als extrinsische Basiszone anzusehen ist, über die der Anschluß der aktiven intrinsischen Basiszone zur Oberfläche erfolgt. In die Basiszone wird mit Hilfe desselben Maskenfensters die Emitterzone, vorzugsweise durch Implantation eingebracht. Diese doppeltdiffundierte Basis-Emitterstruktur ermöglicht die Einhaltung einer genauen Basisweite der intrinsischen Basis des lateralen Transistors. Auf diese Weise läßt sich ein optimale Eigenschaften aufweisender lateraler PNP-Transistor mit einem ebenfalls optimale Eigenschaften aufweisenden vertikalen NPN-Transistor in dem gleichen Halbleiterkörper integrieren, wobei das Merkmal der Selbstausrichtung der Zonen zueinander gewährleistet wird.The sub-base zone serves for the low-resistance electrical connection of the base zone, the epitaxial layer being regarded as an extrinsic base zone, via which the active intrinsic base zone is connected to the surface. The emitter zone is introduced into the base zone with the aid of the same mask window, preferably by implantation. This double-diffused base-emitter structure enables an exact base width of the intrinsic base of the lateral transistor to be maintained. In this way, a lateral PNP transistor having optimal properties and a vertical NPN transistor also having optimal properties can be integrated in the same semiconductor body, the feature of the self-alignment of the zones with one another being ensured.
Im folgenden wird die Erfindung anhand von lediglich ein Ausführungsbeispiel darstellenden Zeichnungen näher erläutert.In the following, the invention is explained in more detail with reference to drawings showing only one embodiment.
Es zeigen die Fign. 1 a bis 1 i im wesentlichen Schnittansichten der Struktur des Ausführungsbeispiels in aufeinanderfolgenden Verfahrensschritten.The figures 1 a to 1 i essentially sectional views of the structure of the exemplary embodiment in successive method steps.
Hergestellt wird ein erfindungsgemäßer lateraler PNP-Transistor gleichzeitig mit einem vertikalen NPN-Transistor.A lateral PNP transistor according to the invention is produced simultaneously with a vertical NPN transistor.
Wie in Fig. 1 a dargestellt werden zunächst konventionelle Maskierungsprozesse, Dotierungsprozesse (Diffusion oder lonenimplantation) und Beschichtungstechniken angewandt, um N+-dotierte vergrabene Zonen 6 und 8 und P+-dotierte vergrabene Zonen 10 in der Grenzschicht zwischen einem Substrat 2 und einer darauf aufgebrachten N--dotierten Epitaxieschicht 4 zu bilden. Auf die Epitaxieschicht ist zunächst eine Siliziumdioxidschicht 12 und darüber eine Siliziumnitridschicht 14 aufgebracht.As shown in FIG. 1 a, conventional masking processes, doping processes (diffusion or ion implantation) and coating techniques are first applied to N + -doped buried
In Fig. 1b sind unter Verwendung einer Ätzmaske 16 aus Fotolack sämtliche Maskenfenster 18, 20, 22, 24, 26 und 28 in die Siliziumnitridschicht 14 geätzt. Die Draufsicht dieser Ätzmaske ist in Fig. 1 c dargestellt.In FIG. 1 b, all
