EA201700229A1 - METHOD OF APPLYING A GAS THERMAL COATING - Google Patents

METHOD OF APPLYING A GAS THERMAL COATING

Info

Publication number
EA201700229A1
EA201700229A1 EA201700229A EA201700229A EA201700229A1 EA 201700229 A1 EA201700229 A1 EA 201700229A1 EA 201700229 A EA201700229 A EA 201700229A EA 201700229 A EA201700229 A EA 201700229A EA 201700229 A1 EA201700229 A1 EA 201700229A1
Authority
EA
Eurasian Patent Office
Prior art keywords
oxide
powder
alloy
nickel
ceramics
Prior art date
Application number
EA201700229A
Other languages
Russian (ru)
Other versions
EA031995B1 (en
Inventor
Вячеслав Александрович Оковитый
Федор Иванович Пантелеенко
Василий Вячеславович Оковитый
Валентин Миронович Асташинский
Original Assignee
Белорусский Национальный Технический Университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Белорусский Национальный Технический Университет filed Critical Белорусский Национальный Технический Университет
Priority to EA201700229A priority Critical patent/EA031995B1/en
Publication of EA201700229A1 publication Critical patent/EA201700229A1/en
Publication of EA031995B1 publication Critical patent/EA031995B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к нанесению покрытий газотермическим методом, в частности к многослойным покрытиям для тепловой и коррозионной защиты, которые могут быть использованы для нанесения теплозащитных покрытий теплонагруженных деталей двигателей. Техническая задача, решаемая изобретением - повышение коррозионной стойкости к высокотемпературной (при температурах превышающих 1200°С) солевой коррозии и коррозии в продуктах сгорания топлива, содержащего серу, улучшение стабильности структуры при длительных сроках службы под нагружением, увеличение пластичности и удешевление процесса получения покрытия, из-за использования в качестве керамического материала оксида гафния-диоксида циркония, частично стабилизированного оксидом иттрия, и в качестве жаростойкого подслоя - сплава на основе никеля, в качестве основного оксида используют композицию оксид гафния-диоксид циркония, в качестве сплава на основе никеля - сплав, включающий 20,0 мас.% кобальта; 25,0 мас.% хрома; 6,0 мас.% алюминия; 0,3 мас.% иттрия и 2,0 мас.% тантала. Поставленная цель достигается тем, что в способе нанесения газотермического покрытия, включающем напыление в вакууме подслоя из порошка никелевого сплава и первых двух промежуточных слоев из порошка никелевого сплава и порошка керамики, состоящего из основного и стабилизирующего оксидов, напыление на воздухе с интенсивным охлаждением третьего промежуточного слоя из порошка никелевого сплава и порошка керамики и керамического слоя из порошка, состоящего из основного и стабилизирующего оксида иттрия, при этом напыление промежуточных слоев осуществляют таким образом, что они имеют градиентное соотношение керамики и никелевого сплава: первый слой содержит 20 мас.% керамики, второй слой - 50 мас.% керамики, третий слой - 80 мас.% керамики, а градиентное соотношение керамики и никелевого сплава в промежуточных слоях создают путем одновременной подачи на срез плазмотрона из одного дозатора никелевого сплава, из другого дозатора порошка керамики и регулировки режимов подачи порошков: расхода транспортирующего газа, скорости вращения тарелки, скорости вращения ворошителя, при этом каждый из пяти слоев напыляют толщиной 100 мкм, в качестве основного оксида используют композицию оксид гафния-диоксид циркония, в качестве сплава на основе никеля - сплав, включающий 20,0 мас.% кобальта; 25,0 мас.% хрома; 6,0 мас.% алюминия; 0,3 мас.% иттрия и 2,0 мас.% тантала, при этом керамический слой из композиции оксид гафния-диоксид циркония, стабилизированного оксидом иттрия наносится при силе тока 700 А, напряжении 60 В, расходе аргона 50 л/мин, расходе водорода 8 л/мин, расходе порошка 2,0 кг/ч и дистанции напыления 100 мм.The invention relates to the coating of gas-thermal method, in particular to multilayer coatings for thermal and corrosion protection, which can be used for applying heat-shielding coatings of heat-loaded engine parts. The technical problem solved by the invention is to increase the corrosion resistance to high temperature (at temperatures exceeding 1200 ° C) salt corrosion and corrosion in the combustion products of fuel containing sulfur, improving the stability of the structure during long periods of service under loading, increasing ductility and reducing the process of obtaining a coating from - due to the use of hafnium dioxide-zirconium oxide, partially stabilized with yttrium oxide, as a ceramic material, and as a heat-resistant sublayer - an alloy on the axis nove nickel, as the main oxide, the composition is hafnium oxide-zirconium oxide, as an alloy based on nickel - an alloy comprising 20.0 wt.% cobalt; 25.0 wt.% Chromium; 6.0 wt.% Aluminum; 0.3 wt.% Yttrium and 2.0 wt.% Tantalum. This goal is achieved by the fact that in the method of applying a gas-thermal coating, which includes sputtering in vacuum a sublayer of nickel alloy powder and the first two intermediate layers of nickel alloy powder and ceramic powder consisting of basic and stabilizing oxides, sputtering in air with intensive cooling of the third intermediate layer from a powder of nickel alloy and ceramic powder and a ceramic layer of powder consisting of a basic and stabilizing yttrium oxide, while sputtering intermediate Loya carry out in such a way that they have a gradient ratio of ceramics and nickel alloy: the first layer contains 20 wt.% ceramics, the second layer - 50 wt.% ceramics, the third layer - 80 wt.% ceramics, and the gradient ratio of ceramics and nickel alloy in intermediate layers are created by simultaneously feeding a plasma torch from a single nickel alloy dosing unit, from another ceramic powder dosing unit and adjusting the powder supply modes: the flow rate of carrier gas, the speed of rotation of the tray, the speed of rotation of the agitator, at fl ohm each of the five layers is sprayed with a thickness of 100 μm, hafnium oxide – zirconium oxide is used as the basic oxide, and as an alloy based on nickel, an alloy comprising 20.0% by weight of cobalt; 25.0 wt.% Chromium; 6.0 wt.% Aluminum; 0.3 wt.% Yttrium and 2.0 wt.% Tantalum, while the ceramic layer of the composition of hafnium oxide-zirconium oxide stabilized with yttrium oxide is applied at a current of 700 A, voltage 60 V, flow rate of argon 50 l / min, consumption hydrogen 8 l / min, the consumption of powder 2.0 kg / h and spraying distance of 100 mm.

EA201700229A 2017-04-05 2017-04-05 Gas-thermal coating application method EA031995B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201700229A EA031995B1 (en) 2017-04-05 2017-04-05 Gas-thermal coating application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EA201700229A EA031995B1 (en) 2017-04-05 2017-04-05 Gas-thermal coating application method

Publications (2)

Publication Number Publication Date
EA201700229A1 true EA201700229A1 (en) 2018-10-31
EA031995B1 EA031995B1 (en) 2019-03-29

Family

ID=63917760

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201700229A EA031995B1 (en) 2017-04-05 2017-04-05 Gas-thermal coating application method

Country Status (1)

Country Link
EA (1) EA031995B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746196C1 (en) * 2020-06-01 2021-04-08 Общество С Ограниченной Ответственностью "Технологические Системы Защитных Покрытий" (Ооо "Тсзп") Part and assembly unit of high-pressure turbine nozzle assembly
RU2766404C1 (en) * 2021-08-05 2022-03-15 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Multi-layer heat-resistant coating on parts of heat resistant alloys

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838752B1 (en) * 2002-04-22 2005-02-25 Snecma Moteurs METHOD FOR FORMING A CERAMIC COATING ON A SUBSTRATE BY PHYSICAL PHASE DEPOSITION IN ELECTRON BEAM PHASE
CN101935818A (en) * 2010-09-09 2011-01-05 北京理工大学 Functionally gradient coating of rotor vane
RU2499078C1 (en) * 2012-07-17 2013-11-20 Открытое акционерное общество "Композит" (ОАО "Композит") Production method of erosion-resistant heat-protective coatings
RU2588956C2 (en) * 2014-05-06 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Method of treating working surfaces of gas-turbine plants

Also Published As

Publication number Publication date
EA031995B1 (en) 2019-03-29

Similar Documents

Publication Publication Date Title
Meng et al. Highly oxidation resistant and cost effective MCrAlY bond coats prepared by controlled atmosphere heat treatment
US5277936A (en) Oxide containing MCrAlY-type overlay coatings
Karaoglanli et al. Structure and durability evaluation of YSZ+ Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions
Goral et al. PS-PVD deposition of thermal barrier coatings
CA2784395C (en) An improved hybrid methodology for producing composite, multi-layered and graded coatings by plasma spraying utilizing powder and solution precursor feedstock
Daroonparvar et al. Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 C
US6447854B1 (en) Method of forming a thermal barrier coating system
Wang et al. Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability
US20120231211A1 (en) Method for the manufacture of a thermal barrier coating structure
CA2936790C (en) Thermal barrier coatings and processes
CN103924185A (en) Novel Architectures For Ultra Low Thermal Conductivity Thermal Barrier Coatings With Improved Erosion And Impact Properties
Zhang et al. Effect of pre-oxidation on the ablation resistance of ZrB2–SiC coating for SiC-coated carbon/carbon composites
RU2499078C1 (en) Production method of erosion-resistant heat-protective coatings
JP2011047049A (en) Method of depositing protective coating on turbine combustion component
US20180298776A1 (en) Turbine abradable air seal system
EA201700229A1 (en) METHOD OF APPLYING A GAS THERMAL COATING
Ni et al. Effects of surface modification on thermal cycling lifetime of thermal barrier coatings with HVOF NiCrAlY bond coat
US20030077403A1 (en) Physical vapor deposition apparatus and process
CN106011721A (en) Method for preparing multi-layer coating by adopting thermal spraying method
EP2322686B1 (en) Thermal spray method for producing vertically segmented thermal barrier coatings
JP2016500756A5 (en)
Mishra et al. Hot corrosion performance of LVOF sprayed Al 2 O 3–40% TiO 2 coating on Superni 601 and Superco 605 superalloys at 800 and 900 C
Jung et al. Effects of composition, structure design, and coating thickness of thermal barrier coatings on thermal barrier performance
Najafizadeh et al. Thermal barrier ceramic coatings
US10260141B2 (en) Method of forming a thermal barrier coating with improved adhesion

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG TJ TM RU