EP0000060B1 - Process for the preparation of bis-carbonates from diphenols and polyoxyalkylene glycols lengthened by carbonate groups and their application in the preparation of macromolecular thermoplastic polycarbonate polyether block copolymers. - Google Patents

Process for the preparation of bis-carbonates from diphenols and polyoxyalkylene glycols lengthened by carbonate groups and their application in the preparation of macromolecular thermoplastic polycarbonate polyether block copolymers. Download PDF

Info

Publication number
EP0000060B1
EP0000060B1 EP78100103A EP78100103A EP0000060B1 EP 0000060 B1 EP0000060 B1 EP 0000060B1 EP 78100103 A EP78100103 A EP 78100103A EP 78100103 A EP78100103 A EP 78100103A EP 0000060 B1 EP0000060 B1 EP 0000060B1
Authority
EP
European Patent Office
Prior art keywords
bis
polyalkylene oxide
polyether
diphenol
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100103A
Other languages
German (de)
French (fr)
Other versions
EP0000060A1 (en
Inventor
Manfred Dr. Schreckenberg
Dieter Dr. Freitag
Christian Dr. Lindner
Carlhans Dr. Süling
Herbert Dr. Bartl
Klaus Dr. König
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000060A1 publication Critical patent/EP0000060A1/en
Application granted granted Critical
Publication of EP0000060B1 publication Critical patent/EP0000060B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences

Definitions

  • DE-A 2 650 533 claims a process for the clarification of carbonic acid aryl esters of polyalkylene oxide diols made from polyalkylene oxide diols with Mn over 135, preferably over 800, and carbonate group-elongated carbonic acid-bisaryl esters, which is characterized in that polyalkylene oxide diols with molecular weights Mn over 135, at temperatures between 100 ° C and 200 ° C in a vacuum below 35 torr together with carbonic acid bis-aryl esters in the presence of catalysts, with less than one mole of carbonic acid bis-aryl ester being used per OH group, and the hydroxylaryl compound formed being distilled off becomes.
  • the present invention now relates to the use of the carbonic acid aryl esters obtainable according to DE-A 2 650 533 mentioned above for the preparation of polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups;
  • Another object of the present invention are the polyalkylene oxide di-bis-diphenol carbonates obtained via carbonate groups-elongated and their use for the production of polyether polycarbonates.
  • Another object of the present invention are the polyether polycarbonates obtained according to the invention with an improved phase separation between the soft segment and the hard segment, which leads to better performance properties of the corresponding polycarbonate elastomers.
  • the process according to the invention is characterized in that polyalkylene oxide diol bis-aryl carbonates which are extended by carbonate groups and are obtainable according to DE-A 2 650 533 by polyalkylene oxide diols with molecular weights Mn (number average) above 135, preferably above 800, with carbonic acid bis-aryl esters at temperatures between 100 ° C and 200 ° C, preferably between 110 ° C and 180 ° C, in a vacuum below 35 torr, preferably between 25 torr and 0.1 torr, in the presence of catalysts, where less than one mole of carbonic acid bis-aryl ester is used per OH group of the polyalkylene oxide diol, and the resulting hydroxyaryl compound is distilled off, with diphenols at temperatures between 100 ° C.
  • the present invention thus relates to polyalkylene oxide di-bis-diphenol carbonates which are extended by carbonate groups and obtained by this process according to the invention.
  • Suitable catalysts for the preparation according to the invention of the polyalkylene oxide di-bis-diphenol carbonates extended via carbonate groups are basic transesterification catalysts such as alkali metal or alkaline earth metal phenolates, alkali metal or alkaline earth metal alcoholates, tertiary amines such as triethylenediamine, morpholine, pyrrolidine, triethylamine and pyridine or metal compounds such as antimony trioxide, zinc chloride, titanium tetrachloride and titanium tetrabutyl ester.
  • basic transesterification catalysts such as alkali metal or alkaline earth metal phenolates, alkali metal or alkaline earth metal alcoholates, tertiary amines such as triethylenediamine, morpholine, pyrrolidine, triethylamine and pyridine or metal compounds such as antimony trioxide, zinc chloride, titanium tetrachloride and titanium tetrabutyl ester.
  • the catalyst is used in amounts between 10 ppm and 200 ppm, based on the total weight of the polyalkylene oxide di-bis-aryl carbonate which is extended via carbonate groups and the diphenol used in each case.
  • the process according to the invention for the preparation of the polyalkylene oxide di-bis-diphenol carbonates extended via carbonate groups is preferably carried out in the absence of solvents for the reactants, in particular in bulk.
  • solvents which are inert under the reaction conditions such as, for example, aliphatic hydrocarbons, aromatic hydrocarbons which may be unsubstituted or substituted, for example, by nitro groups, can be used.
  • the reaction time for the transesterification process for the preparation of the polyalkylene oxide di-bis-diphenol carbonates extended via carbonate groups is between 1/2 and 24 hours, depending on the reaction temperature and the type and amount of the catalyst.
  • the polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups are prepared, for example, by obtaining a mixture of polyalkylene oxide di-bis-phenyl carbonate extended by carbonate groups in accordance with German patent application P 2 650 533.9 ( Le A 17 516) a diphenol and catalyst are heated in a vacuum to temperatures between 100 ° C. and 200 ° C., preferably between 110 ° C. and 180 ° C., and the phenol formed as the reaction progresses is distilled off from the reactor.
  • the diphenol is used in excess, with more than 1 mol of diphenol, preferably between 1.1 mol and 2 mol of diphenol, being used per carbonic acid phenyl ester group of the polyalkylene oxide di-bis-phenyl carbonate.
  • polyalkylene oxide di-bis-diphenol carbonates which are lengthened via carbonate groups and which are lengthened via carbonate groups and which are lengthened polyalkylene oxide di-bis-aryl carbonates which are lengthened by carbonate groups are prepared in accordance with DE-A 2 650 533.
  • the diphenols suitable according to the invention can be used both alone and in groups.
  • Polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups according to the invention are thus, for example, those of the formulas Va-Vh:
  • R ', R ", n, a and b have the meanings given for the formulas I and 111 in the formulas Va to Vh.
  • polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups according to the invention can be used as starting bisphenols in the production of polycarbonates by the known two-phase interfacial polycondensation process. This gives polyether polycarbonates of a certain structure.
  • the process according to the invention for the preparation of these polyether polycarbonates is characterized in that the polyalkylene oxide di-bis-diphenol carbonates according to the invention which are extended via carbonate groups, in particular those of the formula V, with other diphenols, in particular with those of the formula IV, and with Reacts phosgene according to the two-phase interfacial polycondensation process known for polycarbonate production at pH values between 9 and 14 temperatures between 0 ° C. and 80 ° C., preferably between 15 ° C. and 40 ° C.
  • the polyether polycarbonates obtained according to the invention are characterized by the presence of an amorphous (soft) polyether phase and a crystalline (hard) polycarbonate phase or an amorphous-crystalline (hard) polycarbonate phase.
  • the polyether polycarbonates have two different, spatially separated phases, i.e. Areas composed of a continuous amorphous polyether phase and a crystalline or amorphous-crystalline polycarbonate phase.
  • polyether polycarbonates made from polyalkylene oxide di-bis-diphenol carbonates which are extended via carbonate groups, show additional advantages over other polyether polycarbonates, for example also those of German Offenlegungsschrift 2,636,784, e.g. an even better phase separation, which leads to better performance properties of the corresponding polyether polycarbonates.
  • the polyether polycarbonates according to the invention have better heat resistance than comparable single-phase polyether polycarbonates.
  • Single-phase polyether polycarbonates are described, for example, in U.S. Patent 3,151,615. They can be obtained by various processes, but preferably by the "pyridine process" known from polycarbonate production.
  • the use according to the invention of the polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups according to the invention has the advantage over the use of corresponding bischloroformic acid esters that they are insensitive to hydrolysis and thus have better storage stability and clearly bifunctional reactivity.
  • the polyether polycarbonates according to the invention have improved heat resistance, in particular because of their crystalline polycarbonate phase.
  • the different phases of the polyether polycarbonates according to the invention can be identified with the aid of differential thermal analysis, for example the polyether phase having a glass transition temperature ⁇ 20 ° C, the amorphous fraction in the polycarbonate phase having a glass transition temperature between 100 ° C and 150 ° C and the crystalline fraction Polycarbonate phase has a crystallite melting point between 170 ° C and 250 ° C.
  • the high molecular weight, segmented, thermoplastically processable polyether polycarbonates, produced by the process according to the invention show not only the special thermal resistance, but also good transparency, highly elastic behavior and excellent tear resistance of > 400%.
  • 2,2-Bis- (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2 are preferred as other diphenols for the production of the polyether polycarbonates according to the invention -Bis (3,5-dibromo-4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) cyclohexane are used. Any mixtures of these other diphenols can also be used.
  • trifunctional or more than trifunctional compounds in particular those with three or more than three phenolic hydroxyl groups, preferably between 0), 05-2 mol.% (Based on the diphenols used), branched products are obtained better flow behavior during processing.
  • the polyether polycarbonates according to the invention can also be branched via the polyether component, in that the aryl esters of carbonic acid aryl esters of polyether polyols having three or four aryl groups, which are extended by carbonate groups and extended according to DE-A 2 650 533, can be branched with the di-, Tri- and / or tetraphenols to corresponding polyether polyol polyphenol carbonates according to the process of the present invention, and the resulting polyphenols in molar amounts up to 50 mol%, based on moles of polyether diol bis-diphenol carbonates used the polyether-polycarbonate synthesis used in accordance with the present invention.
  • the chain length of the polyether polycarbonates can be increased by adding a chain terminator, e.g. a monofunctional phenol such as phenol, 2,6-dimethylphenol, p-bromophenol or p-tert-butylphenol can be set, it being possible to use between 0.1 and 10 mol% of chain terminator per mole of diphenol used.
  • a chain terminator e.g. a monofunctional phenol such as phenol, 2,6-dimethylphenol, p-bromophenol or p-tert-butylphenol can be set, it being possible to use between 0.1 and 10 mol% of chain terminator per mole of diphenol used.
  • the chain length of the polyether polycarbonates can be adjusted, for example, by adding polyether monool monodiphenol carbonates in molar amounts, based on moles of carbonate group-extended polyether diol bis-diphenol carbonates, to up to about 50 mol%.
  • the high-molecular, segmented, thermoplastically processable polyether polycarbonates are produced according to the invention by the two-phase interface polycondensation process.
  • one of the aforementioned other diphenols or mixtures of the aforementioned other diphenols are dissolved in an alkaline aqueous solution.
  • the polyakylene oxide di-bis-diphenyol carbonates extended by carbonate groups according to the invention, in particular those of formula V, or their mixtures are dissolved and added in an inert organic solvent which is not miscible with water. Then at a temperature between 0 ° C and 80 ° C, preferably between 15 ° C and 40 ° C and a pH between 9 and 14 phosgene.
  • the polycondensation is carried out by adding 0.2-10 mol% of tertiary aliphatic amine, based on mol of diphenol. Times between 5 minutes and 90 minutes are required for phosgenation and times between 3 minutes and 3 hours for polycondensation.
  • the present invention thus relates to the preparation of polyether polycarbonates, which is characterized in that the polyalkylene oxide di-bis-diphenol carbonates, in particular those of the formula V, which are extended via carbonate groups, with other diphenols, in particular those of the formula IV, and with phosgene in a liquid mixture of inert organic solvent and alkaline aqueous solution at temperatures between 0 ° C and 80 ° C, preferably between 15 ° C and 40 ° C, at a pH between 9 and 14, and after the phosgene is polycondensed by adding 0.2 mol% to 10 mol% of tertiary aliphatic amine, based on the molar amount of diphenol, the weight ratio of polyalkylene oxide diol bis-diphenol carbonate extended to carbonate groups to other diphenol of the polycarbonate content and the polyether content of the polyether polycarbonates is determined.
  • the present invention thus relates to polyether polycarbonates obtained by this process according to the invention.
  • Suitable inert organic solvents for the production process of the polyether polycarbonates according to the invention are water-immiscible aliphatic chlorinated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethene, or chlorinated aromatics such as chlorobenzene, dichlorobenzene and chlorotoluene or mixtures of these solvents.
  • Solutions of Li OH, NaOH, KOH, Ca (OH) 2 and / or Ba (OH) 2 in water are suitable as alkaline aqueous solutions for the process according to the invention.
  • the gelation of the polyether polycarbonates produced by the process according to the invention is carried out by cooling the high-percentage polymer solution, whereby for the gelation each Depending on the amount of polyether or polycarbonate, times between 5 minutes and 12 hours at temperatures between 0 ° C and 40 ° C are required.
  • the gelled product can be worked up to a powder grain mixture, the polyether polycarbonate obtained being dried in vacuo for 48 hours at 50 ° C. and for 24 hours at 100 ° C.
  • Organic solvents such as methylene chloride, benzene, toluene or xylene are suitable as solvents for the separate gelation of the isolated polyether polycarbonates.
  • the insulated polyether polycarbonates are tempered between 5 minutes and 24 hours at temperatures between 40 ° C and 170 ° C.
  • the action of shear forces on the isolated polyether polycarbonates takes place between 0.5 and 30 minutes, at temperatures between 130 and 240 ° C and under shear forces between 0.2 and 0.7 KWh per kg polymer.
  • the amount of phosgene depends on the diphenol used, the stirring action and the reaction temperature, which can be between about 0 ° C. and about 80 ° C., and is generally 1.1-3.0 mol of phosgene per mol of diphenol.
  • the reaction according to the invention of the polyalkylene oxide di-bis-diphenol carbonates according to the invention extended via carbonate groups with diphenols and with phosgene is carried out quantitatively; the respective reactant ratio of polyalkylene oxide di-bis-diphenol carbonate extended via carbonate groups to other diphenol is thus determined from the polycarbonate fraction and the polyether fraction to be synthesized in each case polyether polycarbonates.
  • the proportion of polycarbonate in the polyether polycarbonates produced by the process according to the invention is, depending on the desired property profile, approximately between 30 and 95, preferably approximately between 35 and 80% by weight, the hardness and heat resistance increasing with increasing polycarbonate content, and the elasticity and elongation at break decreases.
  • the polycarbonate content of the polyether polycarbonates according to the invention is the amount by weight of aromatic polycarbonate structural units of the following formula VI where D stands for the diphenolate residues in the polyether polycarbonate, in particular to understand aromatic polycarbonate structural units of the formula IVa wherein X and Y to Y 4 have the meaning given for formula IV.
  • the polyether fraction of the polyether polycarbonates according to the invention is therefore to be understood as the amount by weight of polyalkylene oxide diolate block units which are extended by carbonate groups, in particular those of the formula VII, wherein R ', R ", a, b have the meaning given for formula 1 and n is an integer from 2 to 20, preferably 2-10.
  • the present invention thus also relates to polyether polycarbonates which are characterized in that they contain about 30 to 95% by weight, preferably about 35 to 80% by weight, of aromatic polycarbonate structural units of the formula VI, in particular those of the formula IVa, and approximately 70 to 5% by weight, preferably approximately 65 to 20% by weight, of polyalkylene oxide diolate block units which are extended by carbonate groups, in particular those of the formula VII.
  • the polyether polycarbonates according to the invention should have average molecular weights Nlw (weight average) of 25,000 to 250,000, preferably from 40,000 to 150,000, determined by the light scattering method using the scattered light photometer.
  • the relative solution viscosities q rel. (measured on 0.5 g in 100 ml CH 2 Cl 2 at 25 ° C.) of the polyether polycarbonates according to the invention are between 1.3 and 3.0, preferably between 1.4 and 2.6.
  • the high molecular weight, segmented, thermoplastically processable polyether polycarbonates produced by the process according to the invention are characterized in that, measured by means of differential thermal analysis, the polyether content is amorphous and a freezing temperature between -100 ° C. and + 100 ° C., preferably between -80 ° C. and + 20 ° C, and that the polycarbonate portion is partially crystalline with a crystallite melting temperature of the crystalline polycarbonate portion of at least 160 ° C, preferably between 165 ° C and 250 ° C, and that the glass transition temperature of the amorphous polycarbonate portion is over 80 ° C, preferably over 100 ° C.
  • This differentiation of the freezing temperature of the polyether portion from the freezing temperature and the crystallite melting temperature of the polycarbonate portion is characteristic of the phase separation of the polyether and polycarbonate portion.
  • the partial crystallinity which can be demonstrated by a measurable enthalpy of fusion of the crystalline polycarbonate portion of the polyether polycarbonates according to the invention, which is at least 1-8 cal / g polymer, can be achieved by stretching and by the subsequent post-annealing (5 minutes to 24 hours) at 40-170 ° C or by the aforementioned action of shear forces during the thermoplastic Processing in a multi-screw extruder can be increased by 50%, whereby the heat resistance of the products increases, the appearance changes from transparent to opaque to opaque.
  • the partially crystalline elastic polyether polycarbonates can in each case below or in the region of the crystallite melting point of the crystalline polycarbonate component at temperatures from 130 ° C. to max. 250 ° C are processed thermoplastic, whereby a substantial proportion of the crystallinity is not lost. At processing temperatures above the crystalline melting point of the crystalline polycarbonate content, amorphous, transparent products are obtained.
  • the crystalline fraction of the polycarbonate fraction of the polyether polycarbonates according to the invention can thus be varied, the enthalpy of fusion of the crystalline polycarbonate fraction, in order to have good heat resistance of the polyether polycarbonates in practice, at about 1-8 cal / g polymer, preferably at 2, 5-5.5 cal / g polymer is.
  • the UV stability and hydrolysis stability of the polyether polycarbonates according to the invention can be improved by the amounts of UV stabilizing agents which are customary for thermoplastic polycarbonates, such as, for example, substituted "benzophenones” or “benzotriazoles", by hydrolysis protective agents, such as, for example, mono- and especially polycarbodumides (cf. W. Neumann, J. Peter, H, Holtschmidt and W. Kallert, Proceeding of the 4th Rubber Technology Conference London, May 22-25, 1962, pp. 738-751) in amounts of 0.2-5% by weight. %, based on the weight of the polyether polycarbonates, and by anti-aging agents known in the chemistry of thermoplastic polyethers and thermoplastic polycarbonates.
  • UV stabilizing agents which are customary for thermoplastic polycarbonates, such as, for example, substituted "benzophenones” or “benzotriazoles”
  • hydrolysis protective agents such as, for example, mono- and especially polycarbodumides (cf. W. Neumann
  • substances such as carbon black, kieselguhr, kaolin, clays, CaF 2 , CaC0 3 , aluminum oxides and conventional glass fibers in amounts of 2 to 40% by weight, based in each case on the total weight of the molding composition and inorganic pigments, can be used both as Fillers as well as nucleating agents are added.
  • flame-retardant products are desired, about 5 to 15% by weight, based on the weight of the polyether polycarbonates, of flame retardants known in the chemistry of thermoplastic polyethers and thermoplastic polycarbonates, such as e.g. Antimony trioxide, tetrabromophthalic anhydride, hexabromocyclododecane, tetrachloro- or tetrabromobisphenol-A or tris (2,3-dichloropropyl) phosphate are admixed, with statistically incorporated tetrachloro- and tetrabromobisphenols also showing flame retardant properties in the polycarbonate fractions of the polycarbonates according to the invention.
  • flame retardants known in the chemistry of thermoplastic polyethers and thermoplastic polycarbonates, such as e.g. Antimony trioxide, tetrabromophthalic anhydride, hexabromocyclododecane, tetrach
  • thermoplastic polyethers and thermoplastic polycarbonates can be used effectively.
  • the polyether polycarbonates obtained by the process according to the invention can advantageously be used wherever a combination of hardness and elasticity, in particular low-temperature flexibility, is desired, e.g. in body construction, for the production of low-pressure tires for vehicles, for wrapping hoses, plates, pipes and for flexible drive pulleys.
  • the average molecular weights listed in the following examples are number average Mn and determined by determining the OH number.
  • the Staudinger index [ 1]] given in example A was measured in THF at 25 ° C and in specified.
  • the relative solution viscosity ⁇ rel of Examples C 1 -C 6 is defined by the viscosity of 0.5 g of polyether polycarbonate in 100 ml of methylene chloride at 25 ° C.
  • the tensile strength and the elongation at break were measured according to DIN 53 455 and 53 457, respectively.
  • the differential thermal analysis (DTA) was carried out with the device "DuPont, model 900". To interpret the freezing temperature, the approximate middle of the softening range was chosen according to the tangent method and the approximate center of the endothermic peak of the melting curve for the crystallite melting point.
  • a finely divided solid product is obtained by distilling off the solvent, drying in a vacuum drying cabinet at about 80-110 ° C. and 15 torr and then grinding.
  • the polyether polycarbonate shows a maximum at 40,000. It has 50% by weight of polyether and 50% by weight of polycarbonate.
  • Some mechanical properties of a film cast from methylene chloride are: tear strength 45.9 (MPA) (measured according to DIN 53 455), elongation at break 483% (measured according to DIN 53 455).
  • the granulated polyether polycarbonate shows a glass transition temperature of the polyether portion of -75 ° C, a glass transition temperature of the polycarbonate of 145 ° C and a crystallite melting point of the polycarbonate portion of approx. 215 ° C.
  • the granulated polyether polycarbonate shows a glass transition temperature of the polyether portion of -57 ° C, a glass transition temperature of the polycarbonate of 145 ° C and a crystallite melting point of the polycarbonate portion of approx. 195 ° C.

Description

Die DE-A 2 650 533 beansprucht ein Verfahren zur Hellstellung von Kohlensäurearylestern von über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiolen aus Polyalkylenoxiddiolen mit Mn über 135, vorzugsweise über 800, und Kohlensäurebisarylestern, das dadurch gekennzeichnet ist, dass man Polyalkylenoxiddiole mit Molekulargewichten Mn über 135, bei Temperaturen zwischen 100°C und 200°C im Vakuum unterhalb 35 Torr zusammen mit Kohlensäure-bis-arylestern in Gegenwart von Katalysatoren erhitzt, wobei pro OH-Gruppe weniger als ein Mol Kohlensäure-bis-arylester eingesetzt wird, und die entstehende Hydroxylarylverbindung abdestilliert wird.DE-A 2 650 533 claims a process for the clarification of carbonic acid aryl esters of polyalkylene oxide diols made from polyalkylene oxide diols with Mn over 135, preferably over 800, and carbonate group-elongated carbonic acid-bisaryl esters, which is characterized in that polyalkylene oxide diols with molecular weights Mn over 135, at temperatures between 100 ° C and 200 ° C in a vacuum below 35 torr together with carbonic acid bis-aryl esters in the presence of catalysts, with less than one mole of carbonic acid bis-aryl ester being used per OH group, and the hydroxylaryl compound formed being distilled off becomes.

Als Polyalkylenoxiddiole sind insbesondere solche

Figure imgb0001
worin

  • R' und R" unabhängig voneinander H oder C1-C4-Alkyl sind,
  • a eine ganze Zahl von 1 bis 6 ist und
  • b eine ganze Zahl von 3 bis 350, insbesondere von 3 bis 250, ist, geeignet.
Such polyalkylene oxide diols are in particular
Figure imgb0001
wherein
  • R 'and R "are independently H or C1-C4-alkyl,
  • a is an integer from 1 to 6 and
  • b is an integer from 3 to 350, in particular from 3 to 250, is suitable.

Gegenstand der vorliegenden Erfindung ist nun die Verwendung der gemäss der obengenannten DE-A 2 650 533 erhältlichen Kohlensäurearylester zur Herstellung von über Carbonat-Gruppen- verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonaten; ein weiterer Gegenstand der vorliegenden Erfindung sind die erfindungsgemäss erhaltenen über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate sowie deren Verwendung zur Herstellung von Polyäther-Polycarbonaten. Ein weiterer Gegenstand der vorliegenden Erfindung sind die erfindungsgemäss erhaltenen Polyäther-Polycarbonate mit einer verbesserten Phasentrennung zwischen Weichsegment und Hartsegment, die zu besseren anwendungstechnischen Eigenschaften der entsprechenden Polycarbonat-Elastomeren führt.The present invention now relates to the use of the carbonic acid aryl esters obtainable according to DE-A 2 650 533 mentioned above for the preparation of polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups; Another object of the present invention are the polyalkylene oxide di-bis-diphenol carbonates obtained via carbonate groups-elongated and their use for the production of polyether polycarbonates. Another object of the present invention are the polyether polycarbonates obtained according to the invention with an improved phase separation between the soft segment and the hard segment, which leads to better performance properties of the corresponding polycarbonate elastomers.

Die Umesterung der gemäss der DE-A 2 650 533 erhältlichen über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-arylcarbonate mit überschüssigen Diphenolen zu den entsprechenden über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonaten erfolgt überraschend glatt ohne Nebenreaktionen selbst bei Reaktionstemperaturen bis 200°C. Weder ändert sich die von den Ausgangsprodukten her gegebene molekulare Verteilung, noch erfolgt Rückbildung von Polyalkylenoxiddiolen, noch erfolgt Polykondensation zu Polycarbonaten.The transesterification of the polyalkylene oxide di-bis-aryl carbonates obtainable according to DE-A 2 650 533, which are extended by carbonate groups, with excess diphenols to the corresponding polyalkylene oxide di-bis-diphenol carbonates extended via carbonate groups takes place surprisingly smoothly without side reactions even at reaction temperatures up to 200 ° C. Neither does the molecular distribution given by the starting products change, nor does polyalkylene oxide diol regress, nor does polycondensation to polycarbonates.

Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass man über Carbonat-Gruppen-verlängerte Polyalkylenoxiddiol-bis-arylcarbonate, die gemäss der DE-A 2 650 533 dadurch erhältlich sind, das man Polyalkylenoxiddiole mit Molekulargewichten Mn (Zahlenmittel) über 135, vorzugsweise über 800, mit Kohlensäure-bis-arylestern bei Temperaturen zwischen 100°C und 200°C, vorzugsweise zwischen 110°C und 180°C, in Vakuum unterhalb 35 Torr, vorzugsweise zwischen 25 Torr und 0,1 Torr, in Gegenwart von Katalysatoren erhitzt, wobei pro OH-Gruppe des Polyalkylenoxiddiols weniger als ein Mol Kohlensäure-bis-arylester eingesetzt wird, und die entstehende Hydroxyarylverbindung abdestilliert wird, mit Diphenolen bei Temperaturen zwischen 100°C und 200°C, vorzugsweise zwischen 110°C und 180°C im Vakuum unterhalb 35 Torr, vorzugsweise zwischen 25 Torr und 0,1 Torr, in Gegenwart von Katalysatoren erhitzt, wobei für eine Kohlensäurearylestergruppe des über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-arylcarbonates mehr als 1 Mol Diphenol, vorzugsweise zwischen 1,1 Mol und 2 Mol Diphenol, eingesetzt werden, und die entstehende Hydroxyarylverbindung abdestilliert wird.The process according to the invention is characterized in that polyalkylene oxide diol bis-aryl carbonates which are extended by carbonate groups and are obtainable according to DE-A 2 650 533 by polyalkylene oxide diols with molecular weights Mn (number average) above 135, preferably above 800, with carbonic acid bis-aryl esters at temperatures between 100 ° C and 200 ° C, preferably between 110 ° C and 180 ° C, in a vacuum below 35 torr, preferably between 25 torr and 0.1 torr, in the presence of catalysts, where less than one mole of carbonic acid bis-aryl ester is used per OH group of the polyalkylene oxide diol, and the resulting hydroxyaryl compound is distilled off, with diphenols at temperatures between 100 ° C. and 200 ° C., preferably between 110 ° C. and 180 ° C. in a vacuum below 35 torr, preferably between 25 torr and 0.1 torr, heated in the presence of catalysts, being for a carbonic acid aryl ester group of the polyalkyleneoxy extended by carbonate groups ddiol-bis-aryl carbonates, more than 1 mol of diphenol, preferably between 1.1 mol and 2 mol of diphenol, are used, and the resulting hydroxyaryl compound is distilled off.

Gegenstand der vorliegenden Erfindung sind somit über Carbonat-Gruppen-verlängerte Polyalkylenoxiddiol-bis-diphenol-carbonate, erhalten nach diesem erfindungsgemässen Verfahren.The present invention thus relates to polyalkylene oxide di-bis-diphenol carbonates which are extended by carbonate groups and obtained by this process according to the invention.

Insbesondere werden die gemäss der DE-A 2 650 533 aus den Polyalkylenoxiddiolen der Formel I mit Kohlensäure-bis-arylestern der Formel II

Figure imgb0002
worin

  • Ar ein substituierter oder unsubstituierter Arylrest mit 6 bis 18 C-Atomen, vorzugsweise Phenyl ist, erhältlichen Polyalkylenoxiddiol-bis-arylcarbonate der Formel 111
    Figure imgb0003
    worin n eine ganze Zahl von 2 bis 20, vorzugsweise 2 bis 10, bedeutet,
  • Ar, R', R", a und b die für die Formel und II genannte Bedeutung haben, mit den Diphenolen der folgenden Formel IV
    Figure imgb0004
    worin
    Figure imgb0005
    0, S oder SO2 bedeuten, und
  • Y1 bis Y4 gleich oder verschieden sind und Wasserstoff oder Halogen, wie beispielsweise Chlor oder Brom, bedeuten, zu den über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonaten der Formel V umgesetzt
    Figure imgb0006
    worin n,
  • R', R", a, b, X und Y1 die für die Formeln 111 und IV genannte Bedeutung haben.
In particular, those according to DE-A 2 650 533 from the polyalkylene oxide diols of the formula I with carbonic acid bis-aryl esters of the formula II
Figure imgb0002
wherein
  • Ar is a substituted or unsubstituted aryl radical having 6 to 18 carbon atoms, preferably phenyl, available polyalkylene oxide di-bis-aryl carbonates of the formula 111
    Figure imgb0003
    where n is an integer from 2 to 20, preferably 2 to 10,
  • Ar, R ', R ", a and b have the meaning given for the formula and II, with the diphenols of the following formula IV
    Figure imgb0004
    wherein
    Figure imgb0005
    0, S or SO 2 mean, and
  • Y 1 to Y 4 are the same or different and are hydrogen or halogen, such as chlorine or bromine, converted to the polyalkylene oxide di-bis-diphenol carbonates of the formula V which are extended by carbonate groups
    Figure imgb0006
    where n,
  • R ', R ", a, b, X and Y1 have the meaning given for the formulas 111 and IV.

Geeignete Katalysatoren für die erfindungsgemässe Herstellung der über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate sind basische Umesterungskatalysatoren wie ,Alkali- oder Erdalkaliphenolate, Alkaii- oder Erdalkalialkoholate, tertiäre Amine wie beispielsweise Tri- äthylendiamin, Morpholin, Pyrrolidin, Triäthylamin und Tributylamin und Pyridin oder Metallverbindungen wie beispielsweise Antimontrioxid, Zinkchlorid, Titantetrachlorid und Titansäuretetrabutylester.Suitable catalysts for the preparation according to the invention of the polyalkylene oxide di-bis-diphenol carbonates extended via carbonate groups are basic transesterification catalysts such as alkali metal or alkaline earth metal phenolates, alkali metal or alkaline earth metal alcoholates, tertiary amines such as triethylenediamine, morpholine, pyrrolidine, triethylamine and pyridine or metal compounds such as antimony trioxide, zinc chloride, titanium tetrachloride and titanium tetrabutyl ester.

Der Katalysator wird in Mengen zwischen 10 ppm und 200 ppm, bezogen auf das Gesamtgewicht des jeweils eingesetzten über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-arylcarbonats und des jeweils eingesetzten Diphenols, verwendet.The catalyst is used in amounts between 10 ppm and 200 ppm, based on the total weight of the polyalkylene oxide di-bis-aryl carbonate which is extended via carbonate groups and the diphenol used in each case.

Diese Katalysatormengen können gegebenenfalls noch unterschritten werden, wenn die Ausgangsprodukte bei Verwendung der sauren Katalysatoren keine basischen Verunreinigungen, und bei Verwendung der basischen Katalysatoren keine sauren Verunreinigungen enthalten. Im Interesse einer möglichst geringen Eigenfarbe der erfindungsgemässen Produkte sind möglichst geringe Katalysatormengen zu bevorzugen.These amounts of catalyst can be fallen below if necessary if the starting products do not contain any basic impurities when using the acidic catalysts and if they do not contain any acidic impurities when using the basic catalysts. In the interest of the lowest possible intrinsic color of the products according to the invention, the smallest possible amounts of catalyst are preferred.

Das erfindungsgemässe Verfahren zur Herstellung der über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate erfolgt vorzugsweise in Abwesenheit von Lösungsmitteln für die Reaktanten, insbesondere in Substanz. Gegebenenfalls können unter den Reaktionsbedingungen inerte Lösungsmittel wie beispielsweise aliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe, die unsubstituiert oder beispielsweise durch Nitrogruppen substituiert sein können, eingesetzt werden.The process according to the invention for the preparation of the polyalkylene oxide di-bis-diphenol carbonates extended via carbonate groups is preferably carried out in the absence of solvents for the reactants, in particular in bulk. If appropriate, solvents which are inert under the reaction conditions, such as, for example, aliphatic hydrocarbons, aromatic hydrocarbons which may be unsubstituted or substituted, for example, by nitro groups, can be used.

Die Reaktionszeit für das Umesterungsverfahren zur Herstellung der über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate beträgt in Abhängigkeit von Reaktionstemperatur sowie Art und Menge des Katalysators zwischen 1/2 und 24 Stunden.The reaction time for the transesterification process for the preparation of the polyalkylene oxide di-bis-diphenol carbonates extended via carbonate groups is between 1/2 and 24 hours, depending on the reaction temperature and the type and amount of the catalyst.

Die Herstellung der über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol- carbonate erfolgt beispielsweise dadurch, dass man eine Mischung aus über Carbonat-Gruppen-verlängerten Po[yalkylenoxiddiol-bis-phenyl-carbonat erhalten gemäss der deutschen Patentanmeldung P 2 650 533.9 (Le A 17 516) einem Diphenol und Katalysator im Vakuum auf Temperaturen zwischen 100°C und 200°C, vorzugsweise zwischen 110°C und 180°C, erhitzt und das mit fortschreitender Reaktion gebildete Phenol aus dem Reaktor abdestilliert. Hierbei wird das Diphenol im Überschuss eingesetzt, wobei pro Kohlensäurephenylestergruppe des Polyalkylenoxiddiol-bis-phenylcarbonats mehr als 1 Mol Diphenol, vorzugsweise zwischen 1,1 Mol und 2 mol Diphenol verwendet werden. Gemäss einer besonders bevorzugten Ausführungsform wird mit dem Dinatriumphenolat des Bisphenols A als Katalysator die Reaktion aus einem über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-phenyl-carbonat, erhalten gemäss DE-A 2 650 533, und Bisphenol A im Molverhältnis Bis-phenylcarbonat zu Bisphenol A von 1:3 bei 150°C im Vakuum zwischen 25 und 0,1 Torr umgesetzt.The polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups are prepared, for example, by obtaining a mixture of polyalkylene oxide di-bis-phenyl carbonate extended by carbonate groups in accordance with German patent application P 2 650 533.9 ( Le A 17 516) a diphenol and catalyst are heated in a vacuum to temperatures between 100 ° C. and 200 ° C., preferably between 110 ° C. and 180 ° C., and the phenol formed as the reaction progresses is distilled off from the reactor. The diphenol is used in excess, with more than 1 mol of diphenol, preferably between 1.1 mol and 2 mol of diphenol, being used per carbonic acid phenyl ester group of the polyalkylene oxide di-bis-phenyl carbonate. According to a particularly preferred embodiment, the disodium phenolate of bisphe nols A as catalyst, the reaction of a polyalkylene oxide di-bis-phenyl carbonate extended by carbonate groups, obtained according to DE-A 2 650 533, and bisphenol A in a molar ratio of bis-phenyl carbonate to bisphenol A of 1: 3 at 150 ° C. implemented in a vacuum between 25 and 0.1 torr.

Die für die erfindungsgemässe Herstellung der über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate notwendigen über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-arylcarbonate werden gemäss der DE-A 2 650 533 hergestellt.The polyalkylene oxide di-bis-diphenol carbonates which are lengthened via carbonate groups and which are lengthened via carbonate groups and which are lengthened polyalkylene oxide di-bis-aryl carbonates which are lengthened by carbonate groups are prepared in accordance with DE-A 2 650 533.

Für die erfindungsgemäße Herstellung der über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate geeignete Diphenol sind:

  • Hydrochinon
  • Resorcin
  • Dihydroxydiphenyle
  • Bis-(hydroxyphenyl)-alkane
  • Bis-(hydroxyphenyl)-cycloalkane
  • Bis-(hydroxyphenyl)-sulfide
  • Bis-(hydroxyphenyl)-äther
  • Bis-(hydroxyphenyl)-ketone
  • Bis-(hydroxyphenyl)-sulfone
  • a,a-Bis-(hydroxyphenyl)-diisopropylbenzole
  • sowie deren kernalkylierte und kernhalogenierte Verbindungen. Diese und weitere geeignete aromatische Dihydroxyverbindungen sind z.B. in den US-Patentschriften 3 028 365, 2 999 835, 3 148 172, 3271 368, 2991 273, 3 271 367, 3 280 078, 3 014 891 und 2 999 846 und in die deutschen Offenlegungsschriften 2 063 050, 2 211 957 aufgeführt.
Diphenol suitable for the preparation according to the invention of the polyalkylene oxide di-bis-diphenol carbonates which are extended via carbonate groups are:
  • Hydroquinone
  • Resorcinol
  • Dihydroxydiphenyls
  • Bis (hydroxyphenyl) alkanes
  • Bis (hydroxyphenyl) cycloalkanes
  • Bis (hydroxyphenyl) sulfides
  • Bis (hydroxyphenyl) ether
  • Bis (hydroxyphenyl) ketones
  • Bis (hydroxyphenyl) sulfones
  • a, a-bis (hydroxyphenyl) diisopropylbenzenes
  • and their nuclear alkylated and nuclear halogenated compounds. These and other suitable aromatic dihydroxy compounds are described, for example, in US Pat. Nos. 3,028,365, 2,999,835, 3,148,172, 3,271,368, 2,991,273, 3,271,367, 3,280,078, 3,014,891 and 2,999,846 and in German Laid-open publications 2 063 050, 2 211 957.

Geeignete Diphenole sind beispielsweise

  • Bis-(4-hydroxyphenyl)-methan
  • 4,4'-Dihydroxydiphenyl
  • 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan
  • a,a-Bis-(4-hydroxyphenyl)-p-diisopropylbenzol
  • 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan.
Suitable diphenols are, for example
  • Bis (4-hydroxyphenyl) methane
  • 4,4'-dihydroxydiphenyl
  • 2,4-bis (4-hydroxyphenyl) -2-methylbutane
  • a, a-bis (4-hydroxyphenyl) -p-diisopropylbenzene
  • 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane.

Bevorzugte Diphenole sind beispielsweise

  • 2,2-Bis-(4-hydroxyphenyl)-propan
  • 1,1-Bis-(4-hydroxyphenyl)-cyclohexan
  • 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan und
  • 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan.
Preferred diphenols are, for example
  • 2,2-bis (4-hydroxyphenyl) propane
  • 1,1-bis (4-hydroxyphenyl) cyclohexane
  • 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane and
  • 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane.

Die erfindungsgemäss geeigneten Diphenole können sowohl allein als auch zu mehreren eingesetzt werden.The diphenols suitable according to the invention can be used both alone and in groups.

Erfindungsgemässe über Carbonat-Gruppen-verlängerte Polyalkylenoxiddiol-bis-diphenol-carbonate sind somit beispielsweise die der Formeln Va-Vh:

Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
Polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups according to the invention are thus, for example, those of the formulas Va-Vh:
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014

R', R", n, a und b Haben in den Formeln Va bis Vh die für die Formeln I bzw. 111 genannte Bedeutung.R ', R ", n, a and b have the meanings given for the formulas I and 111 in the formulas Va to Vh.

Die erfindungsgemässen über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol- carbonate können als Ausgangsbisphenole bei der Herstellung für Polycarbonate nach dem bekannten Zweiphasengrenzflächenpolykondensationsverfahren eingesetzt werden. Man erhält so Polyäther-Polycarbonate eines bestimmten Aufbaus.The polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups according to the invention can be used as starting bisphenols in the production of polycarbonates by the known two-phase interfacial polycondensation process. This gives polyether polycarbonates of a certain structure.

Das erfindungsgemässe Verfahren zur Herstellung dieser Polyäther-Polycarbonate ist dadurch gekennzeichnet, dass man die erfindungsgemässen über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate, insbesondere die der Formel V, mit anderen Diphenolen, insbesondere mit denen der Formel IV, und mit Phosgen nach dem für die Polycarbonatherstellung bekannten Zweiphasengrenzflächenpolykondensationsverfahren bei pH-Werten zwischen 9 und 14 Temperaturen zwischen 0°C und 80°C, vorzugsweise zwischen 15°C und 40°C umsetzt. Die erfindungsgemäss erhaltenen Polyäther-Polycarbonate sind charakterisiert durch das Vorliegen einer amorphen (weichen) Polyätherphase und einer kristallinen (harten) Polycarbonatphase bzw. einer amorph-kristallinen (harten) Polycarbonatphase.The process according to the invention for the preparation of these polyether polycarbonates is characterized in that the polyalkylene oxide di-bis-diphenol carbonates according to the invention which are extended via carbonate groups, in particular those of the formula V, with other diphenols, in particular with those of the formula IV, and with Reacts phosgene according to the two-phase interfacial polycondensation process known for polycarbonate production at pH values between 9 and 14 temperatures between 0 ° C. and 80 ° C., preferably between 15 ° C. and 40 ° C. The polyether polycarbonates obtained according to the invention are characterized by the presence of an amorphous (soft) polyether phase and a crystalline (hard) polycarbonate phase or an amorphous-crystalline (hard) polycarbonate phase.

Morphologisch gesehen weisen die Polyäther-Polycarbonate zwei verschiedene, räumlich getrennte Phasen, d.h. Bereiche auf, die sich einer einer kontinuierlichen amorphen Polyätherphase und einer kristallinen bzw. amorph-kristallinen Polycarbonatphase zusammensetzen.Morphologically speaking, the polyether polycarbonates have two different, spatially separated phases, i.e. Areas composed of a continuous amorphous polyether phase and a crystalline or amorphous-crystalline polycarbonate phase.

Die hochmolekularen, segmentierten, thermoplastisch verarbeitbaren Polyäther-Polycarbonate, hergestellt aus über Carbonat-gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonaten zeigen gegenüber anderen Polyäther-Polycarbonaten, beispielsweise auch denen der deutschen Offenlegungsschrift 2 636 784 zusätzliche Vorteil, wie z.B. eine noch bessere Phasentrennung, die zu besseren anwendungstechnischen Eigenschaften der entsprechenden Polyäther-Polycarbonate führt.The high molecular weight, segmented, thermoplastically processable polyether polycarbonates, made from polyalkylene oxide di-bis-diphenol carbonates which are extended via carbonate groups, show additional advantages over other polyether polycarbonates, for example also those of German Offenlegungsschrift 2,636,784, e.g. an even better phase separation, which leads to better performance properties of the corresponding polyether polycarbonates.

Die erfindungsgemässen Polyäther-Polycarbonate haben aufgrund ihrer Mehrphasigkeit eine bessere Wärmeformbeständigkeit als vergleichbare einphasige Polyäther-Polycarbonate.Because of their multiphase nature, the polyether polycarbonates according to the invention have better heat resistance than comparable single-phase polyether polycarbonates.

Einphasige Polyäther-Polycarbonate sind beispielsweise in US-Patent 3 151 615 beschrieben. Sie sind nach verschiedenen Verfahren erhältlich, vorzugsweise jedoch nach dem von der Polycarbonatherstellung bekannten "Pyridinverfahren".Single-phase polyether polycarbonates are described, for example, in U.S. Patent 3,151,615. They can be obtained by various processes, but preferably by the "pyridine process" known from polycarbonate production.

Die Herstellung von zweiphasigen Polymeren, beispielsweise von Polycarbonat-Polycaprolactonen, gelingt bislang nur mittels Bischlorameisensäureestern von Polycaprolactonen und Polycarbonat-Oligomeren (Siehe französische Patentschrift 2 235 965).The production of two-phase polymers, for example polycarbonate-polycaprolactones, has so far only been possible using bishloroformic acid esters of polycaprolactones and polycarbonate oligomers (see French patent specification 2,235,965).

Entsprechendes gilt auch für die obwohl nicht als zweiphasig ausgewiesenen Polyäther-Polycarbonate der DE-B 1 162 559.The same applies to the polyether polycarbonates of DE-B 1 162 559, although they are not shown to be two-phase.

Die erfindungsgemässe Verwendung der erfindungsgemässen über Carbonat-Gruppen- verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate hat gegenüber der Verwendung von entsprechenden Bischlorameisensäureestern den Vorteil der Hydrolyseunempfindlichkeit und somit besseren Lagerfähigkeit und eindeutig bifunktionellen Reaktivität.The use according to the invention of the polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups according to the invention has the advantage over the use of corresponding bischloroformic acid esters that they are insensitive to hydrolysis and thus have better storage stability and clearly bifunctional reactivity.

Die erfindungsgemässen Polyäther-Polycarbonate haben insbesondere aufgrund ihrer kristallinen Polycarbonatphase eine verbesserte Wärmeformbeständigkeit.The polyether polycarbonates according to the invention have improved heat resistance, in particular because of their crystalline polycarbonate phase.

Das Erkennen der verschiedenen Phasen der erfindungsgemässen Polyäther-Polycarbonate gelingt mit Hilfe der Differentialthermoanalyse, wobei beispielsweise die Polyätherphase eine Einfriertemperatur <20°C aufweist, der amorphe Anteil bei der Polycarbonatphase eine Einfriertemperatur zwischen 100°C und 150°C hat und der kristalline Anteil der Polycarbonatphase einen Kristallitschmelzpunkt zwischen 170°C und 250°C besitzt.The different phases of the polyether polycarbonates according to the invention can be identified with the aid of differential thermal analysis, for example the polyether phase having a glass transition temperature <20 ° C, the amorphous fraction in the polycarbonate phase having a glass transition temperature between 100 ° C and 150 ° C and the crystalline fraction Polycarbonate phase has a crystallite melting point between 170 ° C and 250 ° C.

Die hochmolekularen, segmentierten, thermoplastisch verarbeitbaren Polyäther-Polycarbonate, hergestellt nach dem erfindungsgemässen Verfahren, zeigen neben der besonderen termischen Belastbarkeit gute Transparenz, hochelastisches Verhalten und hervorragende Reißdenung von >400%.The high molecular weight, segmented, thermoplastically processable polyether polycarbonates, produced by the process according to the invention, show not only the special thermal resistance, but also good transparency, highly elastic behavior and excellent tear resistance of > 400%.

Die für die erfindungsgemässe Herstellung der Polyäther-Polycarbonate aus den erfindungsgemässen über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonaten geeigneten anderen Diphenole sind die bereits für die Herstellung der über Carbonat-Gruppen- verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate genannten, insbesondere die der Formel IV dieser Patentanmeldung; geeignet sind beispielsweise

  • 4,4'-Dihydroxy-diphenyl
  • Bis-(4-hydroxyphenyl)-methan
  • 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan
  • a,a-Bis-(4-hydroxyphenyl)-p-diisopropylbenzol
  • 2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan
  • Bis-(hydroxyphenyl)-sulfid und
  • 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan.
The other diphenols suitable for the production according to the invention of the polyether polycarbonates from the polyalkylene oxide di-bis-diphenol carbonates extended by carbonate groups according to the invention are already those for the production of the carbonate group extended polyalkylene oxide di-bis-diphenol carbonates mentioned, in particular those of the formula IV of this patent application; are suitable, for example
  • 4,4'-dihydroxy-diphenyl
  • Bis (4-hydroxyphenyl) methane
  • 2,4-bis (4-hydroxyphenyl) -2-methylbutane
  • a, a-bis (4-hydroxyphenyl) -p-diisopropylbenzene
  • 2,2-bis (3-chloro-4-hydroxyphenyl) propane
  • Bis (hydroxyphenyl) sulfide and
  • 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane.

Vorzugsweise werden für die erfindungsgemässe Herstellung der Polyäther-Polycarbonate als andere Diphenole 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dichloro-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan und 1,1-Bis-(4-hydroxyphenyl)-cyclohexan verwendet. Es können auch beliebige Mischungen dieser anderen Diphenole eingesetzt werden.2,2-Bis- (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2 are preferred as other diphenols for the production of the polyether polycarbonates according to the invention -Bis (3,5-dibromo-4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) cyclohexane are used. Any mixtures of these other diphenols can also be used.

Durch den Einbau geringer Mengen an tri- oder mehr als trifunktionellen Verbindungen, insbesondere solchen mit drei oder mehr als drei phenolischen Hydroxygruppen, vorzugsweise zwischen 0),05-2 Mol. _% (bezogen auf die eingesetzten Diphenole), erhält man verzweigte Produkte mit besserem Fließverhalten bei der Verarbeitung.By incorporating small amounts of trifunctional or more than trifunctional compounds, in particular those with three or more than three phenolic hydroxyl groups, preferably between 0), 05-2 mol.% (Based on the diphenols used), branched products are obtained better flow behavior during processing.

Als tri- bzw. mehr als trifunktionelle Verbindung sind belsoielsweise geeignet:

  • Phloroglucin, 4,6 - Dimethyl - 2,4,6 - tri - (3 - hydroxyphenyl) - hepten - 2, 4,6 - Dimethyl - 2,4,6 - tri(4 - hydroxyphenyl) - heptan, 1,3,5 - Tri(4 - hydroxyphenyl) - benzol, 1,1,1 - Tri - (3 - hydroxyphenyl) - äthan, Tri - (4 - hydroxyphenyl) - phenylmethan, 2,2 - Bis - [4,4 - (4,4' - dihydroxyphenyl)cyclohexyl] - propan, 2,4, - Bis - (4 - hydroxyphenyl - isopropyl) - phenol, 2,6 - Bis - (2' - hydroxy - 5' - methyl - benzyl) - 4 - methyl - phenol, 2,4 - Dihydroxybenzoesäure, 2 - (4 - Hydroxyphenyl) - 2 - (2,4 - dihydroxyphenyl) - propan und 1,4 - Bis - (4',4" - dihydroxytriphenyl - methyl) - benzol und 3,3 - Bis - (4 - hydroxyphenyl) - 2 - oxo - 2,3 - dihydroindol sowie 3,3 - Bis - (3 - methyl - 4 - hydroxyphenyl) - 2 - oxo - 2,3 - dihydroindol.
As a trifunctional or more than trifunctional connection, two suitable types are:
  • Phloroglucin, 4,6-dimethyl-2,4,6-tri - (3-hydroxyphenyl) -hepten-2, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptane, 1,3 , 5 - Tri (4 - hydroxyphenyl) benzene, 1,1,1 - Tri - (3 - hydroxyphenyl) ethane, Tri - (4 - hydroxyphenyl) phenylmethane, 2,2 - bis - [4,4 - ( 4,4 '- dihydroxyphenyl) cyclohexyl] - propane, 2,4, - bis - (4 - hydroxyphenyl - isopropyl) - phenol, 2,6 - bis - (2' - hydroxy - 5 '- methyl - benzyl) - 4 - methyl - phenol, 2,4 - dihydroxybenzoic acid, 2 - (4 - hydroxyphenyl) - 2 - (2,4 - dihydroxyphenyl) propane and 1,4 - bis - (4 ', 4 "- dihydroxytriphenyl - methyl) - benzene and 3,3 - bis - (4 - hydroxyphenyl) - 2 - oxo - 2,3 - dihydroindole and 3,3 - bis - (3 - methyl - 4 - hydroxyphenyl) - 2 - oxo - 2,3 - dihydroindole.

Die Verzweigung der erfindungsgemässen Polyäther-Polycarbonate kann auch über die Polyätherkomponente erfolgen, und zwar dadurch, dass man die gemäss DE-A 2 650 533 erhältlichen über Carbonat-Gruppen-verlängerten Kohlensäurearylester von Polyätherpolyolen mit drei oder vier Arylgruppen mit den vorstehend genannten Di-, Tri- und/oder Tetraphenolen zu entsprechenden Polyätherpolyolpoly-polyphenol-carbonaten entsprechend dem Verfahren der vorliegenden Erfindung umsetzt, und die so erhaltenen Polyphenole in molaren Mengen bis zu 50 Mol.-%, bezogen auf Mol eingesetzte Polyätherdiol-bis-diphenol-carbonate, bei der Polyäther-Polycarbonat-Synthese gemäss der vorliegenden Erfindung mitverwendet.The polyether polycarbonates according to the invention can also be branched via the polyether component, in that the aryl esters of carbonic acid aryl esters of polyether polyols having three or four aryl groups, which are extended by carbonate groups and extended according to DE-A 2 650 533, can be branched with the di-, Tri- and / or tetraphenols to corresponding polyether polyol polyphenol carbonates according to the process of the present invention, and the resulting polyphenols in molar amounts up to 50 mol%, based on moles of polyether diol bis-diphenol carbonates used the polyether-polycarbonate synthesis used in accordance with the present invention.

Die Kettenlänge der Polyäther-Polycarbonate kann durch Zugabe eines Kettenabbrechers, z.B. eine monofunktionellen Phenols wie Phenol, 2,6-Dimethylphenol, p-Bromophenol oder p-tert.-Butylphenol eingestellt werden, wobei pro Mol an eingesetztem Diphenol zwischen 0,1 und 10 Mol.-% Kettenabbrecher eingesetzt werden können.The chain length of the polyether polycarbonates can be increased by adding a chain terminator, e.g. a monofunctional phenol such as phenol, 2,6-dimethylphenol, p-bromophenol or p-tert-butylphenol can be set, it being possible to use between 0.1 and 10 mol% of chain terminator per mole of diphenol used.

Gegebenenfalls kann die Kettenlänge der Polyäther-Polycarbonate beispielweise durch Zugabe von Polyäthermonool-monodiphenol-carbonaten in molaren Mengen, bezogen auf Mole eingesetzten Carbonat-Gruppen-verlängerten Polyätherdiol-bis-diphenol-carbonaten, bis zu etwa 50 Mol.-% eingestellt werden.If necessary, the chain length of the polyether polycarbonates can be adjusted, for example, by adding polyether monool monodiphenol carbonates in molar amounts, based on moles of carbonate group-extended polyether diol bis-diphenol carbonates, to up to about 50 mol%.

Die erfindungsgemässe Herstellung der hochmolekularen, segmentierten, thermoplastisch verarbeitbaren Polyäther-Polycarbonate erfolgt nach dem Zweiphasengrenzflächen-Polykondensationsverfahren. Dazu werden eines der vorgenannten anderen Diphenole oder Gemische der vorgenannten anderen Diphenole in alkalischer wässriger Lösung gelöst. Ebenso werden die erfindungsgemässen über Carbonat-Gruppen-verlängerten Polyakylenoxiddiol-bis-diphenyol-carbonate, insbesondere die der Formel V, oder deren Gemische in einem mit Wasser nicht mischbaren inerten organischen Lösungsmittel gelöst und hinzugefügt. Dann wird bei einer Temperatur zwischen 0°C und 80°C, bevorzugt zwischen 15°C und 40°C und einem pH-Wert zwischen 9 und 14 Phosgen eingeleitet. Nach dem Phosgenieren erfolgt die Polykondensation durch Zugabe von 0,2-10 Mol.% tertiärem aliphatischem Amin, bezogen auf Mol Diphenol. Hierbei werden für die Phosgenierung Zeiten zwischen 5 Min. und 90 Min., für die Polykondensation Zeiten zwischen 3 Min. und 3 Stunden benötigt.The high-molecular, segmented, thermoplastically processable polyether polycarbonates are produced according to the invention by the two-phase interface polycondensation process. For this purpose, one of the aforementioned other diphenols or mixtures of the aforementioned other diphenols are dissolved in an alkaline aqueous solution. Likewise, the polyakylene oxide di-bis-diphenyol carbonates extended by carbonate groups according to the invention, in particular those of formula V, or their mixtures are dissolved and added in an inert organic solvent which is not miscible with water. Then at a temperature between 0 ° C and 80 ° C, preferably between 15 ° C and 40 ° C and a pH between 9 and 14 phosgene. After phosgenation, the polycondensation is carried out by adding 0.2-10 mol% of tertiary aliphatic amine, based on mol of diphenol. Times between 5 minutes and 90 minutes are required for phosgenation and times between 3 minutes and 3 hours for polycondensation.

Gegenstand der vorliegenden Erfindung ist somit die Herstellung von Polyäther-Polycarbonaten, die dadurch gekennzeichnet ist, dass man die erfindungsgemässen über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate, insbesondere die der Formel V, mit anderen Diphenolen, insbesondere denen der Formel IV, und mit Phosgen in einem Flüssigkeitsgemisch aus inertem organischen Lösungsmittel und alkalischer wäßriger Lösung bei Temperaturen zwischen 0°C und 80°C, vorzugsweise zwischen 15°C und 40°C, bei einem pH-Wert zwischen 9 und 14 umsetzt, und nach der Phosgenzugabe durch Zusatz von 0,2 Mol-% bis 10 Mol-% an tertiärem aliphatischem Amin, bezogen auf die Molmenge an Diphenol, polykondensiert, wobei das Gewichtsverhältnis von über Carbonat-Gruppen-verlängerten-Polyalkylenoxiddiol-bis-diphenolcarbonat zu anderem Diphenol von dem Polycarbonatanteil und dem Polyätheranteil der Polyäther-Polycarbonate bestimmt wird.The present invention thus relates to the preparation of polyether polycarbonates, which is characterized in that the polyalkylene oxide di-bis-diphenol carbonates, in particular those of the formula V, which are extended via carbonate groups, with other diphenols, in particular those of the formula IV, and with phosgene in a liquid mixture of inert organic solvent and alkaline aqueous solution at temperatures between 0 ° C and 80 ° C, preferably between 15 ° C and 40 ° C, at a pH between 9 and 14, and after the phosgene is polycondensed by adding 0.2 mol% to 10 mol% of tertiary aliphatic amine, based on the molar amount of diphenol, the weight ratio of polyalkylene oxide diol bis-diphenol carbonate extended to carbonate groups to other diphenol of the polycarbonate content and the polyether content of the polyether polycarbonates is determined.

Gegenstand der vorliegenden Erfindung sind somit Polyäther-Polycarbonate erhalten nach diesem erfindungsgemässen Verfahren.The present invention thus relates to polyether polycarbonates obtained by this process according to the invention.

Die erhaltenen Lösungen der Polyäther-Polycarbonate in den organischen Lösungsmitteln werden analog den Lösungen der nach dem Zweiphasengrenzflächenverfahren hergestellten thermoplastischen Polycarbonate aufgearbeitet, wobei die Polyäther-Polycarbonate ausserdem nachbehandelt werden, und zwar werden sie etweder.

  • a) isoliert nach bekannten Verfahren, beispielsweise durch Ausfällen mit Methanol oder Äthanol, und anschliessend getrocknet und getempert, oder Scherkräften unterworfen oder in organischen Lösungsmitteln gelöst und gelieren lassen oder
  • b) bei der Isolierung beispielsweise im Ausdampfextruder bereits Scherkräften unterworfen, oder
  • c) vor der Isolierung in dem bei der Herstellung der Polyäther-Polycarbonate nach dem Zweiphasengrenzflächenverfahren verwendeten Lösungsmittel gelieren lassen.
The solutions of the polyether polycarbonates obtained in the organic solvents are worked up analogously to the solutions of the thermoplastic polycarbonates produced by the two-phase interfacial process, the polyether polycarbonates also being post-treated, namely that they become either.
  • a) isolated by known methods, for example by precipitation with methanol or ethanol, and then dried and tempered, or subjected to shear forces or dissolved and gelled in organic solvents or
  • b) already subjected to shear forces during isolation, for example in the evaporation extruder, or
  • c) gel before isolation in the solvent used in the manufacture of the polyether polycarbonates by the two-phase interfacial process.

Als inerte organische Lösungsmittel für das erfindungsgemässe Herstellungsverfahren der Polyäther-Polycarbonate sind mit Wasser nicht mischbare aliphatische Chlorkohlenwasserstoffe wie Methylenchlorid, Chloroform und 1,2-Dichloräthen, oder chlorierte Aromaten, wie Chlorbenzol, Dichlorbenzol und Chlortoluol oder Mischungen aus diesen Lösungsmitteln geeignet.Suitable inert organic solvents for the production process of the polyether polycarbonates according to the invention are water-immiscible aliphatic chlorinated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethene, or chlorinated aromatics such as chlorobenzene, dichlorobenzene and chlorotoluene or mixtures of these solvents.

Als alkalisch wässrige Lösungen für das erfindungsgemässe Verfahren eignen sich Lösungen von Li OH, NaOH, KOH, Ca(OH)2 und/oder Ba(OH)2 in Wasser.Solutions of Li OH, NaOH, KOH, Ca (OH) 2 and / or Ba (OH) 2 in water are suitable as alkaline aqueous solutions for the process according to the invention.

Als tertiäre aliphatische Amine für das erfindungsgemässe Verfahren sind solche mit 3 bis 15 C-Atomen geeignet, also beispielsweise Trimethylamin, Triäthylamin, n-Tripropylamin und n-Tributylamin und varriert je nach eingesetztem Diphenol zwischen 0,2-5 Mol-%, bei Einsatz von tetramethylsubstituierten Diphenolen zwischen 5-10 Mol-%, bezogen jeweils auf die Gesamtmolmenge an eingesetzten Diphenolen (= jeweilige Summe aus über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonaten und anderen Diphenolen).Suitable tertiary aliphatic amines for the process according to the invention are those having 3 to 15 carbon atoms, for example trimethylamine, triethylamine, n-tripropylamine and n-tributylamine and, depending on the diphenol used, vary between 0.2-5 mol% when used of tetramethyl-substituted diphenols between 5-10 mol%, based in each case on the total molar amount of diphenols used (= respective sum of polyalkylene oxide di-bis-diphenol carbonates and other diphenols extended by carbonate groups).

Die nach dem erfindungsgemässen Verfahren hergestellten Polyäther-Polycarbonate können nach folgenden Verfahren isoliert werden:

  • a. Durch Abdestillieren des organischen Lösungsmittel bis zu einer bestimmten Konzentration, wobei; eine hochprozentige (etwa 30-40 Gew.-%) Polymerlösung erhalten wird, beim anschliessenden langsamen Verdampfen des restlichen Lösungsmittels geliert das Polyäther-Polycarbonat.
  • b. Durch Fällen der Polyäther-Polycarbonate aus der organischen Phase mit organischen Lösungsmitteln, wobei zum Ausfällen sich beispielsweise Methanol, Äthanol, Isopropanol, Aceton, aliphatische Kohlenwasserstoffe und cycloaliphatische Kohlenwasserstoffe eignen.
  • c. Durch Isolierung der Polyäther-Polycarbonate im Ausdampfextruder, bei Temperaturen von etwa 160-240°C unter den für die Polycarbonatextrusion bekannten Bedingungen und unter Anwendung von Scherkräften.
The polyether polycarbonates produced by the process according to the invention can be isolated by the following processes:
  • a. By distilling off the organic solvent to a certain concentration, whereby; a high-percentage (about 30-40 wt .-%) polymer solution is obtained, the subsequent slow evaporation of the remaining solvent gels the polyether polycarbonate.
  • b. By precipitation of the polyether polycarbonates from the organic phase with organic solvents, methanol, ethanol, isopropanol, acetone, aliphatic hydrocarbons and cycloaliphatic hydrocarbons being suitable for the precipitation.
  • c. By isolating the polyether polycarbonates in the evaporation extruder, at temperatures of about 160-240 ° C. under the conditions known for polycarbonate extrusion and using shear forces.

Die Gelierung der nach dem erfindungsgemässen Verfahren hergestellten Polyäther-Polycarbonate,.sei es ohne Isolierung in der aufgearbeiteten organische Phase des Zweiphasenreaktionsgemisches oder in separater Lösung der vorher isolierten Polyäther-Polycarbonate in organischen Lösungsmitteln, erfolgt durch Abkühlen der hochprozentigen Polymerlösung, wobei für die Gelierung je nach Polyäther- oder Polycarbonatanteil Zeiten zwischen 5 Min. und 12 Stunden bei Temperaturen zwischen 0°C und 40°C benötigt werden.The gelation of the polyether polycarbonates produced by the process according to the invention, .seis it without isolation in the processed organic phase of the two-phase reaction mixture or in a separate solution of the previously isolated polyether polycarbonates in organic solvents, is carried out by cooling the high-percentage polymer solution, whereby for the gelation each Depending on the amount of polyether or polycarbonate, times between 5 minutes and 12 hours at temperatures between 0 ° C and 40 ° C are required.

Das gelierte Produkt kann zu einem Pulverkorngemisch aufgearbeitet werden, wobei das erhaltene Polyäther-Polycarbonat 48 Stunden bei 50°C und 24 Stunden bei 100°C im Vakuum getrocknet wird.The gelled product can be worked up to a powder grain mixture, the polyether polycarbonate obtained being dried in vacuo for 48 hours at 50 ° C. and for 24 hours at 100 ° C.

Als Lösungsmittel für die separate Gelierung der isolierten Polyäther-Polycarbonate eignen sich organische Lösungsmittel wie beispielsweise Methylenchlorid, Benzol, Toluol oder Xylol.Organic solvents such as methylene chloride, benzene, toluene or xylene are suitable as solvents for the separate gelation of the isolated polyether polycarbonates.

Die Temperung der isolierten Polyäther-Polycarbonate erfolgt zwischen 5 Minuten und 24 Stunden bei Temperaturen zwischen 40°C und 170°C.The insulated polyether polycarbonates are tempered between 5 minutes and 24 hours at temperatures between 40 ° C and 170 ° C.

Die Einwirkung von Scherkräften auf die isolierten Polyäther-Polycarbonate erfolgt zwischen 0,5 und 30 Minuten, bei Temperaturen zwischen 130 und 240°C und unter Scherkräften zwischen 0,2 und 0,7 KWh pro kg Polymer. Die Phosgenmenge richtet sich nach dem eingesetzten Diphenol, der Rührwirkung und der Reaktionstemperatur, die zwischen etwa 0°C und etwa 80°C liegen kann, und beträgt im allgemeinen 1,1-3,0 Mol Phosgen pro Mol Diphenol.The action of shear forces on the isolated polyether polycarbonates takes place between 0.5 and 30 minutes, at temperatures between 130 and 240 ° C and under shear forces between 0.2 and 0.7 KWh per kg polymer. The amount of phosgene depends on the diphenol used, the stirring action and the reaction temperature, which can be between about 0 ° C. and about 80 ° C., and is generally 1.1-3.0 mol of phosgene per mol of diphenol.

Die erfindungsgemässe Umsetzung der erfindungsgemässen über Carbonat-Gruppen- verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonate mit Diphenolen und mit Phosgen nach dem Zweiphasengrenzflächenverfahren erfolgt quantitativ; somit bestimmt sich das jeweilige Reaktantenverhältnis von über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiol-bis-diphenol-carbonat zu anderem Diphenol aus dem Polycarbonatanteil und dem Polyätheranteil jeweils zu synthetisierenden Polyäther-Polycarbonate.The reaction according to the invention of the polyalkylene oxide di-bis-diphenol carbonates according to the invention extended via carbonate groups with diphenols and with phosgene is carried out quantitatively; the respective reactant ratio of polyalkylene oxide di-bis-diphenol carbonate extended via carbonate groups to other diphenol is thus determined from the polycarbonate fraction and the polyether fraction to be synthesized in each case polyether polycarbonates.

Der Polycarbonatanteil in den nach dem erfindungsgemässen Verfahren hergestellten Polyäther-Polycarbonaten liegt, je nach gewünschtem Eigenschaftsbild, etwa zwischen 30 und 95, vorzugsweise etwa zwischen 35 und 80 Gew.-%, wobei mit steigendem Polycarbonatanteil die Härte und Wärmeformbeständigkeit zunimmt und die Elastizität und Reißdehnung abnimmt.The proportion of polycarbonate in the polyether polycarbonates produced by the process according to the invention is, depending on the desired property profile, approximately between 30 and 95, preferably approximately between 35 and 80% by weight, the hardness and heat resistance increasing with increasing polycarbonate content, and the elasticity and elongation at break decreases.

Als Polycarbonatanteil der erfindungsgemässen Polyäther-Polycarbonate ist die Gewichtsmenge an aromatischen Polycarbonatstruktureinheiten der folgenden Formel VI

Figure imgb0015
worin D für die Diphenolat-Reste im Polyäther-Polycarbonat steht, insbesondere an aromatischen Polycarbonatstruktureinheiten der Formel IVa zu verstehen
Figure imgb0016
worin X und Y, bis Y4 die für Formel IV genannte Bedeutung haben.The polycarbonate content of the polyether polycarbonates according to the invention is the amount by weight of aromatic polycarbonate structural units of the following formula VI
Figure imgb0015
where D stands for the diphenolate residues in the polyether polycarbonate, in particular to understand aromatic polycarbonate structural units of the formula IVa
Figure imgb0016
wherein X and Y to Y 4 have the meaning given for formula IV.

Als Polyätheranteil der erfindungsgemässen Polyäther-Polycarbonate ist demzufolge die Gewichtsmenge über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiolat-Blockeinheiten, insbesondere solchen der Formel VII zu verstehen,

Figure imgb0017
worin R', R", a, b die für die Formel 1 gennante Bedeutung haben und n eine ganze Zahl von 2 bis 20, vorzugsweise 2-10, bedeutet.The polyether fraction of the polyether polycarbonates according to the invention is therefore to be understood as the amount by weight of polyalkylene oxide diolate block units which are extended by carbonate groups, in particular those of the formula VII,
Figure imgb0017
wherein R ', R ", a, b have the meaning given for formula 1 and n is an integer from 2 to 20, preferably 2-10.

Gegenstand der vorliegenden Erfindung sind somit auch Polyäther-Polycarbonate, die dadurch gekennzeichnet sind, dass sie etwa aus 30 bis 95 Gew.-%, vorzugsweise etwa aus 35 bis 80 Gew.-%, an aromatischen Polycarbonatstruktureinheiten der Formel VI, insbesondere solchen der formel lVa, und etwa aus 70 bis 5 Gew.-%, vorzugsweise etwa aus 65 bis 20 Gew.-% an über Carbonat-Gruppen- verlängerten Polyalkylenoxiddiolat-Blockeinheiten, insbesonderen solchen der Formel VII, bestehen.The present invention thus also relates to polyether polycarbonates which are characterized in that they contain about 30 to 95% by weight, preferably about 35 to 80% by weight, of aromatic polycarbonate structural units of the formula VI, in particular those of the formula IVa, and approximately 70 to 5% by weight, preferably approximately 65 to 20% by weight, of polyalkylene oxide diolate block units which are extended by carbonate groups, in particular those of the formula VII.

Erfindungsgemässe Polyäther-Polycarbonate sind beispielsweise solche, die 30 bis 95 Gew.-%, vorzugsweise aus 35 bis 80 Gew.-% an Polycarbonatstruktureinheiten der Formel IVb bestehen

Figure imgb0018
worin

  • Y H, Cl, Br oder CH3 ist, und aus 70 bis 5 Gew.-%, vorzugsweise 65 bis 20 Gew.-% an über Carbonat-Gruppen-verlängerten Polyalkylenoxiddiolat-Blockeinheiten der Formel VII bestehen.
Polyether polycarbonates according to the invention are, for example, those which consist of 30 to 95% by weight, preferably 35 to 80% by weight, of polycarbonate structural units of the formula IVb
Figure imgb0018
wherein
  • Y is H, Cl, Br or CH 3 , and consist of 70 to 5% by weight, preferably 65 to 20% by weight, of polyalkylene oxide diolate block units of the formula VII which are extended by carbonate groups.

Die erfindungsgemässen Polyäther-Polycarbonate sollen mittlere Molekulargewichte Nlw (Gewichtsmittel) von 25000 bis 250000, vorzugsweise von 40000 bis 150000 haben, ermittelt nach der Lichtstreumethode mit dem Streulichtphotometer. Die relativen Lösungsviskositäten q rel. (gemessen an 0,5 g in 100 ml CH2Cl2 bei 25°C) der erfindungsgemässen Polyäther-Polycarbonate liegen zwischen 1,3 und 3,0, vorzugsweise zwischen 1,4 und 2,6.The polyether polycarbonates according to the invention should have average molecular weights Nlw (weight average) of 25,000 to 250,000, preferably from 40,000 to 150,000, determined by the light scattering method using the scattered light photometer. The relative solution viscosities q rel. (measured on 0.5 g in 100 ml CH 2 Cl 2 at 25 ° C.) of the polyether polycarbonates according to the invention are between 1.3 and 3.0, preferably between 1.4 and 2.6.

Die nach dem erfindungsgemässen Verfahren hergestellten hochmolekularen, segmentierten, thermoplastisch verarbeitbaren Polyäther-Polycarbonate sind dadurch gekennzeichnet, dass, gemessen mittels Differentialthermoanalyse der Polyätheranteil amorph vorliegt und eine Einfriertemperatur zwischen -100°C und +100°C, vorzugsweise zwischen -80°C und +20°C, hat, und dass der Polycarbonatanteil teilweise kristallin vorliegt mit einer Kristallitschmelztemperatur des kristallinen Polycarbonatanteils von mindestens 160°C, vorzugsweise zwischen 165°C und 250°C, und dass die Einfriertemperatur des amorphen Polycarbonatanteils über 80°C, vorzugsweise über 100°C liegt.The high molecular weight, segmented, thermoplastically processable polyether polycarbonates produced by the process according to the invention are characterized in that, measured by means of differential thermal analysis, the polyether content is amorphous and a freezing temperature between -100 ° C. and + 100 ° C., preferably between -80 ° C. and + 20 ° C, and that the polycarbonate portion is partially crystalline with a crystallite melting temperature of the crystalline polycarbonate portion of at least 160 ° C, preferably between 165 ° C and 250 ° C, and that the glass transition temperature of the amorphous polycarbonate portion is over 80 ° C, preferably over 100 ° C.

Diese Differenzierung der Einfriertemperatur des Polyätheranteils von der Einfriertemperatur sowie die Kristallitschmelztemperatur des Polycarbonatanteils ist charakteristisch für ein Vorliegen der Phasentrennung von Polyäther- und Polycarbonatanteil.This differentiation of the freezing temperature of the polyether portion from the freezing temperature and the crystallite melting temperature of the polycarbonate portion is characteristic of the phase separation of the polyether and polycarbonate portion.

Die Teilkristallinität, nachweisbar durch eine meßbare Schmelzenthalpie des kristallinen Polycarbonatanteils der erfindungsgemässen Polyäther-Polycarbonate, die mindestens 1-8 cal/g Polymer beträgt, kann durch Reckung und durch das erwähnte nachträgliche Tempern (5 Min. bis 24 Stunden) bei 40-170°C oder durch die erwähnte Einwirkung von Scherkräften während der thermoplastischen Verarbeitung in einem Mehrwellenextruder noch um 50% gesteigert werden, wobei die Wärmeformbeständigkeit der Produkte zunimmt, das Aussehen von transparent nach opak bis intransparent sich ändert.The partial crystallinity, which can be demonstrated by a measurable enthalpy of fusion of the crystalline polycarbonate portion of the polyether polycarbonates according to the invention, which is at least 1-8 cal / g polymer, can be achieved by stretching and by the subsequent post-annealing (5 minutes to 24 hours) at 40-170 ° C or by the aforementioned action of shear forces during the thermoplastic Processing in a multi-screw extruder can be increased by 50%, whereby the heat resistance of the products increases, the appearance changes from transparent to opaque to opaque.

Die teilkristallinen elastischen Polyäther-Polycarbonate können jeweils unterhalb oder im Bereich des Kristallitschmelzpunktes des kristallinen Polycarbonatanteils bei Temperaturen von 130°C bis max. 250°C thermoplastisch verarbeitet werden, wobei ein wesentlicher Anteil der Kristallinität nicht verloren geht. Bei Verarbeitungstemperaturen oberhalb des Kristallitschmelzpunktes des kristallinen Polycarbonatanteils erhält man amorphe, transparente Produkte.The partially crystalline elastic polyether polycarbonates can in each case below or in the region of the crystallite melting point of the crystalline polycarbonate component at temperatures from 130 ° C. to max. 250 ° C are processed thermoplastic, whereby a substantial proportion of the crystallinity is not lost. At processing temperatures above the crystalline melting point of the crystalline polycarbonate content, amorphous, transparent products are obtained.

Der kristalline Anteil des Polycarbonatanteils der erfindungsgemässen Polyäther-Polycarbonate kann somit variiert werden, wobei die Schmelzenthalpie des kristallinen Polycarbonatanteils, um eine für die Praxis gute Wärmeformbeständigkeit der Polyäther-Polycarbonate zu haben, bei etwa 1-8 cal/g Polymer, vorzugsweise bei 2,5-5,5 cal/g Polymer liegt.The crystalline fraction of the polycarbonate fraction of the polyether polycarbonates according to the invention can thus be varied, the enthalpy of fusion of the crystalline polycarbonate fraction, in order to have good heat resistance of the polyether polycarbonates in practice, at about 1-8 cal / g polymer, preferably at 2, 5-5.5 cal / g polymer is.

Erfolgt die erfindungsgemässe Aufarbeitung und Isolierung der Polyäther-Polycarbonate ohne Temperung, ohne Gelierung und ohne Einwirkung von Scherkräften, so erhält man einphasige Polyäther-Polycarbonate, also solche Produkte mit nur einer mittels Differentialthermoanalyse meßbaren Einfriertemperatur.If the inventive processing and isolation of the polyether polycarbonates is carried out without tempering, without gelling and without the action of shear forces, then single-phase polyether polycarbonates are obtained, that is to say products with only a freezing temperature which can be measured by means of differential thermal analysis.

Die UV-Stabilität und Hydrolysestabilität der erfindungsgemässen Polyäther-Polycarbonate kann verbessert werden durch für thermoplastiche Polycarbonate übliche Mengen an UV-Stabilisierungsmitteln wie beispielsweise substituierte "Benzophenone" oder "Benztriazole", durch Hydrolyseschutzmittel, wie beispielsweise Mono- und vor allem Polycarbodümide, (vgl. W. Neumann, J. Peter, H, Holtschmidt und W. Kallert, Proceeding of the 4th Rubber Technology Conference London, 22. - 25. Mai 1962, S. 738 - 751) in Mengen von 0,2 - 5 Gew.-%, benzogen auf das Gewicht der Polyäther-Polycarbonate, und durch in der Chemie der thermoplastischen Polyäther und thermoplastischen Polycarbonate bekannte Alterungsschutzmittel.The UV stability and hydrolysis stability of the polyether polycarbonates according to the invention can be improved by the amounts of UV stabilizing agents which are customary for thermoplastic polycarbonates, such as, for example, substituted "benzophenones" or "benzotriazoles", by hydrolysis protective agents, such as, for example, mono- and especially polycarbodumides (cf. W. Neumann, J. Peter, H, Holtschmidt and W. Kallert, Proceeding of the 4th Rubber Technology Conference London, May 22-25, 1962, pp. 738-751) in amounts of 0.2-5% by weight. %, based on the weight of the polyether polycarbonates, and by anti-aging agents known in the chemistry of thermoplastic polyethers and thermoplastic polycarbonates.

Zur Modifizierung der erfindungsgemässen Produkte können Substanzen wie beispielsweise Ruß, Kieselgur, Kaolin, Tone, CaF2, CaC03, Aluminiumoxide sowie übliche Glasfasern in Mengen von 2 bis 40 Gew.-%, bezogen jeweils auf das Gesamtgewicht der Formmasse und anorganische Pigmente sowohl als Füllstoffe als auch als Nucleierungsmittel zugesetzt werden.To modify the products according to the invention, substances such as carbon black, kieselguhr, kaolin, clays, CaF 2 , CaC0 3 , aluminum oxides and conventional glass fibers in amounts of 2 to 40% by weight, based in each case on the total weight of the molding composition and inorganic pigments, can be used both as Fillers as well as nucleating agents are added.

Werden flammwidrige Produkte gewünscht, können ca. 5 bis 15 Gew.-%, bezogen jeweils auf das Gewicht der Polyäther-Polycarbonate, in der Chemie der thermoplastischen Polyäther und thermoplastischen Polycarbonate bekannten Flammschutzmittel, wie z.B. Antimontrioxid, Tetrabromphthalsäureanhydrid, Hexabromcyclododecan, Tetrachlor- oder Tetrabrombisphenol-A oder Tris-(2,3-dichlorpropyl)-phosphat zugemischt werden, wobei in den Polycarbonatanteilen der erfindungsgemässen Polycarbonate statistisch eingebaute Tetrachlor- und Tetrabrombisphenole ebenfalls flammwidrige Eigenschaften zeigen.If flame-retardant products are desired, about 5 to 15% by weight, based on the weight of the polyether polycarbonates, of flame retardants known in the chemistry of thermoplastic polyethers and thermoplastic polycarbonates, such as e.g. Antimony trioxide, tetrabromophthalic anhydride, hexabromocyclododecane, tetrachloro- or tetrabromobisphenol-A or tris (2,3-dichloropropyl) phosphate are admixed, with statistically incorporated tetrachloro- and tetrabromobisphenols also showing flame retardant properties in the polycarbonate fractions of the polycarbonates according to the invention.

Weiterhin können in der Chemie der thermoplastischen Polyäther und thermoplastischen Polycarbonate bekannte Verarbeitungshilfsmittel, wie Trennhilfsmittel, in wirksamer Weise verwendet werden.Furthermore, processing aids known in the chemistry of thermoplastic polyethers and thermoplastic polycarbonates, such as release aids, can be used effectively.

Die nach dem erfindungsgemässen Verfahren erhaltenen Polyäther-Polycarbonate können mit Vorteil überall dort angewendet werden, wo eine Kombination von Härte und Elastizität, insbesondere von Kälteflexibilität erwünscht ist, z.B. im Karosseriebau, für die Herstellung von Niederdruckreifen für Fahrzeuge, für Ummantelungen von Schläuchen, Platten, Rohren und für flexible Antriebsscheiben.The polyether polycarbonates obtained by the process according to the invention can advantageously be used wherever a combination of hardness and elasticity, in particular low-temperature flexibility, is desired, e.g. in body construction, for the production of low-pressure tires for vehicles, for wrapping hoses, plates, pipes and for flexible drive pulleys.

Die in nachfolgenden Beispielen aufgeführten mittleren Molekulargewichte sind Zahlenmittel Mn und durch Bestimmung der OH-Zahl ermittelt.The average molecular weights listed in the following examples are number average Mn and determined by determining the OH number.

Der im Beispiel A angeführte Staudinger-Index [1]] wurde in THF bei 25°C gemessen und in

Figure imgb0019
angegeben.The Staudinger index [ 1]] given in example A was measured in THF at 25 ° C and in
Figure imgb0019
specified.

Zu Definition des Staudinger-Index siehe:

  • H. G. Elias: 'Makromoleküle', Hüthig & Wepf-Verlag, Basel, S. 265.
For the definition of the Staudinger index see:
  • HG Elias: 'Macromolecules', Hüthig & Wepf-Verlag, Basel, p. 265.

Die relative Lösungsviskosität ηrel der Beispiele C1-C6 ist definiert durch die Viskosität von 0,5 g Polyäther-Polycarbonat in 100 ml Methylenchlorid bei 25°C.The relative solution viscosity η rel of Examples C 1 -C 6 is defined by the viscosity of 0.5 g of polyether polycarbonate in 100 ml of methylene chloride at 25 ° C.

Die Reißfestigkeit und die Reißdehnung wurde nach DIN 53 455 bzw. 53 457 gemessen.The tensile strength and the elongation at break were measured according to DIN 53 455 and 53 457, respectively.

Gelchromatographische Untersuchungen wurden im Tetrahydrofuran mit Styragelsäuren (Trennbereich 1,5 x 105 A, 1 x 105 A, 3 x 104 A und 2 x 103 A) bei Raumtemperatur durchgeführt.Gel chromatographic studies were carried out in tetrahydrofuran with styric acids (separation range 1.5 × 10 5 A, 1 × 10 5 A, 3 × 10 4 A and 2 × 10 3 A) at room temperature.

Zur Bestimmung diente die Eichung von Bisphenol A-Polycarbonat. Es werden keine großen Abweichungen im Vergleich zu Mw-Bestimmung nach der Lichtstreumethode festgestellt.The calibration of bisphenol A polycarbonate was used for the determination. There are no major deviations compared to the Mw determination using the light scattering method.

Die Differentialthermoanalyse (DTA) wurde mit dem Gerät "DuPont, Modell 900" durchgeführt. Zur Interpretation der Einfriertemperatur wurde die ungefähre Mitte des Erweichungsbereiches nach der Tangentenmethode und für den Kristallitschmelzpunkt die ungefähre Mitte des endothermen Peaks der Schmelzkurve gewählt.The differential thermal analysis (DTA) was carried out with the device "DuPont, model 900". To interpret the freezing temperature, the approximate middle of the softening range was chosen according to the tangent method and the approximate center of the endothermic peak of the melting curve for the crystallite melting point.

Beispiel AExample A

1) 2000 Gew.-Teile Polytetrahydrofurandiol mit einem Molekulargewicht Mn von 2000 und mit einer durch Kurve (1) in Abb. 1 wiedergegebenen GPC-Kurve, 321 Gew.-Teile Diphenylcarbonat, 0,1 Gew.-Teil Natriumphenolat und 0,2 Gew-Teile 2,6-Di-tert.-butyl-p-kresol werden unter Rühren. Stickstoff und einem Vakuum von 6 Torr 1,5 Stunden bei 110°C, 2 Stunden bei 130°C und 2 Stunden bei 150°C erhitzt; während dieser Zeit wird aus dem Reaktionsgemisch Phenol abdestilliert. Falls gewünscht, können anschliessend restliche Spuren Phenol bei 190°C/0,1 Torr im Dünnschichtverdampfer abgetrennt werden. Man erhält ein farbloses, viskoses Oel mit einem Molekulargewicht Mn von 4200 und einem Staudinger-Index [q]THF = 0,24. Die OH-Zahl beträgt Null. Die GPC-Kurve dieses Produktes ist als Kurve (2) in Abb. 1 wiedergegeben.1) 2000 parts by weight of polytetrahydrofuran diol with a molecular weight Mn of 2000 and with a GPC curve shown by curve (1) in FIG. 1, 321 parts by weight of diphenyl carbonate, 0.1 part by weight of sodium phenolate and 0.2 Parts by weight of 2,6-di-tert-butyl-p-cresol are stirred. Nitrogen and a vacuum of 6 Torr for 1.5 hours at 110 ° C, 2 hours at 130 ° C and 2 hours at 150 ° C; during this time, phenol is distilled off from the reaction mixture. If desired, residual traces of phenol can then be separated off at 190 ° C / 0.1 Torr in a thin-film evaporator. A colorless, viscous oil with a molecular weight Mn of 4200 and a Staudinger index [q] THF = 0.24 is obtained. The OH number is zero. The GPC curve of this product is shown as curve (2) in Fig. 1.

Beispiel B1Example B1

Herstellung eines Polytetrahydrofurandiol-bis-(bisphenol A)-carbonats, das noch 1 Gew.-% Bisphenol A enthält.Preparation of a polytetrahydrofuran diol bis (bisphenol A) carbonate which still contains 1% by weight bisphenol A.

2100 Gew.-Teile Bisphenylcarbonat eines über Carbonat-Gruppen-verlängerten Polytetrahydrofurandiols vom mittleren Molekulargewicht Mn = 4200, das gemäss Beispiel A hergestellt wurde, 251,1 Gew.-Teile 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A) und 0,3 Gew.-Teile Katalysator (Natriumbisphenolat des Bisphenol A zu Bisphenol A = 1:100) werden unter Rühren und Stickstoffatmosphäre 9 Stunden bei 150°C und 0,3 Torr erhitzt. Während dieser Zeit wird aus dem Reaktionsgemisch Phenol abdestilliert. Das erhaltene Reaktionsprodukt ist ein klares, viskose 01.2100 parts by weight of bisphenyl carbonate of a polytetrahydrofuran diol having an average molecular weight Mn = 4200 and extended by carbonate groups, which was prepared according to Example A, 251.1 parts by weight of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 0.3 part by weight of catalyst (sodium bisphenolate of bisphenol A to bisphenol A = 1: 100) are heated at 150 ° C. and 0.3 torr for 9 hours with stirring and under a nitrogen atmosphere. During this time, phenol is distilled off from the reaction mixture. The reaction product obtained is a clear, viscous 01.

Beispiel B2Example B2

Herstellung eines Carbonat-Gruppen-verlängerten Polytetrahydrofurandiol-bis-(bisphenol A)-carbonats, das noch 3,7 Gew.-% Bisphenol A enthält.Preparation of a carbonate group-extended polytetrahydrofuran-diol bis (bisphenol A) carbonate which still contains 3.7% by weight bisphenol A.

320 Gew.-Teile Bisphenylcarbonat eines über Carbonat-Gruppenverlängerten Polytetrahydrofurandiols vom mittleren Molekulargewicht Mn = 3200, das gemäss Beispiel A hergestellt wurde, 59,4 Gew.-Teile 2,2-Bis.(4-hydroxyphenyl)-propan (Bisphenol A) und 0,01 Gew.-Teile Natriumphenolat werden unter Rühren und Stickstoffatmosphäre zunächst 1 Stunde bei 125°C, danach 4 Stunden bei 150°C und 0,5 Torr unter Abdestillieren von Phenol erhitzt. Das erhaltene Reaktionsprodukt ist ein klares, viskoses Oel.320 parts by weight of bisphenyl carbonate of a polytetrahydrofuran diol having an average molecular weight Mn = 3200 and extended by carbonate groups, which was prepared according to Example A, 59.4 parts by weight of 2,2-bis. (4-hydroxyphenyl) propane (bisphenol A) and 0.01 part by weight of sodium phenolate are first heated at 125 ° C. for 1 hour, then at 150 ° C. and 0.5 torr while distilling off phenol, with stirring and under a nitrogen atmosphere. The reaction product obtained is a clear, viscous oil.

Beispiel B3Example B3

Herstellung eines Carbonat - Gruppen - verlängerten Polypropylenoxiddiol - bis - (bisphenol A)-carbonats, das noch 3 Gew.-% Bisphenol A enthält.Production of a carbonate group-extended polypropylene oxide diol bis (bisphenol A) carbonate which still contains 3% by weight bisphenol A.

315 Gew.-Teile Bisphenylcarbonat eines über Carbonat-Gruppenverlängerten Polypropylenoxiddiols vom mittleren Molekulargewicht Mn = 4200, das gemäss Beispiel A hergestellt wurde, 44,5 Gew.-Teile Bisphenol A und 0,05 Gew-Teile Katalysator (Natriumbisphenolat des Bisphenol A zu Bisphenol A = 1:100) werden unter Rühren und Stickstoffatmosphäre eine Stunde bei 125°C, danach 5 Stunden bei 150°C und 0,8 Torr erhitzt. Während dieser Zeit wird aus dem Reaktionsgemisch Phenol abdestilliert. Das erhaltene Produkt ist ein klares, viscoses Oel.315 parts by weight of bisphenyl carbonate of a polypropylene oxide diol having an average molecular weight Mn = 4200 and lengthened via carbonate groups and which was prepared according to Example A, 44.5 parts by weight of bisphenol A and 0.05 part by weight of catalyst (sodium bisphenolate of bisphenol A to bisphenol A = 1: 100) are heated with stirring and nitrogen atmosphere at 125 ° C for one hour, then at 150 ° C and 0.8 Torr for 5 hours. During this time, phenol is distilled off from the reaction mixture. The product obtained is a clear, viscous oil.

Beispiel B4Example B4

Herstellung eines Carbonat-Gruppen-verlängerten Polytetrahydrofurandiol-bis-diphenolcarbonats der Formel Vf, das noch 3,6 Gew.-% 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan enthält.Preparation of a carbonate group-extended polytetrahydrofuran-di-bis-diphenol carbonate of the formula Vf which still contains 3.6% by weight of 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane.

315 Gew.-Teile Bisphenylcarbonat eines über Carbonat-Gruppenverlängerten Polytetrahydrofurandiols vom mittleren Molekulargewicht Mn = 4200, das gemäss Beispiel A hergestellt wurde, 55,5 Gew.-Teile 2,2-Bis-(3,5-dimethyl-4-hydrophenyl)-propan und 0,25 Gew.-Teile Katalysator (Natriumbisphenolat des Bisphenol A: Bisphenol A = 1:100) werden unter Rühren und Stickstoffatmosphäre zunächst 1 Stunde bei 125°C, danach 4 Stunden bei 150°C und 0,1 Torr unter Abdestillieren von Phenol erhitzt. Man erhält ein klares, viskoses Oel.315 parts by weight of bisphenyl carbonate of a polytetrahydrofuran diol having an average molecular weight Mn = 4200 and extended by carbonate groups, which was prepared according to Example A, 55.5 parts by weight of 2,2-bis (3,5-dimethyl-4-hydrophenyl) Propane and 0.25 part by weight of catalyst (sodium bisphenolate of bisphenol A: bisphenol A = 1: 100) are first stirred and under a nitrogen atmosphere at 125 ° C. for 1 hour, then at 150 ° C. and 0.1 Torr for 4 hours Distilling phenol heated. A clear, viscous oil is obtained.

Beispiel B5Example B5

Herstellung eines Carbonat-Gruppen-verlängerten Polypropylenoxiddiol-bis-diphenolcarbonats der Formel Vf, das noch 2,5 Gew.-Teile 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan enthält.Preparation of a carbonate group-extended polypropylene oxide diol bis-diphenol carbonate of the formula Vf which still contains 2.5 parts by weight of 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane.

310 Gew.-Teile Bisphenylcarbonat eines über Carbonat-Gruppen verlängerten Polypropylenoxiddiols vom mittleren Molekulargewicht Mn = 6200, das gemäss Beispiel A hergestellt wurde, 37 Gew.-Teile 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan und 0,02 Gew.-Teile Katalysator (Natriumbisphenolat des Bisphenol A: Bisphenol A = 1:100) werden unter Rühren und Stickstoffatmosphäre zunächst eine Stunde bei 125°C, danach 4 Stunden bei 150°C und 0,05 Torr unter Abdestillieren von Phenol erhitzt. Man erhält ein klares, viskoses Oel.310 parts by weight of bisphenyl carbonate of a polypropylene oxide diol having an average molecular weight Mn = 6200 and extended by carbonate groups and which was prepared according to Example A, 37 parts by weight of 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) Propane and 0.02 part by weight of catalyst (sodium bisphenolate of bisphenol A: bisphenol A = 1: 100) are first stirred at 125 ° C. for 1 hour, then at 150 ° C. and 0.05 torr with distillation while stirring and under a nitrogen atmosphere heated by phenol. A clear, viscous oil is obtained.

Beispiel C1Example C1

Herstellung des Polyäther-Polycarbonats mit 50 Gew.-% Polyätheranteil.Production of the polyether polycarbonate with 50 wt .-% polyether.

2.264 Gew.-Teile dieses viskosen Oelsaus Beispiel B1, gelöst in 30 Ltr. CHZCIZ werden zu einer Lösung von 1545 Gew.-Tln 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A) und 47,2 Gew.-Teilen p-tert.-Butylphenol in 1400 Gew.-Teilen 45 prozentiger NaOH und 30 Litern destilliertem Wasser gegeben.2,264 parts by weight of this viscous oil from Example B1, dissolved in 30 liters of CH Z CI Z, are converted into a solution of 1545 parts by weight of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 47. 2 parts by weight p- tert-Butylphenol in 1400 parts by weight of 45 percent NaOH and 30 liters of distilled water.

Innerhalb von 40 Minuten werden bei 20-25°C unter Rühren und Stickstoffatmosphäre 1167 Gew.-Teile Phosgen eingeleitet. Während des Einleitens werden gleichzeitig 1730 Gew.-Teile 45%ige NaOH so zugetropft dass der pH-Wert konstant bei pH 13 bleibt. Nach dem Phosgeneinleiten werden 7,9 Gew.-Teile Triäthylamin zugegeben und 1 Stunde gerührt. Die organische Phase wird abgetrennt, nacheinander mit 2%iger Phosphorsäure und schliesslich mit destilliertem Wasser bis zur Elektrolytfreiheit gewaschen. Nach dem Abtrennen des Wassers kann die organische Phase nach folgenden Verfahren aufgearbeitet werden:1167 parts by weight of phosgene are introduced over the course of 40 minutes at 20-25 ° C. with stirring and under a nitrogen atmosphere. During the introduction, 1730 parts by weight of 45% NaOH are simultaneously added dropwise in such a way that the pH remains constant at pH 13. After introducing phosgene, 7.9 parts by weight of triethylamine are added and the mixture is stirred for 1 hour. The organic phase is separated off, washed successively with 2% phosphoric acid and finally with distilled water until the electrolyte is free. After the water has been separated off, the organic phase can be worked up by the following methods:

C. 1.1C. 1.1

Durch Abdestillieren des CH2C12 bis zu einer bestimmten Konzentration oder durch Zugabe von Chlorbenzol zur organischen Phase und Abdestillieren des gesamten Methylenchlorids wird eine hochprozentige (etwa 30-40 Gew.-%) Polymerlösung erhalten. Durch anschliessendes langsames Verdampfen des restlichen Methylenchlorids oder des Chlorbenzols geliert das Polyäther-Polycarbonat und kann zu einem Pulver-Korn-Gemisch weiter aufgearbeitet werden. Das erhaltene Polyäther-Polycarbonat wird 48 Stunden bei 50°C und 24 Stunden bei 100°C getrocknet.By distilling off the CH 2 C1 2 to a certain concentration or by adding chlorobenzene to the organic phase and distilling off all of the methylene chloride, a high-percentage (about 30-40% by weight) polymer solution is obtained. Subsequent slow evaporation of the remaining methylene chloride or chlorobenzene causes the polyether polycarbonate to gel and can be worked up to a powder-grain mixture. The polyether polycarbonate obtained is dried for 48 hours at 50 ° C. and 24 hours at 100 ° C.

C. 1.2C. 1.2

Durch Abdestillieren des Lösungsmittels, Trocknen im Vakuumtrockenschrank bei etwa 80-110°C und 15 Torr und anschliessendes Mahlen wird ein feinteiliges Festprodukt erhalten.A finely divided solid product is obtained by distilling off the solvent, drying in a vacuum drying cabinet at about 80-110 ° C. and 15 torr and then grinding.

C. 1.3C. 1.3

Durch Fällen des Polyäther-Polycarbonats aus der organischen Phase mit beispielsweise Methanol, Äthanol, Aceton, aliphatischen Kohlenwasserstoffen und cycloaliphatischen Kohlenwasserstoffen und nachfolgender Trocknung im Vakuumtrockenschrank bei 80-110°C und 15 Torr.By precipitation of the polyether polycarbonate from the organic phase with, for example, methanol, ethanol, acetone, aliphatic hydrocarbons and cycloaliphatic hydrocarbons and subsequent drying in a vacuum drying cabinet at 80-110 ° C. and 15 torr.

C. 1.4C. 1.4

Durch Einengen der organischen Phase im Eindampfextruder und anschliessende Extrusion bei etwa 160-240°C unter den für die Polycarbonatextrusion bekannten Bedingungen.By concentrating the organic phase in the evaporation extruder and subsequent extrusion at about 160-240 ° C under the conditions known for polycarbonate extrusion.

Die rel. Viskosität des nach C. 1.1 - C. 1.4 erhaltenen Polyäther-Polycarbonats beträgt ηrel = 1.52 (gemessen in CHZCI2 bei 25°C und c = 5 g/I). Nach gelchromatographischer Bestimmung zeigt das Polyäther-Polycarbonat ein Maximum bei 40.000. Es hat 50 Gew.-% Polyäther und 50 Gew.-% Polycarbonatanteil. Einige mechanische Eigenschaften einer aus Methylenchlorid gegossenen Folie sind: Reißfestigkeit 45,9 (MPA) (gemessen nach DIN 53 455), Reißdehnung 483% (gemessen nach DIN 53 455).The rel. Viscosity of the polyether polycarbonate obtained according to C. 1.1 - C. 1.4 is η rel = 1.52 (measured in CH Z CI 2 at 25 ° C and c = 5 g / I). According to gel chromatographic determination, the polyether polycarbonate shows a maximum at 40,000. It has 50% by weight of polyether and 50% by weight of polycarbonate. Some mechanical properties of a film cast from methylene chloride are: tear strength 45.9 (MPA) (measured according to DIN 53 455), elongation at break 483% (measured according to DIN 53 455).

Das granulierte Polyäther-Polycarbonat zeigt nach Differtialthermoanalyse eine Glasübergangstemperatur des Polyätheranteils von -75°C, eine Glasübergangstemperatur des Polycarbonats von 145°C und einen Kristallitschmelzpunkt des Polycarbonatanteils von ca. 215°C.According to differential thermal analysis, the granulated polyether polycarbonate shows a glass transition temperature of the polyether portion of -75 ° C, a glass transition temperature of the polycarbonate of 145 ° C and a crystallite melting point of the polycarbonate portion of approx. 215 ° C.

Beispiel C2Example C2

Herstellung eines Polyäther-Polycarbonats mit 60 Gew.-% Polyätheranteil.Production of a polyether polycarbonate with 60 wt .-% polyether.

134.3 Gew.-Teile des viskosen Oels als Beispiel B1, gelöst in 1725 Gew.-Teilen Methylenchlorid werden zu einer Lösung von 58.2 Gew.-Teilen 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A) und 1.42 Gew.-Teilen p-tert.-Butylphenol in 1300 Gew.-Teilen dest. Wasser und 56 Gew.-Teilen 45%ige Natronlauge gegeben. Innerhalb 45 Min. werden 85.6 Gew.-Teile Phosgen unter Rühren und Stickstoffatmosphäre eingeleitet, während gleichzeitig 95 Gew.-Teile 45%ige Natronlauge zur Konstanthaltung von pH 13 zugetropft werden. Nach dem Phosgeneinleiten werden 0,32 Gew.-Teile Triäthylamin zugegeben. Der Ansatz wird zähflüssiger. Nach 1 Stunde trennt man die organische Phase ab und gewinnt das Polyäther-Polycarbonat wie im Beispiel C1 (Aufarbeitung C1,1-C1,4) beschrieben.134.3 parts by weight of the viscous oil as example B1, dissolved in 1725 parts by weight of methylene chloride, are converted into a solution of 58.2 parts by weight of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 1.42 parts by weight . Parts of p-tert-butylphenol in 1300 parts by weight of dist. Water and 56 parts by weight of 45% sodium hydroxide solution. 85.6 parts by weight of phosgene are introduced with stirring in a nitrogen atmosphere over the course of 45 minutes, while 95 parts by weight of 45% sodium hydroxide solution are added dropwise at the same time in order to keep pH 13 constant. After introducing phosgene, 0.32 part by weight of triethylamine is added. The approach becomes more viscous. After 1 hour, the organic phase is separated off and the polyether polycarbonate is obtained as described in Example C1 (workup C 1.1 -C 1.4 ).

Die rel. Viskosität des Polyäther-Polycarbonats beträgt ηrel = 1,62 (in CH2C12).The rel. Viscosity of the polyether polycarbonate is η rel = 1.62 (in CH2C12).

Beispiel C3Example C3

Herstellung eines Polyäther-Polycarbonats mit 50 Gew.-% Polyätheranteil.Production of a polyether polycarbonate with 50 wt .-% polyether.

120.6 Gew.-Teile des viskosen Oels aus Beispiel B2, gelöst in 1725 Gew.-Teilen Methylenchlorid werden zu einer Lösung von 70 Gew.-Teilen 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A) und 1.77 Gew.-Teilen p-tert.-Butylphenol in 1300 Gew.-Teilen dest. Wasser und 70 Gew.-Teilen 45%iger Natronlauge gegeben. Innerhalb 45 Min. werden 58.3 Gew.-Teile Phosgen unter Rühren und Stickstoffatmosphäre eingeleitet, während gleichzeitig 135 Gew.-Teile 45%iger Natronlauge zur Konstanthaltung von pH 13 zugetropft werden. Nach dem Phosgeneinleiten werden 0,4 Gew.-Teile Triäthylamin zugegeben. Der Ansatz wird zähflüssiger. Nach 1 Stunde trennt man die organische Phase ab und gewinnt das Polyäther-Polycarbonat wie im Beispiel C1 (Aufarbeitung C1,1-C1,4) beschrieben.120.6 parts by weight of the viscous oil from Example B2, dissolved in 1725 parts by weight of methylene chloride, are converted into a solution of 70 parts by weight of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 1.77 parts by weight . Parts of p-tert-butylphenol in 1300 parts by weight of dist. Water and 70 parts by weight of 45% sodium hydroxide solution. 58.3 parts by weight of phosgene are introduced with stirring in a nitrogen atmosphere over the course of 45 minutes, while 135 parts by weight of 45% sodium hydroxide solution are added dropwise at the same time in order to keep pH 13 constant. After introducing phosgene, 0.4 parts by weight of triethylamine are added. The approach becomes more viscous. After 1 hour, the organic phase is separated off and the polyether polycarbonate is obtained as described in Example C1 (workup C 1.1 -C 1.4 ).

Die rel. Viskosität des Polyäther-Polycarbonats beträgt ηrel = 1.54 (in CH2CI2).The rel. Viscosity of the polyether polycarbonate is η rel = 1.54 (in CH 2 CI 2 ).

Beispiel C4Example C4

Herstellung eines Polyäther-Polycarbonats mit 50 Gew.-% Polyätheranteil.Production of a polyether polycarbonate with 50 wt .-% polyether.

115,3 Gew.-Teile des viskosen Oels aus Beispiel B3, gelöst in 1725 Gew.-Teilen Methylenchlorid werden zu einer Lösung von 65 Gew.-Teilen 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol A) und 1300 Gew.-Teilen dest. Wasser und 70 Gew.-Teilen 45%iger Natronlauge gegeben. Innerhalb 45 Min. werden 58.3 Gew.-Teile Phosgen unter Rühren und Stickstoffatmosphäre eingeleteit, während gleichzeitig 135 Gew.-Teile 45%iger Natronlauge zur Konstanthaltung von pH 13 zugetropft werden. Nach dem Phosgeneinleiten werden 0,4 Gew.-Teile Triäthylamin zugegeben. Der Ansatz wird zähflüssiger. Nach 1 Stunde trennt man die organische Phase ab und gewinnt das Polyäther-Polycarbonat wie im Beispiel C1 (Aufarbeitung C1.1―C1.4) beschrieben.115.3 parts by weight of the viscous oil from Example B3, dissolved in 1725 parts by weight of methylene chloride, become a solution of 65 parts by weight of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 1300 parts by weight of dist. Water and 70 parts by weight of 45% sodium hydroxide solution. 58.3 parts by weight of phosgene are introduced with stirring in a nitrogen atmosphere over the course of 45 minutes, while 135 parts by weight of 45% sodium hydroxide solution are added dropwise to keep pH 13 constant. After introducing phosgene, 0.4 parts by weight of triethylamine are added. The approach becomes more viscous. After 1 hour, the organic phase is separated off and the polyether polycarbonate is obtained as described in Example C1 (workup C 1.1 ―C 1.4 ).

Die rel. Viskosität des Polyäther-Polycarbonats beträgt ηrel = 2.05 (in CH2CI2).The rel. Viscosity of the polyether polycarbonate is η rel = 2.05 (in CH 2 CI 2 ).

Das granulierte Polyäther-Polycarbonat zeigt nach Differtial Thermoanalyse eine Glasübergangstemperatur des Polyätheranteils von -57°C eine Glasübergangstemperatur des Polycarbonats von 145°C und einen Kristallitschmelzpunkt des Polycarbonatanteils von ca. 195°C.According to differtial thermal analysis, the granulated polyether polycarbonate shows a glass transition temperature of the polyether portion of -57 ° C, a glass transition temperature of the polycarbonate of 145 ° C and a crystallite melting point of the polycarbonate portion of approx. 195 ° C.

Beispiel C5Example C5

Herstellung eines Polyäther-Polycarbonats aus 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan mit 50 Gew.-% Polyätheranteil.Production of a polyether polycarbonate from 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane with 50% by weight of polyether.

119 Gew.-Teile des viskosen Oels aus Beispiel B4 und 0,6 Gew.-Teile Tributylamin (= 1 Mol-% pro Mol Bisphenoleinheiten), gelöst in 1725 Gew.-Teilen Methylenchlorid, werden zu einer Lösung von 73,2 Gew.-Teilen 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan ir 57,3 Gew Teilen 45%iger Natronlauge und 1300 Gew.-Teilen dest. Wasser gegeben. Innerhalb 30 Min. werden unter Rühren und Stickstoffatmosphäre 95,6 Gew.-Teile Phosgen eingeleitet, während gleichzeitig 235 Gew.-Teile 45%iger Natronlauge zur Konstanthaltung von pH 13 zugetropft werden. Nach dem Phosgeneinleiten werden zur vollständigen Kondensation 5,4 Gew.-Teile Tributylamin (= 9 Mol-% pro Mol Bisphenoleinheiten) zugegeben. Der Ansatz wird zähflüssiger. Nach 3 Stunden trennt man die organische Phase ab und gewinnt das Polyäther-Polycarbonat wie in Beispiel C1 (Aufarbeitung C 1.1) beschrieben.119 parts by weight of the viscous oil from Example B4 and 0.6 part by weight of tributylamine (= 1 mol% per mole of bisphenol units), dissolved in 1725 parts by weight of methylene chloride, are converted into a solution of 73.2 parts by weight. Parts of 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane ir 57.3 parts by weight of 45% sodium hydroxide solution and 1300 parts by weight of dist. Given water. 95.6 parts by weight of phosgene are introduced over the course of 30 minutes with stirring and under a nitrogen atmosphere, while 235 parts by weight of 45% strength sodium hydroxide solution are added dropwise at the same time in order to keep pH 13 constant. After the phosgene has been introduced, 5.4 parts by weight of tributylamine (= 9 mol% per mol of bisphenol units) are added for complete condensation. The approach becomes more viscous. After 3 hours, the organic phase is separated off and the polyether polycarbonate is obtained as described in Example C1 (workup C 1.1).

Die rel. Viskosität des Polyäther-Polycarbonats beträgt ηrel = 1,63 (in CH2Clz).The rel. Viscosity of the polyether polycarbonate is η rel = 1.63 (in CH 2 Cl z ).

Beispiel C6Example C6

Herstellung eines Polyäther-Polycarbonats aus 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan mit 50 Gew.-% Polyätheranteil.Production of a polyether polycarbonate from 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane with 50% by weight of polyether.