Wie aus Fig. 1 d zu ersehen, werden mit Hilfe einer Sperrmaske 50 aus Fotolack die Fenster definiert, in deren Bereich die Siliziumdioxidschicht 12 zu ätzen ist. In den dabei entstehenden Fenstern werden durch Implantation von beispielsweise Phosphor die N-leitenden Kontaktierungszonen 34 und 36 zu den N+- dotierten vergrabenen Zonen 6 und 8 und die Basiszone 36 des lateralen Transistors gebildet. Dabei können gleichzeitig niederohmige N-dotierte Widerstände (75 Ohm/Flächeneinheit) gebildet werden. Die Implantation erfolgt mit niedriger Energie, so daß die durch die Siliziumdioxidschicht und die Siliziumnitridschicht definierten Maskenfenster 18, 20 und 28 die dabei erzeugten dotierten Zonen definieren. In einem nachfolgenden Reoxydationsprozeß werden im Bereich dieser Fenster 18, 20 und 28 Oxydschichten gebildet, die eine etwas geringere Dicke aufweisen als die ursprüngliche Siliziumdioxidschicht 12. Dabei diffundieren die N-dotierten Zonen 34, 36 und 38 weiter in die Epitaxieschicht 4 ein, so daß sie sich mit den ausdiffundierenden vergrabenen Zonen 6 und 8 treffen. Bei diesem Reoxydationsprozeß wird die Siliziumdioxydschicht 41 im Bereich der Fenster 22, 24 und 26 nur geringfügig verstärkt, so daß sich dort eine Bremswirkung für die Ionen ergibt, die der der Siliziumdioxidschicht 12 einschließlich der Siliziumnitridschicht 14 entspricht.As can be seen from FIG. 1 d, the windows in the area of which the
Aus Fig. 1 e ist zu ersehen, wie unter Verwendung einer Sperrmaske aus Fotolack die Basiszone 40 des vertikalen NPN-Transistors, die Kollektorzone 44 des lateralen PNP-Transistors und die oberen Isolationszonen 42 eingebracht werden. Die Implantation von beispielsweise Bor erfolgt durch die Siliziumdioxidschichten 39, 41 bzw. 12 und die Siliziumnitridschicht 14. Es ist darauf hinzuweisen, daß die Zonen 40 und 44 irhre zugeordneten Anschlußfenster 24 und 22 nicht zu überlappen brauchen und daß ihre Überschneidung mit den Kontaktierungszonen 38 und 34 unkritisch ist, da die P-dotierten Zonen 40 und 44 durch die N-dotierten Zonen 38 und 34 kompensiert werden. Ist man bestrebt, geringe Kapazitäten zwischen diesen P-und N-dotierten Zonen 40, 38 und 44, 34 zu erzielen, so können sie in einem Abstand zueinander angeordnet werden, was zu einer leichten Erhöhung des Flächenbedarfs führt. Die P-dotierten Zonen 40 und 44 weisen einen hohen Schichtwiderstand (1000 Ohm/Flächeneinheit) auf, so daß sich eine niedrige Emitter-Basiskapazität für den vertikalen NPN-Transistor und eine hohe Kollektor-Basis-Durchbruchsspannung für den lateralen PNP-Transistor ergibt. Diese Zonen sind außerdem geeignet, Widerstände zu verwirklichen.1 e shows how the
In Fig. 1 sind sämtliche Maskenfenster 18, 20, 22, 24, 26 und 28 durch die Siliziumdioxidschicht 39, 41 unter Verwendung der Siliziumnitridschicht 14 als Ätzmaske geätzt. Für diesen Ätzschritt ist keine gesonderte Maske erforderlich.In FIG. 1, all
Fig. 1 zeigt die Draufsicht der durch die Siliziumnitridschicht 14 definierten Maskenfenster 18, 20, 22, 24, 26 und 28 in der Siliziumdioxydschicht.1 shows the top view of the
In den beiden nächsten Prozeßschritten werden Sperrmasken aus Fotolack in Verbindung mit lonenimplantationen verwendet. Die Reihenfolge der Prozeßschritte kann umgekehrt werden.
- 1. In Fig. 1 h wird eine Sperrmaske 66 aus Fotolack verwendet, um die N+-
dotierte Emitterzone 54 des vertikalen NPN-Transistors, dieKollektoranschlußzone 56 des vertikalen Transistors und dieBasisanschlußzone 70 des lateralen PNP-Transistors zu implantieren. - 2. Fig. 1 zeigt die Verwendung einer Sperrmaske 58 aus Fotolack, mit deren Hilfe die P+-
dotierte Emitterzone 62 des lateralen PNP-Transistors, dieKollektoranschlußzone 60 des lateralen Transistors und dieBasisanschlußzone 68 des vertikalen NPN-Transistors implantiert werden.
- 1. In Figure 1h, a photoresist mask 66 is used to implant the N + doped
emitter region 54 of the vertical NPN transistor, thecollector region 56 of the vertical transistor and thebase region 70 of the lateral PNP transistor. - 2. Fig. 1 shows the use of a resist mask 58 made of photoresist, with the aid of which the P + -doped
emitter zone 62 of the lateral PNP transistor, thecollector connection zone 60 of the lateral transistor and thebase connection zone 68 of the vertical NPN transistor are implanted.
Im Anschluß an diese lonenimplantationsprozesse wird ein Erwärmungsprozeß durchgeführt, bei dem die implantierten Bereiche aktiviert und die N+- und P+-dotierten Zonen bis zu ihrer endgültigen Tiefe ausdiffundiert werden.Following these ion implantation processes, a heating process is carried out in which the implanted regions are activated and the N + and P + -doped zones are diffused out to their final depth.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US830222 | 1977-08-31 | ||
US05/830,222 US4180827A (en) | 1977-08-31 | 1977-08-31 | NPN/PNP Fabrication process with improved alignment |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0000909A1 EP0000909A1 (en) | 1979-03-07 |
EP0000909B1 true EP0000909B1 (en) | 1981-07-22 |
Family
ID=25256566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78100655A Expired EP0000909B1 (en) | 1977-08-31 | 1978-08-16 | Lateral transistor |
Country Status (6)
Country | Link |
---|---|
US (1) | US4180827A (en) |
EP (1) | EP0000909B1 (en) |
JP (1) | JPS5438775A (en) |
CA (1) | CA1118909A (en) |
DE (1) | DE2860860D1 (en) |
IT (1) | IT1109971B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283236A (en) * | 1979-09-19 | 1981-08-11 | Harris Corporation | Method of fabricating lateral PNP transistors utilizing selective diffusion and counter doping |
EP0093304B1 (en) * | 1982-04-19 | 1986-01-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor ic and method of making the same |
US4492008A (en) * | 1983-08-04 | 1985-01-08 | International Business Machines Corporation | Methods for making high performance lateral bipolar transistors |
GB2148589B (en) * | 1983-10-18 | 1987-04-23 | Standard Telephones Cables Ltd | Improvements in intergrated circuits |
US6091884A (en) * | 1991-08-19 | 2000-07-18 | Index Systems, Inc. | Enhancing operations of video tape cassette players |
JPH09306924A (en) * | 1996-03-15 | 1997-11-28 | Toshiba Corp | Manufacture of semiconductor device |
US6551869B1 (en) * | 2000-06-09 | 2003-04-22 | Motorola, Inc. | Lateral PNP and method of manufacture |
US20060148188A1 (en) * | 2005-01-05 | 2006-07-06 | Bcd Semiconductor Manufacturing Limited | Fabrication method for bipolar integrated circuits |
KR100783278B1 (en) * | 2006-08-31 | 2007-12-06 | 동부일렉트로닉스 주식회사 | Semiconductor device and method for fabricating the same |
US8791546B2 (en) * | 2010-10-21 | 2014-07-29 | Freescale Semiconductor, Inc. | Bipolar transistors having emitter-base junctions of varying depths and/or doping concentrations |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873989A (en) * | 1973-05-07 | 1975-03-25 | Fairchild Camera Instr Co | Double-diffused, lateral transistor structure |
JPS5155676A (en) * | 1974-11-11 | 1976-05-15 | Fujitsu Ltd | Handotaisochino seizohoho |
US4054900A (en) * | 1974-12-27 | 1977-10-18 | Tokyo Shibaura Electric Co., Ltd. | I.I.L. with region connecting base of double diffused injector to substrate/emitter of switching transistor |
US4058419A (en) * | 1974-12-27 | 1977-11-15 | Tokyo Shibaura Electric, Co., Ltd. | Method of manufacturing integrated injection logic semiconductor devices utilizing self-aligned double-diffusion techniques |
FR2337433A1 (en) * | 1975-12-29 | 1977-07-29 | Tokyo Shibaura Electric Co | Fast integrated injection logic circuit - has two transistors formed by specified zones and achieves low current consumption |
-
1977
- 1977-08-31 US US05/830,222 patent/US4180827A/en not_active Expired - Lifetime
-
1978
- 1978-07-25 JP JP9006378A patent/JPS5438775A/en active Pending
- 1978-08-02 IT IT26395/78A patent/IT1109971B/en active
- 1978-08-03 CA CA000308650A patent/CA1118909A/en not_active Expired
- 1978-08-16 DE DE7878100655T patent/DE2860860D1/en not_active Expired
- 1978-08-16 EP EP78100655A patent/EP0000909B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
IT7826395A0 (en) | 1978-08-02 |
US4180827A (en) | 1979-12-25 |
DE2860860D1 (en) | 1981-10-29 |
EP0000909A1 (en) | 1979-03-07 |
IT1109971B (en) | 1985-12-23 |
JPS5438775A (en) | 1979-03-23 |
CA1118909A (en) | 1982-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0227970B1 (en) | Method of simultaneous fabrication of self-aligned bipolar transistors and complementary mos transistors on a common silicon substrate | |
EP0036634B1 (en) | Method of making a bipolar transistor structure | |
EP0007923B1 (en) | Process for manufacturing a twice diffused lateral transistor and a complemtary vertical transistor integrated therewith | |
DE68925116T2 (en) | Integrated circuit manufactured in mixed technology with CMOS structures and powerful lateral bipolar transistors with increased early voltage and manufacturing process therefor | |
DE1944793C3 (en) | Method for manufacturing an integrated semiconductor device | |
DE2512737A1 (en) | UPPER COLLECTOR SEMICONDUCTOR COMPONENT AND METHOD OF MANUFACTURING THE SAME | |
DE3720156A1 (en) | INTEGRATED CIRCUIT WITH A VERTICAL MOS | |
DE69420565T2 (en) | Driver circuit for electronic semiconductor components with at least one power transistor | |
EP0000909B1 (en) | Lateral transistor | |
DE3785483T2 (en) | Semiconductor arrangement with a bipolar transistor and field effect transistors. | |
DE2351985A1 (en) | PLANAR DIFFUSION PROCESS FOR PRODUCING A MONOLITHICALLY INTEGRATED SOLID-WATER CIRCUIT | |
DE1564218A1 (en) | Process for manufacturing transistors | |
DE3688711T2 (en) | Integrated semiconductor circuit arrangement and method for its production. | |
DE69026675T2 (en) | MIS capacity element | |
DE3022122C2 (en) | ||
DE2657293B2 (en) | Electrical circuit arrangement in transistor-transistor logic circuit (TTL) | |
DE2261541B2 (en) | Process for the production of a linear integrated semiconductor circuit for high performance | |
EP0008043B1 (en) | Integrated bipolar semiconductor circuit | |
DE2600375C3 (en) | Semiconductor arrangement with at least two complementary transistors and method for their production | |
DE68928763T2 (en) | Process for the production of isolated vertical bipolar and JFET transistors and corresponding IC | |
DE69332112T2 (en) | Improved biolar transistor | |
DE1813130B2 (en) | Method of manufacturing a zener diode | |
DE3005367C2 (en) | ||
DE2527076B2 (en) | Integrated semiconductor device and method for its manufacture | |
EP0002191B1 (en) | Integrated semiconductor device in i2l-technique and method of manufacturing it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 2860860 Country of ref document: DE Date of ref document: 19811029 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840720 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19840905 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19890816 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19900427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19900501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |