EA043546B1 - Способ концентрирования жидких радиоактивных отходов - Google Patents

Способ концентрирования жидких радиоактивных отходов Download PDF

Info

Publication number
EA043546B1
EA043546B1 EA202291822 EA043546B1 EA 043546 B1 EA043546 B1 EA 043546B1 EA 202291822 EA202291822 EA 202291822 EA 043546 B1 EA043546 B1 EA 043546B1
Authority
EA
Eurasian Patent Office
Prior art keywords
solution
formaldehyde
mol
formic acid
reducing agent
Prior art date
Application number
EA202291822
Other languages
English (en)
Inventor
Борис Яковлевич Зильберман
Дмитрий Викторович Рябков
Надежда Евгеньевна Мишина
Николай Алексеевич Дедов
Артем Юрьевич Николаев
Екатерина Викторовна Андреева
Ирина Владимировна Блажева
Константин Викторович Костромин
Андрей Юрьевич Шадрин
Original Assignee
Российская Федерация
От Имени Которой Выступает Государственная Корпорация По Атомной Энергии "Росатом"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, От Имени Которой Выступает Государственная Корпорация По Атомной Энергии "Росатом" filed Critical Российская Федерация
Publication of EA043546B1 publication Critical patent/EA043546B1/ru

Links

Description

Изобретение относится к области ядерно-химических, в частности радиохимических, технологий на различных стадиях ядерного топливного цикла (ЯТЦ), таких как производство очищенных ядерных материалов (уран, цирконий) или переработка отработавшего ядерного топлива атомных электростанций (ОЯТ АЭС), где используются экстракционные операции для очистки ядерных материалов.
В таких производствах, базирующихся на экстракции целевых элементов разбавленным трибутилфосфатом (ТБФ) из растворов азотной кислоты, порождается достаточно большой удельный объем азотнокислых рафинатов, требующих концентрирования упариванием с регенерацией компонентов рабочей среды и последующей локализацией отходов в твердом виде. Среди этих отходов высокоактивный рафинат первого экстракционного цикла Пурекс-процесса занимает особое место как по уровню удельной радиоактивности, так и по содержанию нитратных солей продуктов деления в тем большей мере, чем выше выгорание отработавшего ядерного топлива.
Известен способ концентрирования рафинатов, включающий упаривание высокоактивного рафината (ВАО) с отгонкой азотной кислоты, конденсацию дистиллята, его повторное упаривание для очистки от аэрозольных загрязнений радионуклидами в смеси с САО также с отгонкой азотной кислоты и ее последующей ректификацией на завершающей стадии процесса [Fuel reprocessing (Reactor Hand-book, v.2). Eds Stoller S.M., Richards R.B. Interscience Publishers. N-Y, London, Toronto, 1961, p. 179], причем выпарные операции проводят обычно в выпарном аппарате с выносной греющей камерой и естественной циркуляцией кубового раствора. Однако упаривание по этой схеме применимо без ограничений только для рафинатов аффинажных циклов, тогда как для высокоактивного рафината ограничения по концентрированию вносят присутствующие соли примесей, ограниченно растворимые в азотной кислоте при повышенной ее концентрации в кубовом растворе выпарки. В частности, при упаривании высокоактивного рафината от переработки ОЯТ АЭС (ВАО) такой примесью является тяжелый осадок нитрата бария, забивающий циркуляционную трубу. По этой причине, а также из-за присутствия больших количеств трития в ВАО от переработки ОЯТ АЭС стадии концентрирования ВАО и САО с регенерацией содержащейся в них азотной кислоты в последнее время максимально разделили.
Для повышения растворимости нитрата бария при упаривании ВАО применяются разные искусственные приемы, в частности разбавление исходного раствора дистиллятом ректификации азотной кислоты [Zilberman B.Ya., Saprykin V.F., Makarychev-Mikhailov M.N. Management of high level wastes (HLW) from nuclear power plant spent fuel reprocessing in terms of tritium localization and nitric acid regeneration. 1993'Int. Conf, on Nuclear Waste Manag. and Environ. Remediation. (Proc. Conf. Prague, 1993). Vol. 1, p. 375378. Am. Soc. Mech. Engineers, N-Y, 1993].
Применяется также проведение процесса в полунепрерывном режиме в конвективном аппарате с многоярусными змеевиками или горизонтальной греющей камерой с накоплением осадка в донной части и последующей его размывкой (распульповкой) [Warner B.F. Operational experience in the evaporation and storage of highlyactive fission-product wastes at Windscale / Management of Radioactive Wastes from Fuel Reprocessing (Proc. Symp.Paris, 1972), OECD/NEA, Paris, 1973, p. 339]. Развитием такого процесса является упаривание ВАО в аппарате типа кастрюля при обогреве через змеевик с одновременной денитрацией азотной кислоты путем введения муравьиной кислоты и ее регенерацией путем окислительной абсорбции окислов азота [Miura N., Watahiki M., Nakamura Yo. Е. et al. Operation experience and anti-foam study at the Tokai reprocessing plant. Proc. Int. Conf. GLOBAL'97 (Jap.), v. 2, p. 1238-1243]. Недостатками этого способа являются его проведение в полунепрерывном режиме с существенным накоплением кубового раствора, что обусловлено необходимостью обеспечения большой греющей поверхности с ограниченной теплопередачей через стенки кастрюли и змеевик при невозможности разместить трубчатую греющую камеру, а также необходимость инициирования процесса при каждом его рестарте путем добавления раствора нитрита натрия во избежание неконтролируемого всплеска.
Усовершенствованием этого процесса является способ с использованием на заводах UP-2 и UP-3 формальдегида вместо муравьиной кислоты [Schneider J., Bretault Ph., Masson M., Juvenelle A., Bosse E., Huel C. Highly Active Liquid Waste concentration using the formaldehyde denitration process in the French reprocessing plants. Proc. Intern. Conf. Global 2009 (Paris, France, 06-11.09.2009). CEA, 2009. Paper 9343]. Процесс не требует инициирования и обеспечивает более полное разрушение азотной кислоты. Однако, как показала проверка, процесс сопровождается частичной потерей азотной кислоты вследствие необратимого образования закиси азота, без какого-либо описания в оригинале необходимой газоочистки.
Наиболее близким к заявляемому является способ концентрирования радиоактивных отходов [Патент RU 2596816 (Бюл. 25, 2016г)], принимаемый за прототип. Этот способ заключается в неполном разрушении азотной кислоты формальдегидом в процессе непрерывного упаривания рафината в выпарном аппарате с выносной греющей камерой и циркуляцией кубового раствора при подаче водного раствора формальдегида в кубовую часть аппарата при соотношении 2 моль формальдегида на 1 моль разрушенной азотной кислоты, поступившей с питающим раствором.
Однако при использовании этого способа используются достаточно концентрированные растворы формальдегида (6,5 моль/л, то есть вдвое разбавленный формалин), что не обеспечивает пожаровзрывобезопасность радиохимического производства. Кроме того, было установлено, что при упаривании высокоактивного рафината удается без образования закиси азота понизить кислотность кубового раствора
- 1 043546 (концентрата) только до 3,8 -4 моль/л (суммарный нитрат-ион на 1,7-2 моль/л выше), что оказывается на грани кристаллизации нитрата бария.
Техническая проблема, на решение которой направлено предлагаемое изобретение, заключается в создании способа концентрирования радиоактивных отходов, позволяющего проводить процесс непрерывного упаривания отходов с разрушением азотсодержащих реагентов, при этом направленного на повышение пожаровзрывобезопасности производства.
Техническим результатом предлагаемого способа концентрирования радиоактивных отходов является сокращение использования пожаровзрывоопасного реагента в непрерывном процессе упаривания отходов процесса ввиду резкого (до 10-кратного) снижения концентрации формальдегида в восстановительной смеси и возможного продолжения процесса вообще без него с использованием раствора муравьиной кислоты.
Технический результат достигается в способе концентрирования жидких радиоактивных отходов от экстракционной переработки высоковыгоревшего ядерного топлива АЭС, включающем частичное разрушение азотной кислоты в ходе непрерывного упаривания при подаче в кубовую часть выпарного аппарата циркуляционного типа раствора, содержащего восстановитель, причем в качестве восстановителя используют смесь формальдегида и муравьиной кислоты, причем процесс осуществляют при задержке раствора в кубовой части аппарата, с подачей в нее водного раствора смеси формальдегида и муравьиной кислоты или раствора муравьиной кислоты как восстановителя через 3-5 часов после начала процесса с использованием смеси формальдегида и муравьиной кислоты.
Время задержки составляет не менее 2 часов.
При старте процесса используют раствор смеси формальдегида и муравьиной кислоты с максимальным содержанием формальдегида 6,5 моль/л, но не менее 0,65 моль/л при замещении его недостающей части муравьиной кислотой из расчета 2,2-2,7 моля муравьиной кислоты взамен 1 моль формальдегида.
Расход восстанавливающей смеси в пересчете на формальдегид составляет примерно 0,3 моля на моль азотной кислоты в упариваемом растворе РАО.
Кратность упаривания с учетом разбавления кубового раствора раствором, содержащим восстановитель лимитируется растворимостью нитрата бария при остаточном содержании азотной кислоты в кубовом растворе не ниже 2,5 моль/л и концентрации нитрат-иона не менее 4 моль/л, создаваемой азотной кислотой и солями продуктов деления, содержащихся в высокоактивном рафинате от экстракционной переработки.
Раствор, содержащий восстановитель, содержит воду в концентрации не менее 0,35 кг/л раствора.
Указанные действия позволяют подобрать режим, в котором при упаривании модельного высокоактивного рафината с заданной степенью концентрирования (удельный объем кубового раствора не более 0,4 м3/т ОЯТ) не выпадает нитрат бария и не выделяется закись азота. При этом повышается пожаровзрывобезопасность процесса ввиду резкого (до 10-кратного) снижения концентрации формальдегида в восстановительной смеси и возможного продолжения процесса вообще без него.
Сказанное выше можно подтвердить примерами, полученными при упаривании модельных растворов на стендовой установке, схема которой отображена на фигуре. Установка содержит: 1 - весовой дозатор исходного раствора, 2 - весовой дозатор формальдегида, 3 - выпарной аппарат, 4 - парогенератор, 5 конденсатор, 6- весовая емкость приема кубового раствора, 7 - буферная емкость приема дистиллата, 8 и 9 - ЛАТР, 10 - трансформатор, 11 - предохранитель, 12 - манометр, 13 - вентиль регулирования слива конденсата греющего пара, 14 - аварийный клапан, 15 - абсорбер, 16 - весовой дозатор флегмы в абсорбер, 17 - емкость сбора регенерированной азотной кислоты, 18 - электромагнитный клапан вывода кубового раствора, 19 - вентиль сброса пара в атмосферу, 20 - греющая камера выпарного аппарата, 21 - сепаратор выпарного аппарата.
Упаривание проводится в равновесных условиях при поддержании постоянного уровня кубового раствора и в условиях отсутствия флегмообразования за счет электрообогрева сепаратора (21) выпарного аппарата (3). Установка снабжена автоматизированной системой управления.
Исходный раствор, содержащий 2,6 моль/л HNO3, подается в нижнюю часть циркуляционной трубы, а раствор формальдегида и/или муравьиной кислоты - под зеркало кубового раствора выше уровня его регулируемого отбора. Рабочий объем кубового раствора 160 мл.
Установка работает следующим образом:
После набора требуемого давления в парогенераторе (4), выпарной аппарат (3) заполняется подушкой (раствором предполагаемой равновесной концентрации кубового раствора). После того как раствор в выпарном аппарате (3) закипит, начинается дозировка исходного раствора и реагентов. Подача исходного раствора и денитрирующего реагента ведётся под зеркало раствора выпарного аппарата (3) с помощью весовых дозаторов (1) и (2). Для улавливания окислов азота, с помощью весового дозатора (16), ведётся подача флегмы в верхнюю часть абсорбера (15) на спиральную насыпную насадку. Под насадку в абсорбер подаётся воздух. Расход кубового раствора замеряется с помощью подвешенной весовой ёмкости (6) приема кубового раствора. Выдерживание заданной кратности упаривания происходит с помощью электромагнитного клапана (18). Охлаждение конденсатора (5) и абсорбера (15) ведётся про- 2 043546 точной водой.
Процесс ведётся в автоматическом режиме и управляется АСУ. Все данные о процессе выводятся на пульт оператора. На пульте оператора задаётся необходимый коэффициент упаривания, коэффициент отношения расходов реагента к исходному расходу, расход флегмы на абсорбер (15). На пульт выводятся данные о текущем расходе реагентов, уровне раствора в выпарном аппарате (3) и его плотность, давление пара в системе и текущая электрическая мощность парогенератора(4). Процесс измерения уровня раствора в выпарном аппарате (3) происходит постоянно, в реальном времени с помощью гидростатического плотномера - уровнемера. Для поддержания постоянного уровня раствора в выпарном аппарате (3) АСУ регулирует расход исходного и привязанного к нему денитрирующего реагента, а также исходя из заданной кратности упаривания автоматически задаёт расход кубового раствора. Общая производительность установки регулируется изменением подающейся на парогенератор мощности, которая задаётся вручную при помощи ЛАТРа (9).
Предлагаемый способ иллюстрируется примерами. Результаты испытаний, упоминаемые в примерах, сведены в таблицу.
Примеры.
Пример 1.
Процесс упаривания тестового раствора 2,6 моль/л азотной кислоты проводится без подачи раствора, содержащего восстановитель в описанном выше аппарате с естественной циркуляцией кубового раствора, снабженным греющей камерой с несколько уменьшенной поверхностью S^ = 0,008 м2 (вместо 0,01 м2 по нормам) с минимально возможной производительностью 0,45 л/ч до срыва циркуляции. Задержка кубового раствора в кубе выпарного аппарата 3,5 ч. Равновесная кислотность кубового раствора 7,6 моль/л, тогда как растворимость нитрата бария ограничивает ее уровнем 4,8 моль/л.
Пример 2.
Процесс проводится по прототипу в том же выпарном аппарате с производительностью 0,66 л/ч при подаче в куб выпарного аппарата разбавленного вдвое формалина (6 моль/л формальдегида) в объемной пропорции 0,085 к исходному раствору. При подаче неразбавленного формалина или при работе с меньшей производительностью процесс протекает нестабильно (эпизодическое захлебывание, улетучивание части формальдегида и/или вспенивание кубового раствора при отборе, потери азотной кислоты). Задержка кубового раствора с учетом разбавления раствором, содержащим восстановитель составляет около 1,3 ч. В испытуемом режиме достигается эффект денитрации с получением в непрерывном режиме кубового раствора с кислотностью 4,2 моль/л, однако суммарные потери азотной кислоты составляют около 15% вследствие частичного образования неабсорбируемой закиси азота.
Пример 3.
Процесс проводится по прототипу с производительностью 0,35 л/ч и кратностью упаривания 8 в том же выпарном аппарате после замены греющей камеры на нестандартную с греющей поверхностью Sгp = 0,003 м2 при подаче раствора, содержащего восстановитель 6,5 моль/л формальдегида с относительным расходом 0,1. Задержка кубового раствора с учетом разбавления восстановителя составляет около 2,3 ч. В режиме упаривания с денитрацией в непрерывном режиме достигается получение кубового раствора с кислотностью 4,2 моль/л при отсутствии потерь азотной кислоты.
Пример 4.
В аналогичном примеру 3 режиме при производительности 0,22 л/ч в том же выпарном аппарате, при относительном расходе того же восстановителя 0,12 и кратности упаривания ~11 (задержка кубового раствора 3,5 ч) достигается кислотность кубового раствора 2,7 моль/л HNO3 при ее потерях 15%.
Пример 5.
Процесс проводится по заявляемому способу в аналогичном примеру 4 режиме при замене половины формальдегида полуторакратным количеством муравьиной кислоты при задержке кубового раствора около 4 ч. При этом достигается конечная кислотность кубового раствора 4,35 моль/л при полном балансе по азотной кислоте.
Пример 6.
В аналогичном примеру 5 режиме процесс проводится при замене 70% формальдегида двукратным мольным количеством муравьиной кислотой при задержке кубового раствора около 4 ч; при этом достигается конечная кислотность кубового раствора 4,15 моль/л при практически полном балансе по азотной кислоте.
Пример 7.
В аналогичном примеру 6 режиме процесс проводится при замене трех четвертей формальдегида муравьиной кислотой в соотношении 2,75 при задержке кубового раствора около 4 ч; при этом достигается конечная кислотность кубового раствора 3,45 моль/л при неполном балансе по азотной кислоте, равном 92%.
Пример 8.
В аналогичном примеру 7 режиме процесс проводится при замене 90% формальдегида муравьиной кислотой в соотношении 2,2:1 при задержке кубового раствора около 4 ч; при этом достигается конечная кислотность кубового раствора 3,6 моль/л при полном балансе по азотной кислоте, равном 102%.
- 3 043546
Пример 9.
Процесс начинают в аналогичном примеру 7 режиме и после выхода на стационарные условия переходят на раствор, содержащий восстановитель 17,5 моль/л муравьиной кислоты (моногидрат) без примеси формальдегида с замещением формальдегида в соотношении 2,7:1. При этом в первой части процесса воспроизводятся показатели примера 7 в пределах точности эксперимента (~ 2-3%), а на втором этапе обеспечивается кислотность кубового раствора 3,2 моль/л при полном (100%) балансе по азотной кислоте.
Попытки использовать неразбавленную муравьиную кислоту приводили к нестабильности процесса (затухание и всплески, пенообразование и т.п.).
Пример 10.
Процесс проводят на растворе имитатора высокоактивного рафината от переработки ОЯТ быстрого реактора при выгорании 100 ГВт*сут/ т, имеющего состав: 2,65 моль/л HNO3, 99 мг/л Fe, 188 мг/л Ni, 9,2 г/л La и 200 мг/л Ba. В куб аппарата при пуске заливали подушку, содержащую 10-кратные концентрации металлов и 4 моль/л HNO3. При этом подавали раствор, содержащий восстановитель состава 2 моль/л формальдегида + 9 моль/л муравьиной кислоты с получением кубового раствора, содержащего 3,1 моль/л HNO3, что обусловлено не только действием восстановителя, но и высаливающим действием солей упомянутых нитратных солей. Баланс по азоту сходится практически полностью (97%).
Пример 11.
Процесс проводят в две стадии, как и в примере 9, но на растворе имитатора высокоактивного рафината. При этом начинают процесс как в примере 10, то есть, подавая раствор, содержащий восстановитель состава 2 моль/л формальдегида + 9 моль/л муравьиной кислоты, а продолжают при подаче 17, 5 моль/л муравьиной кислоты. Режим первой стадии достаточно хорошо воспроизводится; в ходе второй стадии достигается разложение азотной кислоты до концентрации 2,5 моль/л, и при этом не наблюдается признаков образования закиси азота. Кислотный баланс второй стадии сходится на 97 на фоне баланса потоков 98%.
Пример 12.
Процесс проводят на растворе имитатора высокоактивного рафината. При этом подавали восстановитель состава 0,65 моль/л формальдегида +13 моль/л муравьиной кислоты с получением кубового раствора, содержащего 2,65 моль/л HNO3. При столь глубоком восстановлении процесс оказался нестабильным (затухания, всплески, нестабильность уровня и т.п.), а баланс по азоту свелся на 86%.
Примеры непрерывного упаривания имитатора ВАО с денитрацией (исходный раствор содержит 2,6 моль/л HNO3)
№ при мера Srp., м2 Расход исход. Р-Ра л/ч Н2СО+Н2СОО Кубовый раствор Дистиллат Флегма абсорбера Абсорбция HNO3, % по балансу Баланс HNO3 % Баланс расходов, %
Расход, л/ч Конц, моль/л Расход, л/ч HNO3 моль/л ΣΝΟ3 моль/ л Расход, л/ч HNO3 моль/л Расход, л/ч HNO3 моль/л
1 0,008 0,44 0 - 0,045 7,6 7,6 0,40 2,0 0 - - 101 100
2 0,008 0,69 0,061 6,0 + 0 0,065 4,2 4,2 0,70 1,38 0,2 1,45 17 85 102
3 0,003 0,349 0,0352 6,5 + 0 0,042 4,2 4,2 0,345 1,4 0,12 2,0 26,5 99 103
4 » 0,215 0,0267 6,5 + 0 0,0202 2,7 2,7 0,217 1,52 0,13 0,94 24 87 98
5 » 0,172 0,0192 3,25 + 5 0,0176 4,35 4,35 0,165 1,7 0,120 0,70 19 99 97
6 » 0,181 0,0225 2,0 +9 0,0182 4,15 4,15 0,0182 4,15 0,15 0,75 24 98 102
7 » 0,190 0,0232 1,63+13 0,0202 3,45 3,45 0,197 1,46 0,12 0,82 19 92 102
8 » 0,206 0,0264 0,65 + 16 0,0202 3,6 3,6 0,209 1,58 0,15 0,88 25 102 99
Q 0,173 0,0226 0,65 + 16 0,0175 3,3 3,3 0,173 1,33 0,15 0,91 30 97 98
У » 0,190 0,0238 0+17,5 0,0187 3,2 3,1 0,198 1,34 0,146 1,13 34 100 101
10* » 0,194 0,0240 2,0 + 9 0,0189 3,1 5,1 0,206 1,5 0,15 0,7 21 97 103
1 1 0,180 0,0220 2,0 + 9 0,0182 2,9 5,0 0,181 1,5 0,154 0,675 22 92 99
11 » 0,197 0,0246 0+17,5 0,0190 2,5 4,5 0,192 1,46 0,150 0,98 30 97 98
12* » 0,202 0,0241 0,65+ 13 0,0193 2,65 4,65 0,206 1,37 0,147 0,78 Нестабильный, процесс
* - опыт на имитаторе ВАО, состав имитатора приведен в примере 10.
Как показывают примеры, оптимальный результат в ходе упаривания ВАО от переработки ОЯТ АЭС достигается при реализации двустадийного процесса, где на его старте после технической остановки первоначально в модельный или сохраненный кубовый раствор одновременно дозируют питание (ВАО) и водный раствор смеси формальдегида (взятого в виде формалина) и муравьиной кислоты, а после выхода на стационарный режим переходят на использование раствора муравьиной кислоты, причем концентрации реагентов подбирают в заявляемых пределах применительно к конкретной установке в период пусконаладочных работ. Это позволяет обеспечить концентрацию азотной кислоты в кубовом растворе на уровне 3,5 моль/л и ниже при удельном объеме кубового раствора 0,4 м3/т ОЯТ с выгоранием 100 ГВт*сут/т и более, исключив кристаллизацию нитрата бария и образования заметных количеств закиси азота, препятствующих эффективной газоочистке.

Claims (6)

1. Способ концентрирования жидких радиоактивных отходов от экстракционной переработки высоковыгоревшего ядерного топлива АЭС, включающий частичное разрушение азотной кислоты в ходе непрерывного упаривания при подаче в кубовую часть выпарного аппарата циркуляционного типа раствора, содержащего восстановитель, отличающийся тем, что в качестве восстановителя используют смесь формальдегида и муравьиной кислоты, причем процесс осуществляют при задержке раствора в кубовой части аппарата, с подачей в нее водного раствора смеси формальдегида и муравьиной кислоты или раствора муравьиной кислоты как восстановителя через 3-5 часов после начала процесса с использованием смеси формальдегида и муравьиной кислоты.
2. Способ по п.1, отличающийся тем, что время задержки составляет не менее 2 часов.
3. Способ по п.1 или 2, отличающийся тем, что при старте процесса используют раствор смеси формальдегида и муравьиной кислоты с максимальным содержанием формальдегида 6,5 моль/л, но не менее 0,65 моль/л при замещении его недостающей части муравьиной кислотой из расчета 2,2 - 2,7 моля муравьиной кислоты взамен 1 моль формальдегида.
4. Способ по п.1 или 3, отличающийся тем, что расход восстанавливающей смеси в пересчете на формальдегид составляет примерно 0,3 моля на моль азотной кислоты в упариваемом растворе РАО.
5. Способ по п.1 или 2, отличающийся тем, что кратность упаривания с учетом разбавления кубового раствора раствором, содержащим восстановитель лимитируется растворимостью нитрата бария при остаточном содержании азотной кислоты в кубовом растворе не ниже 2,5 моль/л и концентрации нитратиона не менее 4 моль/л, создаваемой азотной кислотой и солями продуктов деления, содержащихся в высокоактивном рафинате от экстракционной переработки.
6. Способ по п.1 или 2, отличающийся тем, что раствор, содержащий восстановитель, содержит воду в концентрации не менее 0,35 кг/л раствора.
EA202291822 2019-12-11 2020-10-01 Способ концентрирования жидких радиоактивных отходов EA043546B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019141171 2019-12-11

Publications (1)

Publication Number Publication Date
EA043546B1 true EA043546B1 (ru) 2023-05-31

Family

ID=

Similar Documents

Publication Publication Date Title
US4056482A (en) Method for preparing aqueous, radioactive waste solutions from nuclear plants for solidification
US4269706A (en) Method of decontaminating radioactive process waste waters
US10762997B2 (en) Decontamination method reducing radioactive waste
RU2726224C1 (ru) Способ концентрирования жидких радиоактивных отходов
RU2596816C1 (ru) Способ концентрирования радиоактивных отходов
EA043546B1 (ru) Способ концентрирования жидких радиоактивных отходов
JP6649310B2 (ja) 水処理システム及び作業媒体
JPH0476079B2 (ru)
US4246238A (en) Dissolver for removing nuclear fuel materials from fuel element segments
JPH05100070A (ja) 原子炉制御系及びホウ酸濃度制御方法
RU96117527A (ru) Способ и устройство для растворения смеси оксидов урана и плутония
EP0259747A2 (en) Continuous dissolution method and apparatus for spent nuclear fuel
ES2797977T3 (es) Procedimiento para el tratamiento de aguas residuales de la descontaminación de una superficie metálica, aparato de tratamiento de aguas residuales, y uso del aparato de tratamiento de aguas residuales
GB2110868A (en) Dissolution of solids such as solid nuclear reactor fuels
Takahashi et al. Modeling on evaporation characteristics of a reprocessing plant high-level liquid waste concentrator
RU2307072C2 (ru) Способ производства стронция-90 без носителя с использованием ядерного водно-растворного реактора и устройство для реализации способа
JPH0776799B2 (ja) ルテニウム含有硝酸溶液の蒸発処理方法及びその装置
Miquel et al. First experiments on the reprocessing of fast reactor fuels in France
CA1056517A (en) Augmented alkalinity for water-cooled nuclear reactors
Schneider STATUS OF TECHNOLOGY IN THE UNITED STATES FOR SOLIDIFICATION OF HIGHLY RADIOACTIVE LIQUID WASTES.
CN106178626A (zh) 一种固液水力离心分离装置及酸洗废酸再利用系统
JP6001926B2 (ja) 亜鉛注入方法及び亜鉛注入装置
Buck et al. Chemical processes at UKAEA Works, Dounreay
Merkushkin Current radioactive waste utilization at PA'MAYAK'
CN118594266A (zh) 一种高效、经济型反渗透阻垢分散剂及其制备方法