112,8 Gew.-Teile des viskosen Oels aus Beispiel B5 und 0,6 Gew.-Teile Tributylamin (=1 Mol-% pro Mol Bisphenoleinheiten), gelöst in 1725 Gew. Teilen Methylenchlorid, werden in einer Lösung von 79,3 Gew.-Teilen 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan in 57,3 Gew.-Teilen 45%iger Natronlauge und 1300 Gew.-Teilen dest. Wasser gegeben. Innerhalb 30 Min. werden unter Rühren und Stickstoffatmosphäre 95,6 Gew.-Teile Phosgen eingeleitet, während gleichzeig 235 Gew.-Teile 45%iger Natronlauge zur Konstanthaltung von pH 13 zugetropft werden. Nach dem Phosgeneinleiten werden zur vollständigen Kondensation 5,4 Gew.-Teile Tributylamine (=9 Mol-% pro Mol Bisphenoleinheiten) zugegeben. Der Ansatz wird zähflüssiger. Nach 3 Stunden trennt man die organische Phase ab und gewinnt das Polyäther-Polycarbonat wie in Beispiel C1 (Aufarbeitung C 1.1) beschrieben.112.8 parts by weight of the viscous oil from Example B5 and 0.6 part by weight of tributylamine (= 1 mol% per mole of bisphenol units), dissolved in 1725 parts by weight of methylene chloride, are dissolved in a solution of 79.3 parts by weight . Parts of 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane in 57.3 parts by weight of 45% sodium hydroxide solution and 1300 parts by weight of dist. Given water. 95.6 parts by weight of phosgene are introduced over the course of 30 minutes with stirring and under a nitrogen atmosphere, while 235 parts by weight of 45% strength sodium hydroxide solution are added dropwise to keep pH 13 constant. After the phosgene has been introduced, 5.4 parts by weight of tributylamine (= 9 mol% per mol of bisphenol units) are added for complete condensation. The approach becomes more viscous. After 3 hours, the organic phase is separated off and the polyether polycarbonate is obtained as described in Example C1 (workup C 1.1).

Die rel. Viskosität des Polyäther-Polycarbonats beträgt ηrel = 1,66 (in CH2CI2)..The rel. Viscosity of the polyether polycarbonate is η rel = 1.66 (in CH2CI2) ..

Claims (11)

1. A process for the preparation of polyalkylene oxide-diol bis-diphenol carbonates, lengthened via carbonate groups, characterised in that polyalkylene oxide-diols having molecular weights Mn (number-average) of over 135 are heated with carbonic acid bis-aryl esters at temperatures between 100°C and 200°C in vacuo below 35 mm Hg in the presence of catalysts, less than 1 mol of carbonic acid bis aryl ester being employed per OH group of the polyalkylene oxide-diol and the resulting hydroxy-aryl compound is distilled off and the resulting polyalkylene oxide-diol bis-aryl carbonates are then heated with diphenols at temperatures between 100° and 200°C in vacuo below 35 mm Hg in the presence of catalysts, more than 1 mol of diphenol being employed for one carbonic acid aryl ester group of the polyalkylene oxide-diol bis-aryl carbonate lengthened via carbonate groups and the resulting hydroxy-aryl compound is distilled off.
2. Polyalkylene oxide-diol bis-diphenol carbonates, lengthened via carbonate groups, obtained according to the process of claim 1.
3. Polyalkylene oxide-diol bis-diphenol carbonates, lengthened via carbonate groups, of the formula V
Figure imgb0038
wherein
R' and R" independently of one another are H or C1 to C4 alkyl,
n is an integer from 2 to 20, preferably 2-10,
a is an integer of from 1 to 6, and
b is an integer of from 3 to 350,
X is
Figure imgb0039
0, S or S02, and
Y1 and Y4 are identical or different and denote hydrogen or halogen, obtained according to the process of claim 1.
4. Polyalkylene oxide-diol bis-diphenol carbonates, lengthened via carbonate groups, according to claim 3, of the formula Vf
Figure imgb0040
wherein
R', R", n, a and b have the meaning given in claim 3.
5. Polyalkylene oxide-diol bis-diphenol carbonates, lengthened via carbonate groups, according to claim 3, of the formula Vg
Figure imgb0041
wherein
R', R", n, a and b have the meaning given in claim 4.
6. Polyalkylene oxide-diol bis-diphenol carbonates, lengthened via carbonate groups, according to claim 3, of the formula Vh
Figure imgb0042
wherein
R', R", n, a and b have the meaning given in claim 4.
7. The use of the polyalkylene oxide-diol bis-diphenol carbonates of claims 2 to 6 for the preparation of polyether/polycarbonates.
8. A process for the preparation of polyether/polycarbonates, characterised in that the polyalkylene oxide-diol bis-diphenol carbonates of claims 2 to 6 are reacted with other diphenols and with phosgene in a liquid mixture of an inert organic solvent and an alkaline aqueous solution, at temperatures between 0°C and 80°C at a pH value between 9 and 14, and after the addition of phosgene, polycondensation is carried out by adding from 0.2 mol % to 10 mol %, relative to the molar amount of diphenol, of a tertiary aliphatic amine, the weight ratio of polyalkylene oxide-diol bis-diphenol carbonate to the other diphenol being determined by the proportion of polycarbonate and the proportion of polyether of the polyether/polycarbonates.
9. A process according to claim 8, characterised in that as the other diphenols those of the formula IV
Figure imgb0043
are reacted, wherein
X denotes
Figure imgb0044
O, S or S02 and
Y1 to Y4 are identical or different and denote hydrogen or halogen.
10. Polyether/polycarbonates obtained according to claims 8 and 9.
11. Polyether/polycarbonates characterised in that they consist of about 30 to 95% by weight of aromatic polycarbonate structural units of the formula IVa
Figure imgb0045
wherein
X and Y1 to Y4 have the meaning given in claim 9 and of about 70 to 5% by weight of polyalkylene oxide-diol block units, lengthened via carbonate groups, of the formula VII
Figure imgb0046
wherein
R', R" independently of one another are H or C1 to C4 alkyl,
a is an integer from 1 to 6 and b is an integer from 3 to 350, and
n is an integer from 2 to 20, preferably 2 to 10.
EP78100103A 1977-06-11 1978-06-06 Process for the preparation of bis-carbonates from diphenols and polyoxyalkylene glycols lengthened by carbonate groups and their application in the preparation of macromolecular thermoplastic polycarbonate polyether block copolymers. Expired EP0000060B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772726416 DE2726416A1 (en) 1977-06-11 1977-06-11 PROCESS FOR THE PRODUCTION OF CARBON-BIS-DIPHENOL-ESTERS FROM POLYALKYLENE OXIDE DIOLES EXTENDED BY CARBONATE-GROUP AND THEIR USE FOR THE PRODUCTION OF HIGH-MOLECULAR, SEGMENTED POLYCITABLES, THERMOPLASTIC
DE2726416 1977-06-11

Publications (2)

Publication Number Publication Date
EP0000060A1 EP0000060A1 (en) 1978-12-20
EP0000060B1 true EP0000060B1 (en) 1980-08-06

Family

ID=6011311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100103A Expired EP0000060B1 (en) 1977-06-11 1978-06-06 Process for the preparation of bis-carbonates from diphenols and polyoxyalkylene glycols lengthened by carbonate groups and their application in the preparation of macromolecular thermoplastic polycarbonate polyether block copolymers.

Country Status (5)

Country Link
US (1) US4217437A (en)
EP (1) EP0000060B1 (en)
JP (2) JPS545943A (en)
DE (2) DE2726416A1 (en)
IT (1) IT1105136B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2930787A1 (en) 1979-07-28 1981-02-12 Bayer Ag CROSSLINKABLE POLYCARBONATE ELASTOMERS, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR MEDICAL PACKAGING AFTER CROSSLINKING
US4476293A (en) * 1981-11-30 1984-10-09 E. I. Du Pont De Nemours And Company Polymeric carbonate diols of copolyether glycols and polyurethanes prepared therefrom
US4463141A (en) * 1981-11-30 1984-07-31 E. I. Du Pont De Nemours And Company Polyether carbonate diols and polyurethanes prepared therefrom
EP0135760A1 (en) * 1983-08-19 1985-04-03 Bayer Ag Polyether-polycarbonates for dialysis-membranes
DE3408804A1 (en) * 1983-09-30 1985-04-18 Bayer Ag, 5090 Leverkusen POLYETHER COPOLYCARBONATE FOR DIALYSIS MEMBRANES
US4642321A (en) * 1985-07-19 1987-02-10 Kollmorgen Technologies Corporation Heat activatable adhesive for wire scribed circuits
US4663399A (en) * 1985-08-22 1987-05-05 General Electric Company Polycarbonate-polyether block copolymers, polymer blends containing same and intermediates for the production thereof
US4657977A (en) * 1985-10-04 1987-04-14 General Electric Company Poly(etherimide-carbonate) block copolymers and polymer blends containing same
US4806599A (en) * 1987-12-21 1989-02-21 The Dow Chemical Company Polyolefin/polycarbonate/polyolefin triblock copolymers
US4812530A (en) * 1987-12-28 1989-03-14 The Dow Chemical Company Polyether-polycarbonate-polyether triblock copolymers
DE4004881C1 (en) * 1990-02-16 1991-02-07 Basf Ag, 6700 Ludwigshafen, De
DE4004882A1 (en) * 1990-02-16 1991-08-22 Basf Ag POLYETHER POLYCARBONATE DIOLE
JPH06116382A (en) * 1992-08-21 1994-04-26 Hodogaya Chem Co Ltd Non-rigid polycarbonate resin
DE4232416A1 (en) * 1992-09-28 1994-03-31 Basf Ag Impact-resistant polyoxymethylene molding compounds
WO2000023498A1 (en) * 1998-10-22 2000-04-27 General Electric Company Copolycarbonate preparation by solid state polymerization
US6143859A (en) * 1999-08-09 2000-11-07 General Electric Company Copolycarbonate preparation by solid state polymerization
US6333394B1 (en) 1999-08-09 2001-12-25 General Electric Company Copolycarbonate preparation by solid state polymerization
DE10219028A1 (en) * 2002-04-29 2003-11-06 Bayer Ag Production and use of high molecular weight aliphatic polycarbonates
US7230066B2 (en) * 2004-12-16 2007-06-12 General Electric Company Polycarbonate—ultem block copolymers
US20210009502A1 (en) * 2018-03-09 2021-01-14 Evonik Canada Inc. Carbonate-linked surface modifying macromolecules

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069385A (en) * 1962-12-18 Chain extending polycarbonate
US3161615A (en) * 1957-02-05 1964-12-15 Gen Electric Resinous copolymeric polycarbonate of a mixture of dihydric phenols
IT595468A (en) * 1957-08-22
US3030331A (en) * 1957-08-22 1962-04-17 Gen Electric Process for preparing copolyesters comprising reacting a carbonyl halide with a dicarboxylic acid and a dihydroxy compound in the presence of a tertiary amine
BE570530A (en) * 1957-08-22
US3030335A (en) * 1959-01-02 1962-04-17 Gen Electric Aromatic polycarbonate reaction products
DE1495626B1 (en) * 1960-03-30 1971-06-09 Bayer Ag METHOD OF MANUFACTURING POLYESTERS
US3207814A (en) * 1961-01-03 1965-09-21 Gen Electric Carbonate-polyester copolymer resinous compositions
US3290409A (en) * 1962-03-08 1966-12-06 Gen Electric Preparation of polycarbonate resins
US3287442A (en) * 1962-10-18 1966-11-22 Eastman Kodak Co Polycarbonate elastomers
US3449467A (en) * 1965-06-03 1969-06-10 Union Carbide Corp Hydroxyl terminated polyester oligomers
US3461187A (en) * 1965-12-02 1969-08-12 Gen Electric Graft copolymers of polycarbonate on an addition polymer backbone
DE1493757A1 (en) * 1965-12-29 1969-01-30 Bayer Ag Process for the production of mixed carbonic acid esters
US3843708A (en) * 1969-01-17 1974-10-22 Union Carbide Corp Extended polylactone diol compositions
JPS495630B1 (en) * 1970-03-19 1974-02-08
DE2217470A1 (en) * 1971-04-13 1972-11-02 Denki Onkyo Co. Ltd., Tokio Block copolymers
DE2650533C2 (en) * 1976-11-04 1984-10-04 Bayer Ag, 5090 Leverkusen Aryl carbonate of polyalkylene oxide diols extended via carbonate groups and process for their preparation
US4105633A (en) * 1977-05-11 1978-08-08 The Dow Chemical Company Alternating copolyestercarbonate resins

Also Published As

Publication number Publication date
US4217437A (en) 1980-08-12
EP0000060A1 (en) 1978-12-20
JPS6211724A (en) 1987-01-20
DE2860110D1 (en) 1980-11-27
JPH022887B2 (en) 1990-01-19
DE2726416A1 (en) 1978-12-21
IT1105136B (en) 1985-10-28
IT7849789A0 (en) 1978-06-09
JPS545943A (en) 1979-01-17
JPH0231100B2 (en) 1990-07-11

Similar Documents

Publication Publication Date Title
EP0000060B1 (en) Process for the preparation of bis-carbonates from diphenols and polyoxyalkylene glycols lengthened by carbonate groups and their application in the preparation of macromolecular thermoplastic polycarbonate polyether block copolymers.
EP0006516B1 (en) Process for preparing aliphatic-aromatic polycarbonates with diphenyl-carbonate end groups, the polycarbonates obtained thereby, and their use in a process for preparing thermoplastically workable, high-molecular, segmented aliphatic-aromatic polycarbonate elastomers
US4297455A (en) Process for the preparation of carbonic acid aryl esters of polyester-diols lengthened via carbonate groups and their use for the preparation of polyester-diol bis-diphenol carbonates and polyester/polycarbonates
DE2702626C2 (en)
DE2636783C2 (en) Process for the production of high molecular weight, segmented, thermoplastically processable polyester-polycarbonates
EP0004020B1 (en) Polycarbonate moulding compositions with improved tenacity
US4216298A (en) Process for the preparation of carbonic acid bis-diphenol esters of polyester-diols and their use for the preparation of high-molecular segmented polyester/polycarbonates which can be processed as thermoplastics
DE4419229A1 (en) Acid-terminated polyester(s), useful for polyester-carbonate(s) prodn.
DE2651639A1 (en) PROCESS FOR THE PRODUCTION OF CARBON ESTERS FROM POLYESTER POLYOLS
DE2712435C2 (en)
EP0097861B1 (en) Aromatic polyester carbonate with impact strenght, and process for its preparation
DE2636784A1 (en) Poly:alkylene oxide di:ol bis-di:phenol carbonate prepn. - by heating poly:alkylene di:ol with carboxylic acid bis-aryl ester in presence of a catalyst and heating with di:phenol
EP0201830B1 (en) Process for the preparation of copolyphosphonates having a high impact strength when notched
EP0065728B1 (en) Copolyester carbonates and their mixture with known polycarbonates to make thermoplastic mouldings
DE2726417C2 (en)
EP1655324B1 (en) Branched polycarbonate
EP0024672A1 (en) High-molecular segmented thermoplastically processable aromatic polycarbonates containing dimeric fatty acid esters condensed therein, their preparation and their use
DE2726376C2 (en)
WO2008119485A1 (en) Modified polycarbonates, polyester carbonates having improved strain behavior and flame resistance
DE2619831A1 (en) Carbonic acid aryl esters of polyalkylene oxide polyols - prepd. by heating the polyols with esters under vacuum
DE2650533A1 (en) Carbonate extended polyoxyalkylene di:ol(s) - prepd. by reacting bis:aryl carbonate(s) with polyoxyalkylene diol(s)
EP0077415B1 (en) Mixtures of polycarbonate elastomers containing hydrogenated dimeric fatty-acid esters in a condensed form with polyolefines and, optionally, other polycarbonates
DE4132079A1 (en) Polyester(s) with phenolic hydroxyl gps. useful for prodn. of polyester-polycarbonate(s) - by esterification of di:carboxylic acids with di:alcohol(s) using branching agents and phenol(s) as chain cleavage agents
EP1242501A1 (en) Polyether carbonates
EP0219708A1 (en) Aromatic polyester carbonates, process for their preparation and their use in the production of moulded articles, sheets and coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2860110

Country of ref document: DE

Date of ref document: 19801127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930526

Year of fee payment: 16

Ref country code: FR

Payment date: 19930526

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940516

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT