EP0000038B1 - Verfahren und Anordnung für die Beseitigung von Interferenzen zwischen dem Strahlungsbündel einer Flächenausleuchtungsantenne und den Strahlungsbündeln stark gerichteter Antennen - Google Patents

Verfahren und Anordnung für die Beseitigung von Interferenzen zwischen dem Strahlungsbündel einer Flächenausleuchtungsantenne und den Strahlungsbündeln stark gerichteter Antennen Download PDF

Info

Publication number
EP0000038B1
EP0000038B1 EP78100062A EP78100062A EP0000038B1 EP 0000038 B1 EP0000038 B1 EP 0000038B1 EP 78100062 A EP78100062 A EP 78100062A EP 78100062 A EP78100062 A EP 78100062A EP 0000038 B1 EP0000038 B1 EP 0000038B1
Authority
EP
European Patent Office
Prior art keywords
signal
antenna
receiver
transmitted
coverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100062A
Other languages
English (en)
French (fr)
Other versions
EP0000038A1 (de
Inventor
Anthoney Acampora
Douglas Otto John Reudink
Yu Shuan Yeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Publication of EP0000038A1 publication Critical patent/EP0000038A1/de
Application granted granted Critical
Publication of EP0000038B1 publication Critical patent/EP0000038B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access

Definitions

  • the present invention relates to method and apparatus for effecting substantial cancellation of interference between a first and a second signal transmitted concurrently in a first and a second antenna radiated beam, respectively, where the first and second signals include different informational content and use the same frequency spectrum and the first and second beams overlap each other in the area of a receiver which is to receive only the first signals.
  • spot and area coverage beams can be desirable.
  • a separate spot coverage beam can be used for communication between the satellite and each high traffic ground station while an area coverage beam can be used for communication between the satellite and a plurality of low traffic ground stations under conditions where it might not be desirable to interconnect the individual low traffic ground stations to a nearest high traffic ground station for access to the satellite system.
  • multiple-beam antennas with earth- coverage radiation patterns having prescribed minima in the direction of interfering signals.
  • various beamforming networks are known using for instance variable power dividers, see L. J. Ricardi "Communication Satellite Antennas", Proceedings of the IEEE, vol. 65, March 1977, pages 356-369.
  • An alternative technique to enable reception of only one signal of a plurality of signals concurrently received from a plurality of transmitters at an FM receiver would be to modulate the carrier of each transmitter with a separate frequency to provide a unique address that is assigned to an associated receiver as disclosed, for example, in U.S. reissue patent Re.27,478. Such arrangement may be applicable to FM communication systems, but does not appear applicable to a digital communication system.
  • the problem remaining in the prior art is to provide a technique, which permits overlapping spot and area coverage beams, which use the same frequency band to be separated at an overlapped receiving station.
  • the foregoing problem is solved according to the invention by the method characterized by the step of, at the transmitter, coupling a predetermined portion of the second signal to be transmitted in the second beam into the signal to be transmitted by the first beam, said predetermined portion of the coupled-in second signal having a magnitude and phase to cancel substantially, after propagation in the first beam to the receiver, the second signal, which arrives in the second beam at the receiver.
  • the invention provides for a transmitter characterized by a first antenna capable of transmitting the first beam with a predetermined field pattern E $ (B) in the direction of the receiver, which is to receive only the first signals; a second antenna capable of transmitting the second beam with a predetermined field pattern E A (9) which overlaps said first beam field pattern in the area of the receiver which is to receive only the first signals; a first transmission line capable of delivering the signal to be transmitted in the first beam to the first antenna; a second transmission line capable of delivering the signal to be transmitted in the second beam to the second antenna; and a coupler disposed between the first and second transmission lines arranged to couple a predetermined portion of the second signal propagating in the second transmission line into the first transmission line for transmission in the first beam, the predetermined portion of the second signal coupled into the first transmission line having a magnitude and phase to substantially cancel the second signal transmitted in the second beam arriving at the receiver.
  • the present invention has been described primarily in relationship to a satellite communication system to enable the concurrent use of an area coverage satellite radiated beam and a plurality of spot coverage satellite radiated beams where all of the beams use the same frequency spectrum and the spot coverage beams are received within the area encompassed by the area coverage beam.
  • a satellite communication system to enable the concurrent use of an area coverage satellite radiated beam and a plurality of spot coverage satellite radiated beams where all of the beams use the same frequency spectrum and the spot coverage beams are received within the area encompassed by the area coverage beam.
  • the invention concept described is equally applicable to other radiated wave transmission systems which comprise two or more beams which have different destinations but interfere with each other at one or more of the destinations.
  • FIG. 1 a satellite communication system is illustrated wherein the present invention is especially useful to permit the concurrent transmission from a satellite 10 of both an area coverage beam 12 and a plurality of spot coverage beams of which, for example, three beams 14a, 14b and 14c are shown with all beams being able to use the same frequency spectrum.
  • Spot coverage beams 14a, 14b and 14c are shown radiating from antennas 15a, 15b and 15c, respectively, and directed at respective ground areas 16a, 16b and 16c which include for example, high traffic ground stations 17a, 17b and 17c, respectively.
  • Area coverage beam 12 is shown radiating from an antenna 13 and directed at a ground area 18 which includes both the ground areas 16a, 16b and 16c and a plurality of low traffic ground stations of which, for example, four stations 19a-19d are shown.
  • each of the high traffic ground stations 17a-17c communicates with satellite 10 via a separate spot beam 14a-14c, respectively, while the low traffic ground stations 19a ⁇ 19d communicate, with satellite 10 via common area coverage beam 12 using any suitable technique to assure that a particular message will be processed only by the appropriate one of stations 19a-19d.
  • Such arrangement permits low traffic ground stations 19a ⁇ 19d to communicate with satellite 10 under conditions where it is not advantageous to connect a low traffic ground station 19 to a nearby one of high traffic ground stations 17a-17c.
  • S s represents the signal intended for particular spot beam antenna 15 with a field pattern E S ( ⁇ ). More particularly, signals S sa , S S and S s propagate in waveguide 21 a, 21 b and 21 c, respectively, to respective antennas 15a, 15b and 15c for radiation to respective ground stations 17a ⁇ 17c via spot coverage beams 14a, 14b and 14c, respectively.
  • the field pattern E S ( ⁇ ) for each of the spot coverage beams 14 is assumed to be of Gaussian shape as, for example, in the main lobe of a paraboloid fed by a corrugated feedhorn, and is given by: where E S (0) is in the magnitude of the field along the axis of each spot coverage beam 14.
  • S A represents the signal intended for area coverage beams 12 and is shown propagating in waveguide 21 d to antenna 13 for radiation to ground stations 19 via area coverage beam 12 which has a field pattern E A (9) which is given by where E A (0) is the magnitude of the field along the axis of area coverage beam 12.
  • E A ( ⁇ ) represents the field pattern over area 18 of FIG. 1, it is desirable to produce a "hole" in E A ( ⁇ ) in the areas 16a ⁇ 16c where the spot coverage beams 14a-14c exist such that E A does not interfere with each of the E s patterns.
  • interference between the signal S A transmitted via area coverage beam 12 and each of signals S sa , S sb and S s c transmitted via spot coverage beams 14a, 14b and 14c, respectively, is substantially reduced at each of the spot beam ground stations 17 by coupling a portion of the area coverage signal, S A , propagating in waveguide 21d, into each of the spot coverage signals S sa , S sb and S s c propagating in waveguides 21 a-21 c, respectively, using respective directional couplers 22a, 22b and 22c.
  • each of couplers 22a-22c should preferably have a negative coupling coefficient of approximately between one and two times the value of For example, for a negative coupling coefficient of 1.21, the radiated signal for area beam 12 and one of spot beams 14a-14c in the vicinity of the associated spot beam ground station 17 then becomes Since E s (0) » E A (0), Equation (3) can be simplified to The normalized power patterns for both a spot and the area coverage beams are and are shown in FIG. 3. From FIG. 3 it can be seen that the spot coverage beam 14 remains unchanged when received at associated area 16 whereas the area coverage beam 12 is significantly reduced in the spot coverage beam region 16.
  • the blackout region is that area which is serviceable by neither the area beam nor the spot beam because of mutual interference between the two beams.
  • the traffic terminating in the blackout region at the edge of each of spot beam regions 16 may have to be trunked on the ground via other stations in the neighboring region.
  • the blackout region can be reduced or the S/I may be increased.
  • the capacity of the area coverage beam can be reduced by a factor of two and the modulations can be placed at the edges of the allocated 500 MHz bandwidth of the satellite downlink.
  • the power spectrums of a 300 Mbauds spot coverage beam and two 75 Mbauds area beams are shown in FIG. 5.
  • a ground station 19, intended to receive the area coverage beam 12 will have a receiving filter having characteristics which follow either spectrum A, or A 2 . Therefore, the received interference power of S s is reduced by about 6 dB due to this offsetting of modulation spectrum.
  • a ground station 17 intended to receive S s will have a receiving filter having characteristics which follow spectrum S in FIG. 5.
  • the received power of S A is reduced by about 9 dB compared to that of S S .
  • the blackout region is reduced using spectrum offsetting and antenna pattern discrimination.
  • the region for (P s /P A )' and (P A /P s )' becomes:
  • the minimum S/I in the serviceable region would be higher than 20 dB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Claims (7)

1. Verfahren zur weitgehenden Beseitigung der Störung zwischen einem ersten (Ss) und einem zweiten (SA), gleichzeitig in einem ersten bzw. einem zweiten Antennenstrahl (14, 12) ausgesendeten Signal, wobei das erste und das zweite Signal unterschiedlichen Informationsgehalt besitzen, das gleiche Frequenzspektrum benutzen und sich im Bereich (16) eines Empfängers gegenseitig überlappen, der nur die ersten Signale emfangen soll, gekennzeichnet durch den Verfahrensschritt: beim Sender wird (a) ein vorbestimmter Teil des zweiten, im zweiten Strahl (12) auszusenden Signals (SA) in das durch den ersten Strahl (14) auszusendende Signal (Ss) eingekoppelt, wobei der vobestimmte Teil des eingekoppelten Signals eine Amplitude und eine Phase besitzt, derart, daß nach Übertragung zum Empfänger im ersten Strahl des im zweiten Strahl beim Empfänger eintreffende zweite Signal im wesentlichen ausgelöscht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vor dem Verfahrensschritt (a) die folgenden Verfahrensschritte ausgeführt werden:
(b) Bereitstellen einer Signalkapazität für den zweiten Strahl, die kleiner als die Signalkapazität für den ersten Strahl ist; und
(c) Modulieren des Signals des zweiten Strahls derart, daß sein Leistungsspektrum in zwei Teile unterteilt wird, wobei jeder Teil innerhalb des Frequenzspektrums des ersten Strahls und in der Nähe von getrennten Grenzen dieses Frequenzspektrums liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der erste Strahl ein Punktdeckungsstrahl (14a, 14b, 14c) und der zweite Strahl ein Bereichsdeckungsstrahl (12) ist.
4. Sender zur Durchführung des Verfahrens nach Anspruch 1, gekennzeichnet durch: eine erste Antenne (15), die in der Lage ist, den ersten Strahl (14) mit einem vorbestimmten Strahlungsdiagramm (Es(θ)) in Richtung zu dem Empfänger auszusenden, der nur die ersten Signale empfangen soll; eine zweite Antenne (13), die in der Lage ist, den zweiten Strahl mit einem vorbestimmten Strahlungsdiagramm (EA(θ)) auszusenden, das das Strahlungsdiagramm des ersten Strahls im Bereich des Empfängers, der nur die ersten Signale empfangen soll, überlappt; eine erste Übertragungsleitung (21 a, 21 b, 21 c), die das im ersten Strahl auszusendende Signal zur ersten Antenne führen kann; eine zweite Übertragungsleitung (21d), die das im zweiten Strahl auszusendende Signal zur zweiten Antenne fuhren kann; einen Koppler (22), der zwischen der ersten und der zweiten Übertragungsleitung angeordnet und so ausgelegt ist, daß er einen vorbestimmten Teil des zweiten, sich auf der zweiten Übertragungsleitung ausbreitenden Signals in die erste Übertragungsleitung zur Aussendung im ersten Strahl einkoppelt, wobei der vorbestimmte Teil des in die erste Übertragungsleitung eingekoppelten zweiten Signals eine Amplitude und Phase besitzt, derart, daß das zweite Signal, das im zweiten, beim Empfänger eintreffenden Strahl ausgesendet wird, im wesentlichen ausgelöscht wird.
5. Sender nach Anspruch 4, dadurch gekennzeichnet, daß der Koppler (22) ein Richtungskoppler (22a, 22b, 22c) mit einem vorbestimmten negativen Koppelkoeffizienten ist.
6. Sender nach Anspruch 5, dadurch gekennzeichnet, daß der vorbestimmte negative Koppelkoeffizient einen Wert besitzt, der annähernd zwischen dem einfachen und dem doppelten Wert des Faktors
Figure imgb0011
liegt, wobei Es(O) und EA(0) die Stärke der Felder entlang der Achse des ersten bzw. zweiten Antennenstrahls (14, 12) ist.
7. Sender nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, daß der zweite Strahl (12) eine Kapazität besitzt, die kleiner als die Signalkapazität des ersten Strahls (14) ist, und daß der Sender einen Modulator aufweist, der in der Lage ist, den zweiten Strahl so zu modulieren, daß sein Leistungsspektrum in zwei Teile unterteilt wird, wobei jeder Teil innerhalb des Frequenzspektrums des ersten Strahls und in der Nähe getrennter Grenzen dieses Frequenzspektrums liegt.
EP78100062A 1977-06-03 1978-06-01 Verfahren und Anordnung für die Beseitigung von Interferenzen zwischen dem Strahlungsbündel einer Flächenausleuchtungsantenne und den Strahlungsbündeln stark gerichteter Antennen Expired EP0000038B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US803151 1977-06-03
US05/803,151 US4145658A (en) 1977-06-03 1977-06-03 Method and apparatus for cancelling interference between area coverage and spot coverage antenna beams

Publications (2)

Publication Number Publication Date
EP0000038A1 EP0000038A1 (de) 1978-12-20
EP0000038B1 true EP0000038B1 (de) 1981-10-14

Family

ID=25185701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100062A Expired EP0000038B1 (de) 1977-06-03 1978-06-01 Verfahren und Anordnung für die Beseitigung von Interferenzen zwischen dem Strahlungsbündel einer Flächenausleuchtungsantenne und den Strahlungsbündeln stark gerichteter Antennen

Country Status (5)

Country Link
US (1) US4145658A (de)
EP (1) EP0000038B1 (de)
JP (1) JPS542613A (de)
CA (1) CA1105091A (de)
DE (1) DE2861149D1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379398A (en) * 1980-06-12 1983-04-12 Kabushiki Kaisha Kobe Seiko Sho Pull-back type indirect extrusion press
US4450582A (en) * 1981-09-14 1984-05-22 Vitalink Communications Corporation Method and apparatus for increasing the capacity of a satellite transponder by reuse of bandwidth
JPH067836A (ja) * 1984-08-22 1994-01-18 Richard J Blanyer 複合線材及び複合ケーブル並びにそれらの製造方法
US4827268A (en) * 1986-08-14 1989-05-02 Hughes Aircraft Company Beam-forming network
US4823341A (en) * 1986-08-14 1989-04-18 Hughes Aircraft Company Satellite communications system having frequency addressable high gain downlink beams
DE3644176A1 (de) * 1986-12-23 1988-07-14 Messerschmitt Boelkow Blohm Verfahren zur uebertragung von daten mittels eines geostationaeren satelliten und wenigstens eines subsatelliten
US4862721A (en) * 1988-02-16 1989-09-05 Hydramet American, Inc. Multiple cylinder extrusion apparatus and method
US5239668A (en) * 1989-11-06 1993-08-24 Motorola, Inc. Satellite signalling system
JPH05501489A (ja) * 1989-11-06 1993-03-18 モトローラ・インコーポレイテッド 可変ビーム面積を有する信号ビームを備えた衛星信号システム
US5121503A (en) * 1989-11-06 1992-06-09 Motorola, Inc. Satellite signaling system having a signal beam with a variable beam area
ATE160068T1 (de) * 1989-12-14 1997-11-15 Motorola Inc Satellitengebundenes personenrufmeldesystem mit rückquittierung
US5268694A (en) * 1992-07-06 1993-12-07 Motorola, Inc. Communication system employing spectrum reuse on a spherical surface
US5642358A (en) * 1994-04-08 1997-06-24 Ericsson Inc. Multiple beamwidth phased array
TW274170B (en) * 1994-06-17 1996-04-11 Terrastar Inc Satellite communication system, receiving antenna & components for use therein
US5745084A (en) * 1994-06-17 1998-04-28 Lusignan; Bruce B. Very small aperture terminal & antenna for use therein
US5678442A (en) * 1995-06-27 1997-10-21 Ube Industries, Ltd. Extruder
AU709791B2 (en) * 1995-12-07 1999-09-09 Skywave Mobile Communications Inc. Method of improving efficiency of radio channel usage in overlapping coverage areas
US6434384B1 (en) * 1997-10-17 2002-08-13 The Boeing Company Non-uniform multi-beam satellite communications system and method
US6711398B1 (en) * 2000-04-19 2004-03-23 Hughes Electronics Corporation Radio signal broadcast system and method
US7366463B1 (en) * 2000-05-05 2008-04-29 The Directv Group, Inc. Military UHF and commercial Geo-mobile system combination for radio signal relay
US6642883B2 (en) * 2001-08-30 2003-11-04 Lockheed Martin Corporation Multi-beam antenna with interference cancellation network
US20110148706A1 (en) * 2009-12-18 2011-06-23 Electronics And Telecommunications Research Institute Antenna with controlled sidelobe characteristics
US9042809B2 (en) 2013-03-19 2015-05-26 Delphi Technologies, Inc. Satellite communication having distinct low priority information broadcast into adjacent sub-regions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2520184A (en) * 1941-11-08 1950-08-29 Int Standard Electric Corp Electrical wave signaling system
US3094695A (en) * 1960-03-23 1963-06-18 Sperry Rand Corp Antenna side lobe suppression system
GB1056352A (en) * 1963-07-29 1967-01-25 Marconi Co Ltd Improvements in or relating to aerial systems
US3369235A (en) * 1966-02-08 1968-02-13 Gorham Corp Directionally selective energy receiving system
USRE27478E (en) 1966-08-05 1972-09-19 Prior art
US3406401A (en) * 1966-08-25 1968-10-15 Bell Telephone Labor Inc Communication satellite system
US3511936A (en) * 1967-05-26 1970-05-12 Bell Telephone Labor Inc Multiply orthogonal system for transmitting data signals through frequency overlapping channels
US3541553A (en) * 1968-03-27 1970-11-17 Rca Corp Satellite communications systems
US3710255A (en) * 1969-03-21 1973-01-09 Raytheon Co Satellite communication system
US3711855A (en) * 1969-10-15 1973-01-16 Communications Satellite Corp Satellite on-board switching utilizing space-division and spot beam antennas
US3673497A (en) * 1970-10-28 1972-06-27 Peter V Gureckis Underground radio communication system for roadways
US3696429A (en) * 1971-05-24 1972-10-03 Cutler Hammer Inc Signal cancellation system
US3987444A (en) * 1974-08-12 1976-10-19 Hazeltine Corporation Interference rejection system for multi-beam antenna having single control loop

Also Published As

Publication number Publication date
JPS542613A (en) 1979-01-10
EP0000038A1 (de) 1978-12-20
US4145658A (en) 1979-03-20
DE2861149D1 (en) 1981-12-24
CA1105091A (en) 1981-07-14

Similar Documents

Publication Publication Date Title
EP0000038B1 (de) Verfahren und Anordnung für die Beseitigung von Interferenzen zwischen dem Strahlungsbündel einer Flächenausleuchtungsantenne und den Strahlungsbündeln stark gerichteter Antennen
EP0818059B1 (de) Breite antennekeule
US6304762B1 (en) Point to multipoint communication system with subsectored upstream antennas
US20100046421A1 (en) Multibeam Antenna System
EA000444B1 (ru) Способ многофункциональной интерактивной связи с передачей и приёмом сигналов с круговой/эллиптической поляризацией и система для его реализации
WO2007084389A2 (en) Satellite ground station to receive signals with different polarization modes
US6404385B1 (en) Telecommunication system antenna and method for transmitting and receiving using the antenna
CN112290989A (zh) 一种星地通信的方法及装置
JPH0728175B2 (ja) ハイブリッド通信衛星用アンテナシステム
EP1771922A2 (de) Satellitenbodenstationsantenne mit weiten weitem sichtfeld und nulling-muster
CN113573318B (zh) 频谱使用方法、系统、天线和网络设备
US6374104B1 (en) Frequency and polarization allocation for satellite telecommunication systems
CN117178526A (zh) 无源互调干扰优化的天线配置
US10355772B2 (en) Combined satellite and terrestrial communication system for terminals located on a vehicle such as an aircraft using a common set of frequencies
EP1900112B1 (de) Punkt-zu-punkt-telekommunikationssystem
US4535476A (en) Offset geometry, interference canceling receiver
JPS59161940A (ja) 衛星通信における送信電力制御方式
JPH0576213B2 (de)
JP3634047B2 (ja) 移動体sng用グレーティングローブキャンセルアンテナ
Patan et al. A Research Perspective Review on Microwave Communications-The Fundamentals, Techniques, and Technologies Uniting the Wireless World
US20180375569A1 (en) Method of telecommunication in a system with multi-spot geographical coverage, corresponding terrestrial station and relay device
JPH0126212B2 (de)
Corazza et al. System and technological aspects for EHF satellite cellular communications
JPS6292630A (ja) 移動通信における無線ゾ−ン構成方式
Tani A Broadband Satellite Communication Technology for a Safe and Secure Society

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 2861149

Country of ref document: DE

Date of ref document: 19811224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19831231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840503

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850630

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19860630

BERE Be: lapsed

Owner name: WESTERN ELECTRIC CY INC.

Effective date: 19860630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870303

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

EUG Se: european patent has lapsed

Ref document number: 78100062.5

Effective date: 19860728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT