EA039498B1 - Оптимизация передачи скважинных данных с помощью наддолотных датчиков и узлов - Google Patents

Оптимизация передачи скважинных данных с помощью наддолотных датчиков и узлов Download PDF

Info

Publication number
EA039498B1
EA039498B1 EA201990681A EA201990681A EA039498B1 EA 039498 B1 EA039498 B1 EA 039498B1 EA 201990681 A EA201990681 A EA 201990681A EA 201990681 A EA201990681 A EA 201990681A EA 039498 B1 EA039498 B1 EA 039498B1
Authority
EA
Eurasian Patent Office
Prior art keywords
telemetry
relay devices
node
signals
electromagnetic
Prior art date
Application number
EA201990681A
Other languages
English (en)
Other versions
EA201990681A1 (ru
Inventor
Патрик Р. Деркач
Аарон В. Логан
Джастин С. Логан
Цзили Лю
Дэвид А. Свицер
Роберт Харрис
Барри Дэниел Бутерновский
Кертис Уэст
Original Assignee
Эволюшн Инжиниринг Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эволюшн Инжиниринг Инк. filed Critical Эволюшн Инжиниринг Инк.
Publication of EA201990681A1 publication Critical patent/EA201990681A1/ru
Publication of EA039498B1 publication Critical patent/EA039498B1/ru

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Earth Drilling (AREA)
  • Near-Field Transmission Systems (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Данные передают на поверхностное оборудование от датчиков в местоположении в скважине возле бурового долота. Связь с поверхностным оборудованием может быть прямой или может проходить через ряд узлов. Узлы в некоторых случаях логически перенастраивают для достижения желаемых скоростей передачи данных, достижения целей управления питанием и/или компенсации вышедших из строя узлов.

Description

Предпосылки изобретения
Добыча углеводородов из подземных зон обычно предполагает бурение стволов скважин.
Скважины создают с использованием находящегося на поверхности бурового оборудования, вращающего бурильную колонну, которая в конечном итоге проходит от поверхностного оборудования до целевого пласта или подземной зоны перспективного пласта. Бурильная колонна может проходить тысячи футов или метров ниже поверхности. Нижний конец бурильной колонны содержит буровое долото, предназначенное для бурения (или удлинения) ствола скважины. По бурильной колонне обычно прокачивается промывочная жидкость, как правило, в виде бурового раствора. Промывочная жидкость охлаждает и смазывает буровое долото, а также выносит буровой шлам назад на поверхность. Также использование промывочной жидкости может способствовать регулированию забойного давления для подавления притока углеводородов из пласта в ствол скважины и их потенциального выброса на поверхность.
Компоновка низа бурильной колонны (КНБК) - это название, данное оборудованию на нижнем конце бурильной колонны. В дополнение к буровому долоту, КНБК может содержать такие элементы как устройство для управления направлением бурения (например, управляемый гидравлический забойный двигатель или роторная управляемая система); датчики для измерения свойств окружающих геологических пластов (например, датчики для использования при каротаже); датчики для измерения скважинных условий по мере прохождения бурения; одна или более систем для телеметрии данных на поверхность; стабилизаторы; утяжеленные бурильные трубы, генераторы импульсов и т.п. КНБК обычно продвигают в ствол скважины колонной металлических труб (бурильной трубой).
Современные буровые системы могут включать любые из широкого ряда механических/электронных систем в КНБК или других местах скважин. Скважинная электроника может обеспечивать любую из широкого ряда функций, включая без ограничения сбор данных, измерение свойств окружающих геологических пластов (например, каротаж), измерение скважинных условий по мере прохождения бурения, управление скважинным оборудованием, контроль состояния скважинного оборудования, применение направленного бурения, применение измерений во время бурения (ИВБ), применение каротажа во время бурения (КВБ), измерение свойств текучих сред в скважине и т.п. Скважинная электроника может содержать одну или более систем для телеметрии данных на поверхность; сбора данных посредством датчиков (например, датчиков для использования при каротаже), которые могут включать один или более датчиков вибрации, магнитометров, инклинометров, акселерометров, детекторов радиоактивных частиц, электромагнитных детекторов, акустических детекторов и др.; получения изображений; измерения потока текучих сред; определения направлений; излучения сигналов, частиц или полей для обнаружения другими устройствами, установления связи с другим скважинным оборудованием; отбора проб скважинных текучих сред и т.п.
Скважинная электроника посредством телеметрии может передавать на поверхность широкий диапазон информации. Телеметрическая информация может быть бесценной для проведения эффективных бурильных работ. Например, телеметрическая информация может быть использована бригадой буровой установки для принятия решений об управлении и наведении бурового долота для оптимизации скорости и траектории бурения на основании множества факторов, включая допустимые границы, положения существующих скважин, свойства пласта, размер и положение углеводородов и т.п. По мере необходимости бригада может производить умышленные отклонения от запланированного пути на основании информации, собранной со скважинных датчиков и переданной на поверхность телеметрией во время процесса бурения. Способность получать и передавать надежные данные из мест в скважине обеспечивает относительно более экономичное и более эффективное выполнение бурильных работ.
Передача данных на скважинные системы и от них представляет существенные трудности. Есть несколько известных телеметрических методов. Они включают передачу информации путем генерирования вибраций в скважинном флюиде (например, акустическая телеметрия или гидроимпульсная (ГИ) скважинная телеметрия) и передачу информации посредством электромагнитных сигналов, которые распространяются, по меньшей мере, частично через землю (ЭМ (электромагнитная) телеметрия). В других телеметрических методах для передачи данных на поверхность применяют бурильную колонну с проводами, оптоволоконный кабель или акустическую телеметрию по утяжеленной бурильной трубе.
Преимущества ЭМ телеметрии, в сравнении с ГИ скважинной телеметрией, включают обычно более высокие скорости передачи данных в бодах, повышенную надежность благодаря отсутствию движущихся деталей в скважине, высокую устойчивость к применению материалов для борьбы с поглощением (МБП) и применимость для бурения с продувкой воздухом/бурения с отрицательным дифференциальным давлением. ЭМ система может передавать данные без сплошного столба флюида в скважине; следовательно, она может использоваться при отсутствии протекающего бурового раствора. Это является преимущественным, когда буровая бригада добавляет новую секцию бурильной трубы, поскольку ЭМ сигнал может передавать информацию (например, информацию о направлении), когда буровая бригада до
- 1 039498 бавляет новую трубу.
Недостатки ЭМ телеметрии включают меньшую предельную глубину, несовместимость с некоторыми пластами (например, пласты с высоким содержанием солей и пласты с большими скачками удельного сопротивления) и некоторое сопротивление рынка из-за одобрения более старых проверенных методов. Кроме того, поскольку на больших расстояниях через толщи пласта происходит сильное затухание ЭМ передач, для обнаружения сигналов на поверхности требуется относительно большое количество энергии. Электрическая энергия, доступная для генерирования ЭМ сигналов, может быть обеспечена аккумуляторами или другим источником энергии, имеющим ограниченную энергоемкость.
В типичном устройстве для электромагнитной телеметрии в качестве антенны используются части бурильной колонны. Бурильная колонна может быть разделена на две проводящие секции посредством включения в бурильную колонну изолирующей вставки или соединителя (стыковочного переводника). Стыковочный переводник обычно располагается в верхней части компоновки низа бурильной колонны так, что металлическая бурильная труба в бурильной колонне выше КНБК служит как один антенный элемент, а металлические секции в КНБК служат как другой антенный элемент. Затем электромагнитные телеметрические сигналы могут быть переданы путем распространения электрических сигналов между двумя антенными элементами. Сигналы обычно включают сигналы переменного тока очень низкой частоты, приспособленные для кодирования информации для передачи на поверхность. (Более высокочастотные сигналы затухают быстрее, чем низкочастотные сигналы.) Электромагнитные сигналы могут быть обнаружены на поверхности, например, путем измерения разницы электрических потенциалов между бурильной колонной или металлической обсадной трубой, которая проходит в землю, и одним или более заземленными стержнями.
Сохраняется потребность в системах для эффективной передачи данных на скважинные электронные системы и от них.
Краткое изложение сущности изобретения
Изобретение имеет несколько аспектов. Некоторые аспекты предусматривают способы передачи данных по бурильной колонне. Другие аспекты предусматривают системы, наборы и устройства для передачи данных по бурильной колонне. Другие аспекты предусматривают способ телеметрии данных из местоположения в скважине.
Один аспект настоящего изобретения предусматривает способ передачи данных по бурильной колонне, включающий передачу первого сигнала с первого узла на основе первой настройки передачи, когда первый узел расположен на первой глубине, измерение параметра первого сигнала на втором узле, определение второй настройки передачи на основе измерения измеренного параметра первого сигнала, продвижение бурильной колонны так, чтобы второй узел находился рядом с первой глубиной, и передачу второго сигнала на второй настройке передачи со второго узла, когда второй узел расположен рядом с первой глубиной.
В некоторых вариантах осуществления указанный параметр содержит одно или несколько из интенсивности сигнала первого сигнала на втором узле, гармонической частоты первого сигнала и отношения сигнал/шум первого сигнала на втором узле.
В некоторых вариантах осуществления настройка включает одно или более из настройки частоты, настройки амплитуды и настройки коэффициента усиления. В некоторых вариантах осуществления коэффициент усиления увеличивается с глубиной.
В некоторых вариантах осуществления способ включает передачу сигналов с первого узла на первой частоте и прием сигналов на первом узле на второй частоте, причем первая частота отличается от второй частоты. Сигналы также могут быть переданы со второго узла на второй частоте, а прием сигналов на втором узле осуществляется на первой частоте.
В некоторых вариантах осуществления первую частоту отфильтровывают на приемнике первого узла. В других вариантах осуществления на первом узле отфильтровывают несколько частот, включая первую частоту. Фильтрование может включать разделение гармоник.
В некоторых вариантах осуществления сигналы передают с первого узла на первой полярности и передают сигналы со второго узла на второй полярности, причем первая полярность противоположна второй полярности.
В некоторых вариантах осуществления передача второго сигнала на второй настройке передачи включает декодирование и буферизацию первого сигнала. В некоторых вариантах осуществления передача второго сигнала на второй настройке передачи включает добавление к первому сигналу дополнительных данных. Добавление дополнительных данных к первому сигналу может включать предоставление идентификатора узла с дополнительными данными. Идентификатор узла может включать метку времени или наращиваемое значение.
В некоторых вариантах осуществления первый узел и второй узел каждый содержат электроизоляционную прокладку и электромагнитный телеметрический приемопередатчик.
В некоторых вариантах осуществления сигналы передают во втором направлении, противоположном первому направлению, в котором сигналы передают с помощью первой и второй частоты, с помощью третьей и четвертой частоты, причем первая, вторая, третья и четвертая частоты отличаются друг от
- 2 039498 друга, и первое направление противоположно второму направлению. Третья и четвертая частоты могут быть ниже, чем первая и вторая частоты.
Другой аспект настоящего изобретения предусматривает систему для передачи данных по бурильной колонне. Система может содержать первый узел, применяемый для передачи сигналов, расположенный вдоль бурильной колонны, первый узел обеспечивает связь с одним или несколькими датчиками, первый узел выполнен с возможностью передачи первого сигнала на основе первой настройки передачи, второй узел, применяемый для передачи сигналов, расположенный вдоль бурильной колонны и находящийся на расстоянии от первого узла, второй узел осуществляет связь с первым узлом, второй узел выполнен с возможностью измерения параметра первого сигнала, переданного первым узлом, когда первый узел расположен на первой глубине, и контроллер выполнен с возможностью определения второй настройки передачи на основе параметра первого сигнала, измеренного вторым узлом. Второй узел может быть выполнен с возможностью передачи второго сигнала на второй настройке передачи, когда второй узел расположен рядом со второй глубиной.
В некоторых вариантах осуществления первый узел выполнен с возможностью передачи сигналов на первой частоте и приема сигналов на второй частоте, причем первая частота отличается от второй частоты. В некоторых вариантах осуществления второй узел выполнен с возможностью передачи сигналов на второй частоте и приема сигналов на первой частоте. Первый узел может быть выполнен с возможностью отфильтровывания, по меньшей мере, первой частоты на приемнике первого узла, и/или первый узел может содержать фильтр, присоединенный для блокирования, по меньшей мере, первой частоты от достижения приемника первого узла. В фильтре может применяться разделение гармоник.
В некоторых вариантах осуществления первый узел выполнен с возможностью передачи сигналов с первой полярностью, а второй узел выполнен с возможностью передачи сигналов со второй полярностью, причем первая полярность противоположна второй полярности.
Другой аспект предусматривает способ телеметрии данных, включающий подачу бурильной колонны в ствол скважины, где ствол скважины проходит через пласты так, что диапазон электромагнитных телеметрических передач изменяется как функция глубины в скважине, передачу данных из местоположения в скважине на поверхность с помощью нескольких телеметрических ретранслирующих устройств между местоположением в скважине и поверхностью, идентификацию первого и второго несмежных телеметрических ретранслирующих устройств, так что второе из телеметрических ретранслирующих устройств находится в диапазоне электромагнитных телеметрических передач, соответствующем местоположению первого из телеметрических ретранслирующих устройств, и подавление работы одного или нескольких телеметрических ретранслирующих устройств между первым и вторым из телеметрических ретранслирующих устройств.
В некоторых вариантах осуществления способ включает продвижение бурильной колонны до уменьшения диапазона электромагнитных телеметрических передач, соответствующего положению первого из телеметрических ретранслирующих устройств, и затем активацию одного или нескольких электромагнитных телеметрических ретранслирующих устройств между первым и вторым из электромагнитных телеметрических ретранслирующих устройств.
В некоторых вариантах осуществления способ включает отслеживание диапазона электромагнитных телеметрических сигналов путем передачи электромагнитных телеметрических сигналов из передатчика на бурильной колонне и приема электромагнитных телеметрических сигналов, переданных передатчиком, на нескольких электромагнитных телеметрических ретранслирующих устройствах.
В некоторых вариантах осуществления передатчик представляет собой передатчик одного из электромагнитных телеметрических ретранслирующих устройств.
Другой аспект предусматривает способ телеметрии данных, включающий предоставление нескольких телеметрических ретранслирующих устройств в местах, разнесенных по бурильной колонне, причем каждое из телеметрических ретранслирующих устройств содержит приемник электромагнитных телеметрических сигналов и передатчик электромагнитных телеметрических сигналов, перемещение бурильной колонны в стволе скважины, идентификацию первой области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются более сильно, и второй области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются менее сильно, передачу данных вверх по бурильной колонне путем последовательной ретрансляции данных с помощью электромагнитной телеметрии от одного из ретранслирующих устройств на другое и автоматическое подавление работы некоторых из телеметрических ретранслирующих устройств, пока эти телеметрические ретранслирующие устройства находятся во второй области.
Дополнительные аспекты настоящего изобретения и признаки иллюстративных вариантов осуществления представлены на прилагаемых графических материалах и/или описаны в последующем описании.
Краткое описание графических материалов
На прилагаемых графических материалах представлены неограничительные иллюстративные варианты осуществления настоящего изобретения.
На фиг. 1 представлен схематический вид выполнения бурильных работ.
- 3 039498
На фиг. 2 представлен схематический вид нижнего конца бурильной колонны.
На фиг. 3 представлена блок-схема узла для сети передачи скважинных данных.
На фиг. 4A-D представлены схематические виды, показывающие разные варианты для передачи данных на поверхностное оборудование.
На фиг. 5 представлен схематический вид секции бурильной колонны, имеющей несколько ЭМ телеметрических узлов.
На фиг. 6 представлена блок-схема, показывающая несколько узлов, принимающих и передающих данные.
Описание
По всему тексту последующего описания изложена подробная информация, чтобы обеспечить специалистам в данной области техники более полное понимание. Однако хорошо известные элементы могут быть не показаны или не описаны подробно во избежание ненужного затруднения описания изобретения. Последующее описание примеров технологии не предназначено быть исчерпывающим или ограничивающим систему точными формами любого приведенного в качестве примера варианта осуществления. Соответственно описание и графические материалы следует рассматривать в иллюстративном, а не в ограничительном смысле.
На фиг. 1 схематически представлены иллюстративные бурильные работы. Буровая установка 10 приводит в движение бурильную колонну 12, содержащую секции бурильной трубы, проходящие до бурового долота 14. Проиллюстрированная буровая установка 10 содержит буровую вышку 10А, пол 10В буровой установки и буровую лебедку 10C для поддержки бурильной колонны. Буровое долото 14 имеет больший диаметр, чем бурильная колонна над буровым долотом. Кольцевое пространство 15, окружающее бурильную колонну, обычно заполнено промывочной жидкостью. Буровой раствор закачивается через отверстие в бурильной колонне до бурового долота и возвращается на поверхность через кольцевое пространство 15, вынося буровой шлам от бурильных работ. По мере бурения скважины в стволе скважины может быть создана обсадная колонна 16. На верхнем конце обсадной колонны установлен противовыбросовый превентор 17. Буровая установка, представленная на фиг. 1, является лишь примером. Способы и устройство, описанные в настоящем документе, не являются характерными для любого конкретного типа буровой установки.
Один аспект настоящего изобретения предусматривает сети передачи скважинных данных, узлы для сетей передачи скважинных данных и способы для передачи данных от электронной системы в стволе скважины на поверхность с помощью ряда ретранслирующих узлов. В некоторых вариантах осуществления узлы сети обладают встроенной логикой, которая управляет узлами для выполнения одного или более из управления потреблением энергии;
поддержания желаемой скорости передачи данных;
поддержания надежной передачи данных.
В некоторых вариантах осуществления узлы осуществляют связь друг с другом и/или с поверхностным оборудованием с помощью ЭМ телеметрии. Узлы могут осуществлять связь друг с другом с помощью с применением частот, которые являются высокими в сравнении с частотами, обычно применяемыми для ЭМ телеметрии. В некоторых вариантах осуществления ЭМ сигналы от узлов имеют относительно короткие диапазоны (например, менее приблизительно 1000 футов (приблизительно 300 м) и обычно 200 футов (приблизительно 60 м) или менее). Узлы могут быть рассредоточены так, что каждый узел может передавать на один или несколько других узлов. В некоторых вариантах осуществления смежные узлы находятся на расстояниях от 60 до 250 футов (от приблизительно 20 м до приблизительно 80 м).
В других вариантах осуществления бурильная колонна разделена на несколько проводящих секций, которые электрически изолированы одной или несколькими электроизоляционными прокладками, как описано в международной публикации № WO 2015/031973.
Другой аспект настоящего изобретения предусматривает ЭМ телеметрическую систему, имеющую передатчик, расположенный между гидравлическим забойным двигателем и буровым долотом. Эта ЭМ телеметрическая система может быть применена для передачи данных прямо на расположенный на поверхности приемник или для передачи данных на поверхность с помощью системы, содержащей одно или несколько ретрансляторов данных. В некоторых вариантах осуществления диапазон передаваемых ЭМ телеметрических сигналов оптимизирован путем предоставления относительно большого промежутка для ЭМ телеметрического передатчика. Эти аспекты могут быть использованы по отдельности или также могут быть объединены.
Одно преимущество применения ЭМ телеметрии для передачи данных из местоположения ниже гидравлического забойного двигателя в положение выше гидравлического забойного двигателя состоит в том, что ЭМ телеметрические сигналы не подвергаются значительному воздействию более высокой скоростью вращения частей бурильной колонны ниже гидравлического забойного двигателя.
В некоторых вариантах осуществления мощность ЭМ телеметрического передатчика, расположенного ниже гидравлического забойного двигателя, является относительно малой. Например, мощность передачи может составлять 2 Вт или менее. Такая низкая мощность передачи может быть достаточной
- 4 039498 для передачи ЭМ телеметрического сигнала на приемник, расположенный рядом, например приемник, расположенный в КНБК выше гидравлического забойного двигателя. Приемник может быть связан с батареей или другим источником питания, который обеспечивает телеметрические передачи большей мощности или на всем пути на поверхность, или на другой приемник в узле далее вверх по бурильной колонне.
В некоторых вариантах осуществления ЭМ телеметрический передатчик имеет два или более функциональных узла. Один узел может применять низкочастотные (например, <20 Гц) сигналы большей мощности для передачи на большее расстояние. Другой узел может применять более высокие частоты и необязательно меньшую мощность для передачи данных на меньшее расстояние.
На фиг. 2 схематически представлен нижний конец бурильной колонны 12. На фиг. 2 представлен гидравлический забойный двигатель 18, присоединенный для приведения в действие бурового долота 19. Электроизоляционная прокладка 20 предусмотрена в бурильной колонне между гидравлическим забойным двигателем 18 и буровым долотом 19. Прокладка 20 может, например, быть предоставлена в переводнике, который присоединен к гидравлическому забойному двигателю на одном конце и к буровому долоту на другом конце. В альтернативном варианте осуществления прокладка 20 неотделима от гидравлического забойного двигателя 18. В другом альтернативном варианте осуществления прокладка 20 неотделима от бурового долота 19.
На прокладке 20 присоединен ЭМ телеметрический передатчик, схематически представленный ссылкой 21. ЭМ телеметрический передатчик 21 выполнен с возможностью прикладывания к прокладке 20 разности потенциалов. Изменяя по шаблону величину и/или полярность разности потенциалов, ЭМ телеметрический передатчик 21 может передавать сигналы с помощью электрического поля, которые могут быть восприняты на поверхности и/или на ЭМ телеметрическом приемнике, расположенном в некоторой точке под поверхностью.
Предусмотрен один или более датчиков 23. Датчики присоединены для генерации данных, которые могут быть переданы ЭМ телеметрическим передатчиком 21. Эти датчики могут, например, содержать датчики измерения во время бурения (ИВБ). Датчики ИВБ могут, например, содержать датчик угла наклона, датчик направления (например, детектор магнитного поля) и/или датчики для определения характеристик окружающих пластов, например детектор гамма-излучения, датчик удельного сопротивления или т.п., и/или датчики для отслеживания условий в скважине, например датчик давления, температурный датчик, ударный датчик/датчик вибрации или т.п. Контроллер 22 снимает показания с датчиков 23, кодирует результаты для передачи ЭМ телеметрическими сигналами и побуждает ЭМ телеметрический передатчик 21 передавать ЭМ телеметрические сигналы. Эти датчики также могут быть расположены между гидравлическим забойным двигателем и буровым долотом.
Когда датчики содержат датчик угла наклона, расположенный ниже гидравлического забойного двигателя, поскольку часть бурильной колонны, содержащая датчик угла наклона, часто вращается, среднее показание датчика угла наклона может быть получено для измерения угла наклона бурильной колонны в местоположении датчика.
В случае когда датчики содержат датчик, который является направленным, например направленный детектор гамма-излучения, вращение бурильной колонны можно отслеживать (например, отслеживая выходной сигнал датчика направления и/или выходной сигнал датчика угла наклона). Показания датчиков с направления датчиков могут быть выбраны в элементы выборки, соответствующие разным квадрантам вращения. Например, каждое полное вращение может быть разделено на четыре, восемь, двенадцать или любое другое подходящее число элементов выборки. Показания с датчика (например, направленного детектора гамма-излучения) могут быть собраны в соответствующих элементах выборки в течение подходящего времени накопления и затем переданы.
На фиг. 2 также представлена сеть передачи данных, которая содержит узел 30, расположенный между поверхностью и гидравлическим забойным двигателем 18. Фиг. 3 представляет собой блок-схему иллюстративного узла 30. Узел 30 содержит электроизоляционную прокладку 32, параллельно которой присоединен ЭМ телеметрический приемник 34. ЭМ телеметрический приемник 34 выполнен с возможностью отслеживания разницы потенциалов на прокладке 32. Узел 30 также содержит генератор 36 ЭМ телеметрических сигналов. Генератор 36 ЭМ телеметрических сигналов имеет выходы 36А и 36В, соединенные с противоположными сторонами прокладки 32. Узел 30 может передавать сигнал, который может быть принят на поверхности или на другом узле, путем управления генератором 36 ЭМ телеметрических сигналов для приложения сигнала напряжения к прокладке 32, который модулируют для кодирования информации.
Пред ретрансляцией данных узлу 30 не обязательно полностью декодировать принятые сигналы для получения изначально переданных данных. В некоторых вариантах осуществления узел 30 выполнен с возможностью работы без декодирования сигналов, например путем обнаружения изменений фазы или других характеристик принятых сигналов и модулирования сигнала передачи таким же образом, так что ретранслируемый сигнал содержит данные, закодированные в оригинальном сигнале.
В других вариантах осуществления узел 30 декодирует полученные данные и затем перекодирует полученные данные для ретрансляции. При этом узел 30 может добавлять данные (например, показания
- 5 039498 с одного или более датчиков 39 на узле 30).
Узел 30 содержит контроллер 38. В некоторых вариантах осуществления контроллер 38 выполнен с возможностью ретрансляции данных из сигналов, которые были приняты с помощью ЭМ телеметрического приемника 34. В одном иллюстративном варианте осуществления ЭМ телеметрический приемник 34 принимает сигналы от местоположения ниже по скважине в стволе скважины, и затем контроллер 38 управляет ЭМ телеметрическим передатчиком 36 для ретрансляции этих сигналов так, чтобы сигналы могли быть приняты на поверхности или другими узлами далее выше по скважине в стволе скважины.
Узел 30 необязательно содержит один или более датчиков 39. Узел 30 может снимать показания с одного или более датчиков 39 и может передавать эти показания на поверхность и/или на другие узлы для передачи на поверхность. Дополнительные датчики 39 в узле 30 могут, например, включать датчики, такие как направленный датчик, датчик измерения крутящего момента и/или напряжения в бурильной колонне в местоположении узла, детектор гамма-излучения, датчик давления, датчик ударов/вибрации или т.п.
Данные с датчиков 39, разнесенных вдоль бурильной колонны, могут предоставлять информацию в реальном времени об изменении с глубиной широкого ряда параметров. Эта информация имеет много приложений, включая упреждающий анализ неисправностей в реальном времени.
Показания с датчиков 39 могут быть использованы в широком ряде приложений. Например, когда датчики 39 содержат датчики давления, набор показаний с датчиков 39 может предоставить профиль зависимости давления от глубины. Такой профиль может, например, быть использован для определения обрушившихся пластов, так что буровой раствор теряется в пластах.
В качестве другого примера, когда датчики 39 содержат датчики крутящего момента и/или тензодатчики, датчики напряжения, датчики нагрузки, показания с датчиков 39 могут указывать области в стволе скважины, где бурильная колонна упирается в ствол скважины. Такие области могут затем быть расширены для уменьшения сопротивления.
В качестве другого примера, информация с датчиков удельного сопротивления пласта может быть использована для построения зависимости сопротивления от глубины. Эта информация может быть использована узлами 30 для управления ЭМ телеметрической мощностью, и/или частотой, и/или для управления маршрутизацией данных, особенно внутри и вокруг пластов, которые имеют низкое удельное сопротивление и, следовательно, обычно ослабляют ЭМ телеметрические сигналы.
В некоторых вариантах осуществления узлы 30 находятся относительно близко друг от друга, так что они могут принимать сигналы от других узлов 30 или от другого источника скважинных сигналов, которые были бы слишком слабыми для обнаружения на поверхности. Например, ЭМ телеметрические сигналы, передаваемые между узлами 30, могут быть переданы на частотах, которые являются достаточно высокими, так что ко времени достижения поверхности из местоположений некоторых из узлов 30 сигналы были бы настолько ослаблены, что обнаружить сигналы обычным поверхностным оборудованием было бы невозможно. Применение сигналов более высокой частоты обеспечивает более высокие скорости передачи данных.
Частоты, используемые для передачи узлами 30, могут быть выше, чем частоты, обычно применяемые для ЭМ телеметрической передачи из скважины на поверхность. Например, в некоторых вариантах осуществления частоты могут представлять собой частоты вплоть до 2 кГц или около того. В некоторых вариантах осуществления частоты выше 300 Гц и ниже 2 кГц. В некоторых вариантах осуществления частоты находятся в диапазоне от 20 Гц до 20 кГц. В некоторых вариантах осуществления могут быть использованы даже более высокие частоты. Применение частот ЭМ передачи выше 300 Гц является преимущественным, поскольку гармоники таких частот обычно быстро затухают.
Частоты, которые нужно использовать для передачи ЭМ телеметрических сигналов, могут быть установлены, например, на основе таких факторов как тип применяемого бурового раствора (буровые растворы, которые являются менее проводящими, такие как буровые растворы на нефтяной основе, обычно ослабляют меньше ЭМ телеметрические сигналы более высокой частоты, чем более проводящие буровые растворы, такие как буровые растворы на основе соленой или простой воды).
В простом варианте осуществления, представленном на фиг. 4А, сигналы от набора датчиков в местоположении в скважине, например местоположении в НБК или местоположении между гидравлическим забойным двигателем и буровым долотом, могут быть переданы последовательно от самого нижнего узла на буровой колонне на следующий самый нижний узел на буровой колонне, и так далее, пока сигналы, наконец, не будут получены на поверхностном оборудовании. В таких вариантах осуществления каждый узел может передавать сигналы с относительно низкой мощностью, поскольку сигналы должны быть достаточно интенсивными лишь для того, чтобы надежно достичь следующего узла. Кроме того, некоторые или все узлы могут быть выполнены с возможностью передачи и/или приема сигналов, имеющих частоты существенно выше, чем очень низкие частоты (как правило, <20 Гц), применяемые для направленной из скважины на поверхность ЭМ телеметрии. Хотя такие более высокие частоты ослабляются сильно, узлы могут быть достаточно близки, чтобы принимать сигналы более высокой частоты. Одним преимуществом сигналов более высокой частоты является возможность обеспечения значительно более высоких скоростей передачи данных, чем те, которые могут быть достигнуты с помощью более низких частот. Существует обратная зависимость между использованием более низких частот, ко
- 6 039498 торые, как правило, могут быть приняты на большем расстоянии (и, следовательно, позволяют более широкое разнесение узлов 30), и использованием более высоких частот, которые обеспечивают более низкую задержку и более высокие скорости передачи данных.
В некоторых вариантах осуществления узлы 30 выполнены с возможностью приема ЭМ телеметрических сигналов, имеющих одну частоту, и передачи ЭМ телеметрических сигналов на другой частоте. ЭМ телеметрический приемник в узле 30 может иметь фильтр, который блокирует передающую частоту узла. В таких вариантах осуществления узел 30 может одновременно принимать ЭМ телеметрические сигналы, отслеживая разность потенциалов на прокладке, и передавать ЭМ телеметрические сигналы на передающей частоте, прикладывая напряжение к прокладке, которое модулировано на передающей частоте.
Один пример представлен на фиг. 6. На фиг. 6 показана секция бурильной колонны, имеющая несколько узлов 30. Каждый узел 30 связан с электроизоляционной прокладкой так, что электропроводящая секция бурильной колонны выше прокладки электрически изолирована от электропроводящей секции бурильной колонны ниже прокладки. Каждый узел 30 имеет ЭМ телеметрический передатчик 44, подключенный для подачи ЭМ телеметрического сигнала на соответствующей прокладке, и ЭМ телеметрический приемник 46, выполненный с возможностью обнаружения ЭМ телеметрических сигналов путем отслеживания разницы потенциалов на прокладке. В этом иллюстративном варианте осуществления каждый ЭМ телеметрический приемник содержит фильтр 48, который настроен блокировать сигналы, подаваемые ЭМ телеметрическим передатчиком узла 30.
В этом представленном варианте осуществления передающие частоты узлов 30 изменяются между двумя частотами, F1 и F2, при продвижении по бурильной колонне. В этом варианте осуществления телеметрический сигнал, несущий данные, которые необходимо передать по бурильной колонне, передают на частоте F1 с узла 30D. Сигнал не принимается приемником узла 30D, поскольку приемник имеет фильтр, который блокирует частоту F1. Сигнал принимается на узле 30Е, который ретранслирует данные в ЭМ телеметрическом сигнале, имеющем частоту F2. Ретранслируемые данные не принимаются приемником на узле 30Е, поскольку узел 30Е имеет фильтр, который блокирует принятие частоты F2. Сигнал на частоте F2 принимается узлом 30F, который затем ретранслирует данные в ЭМ телеметрическом сигнале, имеющем частоту, отличную от F2, например имеющем частоту F1. Поскольку каждый узел 30 не принимает сигналы, которые он передает, передача и прием одних и тех же или разных данных могут происходить на узле одновременно. Время ретрансляции или задержки на узле в некоторых вариантах осуществления может быть по существу устранено.
В некоторых вариантах осуществления частоты F1 и F2 передают по бурильной колонне в направлении вверх по стволу скважины. В других вариантах осуществления частоты F1 и F2 передают по бурильной колонне в направлении вниз по стволу скважины. В других вариантах осуществления частоты F1 и F2 могут быть переданы по бурильной колонне в направлении или вверх или вниз по стволу скважины.
В некоторых вариантах осуществления узлы 30 могут осуществлять передачу на дополнительных частотах F3 и F4. Например, частоты F3 и F4 могут быть использованы для передачи в направлении вниз по стволу скважины, тогда как частоты F1 и F2 применяют для осуществления передачи в направлении вверх по стволу скважины. В некоторых вариантах осуществления частоты F3 и F4 могут быть ниже, чем частоты F1 и F2, поскольку в направлении вниз по стволу скважины может быть необходимо передавать меньше информации (например, передача вниз по стволу скважины может содержать команды для изменения режимов, тогда как передача вверх по стволу скважины может содержать большие объемы данных, как описано в данном документе).
В некоторых вариантах осуществления наличие электроизоляционных прокладок в бурильной колонне в узлах 30 ограничивает распространение сигналов из узла 30. Например, прокладка в узле 30Е может приводить к сильному ослаблению сигнала, передаваемого узлом 30D, выше узла 30Е в бурильной колонне. Таким образом, узел 30G может принимать сигнал на частоте F1 от узла 30F без помех от сигнала из узла 30D, который также имеет частоту F1. Необязательно можно присоединять фильтры, индукционные муфты или т.п. параллельно прокладкам некоторых узлов, которые пропускают сигналы на выбранных частотах, для облегчения передачи сигналов на более длинные расстояния на выбранных частотах по бурильной колонне. Эти пути с выбором частоты через прокладки могут необязательно быть включены или выключены узлами 30.
Некоторые варианты осуществления предусматривают узлы, которые имеют ЭМ телеметрические передатчики, которые передают на передающей частоте FT, и приемники, которые содержат фильтры, которые блокируют сигналы на передающей частоте для узла. Это позволяет отдельным узлам одновременно быть и передающими, и принимающими, что способствует уменьшению задержки при передаче данных по бурильной колонне.
Передающие и приемные частоты для любого узла могут быть выбраны так, что они существенно отличаются, чтобы позволять фильтру приемника блокировать передающую частоту, при этом пропуская сигналы на одной или нескольких частотах, которые нужно принять. В одном иллюстративном варианте осуществления F1 составляет 1100 Гц, a F2 составляет 2000 Гц. В другом иллюстративном варианте осуществления F1 составляет 12 Гц, a F2 составляет 500 Гц. В другом иллюстративном варианте осуществления F1 и F2 каждая находятся в диапазоне от 1 Гц до 10 кГц.
- 7 039498
Не требуется, чтобы на одном узле была лишь одна частота передачи и одна частота приема. В некоторых вариантах осуществления передача бывает одновременно на двух или более частотах и/или прием бывает одновременно на двух или более частотах. В таких вариантах осуществления предусмотрены один или более фильтров, которые блокируют все частоты передачи от обнаружения на приемнике.
В некоторых вариантах осуществления некоторые или все узлы 30 имеют хранилища данных и выполнены с возможностью создания в хранилищах данных журналов полученных и/или переданных данных. Журналы также могут хранить записи о выходных данных датчиков 39, расположенных на узле. Такие журналы могут быть применены для восстановления данных в случае сбоя телеметрии, и/или для определения способов оптимизации работы системы, и/или для определения проблем с бурением и/или телеметрией.
На фиг. 4В представлен другой вариант осуществления, в котором ЭМ телеметрические данные передают прямо на поверхность из местоположения между гидравлическим забойным двигателем и буровым долотом.
Расстояние между узлами и диапазон узлов можно регулировать на основе различных факторов. Эти факторы могут включать информацию о пластах, сквозь которые будет проходить ствол скважины, а также желаемые диапазоны частот ЭМ передачи для узлов 30.
В некоторых случаях бурение осуществляют сквозь пласты, которые включают пласты, являющиеся плохими для ЭМ телеметрических передач. Такие плохие пласты могут, например, иметь высокую электрическую удельную проводимость, тем самым приводя к значительному ослаблению ЭМ телеметрических передач. В некоторых таких случаях расстояния между ЭМ телеметрическими узлами могут быть выбраны таким образом, чтобы узлы были достаточно близкими, так что даже в худшем случае с плохим пластом сигналы, выданные одним узлом, могли быть приняты следующим узлом вдоль бурильной колонны.
В некоторых вариантах осуществления расстояние между узлами 30 составляет порядка нескольких сотен футов. Например, узлы могут быть отделены от своих самых близких соседних узлов расстояниями от 150 до 750 футов (от приблизительно 50 м до приблизительно 250 м). В случаях когда известно, что ствол скважины проходит в пласт, который является плохим для ЭМ телеметрии (например, пласт с высокой электрической удельной проводимостью), узлы могут быть расположены более тесно друг к другу в той части бурильной колонны, которая будет ниже верхней границы плохого пласта, и могут быть более широко разнесены выше нее.
В некоторых вариантах осуществления узел присоединен к бурильной колонне после приблизительно каждых N сегментов бурильной колонны, где N - это, например, число в диапазоне от 3 до 30. Сегменты бурильной колонны, например, могут иметь длину приблизительно 30 футов (10 м) каждый.
Путем обеспечения управления над узлами 30 может быть произведена оптимизация. Такое управление может быть осуществлено из центрального контроллера, который может быть встроен в поверхностное оборудование или может представлять собой скважинный контроллер. В некоторых альтернативных вариантах осуществления некоторые или все аспекты такого управления распределены между узлами. Такое управление может быть применено для приспособления сети узлов к различным условиям, которые могут возникнуть. Например, управление может компенсировать узел, вышедший из строя, или узел, батареи которого истощаются или истощились.
В таких случаях узлу ниже вышедшего из строя узла можно отдать команду осуществлять передачу с увеличенной мощностью, и/или узел выше по стволу скважины от вышедшего из строя узла можно настроить принимать сигналы от узла ниже по стволу скважины от вышедшего из строя узла, и/или узел выше по стволу скважины от вышедшего из строя узла может увеличить коэффициент усиления своего приемника.
На фиг. 4С представлен пример, в котором ЭМ телеметрические сигналы ретранслируются в обход вышедшего из строя узла 30Х.
Управление также может быть применено для сохранения мощности батареи путем уменьшения мощности передачи, когда это возможно, и/или перевода некоторых узлов в режим ожидания в частях бурильной колонны, в которых диапазон одного узла является достаточно длинным, так что сигналы от одного узла могут быть приняты на других несмежных узлах.
В иллюстративном варианте осуществления узлы во всей или части бурильной колонны имеют режим низкой мощности, где каждый второй узел находится в режиме ожидания, и другой режим, в котором все узлы работают для ретрансляции данных. Сеть может быть переключена между этими режимами в ответ на управляющий сигнал, измеренное качество сигнала (например, отношение сигнал/шум) в одном или нескольких режимах или т.п. Если отношение сигнала к шуму (ОСШ) является большим, может быть выбран режим малой мощности. Если ОСШ падает ниже пороговой величины, сеть может быть переведена в режим, в котором все узлы участвуют в ретрансляции данных.
На фиг. 4D представлен пример, в котором некоторые узлы в некоторых частях бурильной колонны находятся в режиме ожидания, тогда как все узлы в других частях бурильной колонны используются. В вариантах осуществления, в которых узлы имеют датчики 39, узел может продолжать записывать журнал показаний с любого из связанных датчиков 39, пока находится в режиме ожидания.
- 8 039498
В другом приложении узел может принимать сигналы от ряда скважинных узлов и может различать эти сигналы по их частотам или другим характеристикам сигнала. В таких случаях сигналы, передаваемые смежным узлом, могут быть избыточными. Узел может передавать смежному узлу сигнал, указывающий, что он в настоящее время не нужен. В ответ смежный узел может перейти в режим ожидания. Возможны и другие более сложные схемы, в которых, в областях бурильной колонны, где сигналы распространяются на относительно длинные расстояния с уменьшенным ослаблением, промежуточные узлы переводят в режим ожидания, так что сохраняется мощность их батарей.
Без труда ЭМ телеметрические передатчики и разные узлы можно приспособить для осуществления передачи на разных частотах, так что сигналы от разных узлов можно легко отличить друг от друга. Это может облегчить управление узлами. Для определения источников данных может быть использована частота, применяемая для передачи данных, а не идентификационный номер.
В некоторых вариантах осуществления коэффициент усиления ЭМ телеметрических приемников 34 в узлах 30 является переменным. Переменный коэффициент усиления может быть использован для увеличения коэффициента усиления, когда приемник обнаруживает себя в среде с низкими электромагнитными помехами. Как правило, в местоположениях в скважине, которые существенно удалены от поверхности, число электромагнитных помех существенно уменьшается. Следовательно, в таких местоположениях в скважине коэффициент усиления ЭМ телеметрического приемника можно существенно увеличить без насыщения приемника шумовыми сигналами. Увеличение коэффициента усиления может быть использовано для приема сигналов из более удаленных мест вдоль по бурильной колонне или для приема сигналов, которые изначально переданы с меньшей мощностью.
В некоторых вариантах осуществления мощность сохраняют путем увеличения коэффициента усиления приемника 34 в узле 30 во время одного или обоих из уменьшения амплитуды принимаемого сигнала или передачи сигнала от более далекого узла.
В некоторых вариантах осуществления с увеличением глубины коэффициент усиления постепенно увеличивается. Это увеличение может необязательно быть основано на измерении давления, которое в общем увеличивается с глубиной в стволе скважины. Например, коэффициент усиления ЭМ телеметрического усилителя приемопередатчика может быть сделан прямо пропорциональным давлению, определенному датчиком давления. В других вариантах осуществления глубину измеряют косвенно, например по времени, которое потребовалось для получения гидроимпульса, или с помощью информации о глубине узла, полученной от отдельного контроллера или с поверхностного оборудования. В некоторых вариантах осуществления контроллер узла измеряет отношение сигнала к шуму принятых сигналов и увеличивает коэффициент усиления, если отношение сигнала к шуму меньше пороговой величины. Контроллер может уменьшать коэффициент усиления, если отношение сигнала к шуму увеличивается выше пороговой величины. В некоторых вариантах осуществления коэффициент усиления ЭМ приемника может быть увеличен до значения в диапазоне 104, 106 или даже выше.
В некоторых вариантах осуществления мощность ЭМ телеметрической передачи некоторых узлов и коэффициент усиления приемника других узлов, которые принимают сигналы, согласованы. Например, по мере увеличения глубины под поверхностью, узел 30 может и увеличивать коэффициент усиления усилителя на своем ЭМ телеметрическом приемнике, и при этом уменьшать мощность своего ЭМ телеметрического передатчика. Это увеличение и уменьшение могут осуществляться автоматически на основе измерений глубины, которые могут быть прямыми измерениями или косвенными измерениями глубины, и/или на основе измерений отношения сигнала к шуму в принятых сигналах.
ЭМ телеметрические сигналы могут быть приняты на поверхности с помощью обычных приемников ЭМ телеметрических сигналов или с помощью прокладки, встроенной в инфраструктуру буровой установки, например прокладки, встроенной в выдвижной шпиндель или верхний привод или т.п.
Некоторые узлы 30 могут необязательно иметь встроенные генераторы импульсов бурового раствора. В случаях когда ЭМ телеметрия на следующий узел или на поверхность является ненадежной или недоступной из-за плохого пласта, данные по-прежнему могут быть переданы с помощью генератора импульсов бурового раствора.
Контроллер в узле 30 может анализировать обнаруженные сигналы от других узлов. Например, анализ может измерять интенсивность сигнала, отношение сигнала к шуму или т.п. Анализ сигнала может также или альтернативно определять гармоники сигнала, например, выполняя быстрое преобразование Фурье для идентификации таких гармоник.
Узел может передавать анализ обнаруженного сигнала на поверхность и/или на узел, от которого пришел сигнал. Информация этого анализа может быть использована для улучшения некоторого аспекта передачи данных в стволе скважины, например, путем установки параметров передачи и/или приема для некоторых или всех узлов 30.
Такие анализ и передачи могут быть использованы для оптимизации производительности сети узлов. Например, предположим, что узел 30 обнаруживает, что сигнал с другого узла, о котором известно, что он расположен в 500 футах (приблизительно 160 м) ниже по бурильной колонне, ослабевает. Такое ослабевание, вероятно, объясняется природой пласта, через который проходит ствол скважины на глубине следующего узла. Узел, который обнаруживает ослабевающий сигнал, может быть выполнен с воз
- 9 039498 можностью автоматического усиления передачи своего сигнала, когда он попадает в ту же область, в которой сигнал от следующего узла ниже по стволу скважины начал ослабевать. Узел также может передавать на другие узлы выше него сигналы, указывающие качество принимаемых сигналов. Эти информационные сигналы могут быть обработаны на поверхности или в другом месте для определения областей в стволе скважины, в которых узлам может быть отдана команда осуществлять передачу с повышенной мощностью (так же, как и в другом случае в других областях, где узлам может быть отдана команда осуществлять передачу с пониженной мощностью).
В некоторых вариантах осуществления узел 30 может передавать ряд параметров на один или более других узлов. Эти параметры могут содержать, например, давление в стволе скважины (т.е. гидростатическое давление, измеренное при отсутствии потока), напряжение передачи, ток передачи и т.п.
При получении давления в стволе скважины, напряжения передачи и/или тока передачи узел 30 может записывать эти значения в таблицу, которая содержит значения напряжения передачи, тока передачи и давления в стволе скважины для разных глубин, а также, по меньшей мере, интенсивность принятого сигнала при каждом давлении. Эта таблица значений может непрерывно наращиваться по мере продолжения бурения. По мере того как через конкретную глубину проходит все больше узлов 30, оценка мощности передачи на этой глубине может становиться все лучше. Используя данные в этой таблице значений, узел может настраивать свою мощность передачи в соответствии с локальным давлением в стволе скважины. Например, в некоторых вариантах осуществления, когда узел 30 приближается к давлению, для которого у него уже есть значения данных, он может соответственно увеличивать или уменьшать мощность своей передачи.
Приведенное выше обсуждение объясняет, как сеть узлов 30 может быть использована для передачи данных из одного или более местоположений в скважине на поверхностное оборудование. Такая сеть также может передавать команды и/или другие данные от поверхностного оборудования на узлы 30 и/или на другие скважинные системы, имеющие связь с одним или более узлами 30. Таким образом, такая сеть может обеспечивать двустороннюю передачу данных между поверхностным оборудованием и любым узлом 30;
двумя узлами 30;
поверхностным оборудованием и скважинными системами, имеющими связь с одним или более узлами 30;
разными скважинными системами, имеющими связь с узлами 30.
Двусторонняя связь с узлами 30 может, например, быть применена для управления конкретным узлом 30 или группой узлов 30 для изменения рабочих параметров и/или изменения частоты, на которой отправляются определенные данные, и/или для изменения набора данных, передаваемых с этого узла. Такая двусторонняя связь также может быть применена для определения проблем на узле и/или для управления узлом с целью устранения и/или обхода таких проблем.
Не обязательно, чтобы все узлы использовали одинаковые форматы передачи сигналов. Разные узлы могут кодировать данные по-разному, в зависимости от локальных условий. Например, узлы, близкие к поверхности, где, как правило, имеется больше электрического шума, который обычно ухудшает ЭМ телеметрические передачи, могут кодировать сигналы с помощью одного или более из разных кодов коррекции ошибок;
разных схем кодирования;
разных схем модуляции (например, ЧМн, ДФМн, КФМн и т.п.);
разных частот;
разных протоколов;
разного количества циклов/бит;
и т.п.
В некоторых вариантах осуществления, например варианте осуществления, схематически представленном на фиг. 5, каждый узел 30 предоставляет электроизоляционную прокладку в бурильной колонне, которая разделяет электропроводящие части бурильной колонны выше и ниже прокладки. Каждый узел содержит ЭМ телеметрический передатчик, который может прикладывать разность потенциалов к соответствующей прокладке. На фиг. 5 представлена часть бурильной колонны 40, имеющая несколько узлов 30, разнесенных по ней. Каждый узел связан с электроизоляционной прокладкой 42 и имеет ЭМ телеметрический передатчик 44, который может прикладывать разность потенциалов к прокладке. ЭМ телеметрический передатчик 44 может, например, содержать мостовую схему управления.
В этом иллюстративном варианте осуществления каждый узел 30 также имеет ЭМ телеметрический приемник 46, подключенный параллельно соответствующей прокладке 42. Телеметрические приемники 46 выполнены с возможностью получения сигналов разных полярностей от ЭМ телеметрических сигналов, передаваемых ЭМ телеметрическими передатчиками 44. Например, когда ЭМ телеметрический передатчик 44 передает сигналы с помощью положительных электрических импульсов (т.е. сигналов, в которых обращенная к верху ствола скважины сторона прокладки 42 делается положительной относительно обращенной к низу ствола скважины стороны прокладки 42), это приводит к получению отрицательного импульса на следующем узле 30 выше по стволу скважины (т.е. переданный сигнал приводит к
- 10 039498 тому, что обращенная к верху ствола скважины сторона прокладки 42 следующего узла 30 является отрицательной относительно обращенной к низу ствола скважины стороны прокладки 42). Следовательно, на любом конкретном узле 30 принимаемые сигналы являются противоположными по полярности относительно передаваемых сигналов. Применяя однополярные сигналы передачи и приема, можно разделить сигналы передачи и приема на любом конкретном узле 30.
Например, каждый ЭМ телеметрический приемник 46 может представлять собой однополярный приемник (т.е. приемник, который блокирует или является нечувствительным к сигналам одной полярности). Каждый из представленных ЭМ телеметрических приемников 46 имеет положительный вход 46+ и отрицательный вход 46-. ЭМ телеметрический приемник 46 может обнаруживать сигналы, в которых положительный вход 46+ имеет потенциал, который является положительным относительно отрицательного входа 46-. ЭМ телеметрический приемник 46 не обнаруживает сигналы, в которых положительный вход 46+ имеет потенциал, который является отрицательным относительно отрицательного входа 46-. ЭМ телеметрический приемник 46 может, например, содержать диод или другой однополупериодный выпрямитель, подключенный последовательно с одним или обоими входами 46+ и 46-, и/или дифференциальный усилитель, который усиливает сигналы одной полярности, но не другой полярности.
На фиг. 5 представлены узлы 30А, 30В и 30С, осуществляющие связь друг с другом. В каждом узле 30 передатчик 44 и приемник 46 подключены параллельно прокладке 42. Передатчик 44 и приемник 46 подключены параллельно прокладке 42 с противоположными полярностями. В представленном варианте осуществления положительный выход однополярного передатчика 44 подключен к обращенной к верху ствола скважины стороне прокладки 42, тогда как отрицательный вход 46- однополярного приемника 46 подключен к обращенной к верху ствола скважины стороне прокладки 42. Отрицательный выход передатчика 44 и положительный вход 46+ приемника 46 подключены к обращенной к низу ствола скважины стороне прокладки 42.
Когда передатчик 44 узла 30А прикладывает положительные импульсы к прокладке 42 так, что обращенная к верху ствола скважины сторона прокладки 42 является положительной (здесь положительный импульс означает импульс, в котором обращенная к верху ствола скважины сторона прокладки 42 делается положительной относительно обращенной к низу ствола скважины стороне прокладки 42), отрицательный импульс индуцируется на прокладке 42 смежного узла 30 (например, узла 30В в этом примере). Переданные импульсы не принимаются приемником на узле 30А, поскольку они не той полярности, чтобы быть принятыми этим приемником. Однако приемник на узле 30В может обнаруживать отрицательные импульсы, индуцированные на прокладке 42 на узле 30В.
В этом варианте осуществления ширина (длительность) переданных импульсов может быть узкой или широкой. Более узкие импульсы могут быть использованы для получения более высоких скоростей передачи данных и более низкого потребления энергии. Более широкие импульсы могут быть использованы для передачи на более длинные расстояния и/или в пластах, имеющих более высокую электрическую удельную проводимость. Высота передаваемых импульсов может быть выбрана так, чтобы позволять принимать импульсы желаемой интенсивности. Например, передаваемые импульсы могут иметь высоты импульсов в диапазоне от нескольких мВ до нескольких кВ.
В варианте осуществления, представленном на фиг. 5, приемники 46 содержат однополярные буферные усилители 47, которые избирательно усиливают сигналы одной полярности.
Полярности, указанные на фиг. 5, в некоторых альтернативных вариантах осуществления являются обратными. В таких альтернативных вариантах осуществления узел может передавать сигналы путем приложения отрицательных импульсов к связанной прокладке 42, так что положительные импульсы индуцируются на прокладке на смежном узле (здесь отрицательный импульс означает импульс, в котором обращенная к верху ствола скважины сторона прокладки 42 делается отрицательной относительно обращенной к низу ствола скважины стороне прокладки 42). В таком варианте осуществления могут быть предусмотрены однополярные приемники, которые обнаруживают положительные импульсы на соответствующих прокладках 42, но являются нечувствительными к отрицательным импульсам на тех же прокладках 42.
В некоторых вариантах осуществления передаваемые сигналы имеют относительно высокое напряжение. Например, разница напряжений на прокладке 42 может составлять по меньшей мере 50 В, и в некоторых вариантах осуществления по меньшей мере 100 В или по меньшей мере 300 В в некоторых вариантах осуществления.
В некоторых вариантах осуществления (осуществляется ли передача сигналов с помощью однополярных сигналов или нет) ЭМ телеметрические сигналы передают на более высоких амплитудах для улучшения диапазона ЭМ телеметрических сигналов и тем самым позволяя узлам находиться дальше друг от друга и/или облегчая передачу через такие структуры как гидравлический забойный двигатель, которые могут вносить шум в передаваемые сигналы. Например, ЭМ телеметрические сигналы могут быть переданы с применением более высоких напряжений (например, напряжений выше 50 В и вплоть до нескольких сотен вольт). При передаче ЭМ телеметрических сигналов на таких высоких напряжениях можно сэкономить электроэнергию, делая периоды передаваемых сигналов очень короткими. Например, ЭМ телеметрические сигналы могут содержать ряд узких импульсов. При использовании узких импуль
- 11 039498 сов частота передаваемых сигналов может быть высокой (например, частоты могут превышать несколько сотен Гц). Например, могут быть использованы частоты от 500 Гц до 2 кГц или выше.
Более высокие частоты обеспечивают более высокие скорости передачи данных. Для передачи данных могут быть использованы разные протоколы. Например, для передачи данных может быть использован протокол 8 PSK. В некоторых вариантах осуществления эта схема передачи сигнала высокой частоты и большой амплитуды применяется только некоторыми частями системы. Другие части системы могут применять другие схемы передачи и кодирования. Например, ЭМ телеметрический протокол с большой амплитудой и высокой частотой может быть использован для передачи данных из скважинной системы, расположенной между гидравлическим забойным двигателем и буровым долотом, на узел 30, расположенный над гидравлическим забойным двигателем.
Получающиеся сигналы могут иметь более низкие скорости передачи данных, чем сигналы, передаваемые в более глубоких частях ствола скважины. Чтобы компенсировать это, в некоторых вариантах осуществления узлы в верхних частях ствола скважины могут разбивать данные, подлежащие передаче, на две или более частей и одновременно передавать две или более частей данных отдельными телеметрическими передачами, имеющими общую скорость передачи данных, достаточную для переноса данных, передаваемых со скважинных датчиков. Отдельные телеметрические передачи могут, например, применять разные частоты.
Узлы, как описано в данном документе, могут обладать любым из широкого ряда конструктивных признаков. Например, каждый узел может содержать стыковочный переводник. Электронные компоненты узлов могут быть расположены в отсеках в стенках стыковочного переводника, в кожухе, удерживаемом в стволе стыковочного переводника, или в другом подходящем месте.
В некоторых вариантах осуществления, описанных в данном документе, ЭМ телеметрические данные передают с помощью передатчика, который отделен от приемника в бурильной колонне и/или отделен от бурового долота (которое обычно служит заземлением) одной или более электроизоляционными прокладками. В таких вариантах осуществления передача данных через такие прокладки может быть облегчена путем выборочного закорачивания прокладок и/или предоставления фильтров передачи сигнала в прокладках, как описано в заявке на патент РСТ № РСТ/СА 2013/050683, поданной 5 сентября 2013, которая этим включена в данный документ с помощью ссылки.
Поскольку выше описан ряд иллюстративных аспектов и вариантов осуществления, специалистам в данной области техники будут очевидны определенные модификации, перестановки, дополнения и их подкомбинации. Поэтому подразумевается, что следующая прилагаемая формула изобретения и позднее представленные пункты формулы изобретения интерпретируются как включающие все такие модификации, перестановки, дополнения и подкомбинации как находящиеся в пределах сущности и объема формулы изобретения.
Интерпретация выражений
Если контекст явно не требует иного, по всему тексту описания и формулы изобретения слова содержать, содержащий и т.п. должны толковаться в смысле включения, в отличие от смысла исключения или исчерпывания; то есть в смысле включая, но без ограничения;
выражения соединенный, связанный или любой их вариант означают любое соединение или связь, прямую или непрямую, между двумя или более элементами; связь или соединение между элементами могут быть физическими, логическими или их сочетанием;
выражения в настоящем документе, выше, ниже и слова подобного смысла при использовании для описания настоящего изобретения должны относиться к описанию настоящего изобретения в целом, а не к каким-либо конкретным частям описания настоящего изобретения;
выражение или при ссылке на перечень из двух или более элементов охватывает все следующие интерпретации этого слова: любой элемент в перечне, все элементы в перечне и любое сочетание элементов в перечне;
формы единственного числа включают значение любых подходящих форм множественного числа.
Слова, указывающие направления, такие как вертикальный, поперечный, горизонтальный, вверх, вниз, вперед, назад, внутренний, наружный, вертикальный, поперечный, левый, правый, передний, задний, верхний, нижний, вверху, внизу, ниже, выше, под и т.п., используемые в настоящем описании и любых пунктах формулы изобретения (если используются), зависят от конкретной ориентации описанного и проиллюстрированного устройства. Объект изобретения, описанный в настоящем документе, может принимать различные альтернативные ориентации. Соответственно эти связанные с направлением термины не определены строго и не должны интерпретироваться в узком смысле.
Когда выше производится ссылка на какой-либо компонент (например, схему, модуль, узел, устройство, компонент бурильной колонны, систему буровой установки и т.д.), то, если не указано иное, ссылка на этот компонент (включая ссылку на средства) должна интерпретироваться как включающая эквиваленты этого компонента, любой компонент, выполняющий функцию описываемого компонента (т.е. функционально эквивалентный), включая компоненты, конструктивно не эквивалентные раскрытой конструкции, выполняющей эту функцию в представленных иллюстративных вариантах осуществления
- 12 039498 настоящего изобретения.
Конкретные примеры систем, способов и устройства описаны в настоящем документе в целях иллюстрации. Они представляют собой лишь примеры. Технология, предлагаемая в настоящем документе, может быть применимой к другим системам, отличным от описанных выше примерных систем. В пределах практического осуществления настоящего изобретения возможны многие изменения, модификации, дополнения, исключения и перестановки. Настоящее изобретение включает изменения описанных вариантов осуществления, очевидные специалистам в данной области техники, к которой относится изобретение, включая изменения, полученные путем замены признаков, элементов и/или действий эквивалентными признаками, элементами и/или действиями; смешивания и совмещения признаков, элементов и/или действий из других вариантов осуществления; сочетания признаков, элементов и/или действий из вариантов осуществления, описанных в настоящем документе, с признаками, элементами и/или действиями другой технологии; и/или исключения сочетания признаков, элементов и/или действий из описанных вариантов осуществления.
Поэтому подразумевается, что последующая прилагаемая формула изобретения и позднее представленные пункты формулы изобретения интерпретируются как включающие все такие модификации, перестановки, дополнения, исключения и подкомбинации, которые могут быть обоснованно выведены. Объем формулы изобретения не должен ограничиваться предпочтительными вариантами осуществления, изложенными в примерах, напротив, ему следует придавать самую широкую интерпретацию, согласующуюся с описанием в целом.
Некоторые варианты осуществления предусматривают усовершенствованную сеть передачи скважинных данных системы электроники, в которой множество узлов прикреплены к бурильной колонне для трансляции информации на поверхность. Узлы транслируют информацию на поверхностное оборудование с помощью относительной высокой частоты ЭМ передач, обычно выше 20 Гц, обеспечивая более высокие скорости передачи данных и меньшую задержку.
Узел сети передачи скважинных данных определенных вариантов осуществления согласно настоящему изобретению содержит ЭМ телеметрический передатчик, ЭМ телеметрический приемник, контроллер и электроизоляционную прокладку. ЭМ телеметрический приемник выполнен с возможностью отслеживания разности потенциалов на прокладке и сообщения об изменениях разности потенциалов на контроллер. ЭМ телеметрический передатчик соединен с контроллером и выполнен с возможностью подачи сигнала напряжения на прокладке. В одном варианте осуществления, когда ЭМ телеметрический приемник обнаруживает разность потенциалов на прокладке, обозначающую передачу данных, ЭМ телеметрический приемник обеспечивает передачу данных на контроллер, который, в свою очередь, заставляет ЭМ телеметрический передатчик осуществлять передачу данных на смежный узел или поверхностное оборудование.
ФОРМУЛА ИЗОБРЕТЕНИЯ

Claims (5)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Способ телеметрии данных из местоположения в скважине, причем способ включает предоставление нескольких телеметрических ретранслирующих устройств в местах, разнесенных по бурильной колонне, причем каждое из телеметрических ретранслирующих устройств содержит приемник электромагнитных телеметрических сигналов, передатчик электромагнитных телеметрических сигналов и контроллер, выполненный с возможностью управления указанным устройством;
    перемещение бурильной колонны в стволе скважины;
    идентификацию первой области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются более сильно, и второй области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются менее сильно;
    передачу данных вверх по бурильной колонне путем последовательной ретрансляции данных с помощью электромагнитной телеметрии от одного из ретранслирующих устройств на другое; и усиление передачи сигнала телеметрических ретранслирующих устройств, пока эти телеметрические ретранслирующие устройства находятся в первой области, и, исходя из сигнала, обнаруженного от телеметрических ретранслирующих устройств в первой области, автоматическое подавление работы некоторых из телеметрических ретранслирующих устройств, пока эти телеметрические ретранслирующие устройства находятся во второй области.
  2. 2. Способ телеметрии данных из местоположения в скважине, причем способ включает подачу бурильной колонны в ствол скважины, где ствол скважины проходит через пласты так, что диапазон электромагнитных телеметрических передач изменяется как функция глубины в стволе скважины;
    передачу данных из местоположения в скважине на поверхность с помощью нескольких телеметрических ретранслирующих устройств между местоположением в скважине и поверхностью, причем указанные телеметрические ретранслирующие устройства расположены в местах, разнесенных по бурильной колонне, и причем каждое из телеметрических ретранслирующих устройств содержит приемник электромагнитных телеметрических сигналов, передатчик электромагнитных телеметрических сигналов
    - 13 039498 и контроллер, выполненный с возможностью управления указанным устройством;
    идентификацию первой области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются более сильно, и второй области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются менее сильно;
    идентификацию первого и второго несмежных телеметрических ретранслирующих устройств, так что второе из телеметрических ретранслирующих устройств находится в диапазоне электромагнитных телеметрических передач, соответствующем местоположению первого из телеметрических ретранслирующих устройств; и исходя из сигнала, обнаруженного от телеметрических ретранслирующих устройств в первой области, автоматическое подавление работы одного или нескольких телеметрических ретранслирующих устройств между первым и вторым из телеметрических ретранслирующих устройств, пока указанные одно или несколько телеметрических ретранслирующих устройств находятся во второй области, причем подавление работы указанных одного или нескольких телеметрических ретранслирующих устройств включает помещение узла в режим ожидания с энергосбережением.
  3. 3. Способ по п.2, отличающийся тем, что включает продвижение бурильной колонны до уменьшения диапазона электромагнитных телеметрических передач, соответствующего положению первого из телеметрических ретранслирующих устройств, и затем активацию одного или нескольких электромагнитных телеметрических ретранслирующих устройств между первым и вторым из электромагнитных телеметрических ретранслирующих устройств.
  4. 4. Способ по п.3, отличающийся тем, что включает отслеживание диапазона электромагнитных телеметрических сигналов путем передачи электромагнитных телеметрических сигналов из передатчика на бурильной колонне и приема электромагнитных телеметрических сигналов, переданных передатчиком на нескольких электромагнитных телеметрических ретранслирующих устройствах.
  5. 5. Способ по п.4, отличающийся тем, что передатчик представляет собой передатчик одного из электромагнитных телеметрических ретранслирующих устройств.
EA201990681A 2014-06-23 2015-05-08 Оптимизация передачи скважинных данных с помощью наддолотных датчиков и узлов EA039498B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462015817P 2014-06-23 2014-06-23

Publications (2)

Publication Number Publication Date
EA201990681A1 EA201990681A1 (ru) 2019-08-30
EA039498B1 true EA039498B1 (ru) 2022-02-03

Family

ID=54936378

Family Applications (2)

Application Number Title Priority Date Filing Date
EA201692379A EA032746B1 (ru) 2014-06-23 2015-05-08 Оптимизация передачи скважинных данных с помощью наддолотных датчиков и узлов
EA201990681A EA039498B1 (ru) 2014-06-23 2015-05-08 Оптимизация передачи скважинных данных с помощью наддолотных датчиков и узлов

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EA201692379A EA032746B1 (ru) 2014-06-23 2015-05-08 Оптимизация передачи скважинных данных с помощью наддолотных датчиков и узлов

Country Status (8)

Country Link
US (2) US10119393B2 (ru)
EP (1) EP3158166B1 (ru)
CN (1) CN106471211B (ru)
AU (1) AU2015281732B2 (ru)
CA (2) CA2952885C (ru)
EA (2) EA032746B1 (ru)
MX (1) MX364012B (ru)
WO (1) WO2015196278A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2906215C (en) * 2013-03-15 2021-01-19 Xact Downhole Telemetry Inc. Robust telemetry repeater network system and method
US9359889B2 (en) * 2013-10-17 2016-06-07 Well Resolutions Technology System and methods for selective shorting of an electrical insulator section
WO2016168268A1 (en) * 2015-04-13 2016-10-20 Schlumberger Technology Corporation An instrument line for insertion in a drill string of a drilling system
WO2016168291A1 (en) 2015-04-13 2016-10-20 Schlumberger Technology Corporation Downhole instrument for deep formation imaging deployed within a drill string
WO2017074353A1 (en) * 2015-10-28 2017-05-04 Halliburton Energy Services, Inc. Transceiver with annular ring of high magnetic permeability material for enhanced short hop communications
GB2559184B (en) * 2017-01-31 2021-09-08 Welldigital Ltd A wellbore water level measurement system
US10641077B2 (en) * 2017-04-13 2020-05-05 Weatherford Technology Holdings, Llc Determining angular offset between geomagnetic and gravitational fields while drilling wellbore
US11208882B2 (en) 2017-06-02 2021-12-28 Halliburton Energy Services, Inc. Rotation monitoring with magnetic film
CN107605475A (zh) * 2017-10-27 2018-01-19 罗淮东 用于地层测试的设备、系统及方法
US10808526B2 (en) * 2018-10-16 2020-10-20 Halliburton Energy Services, Inc. Transmitter and receiver interface for downhole logging
GB2578775A (en) * 2018-11-08 2020-05-27 Expro North Sea Ltd Communication systems and methods
US11346214B2 (en) * 2019-09-13 2022-05-31 Baker Hughes Oilfield Operations Llc Monitoring of downhole components during deployment
RU2745858C1 (ru) * 2020-06-03 2021-04-02 Общество с ограниченной ответственностью "Научно-технологический центр Геомеханика" Способ мониторинга скважинных забойных параметров и устройство для его осуществления
US11549366B1 (en) 2021-08-16 2023-01-10 Halliburton Energy Services, Inc. Electromagnetic telemetry systems, methods to obtain downhole signals indicative of a drilling operation, and drilling data acquisition systems
US11664817B2 (en) * 2021-09-17 2023-05-30 Ms Directional, Llc Method and system for telemetry enhancement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029717A2 (en) * 1998-11-17 2000-05-25 Schlumberger Technology Corporation Communications system having redundant channels
US7207396B2 (en) * 2002-12-10 2007-04-24 Intelliserv, Inc. Method and apparatus of assessing down-hole drilling conditions
US20090166031A1 (en) * 2007-01-25 2009-07-02 Intelliserv, Inc. Monitoring downhole conditions with drill string distributed measurement system
WO2010065205A1 (en) * 2008-12-03 2010-06-10 Halliburton Energy Services, Inc. Signal propagation across gaps
US8115651B2 (en) * 2007-04-13 2012-02-14 Xact Downhole Telemetry Inc. Drill string telemetry methods and apparatus
US20120286967A1 (en) * 2009-12-28 2012-11-15 Laurent Alteirac Downhole Data Transmission System
US20130106615A1 (en) * 2011-10-25 2013-05-02 Martin Scientific Llc High-speed downhole sensor and telemetry network
US20140145857A1 (en) * 2012-11-26 2014-05-29 Baker Hughes Incorporated Electromagnetic Telemetry Apparatus and Methods for Use in Wellbore Applications

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186222A (en) 1960-07-28 1965-06-01 Mccullough Tool Co Well signaling system
CA1062336A (en) 1974-07-01 1979-09-11 Robert K. Cross Electromagnetic lithosphere telemetry system
US4390975A (en) 1978-03-20 1983-06-28 Nl Sperry-Sun, Inc. Data transmission in a drill string
US4739325A (en) 1982-09-30 1988-04-19 Macleod Laboratories, Inc. Apparatus and method for down-hole EM telemetry while drilling
JPS63160430A (ja) * 1986-12-24 1988-07-04 Reideitsuku:Kk 電磁誘導信号伝送方式
US4968978A (en) 1988-09-02 1990-11-06 Stolar, Inc. Long range multiple point wireless control and monitoring system
US5160925C1 (en) 1991-04-17 2001-03-06 Halliburton Co Short hop communication link for downhole mwd system
US5467083A (en) 1993-08-26 1995-11-14 Electric Power Research Institute Wireless downhole electromagnetic data transmission system and method
US5530358A (en) 1994-01-25 1996-06-25 Baker Hughes, Incorporated Method and apparatus for measurement-while-drilling utilizing improved antennas
US6057784A (en) 1997-09-02 2000-05-02 Schlumberger Technology Corporatioin Apparatus and system for making at-bit measurements while drilling
US5942990A (en) 1997-10-24 1999-08-24 Halliburton Energy Services, Inc. Electromagnetic signal repeater and method for use of same
US6144316A (en) 1997-12-01 2000-11-07 Halliburton Energy Services, Inc. Electromagnetic and acoustic repeater and method for use of same
US6177882B1 (en) 1997-12-01 2001-01-23 Halliburton Energy Services, Inc. Electromagnetic-to-acoustic and acoustic-to-electromagnetic repeaters and methods for use of same
US6218959B1 (en) 1997-12-03 2001-04-17 Halliburton Energy Services, Inc. Fail safe downhole signal repeater
US6018501A (en) 1997-12-10 2000-01-25 Halliburton Energy Services, Inc. Subsea repeater and method for use of the same
US6018301A (en) 1997-12-29 2000-01-25 Halliburton Energy Services, Inc. Disposable electromagnetic signal repeater
NO985712L (no) 1998-01-27 1999-07-28 Halliburton Energy Serv Inc Nedihulls telemetrisystem og fremgangsmåte for fjernkommunikasjon
US6048301A (en) 1998-07-13 2000-04-11 Sabuda; Thomas J. Method and device for stimulating biological processes
US20030147360A1 (en) 2002-02-06 2003-08-07 Michael Nero Automated wellbore apparatus
US20020030604A1 (en) * 1999-10-27 2002-03-14 Chance Randall H. Telemetry system and method
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
AU2001242433A1 (en) * 2000-02-25 2001-09-03 Shell Internationale Research Maatschappij B.V. Hybrid well communication system
US7028772B2 (en) * 2000-04-26 2006-04-18 Pinnacle Technologies, Inc. Treatment well tiltmeter system
GB0030932D0 (en) 2000-12-19 2001-01-31 Radiant Networks Plc Antenna apparatus, communications apparatus and method of transmission
EP1364230A1 (en) * 2001-02-02 2003-11-26 DBI Corporation Downhole telemetry and control system
US6657597B2 (en) * 2001-08-06 2003-12-02 Halliburton Energy Services, Inc. Directional signal and noise sensors for borehole electromagnetic telemetry system
US7301474B2 (en) * 2001-11-28 2007-11-27 Schlumberger Technology Corporation Wireless communication system and method
US20030142586A1 (en) * 2002-01-30 2003-07-31 Shah Vimal V. Smart self-calibrating acoustic telemetry system
US7228902B2 (en) 2002-10-07 2007-06-12 Baker Hughes Incorporated High data rate borehole telemetry system
US20040156264A1 (en) 2003-02-10 2004-08-12 Halliburton Energy Services, Inc. Downhole telemetry system using discrete multi-tone modulation in a wireless communication medium
US7234519B2 (en) * 2003-04-08 2007-06-26 Halliburton Energy Services, Inc. Flexible piezoelectric for downhole sensing, actuation and health monitoring
US7168487B2 (en) * 2003-06-02 2007-01-30 Schlumberger Technology Corporation Methods, apparatus, and systems for obtaining formation information utilizing sensors attached to a casing in a wellbore
US7234540B2 (en) * 2003-08-07 2007-06-26 Baker Hughes Incorporated Gyroscopic steering tool using only a two-axis rate gyroscope and deriving the missing third axis
US7139218B2 (en) * 2003-08-13 2006-11-21 Intelliserv, Inc. Distributed downhole drilling network
JP4166708B2 (ja) * 2004-01-21 2008-10-15 シャープ株式会社 データ通信装置、データ通信システム、データ通信方法、データ通信プログラム並びにこのプログラムを記録した記録媒体
US7999695B2 (en) 2004-03-03 2011-08-16 Halliburton Energy Services, Inc. Surface real-time processing of downhole data
CA2558332C (en) 2004-03-04 2016-06-21 Halliburton Energy Services, Inc. Multiple distributed force measurements
US6995683B2 (en) * 2004-03-12 2006-02-07 Welldynamics, Inc. System and method for transmitting downhole data to the surface
US7200070B2 (en) * 2004-06-28 2007-04-03 Intelliserv, Inc. Downhole drilling network using burst modulation techniques
US20060013065A1 (en) * 2004-07-16 2006-01-19 Sensorwise, Inc. Seismic Data Acquisition System and Method for Downhole Use
US20060022839A1 (en) 2004-08-02 2006-02-02 Hall David R Modulation System for Communication
US7347271B2 (en) 2004-10-27 2008-03-25 Schlumberger Technology Corporation Wireless communications associated with a wellbore
US7477160B2 (en) 2004-10-27 2009-01-13 Schlumberger Technology Corporation Wireless communications associated with a wellbore
US20060100968A1 (en) * 2004-11-05 2006-05-11 Hall David R Method for distributing electrical power to downhole tools
US7190084B2 (en) * 2004-11-05 2007-03-13 Hall David R Method and apparatus for generating electrical energy downhole
WO2006058006A2 (en) 2004-11-22 2006-06-01 Baker Hughes Incorporated Identification of the channel frequency response using chirps and stepped frequencies
US7518528B2 (en) 2005-02-28 2009-04-14 Scientific Drilling International, Inc. Electric field communication for short range data transmission in a borehole
ATE454532T1 (de) * 2005-07-29 2010-01-15 Prad Res & Dev Nv Verfahren und vorrichtung zum senden oder empfangen von information zwischen ein bohrlochmessgerät und der oberfläche
US20080007421A1 (en) 2005-08-02 2008-01-10 University Of Houston Measurement-while-drilling (mwd) telemetry by wireless mems radio units
US7303007B2 (en) * 2005-10-07 2007-12-04 Weatherford Canada Partnership Method and apparatus for transmitting sensor response data and power through a mud motor
US7477162B2 (en) * 2005-10-11 2009-01-13 Schlumberger Technology Corporation Wireless electromagnetic telemetry system and method for bottomhole assembly
BRPI0707838B1 (pt) 2006-02-14 2018-01-30 Baker Hughes Incorporated “Método para comunicar sinal através de fluido em uma perfuração e sistema para avaliar formação de terra”
US7768423B2 (en) 2006-04-11 2010-08-03 XAct Dowhole Telemetry Inc. Telemetry transmitter optimization via inferred measured depth
US8031081B2 (en) 2006-12-28 2011-10-04 Schlumberger Technology Corporation Wireless telemetry between wellbore tools
EP1953570B1 (en) 2007-01-26 2011-06-15 Services Pétroliers Schlumberger A downhole telemetry system
US8162050B2 (en) * 2007-04-02 2012-04-24 Halliburton Energy Services Inc. Use of micro-electro-mechanical systems (MEMS) in well treatments
US8291975B2 (en) * 2007-04-02 2012-10-23 Halliburton Energy Services Inc. Use of micro-electro-mechanical systems (MEMS) in well treatments
US9394756B2 (en) * 2007-04-02 2016-07-19 Halliburton Energy Services, Inc. Timeline from slumber to collection of RFID tags in a well environment
WO2008133633A1 (en) 2007-04-28 2008-11-06 Halliburton Energy Services, Inc. Wireless telemetry repeater systems and methods
EP2198113B1 (en) 2007-09-04 2017-08-16 Stephen John Mcloughlin A downhole assembly
US20090101329A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Adaptable Inflow Control Device Using a Powered System
US20090146835A1 (en) * 2007-12-05 2009-06-11 Baker Hughes Incorporated Wireless communication for downhole tools and method
GB0804306D0 (en) * 2008-03-07 2008-04-16 Petrowell Ltd Device
WO2009143409A2 (en) 2008-05-23 2009-11-26 Martin Scientific, Llc Reliable downhole data transmission system
CA2731932C (en) 2008-07-31 2014-01-21 Halliburton Energy Services, Inc. Method and system of an electromagnetic telemetry repeater
EP2157279A1 (en) 2008-08-22 2010-02-24 Schlumberger Holdings Limited Transmitter and receiver synchronisation for wireless telemetry systems technical field
US8451137B2 (en) * 2008-10-02 2013-05-28 Halliburton Energy Services, Inc. Actuating downhole devices in a wellbore
US8605548B2 (en) 2008-11-07 2013-12-10 Schlumberger Technology Corporation Bi-directional wireless acoustic telemetry methods and systems for communicating data along a pipe
US8179278B2 (en) * 2008-12-01 2012-05-15 Schlumberger Technology Corporation Downhole communication devices and methods of use
EP2204530A1 (en) 2008-12-30 2010-07-07 Services Pétroliers Schlumberger A compact wireless transceiver
DE102010047568A1 (de) * 2010-04-12 2011-12-15 Peter Jantz Einrichtung zur Übertragung von Informationen über Bohrgestänge
CN101839132A (zh) * 2010-04-21 2010-09-22 中国石油化工集团 电磁感应随钻数据传输系统
WO2011163602A2 (en) 2010-06-24 2011-12-29 Schlumberger Canada Limited Systems and methods for collecting one or more measurements in a borehole
WO2012042499A2 (en) 2010-09-30 2012-04-05 Schlumberger Canada Limited Data retrieval device for downhole to surface telemetry systems
US8902078B2 (en) * 2010-12-08 2014-12-02 Halliburton Energy Services, Inc. Systems and methods for well monitoring
GB2486637A (en) * 2010-12-14 2012-06-27 Expro North Sea Ltd Downhole water level detecting apparatus and method
CA2824522C (en) 2011-01-21 2016-07-12 Weatherford/Lamb, Inc. Telemetry operated circulation sub
US8695727B2 (en) 2011-02-25 2014-04-15 Merlin Technology, Inc. Drill string adapter and method for inground signal coupling
US9686021B2 (en) 2011-03-30 2017-06-20 Schlumberger Technology Corporation Wireless network discovery and path optimization algorithm and system
US9625603B2 (en) 2011-05-27 2017-04-18 Halliburton Energy Services, Inc. Downhole communication applications
DE102011081870A1 (de) 2011-08-31 2013-02-28 Siemens Aktiengesellschaft System und Verfahren zur Signalübertragung in Bohrlöchern
GB201120458D0 (en) 2011-11-28 2012-01-11 Green Gecko Technology Ltd Apparatus and method
US20130146279A1 (en) 2011-12-13 2013-06-13 Julius Kusuma System and method for borehole communication
US9274243B2 (en) 2012-01-05 2016-03-01 Merlin Technology, Inc. Advanced drill string communication system, components and methods
US9359841B2 (en) * 2012-01-23 2016-06-07 Halliburton Energy Services, Inc. Downhole robots and methods of using same
CA2770979A1 (en) 2012-03-08 2013-09-08 Cathedral Energy Services Ltd. Method for transmission of data from a downhole sensor array
US8833472B2 (en) 2012-04-10 2014-09-16 Halliburton Energy Services, Inc. Methods and apparatus for transmission of telemetry data
US8517093B1 (en) 2012-05-09 2013-08-27 Hunt Advanced Drilling Technologies, L.L.C. System and method for drilling hammer communication, formation evaluation and drilling optimization
EP2664743A1 (en) 2012-05-16 2013-11-20 Services Pétroliers Schlumberger Downhole information storage and transmission
WO2014000276A1 (en) 2012-06-29 2014-01-03 Harman International (Shanghai) Management Co., Ltd. Control logic analyzer and method thereof
MX342282B (es) * 2012-10-04 2016-09-23 Halliburton Energy Services Inc Aparatos, metodos y sistemas de ubicación de frecuencia.
US9771792B2 (en) 2012-12-07 2017-09-26 Evolution Engineering Inc. Method and apparatus for multi-channel downhole electromagnetic telemetry
CA2892884A1 (en) 2012-12-10 2014-06-19 Halliburton Energy Services, Inc. Formation thermal measurement apparatus, methods, and systems
CN103089249B (zh) * 2013-01-09 2015-07-15 电子科技大学 随钻信号无线电磁传输系统
EP2763335A1 (en) 2013-01-31 2014-08-06 Service Pétroliers Schlumberger Transmitter and receiver band pass selection for wireless telemetry systems
US20190218894A9 (en) * 2013-03-15 2019-07-18 Fastcap Systems Corporation Power system for downhole toolstring
US20140265565A1 (en) * 2013-03-15 2014-09-18 Fastcap Systems Corporation Modular signal interface devices and related downhole power and data systems
CA2906215C (en) * 2013-03-15 2021-01-19 Xact Downhole Telemetry Inc. Robust telemetry repeater network system and method
WO2015026317A1 (en) * 2013-08-19 2015-02-26 Halliburton Energy Services, Inc. Evaluating wellbore telemetry systems
EA034155B1 (ru) 2013-09-05 2020-01-13 Эволюшн Инжиниринг Инк. Передача данных через электрически изолирующие переводники в бурильной колонне
US9575201B2 (en) * 2014-04-11 2017-02-21 Well Resolutions Technology Apparatus and method for downhole resistivity measurements
US20170211353A1 (en) * 2014-05-15 2017-07-27 Halliburton Energy Services, Inc. Activation mode control of oilfield tools
US20180328120A1 (en) * 2015-12-16 2018-11-15 Halliburton Energy Services, Inc. Mitigation of cable damage during perforation
US10190410B2 (en) * 2016-08-30 2019-01-29 Exxonmobil Upstream Research Company Methods of acoustically communicating and wells that utilize the methods
US10364669B2 (en) * 2016-08-30 2019-07-30 Exxonmobil Upstream Research Company Methods of acoustically communicating and wells that utilize the methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029717A2 (en) * 1998-11-17 2000-05-25 Schlumberger Technology Corporation Communications system having redundant channels
US7207396B2 (en) * 2002-12-10 2007-04-24 Intelliserv, Inc. Method and apparatus of assessing down-hole drilling conditions
US20090166031A1 (en) * 2007-01-25 2009-07-02 Intelliserv, Inc. Monitoring downhole conditions with drill string distributed measurement system
US8115651B2 (en) * 2007-04-13 2012-02-14 Xact Downhole Telemetry Inc. Drill string telemetry methods and apparatus
WO2010065205A1 (en) * 2008-12-03 2010-06-10 Halliburton Energy Services, Inc. Signal propagation across gaps
US20120286967A1 (en) * 2009-12-28 2012-11-15 Laurent Alteirac Downhole Data Transmission System
US20130106615A1 (en) * 2011-10-25 2013-05-02 Martin Scientific Llc High-speed downhole sensor and telemetry network
US20140145857A1 (en) * 2012-11-26 2014-05-29 Baker Hughes Incorporated Electromagnetic Telemetry Apparatus and Methods for Use in Wellbore Applications

Also Published As

Publication number Publication date
CN106471211A (zh) 2017-03-01
EA201692379A1 (ru) 2017-02-28
US20190048713A1 (en) 2019-02-14
US10119393B2 (en) 2018-11-06
MX364012B (es) 2019-04-11
US10280741B2 (en) 2019-05-07
AU2015281732A1 (en) 2016-12-15
WO2015196278A1 (en) 2015-12-30
CA2952885C (en) 2022-11-22
AU2015281732B2 (en) 2019-07-11
CA3171421C (en) 2024-04-16
CN106471211B (zh) 2020-10-20
MX2016017155A (es) 2017-05-15
CA3171421A1 (en) 2015-12-30
CA2952885A1 (en) 2015-12-30
EP3158166A1 (en) 2017-04-26
EP3158166B1 (en) 2019-07-10
EA032746B1 (ru) 2019-07-31
EA201990681A1 (ru) 2019-08-30
US20170211378A1 (en) 2017-07-27
EP3158166A4 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US10280741B2 (en) Optimizing downhole data communication with at bit sensors and nodes
US10215021B2 (en) Downhole electromagnetic and mud pulse telemetry apparatus
CN110114551B (zh) 用于相邻钻孔之间数据遥测的系统和方法
US10233747B2 (en) Optimizing electromagnetic telemetry transmissions
US8400326B2 (en) Instrumentation of appraisal well for telemetry