DK2864188T3 - Improved hull of a tug boat and the tug comprising the improved hull - Google Patents

Improved hull of a tug boat and the tug comprising the improved hull Download PDF

Info

Publication number
DK2864188T3
DK2864188T3 DK13745729.7T DK13745729T DK2864188T3 DK 2864188 T3 DK2864188 T3 DK 2864188T3 DK 13745729 T DK13745729 T DK 13745729T DK 2864188 T3 DK2864188 T3 DK 2864188T3
Authority
DK
Denmark
Prior art keywords
hull
tunnel
tunnel hull
pushing means
tugboat
Prior art date
Application number
DK13745729.7T
Other languages
Danish (da)
Inventor
Ugo Savona
Original Assignee
Ugo Savona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugo Savona filed Critical Ugo Savona
Application granted granted Critical
Publication of DK2864188T3 publication Critical patent/DK2864188T3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/66Tugs
    • B63B35/68Tugs for towing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/042Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull the underpart of which being partly provided with channels or the like, e.g. catamaran shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B29/00Accommodation for crew or passengers not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/38Keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/66Tugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/66Tugs
    • B63B35/70Tugs for pushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/30Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/10Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit
    • B63H23/18Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit for alternative use of the propulsion power units
    • B63H23/20Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from more than one propulsion power unit for alternative use of the propulsion power units with separate forward and astern propulsion power units, e.g. turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • B63H5/15Nozzles, e.g. Kort-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/16Tying-up; Shifting, towing, or pushing equipment; Anchoring using winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • B63H2025/425Propulsive elements, other than jets, substantially used for steering or dynamic anchoring only, with means for retracting, or otherwise moving to a rest position outside the water flow around the hull

Description

DESCRIPTION
[0001] The present invention relates to an improved hull of a tugboat intended to tow and manoeuvre vessels or like, as well as to assist vessels in danger due to damages or accidents.
[0002] More specifically, the invention relates to the structure of the hull of a tugboat configured in such a way as to allow the tugboat itself to have a greater power, both towing and pushing, which can be applied to the vessel to be towed/assisted, as well as greater maneuverability, compared to the tugboats of known type, [0003] In general, a tugboat is a boat that operates in water spaces, harbors, bays, navigable channels, lakes and rivers, the purpose of which is to transfer mechanical energy from itself to the vessel to be towed/assisted, through its engine and its propulsors.
[0004] If it is provided with machinery and structure which are appropriate in shape, size, type and materials, a tugboat can also navigate in open sea, without geographical limits of navigation and regardless of sea conditions.
[0005] Currently, there are several known tugboats for towing vessels.
[0006] A first tugboat of known type is described in the patent U.S. 3,750,607.
[0007] Said tugboat includes a shallow hull, symmetrical both transversely and longitudinally, which has a flat bottom and vertical sides joined to said bottom part by a double chine underbody, portions at the bow and stern symmetrically inclined upward from said flat bottom, and a generally rectangular profile, when viewed in plan, with flat straight ends and flat straight sides joined by rounded edges.
[0008] Furthermore, said tugboat comprises omnidirectional thruster means which are supported by inclined portions of said hull and extend below the level of said bottom part and the protection means (keels or skeg) which are supported by and below said hull and extend below said thruster means, and are centered with respect to the center line of the bow and the stern of said hull.
[0009] However, said known tugboat has some disadvantages.
[0010] A first disadvantage is that said tugboat has a underbody (i.e. the part of the hull which is intended to be submerged) which is flat and has a low draft, so as to allow a flow of water to be moved undisturbed by the propellers of propulsors, which underbody must meet the following two requirements.
[0011] The first requirement of said tugboat is related to the depth of the hull which must be lower compared to the length of the tugboat, generally of 1.8 m, and propulsors which protrude entirely from said flat under body for other 3m.
[0012] With particular reference to the first requirement, the underbody of said tugboat is a flat keel, so as to allow a flow of water is moved undisturbed by the propellers.
[0013] In other words, the tugboat described in the patent U.S. 3,750,607 is a vessel intended for the assistance of vessels or like in protected waters, without being able to the offshore navigation, which tugboat is characterized by a hull which has a high width, a flat bottom, wherein a lower part of the hull is intended to be immersed in shallow water, and is provided with azimuth propulsors arranged along the longitudinal axis.
[0014] A second disadvantage, related to the fact of having a underbody being flat and with a low draft, is given by the fact that said tugboat does not offer the required resistance to side dragging, when it is engaged in towing operations or escort.
[0015] Again a disadvantage of the tugboat is that propulsors are exposed to the risk of being damaged or destroyed in the case where the tugboat touches the sea bottom, as the keels, being mere semistructural appendages, would not resist to the impact with the sea bottom itself.
[0016] A further disadvantage of this tugboat is given by the difficulty for the same to transfer power to the vessel to be towed/pushed when it is alongside to it. In such a situation, the tugboat has its longitudinal axis parallel to that of the vessel to be pushed/towed and, in the case it uses all the nominal power of the engines, having no support in the submerged part, but only at the level of the rubber fender placed on the shear strake, has difficulties for pushing this vessel, because the force applied by the propulsors on the point of exertion risks to overturn the tugboat, creating a high overturning moment. By way of an example, it should be considered that the thrust exerted by a tugboat of 60 tons bollard pull on a fixed exertion point, if laterally applied white the tugboat accompanies the vessel during the maneuvring, would cause a overturning moment at least equal to the result of the multiplication of 60 tons by 3.5 meters (distance between the propellers center and the exertion point), which is unacceptable for such a tugboat.
[0017] A second tugboat of known type is described in patent U.S. 5,694,877.
[0018] However, also such a tugboat has the same disadvantages mentioned above for previous tugboat.
[0019] A further disadvantage of the tugboat described in said patent US 5,694,877 is the fact that, due to the arrangement of the propulsors, the commands given by an operator to the tugboat are not intuitive and therefore the operator must take into account the offset position of the propulsors to achieve the desired advancing component (with reference to the course of the tugboat) or the desired towing component on the tow cable or the desired pushing component.
[0020] Again a disadvantage of said tugboat is given by the fact that, in order to increase stability, inherently deficient in hull having a flat bottom, the ratio between the width and length of the tugboat was increased so that this ratio is even greater than 70%. If on the one hand, this increases the stability of the tugboat, on the other hand it complicates his maneuverability in small water spaces and makes difficult the navigation in open sea, due to the excessive width and low depth of the submerged underbody.
[0021] A vessel of known type is described in patent application WO 2011/139154, which represents the closest prior art.
[0022] Such a vessel comprises a hull on the bottom of which two lateral keels are fixed, as well as first thruster means and second thruster means. Particularly, said keels serve as support elements for the vessel in a dry dock.
[0023] However, this vessel has the disadvantage that the water flow generated by the first (second) thruster means interferes with said keels, reducing the power generated by the second (first) thruster means. In particular, the water flow is first obstructed by the keels and, despite a quantity of water of said water flow is dispersed into the surrounding environment as a result of the impact with the keels themselves, the greater water quantity of said water flow reaches said second (first) thruster means, interfering with said thruster means.
[0024] Object of the present invention is to overcome said disadvantages by providing an improved hull of a tugboat for towing/assisting a vessel, configured in such a way that, when a water flow is generated by first (second) thruster means of the hull, this water flow is channeled within the keel of the hull in such a way that the greater quantity of water of said water flow is dispersed into the surrounding environment, below the keels, and only a minimal amount of water of said water flow reaches second (first) thruster means. In this way, it is avoided that the thruster means towards which the water flow is directed (i.e. underflow thruster means) lose power. Consequently the efficiency of said thruster means is improved.
[0025] A second object of the invention is to provide an improved hull configured in such a way to allow each component of the hull to participate in the overall structural strength of the hull itself.
[0026] A third object of the invention is to provide an improved hull configured in such a way as to allow the tugboat to have a higher directional stability, to oppose side dragging during the towing of a vessel or an escort service of a vessel, have a greater maneuverability, independently of the dimensions of the water spaces, making it suitable for navigation both in open sea and in protected waters.
[0027] Another object of the invention is to provide an improved hull of a tugboat configured in such a way as to allow the tugboat to transfer to said vessel a greater power, both towing and pushing.
[0028] A further object of the invention is to provide a tugboat comprising said hull.
[0029] In the following it will be indicated with water plane the surface of separation between the submersed part of the hull or underbody and the emerged part of the hull which defines the level of the fluid on which the vessel floats, with base line the parallel to the water plane which passes through the keel point, wherein the keel point is the intersection between the profile of the hull within the outer surface (shell plating) of the the hull itself and the perpendicular to the hull, with water lines the lines between the hull and the planes parallel to the water plane, and with main section the section which encloses the largest submerged area.
[0030] The objects above mentioned are achieved by a hull that has a monolithic structure, wherein the keels are integral with the hull itself and form a tunnel with a portion of the bottom of the hull, and wherein first thruster means and second thruster means, arranged respectively at bow and stern, are aligned along the same axis.
[0031] It is the object of the invention an improved hull of a tugboat for towing/assisting a vessel, wherein said hull has a water plane, a base line, a main section, as well as a longitudinal axis which divides said hull in a first lateral part and a second lateral part, and wherein said hull comprises a bottom, a bow, a stern, a underbody, said underbody comprising a first keel and a second keel, wherein said first keel is parallel to and facing said second keel, as well as first thruster means and second thruster means. In particular, each keel is arranged on a respective side of said underbody, in a substantially central position, and is connected to said underbody respectively in correspondence of the bow and the stern of said hull, said two keels extending in depth perpendicularly or in a substantially perpendicular manner so as to have a draft equal to or greater than that of said first and second thruster means. Said first thruster means and said second thruster means are positioned respectively at the bow and stern of the hull, and are substantially aligned along said longitudinal axis.
[0032] Furthermore, said two keels are integral with said hull and are configured in such a way that they form a tunnel with at least a portion of said bottom of said hull. Said hull has a first airfoil which extends from said first thruster means to said main section, and a second airfoil which extends from said second thruster means to said main section; wherein said two airfoils are substantially symmetrical with respect to said main section. In particular, each airfoil comprises respectively a first portion, external said tunnel, which extends from the respective thruster means to the keels, and a second portion, internal to said tunnel, which extends from the keels to the main section, wherein said first and second thruster means are arranged in said first portion, external to said tunnel, of a respective airfoil. With a such a configuration of the hull, when a water flow is generated by said first thruster means or by said second thruster means, said water flow is channeled within said tunnel, following a respective airfoil, and only a minimal amount of water of said water flow reaches respectively said second thruster means or said first thruster means.
[0033] It is preferable that said two keels are in a position shifted toward the bow of said hull.
[0034] According to the invention, said first thruster means and said second thruster means can have a respective center and said first thruster means and said second thruster means are arranged so that said base line of said hull passes from each center or above each center.
[0035] Advantageously, said hull can comprise a fin centrally arranged on the bottom of said hull, at the stern of the hull itself; wherein said fin is preferably integral with said hull.
[0036] Again according to the invention, said hull can comprise a first pushing fender and a second pushing fender, each of which is externally arranged to the hull, on a respective lateral part, so as to be below said water plane. Particularly, said pushing fenders are positioned on the hull so as to be in correspondence with said base line of said hull.
[0037] Furtehrmore, said hull can comprise a third pushing fender, arranged externally to the hull so as to be above said water plane.
[0038] Particularly, said first thruster means and said second thruster means can respectively comprise at least one azimuth propulsor.
[0039] It is a further object of the invention a tugboat for towing/assisting a vessel, which comprises said hull, wherein said first thruster means can be driven by a first engine, said first engine being positioned at the bow of said hull and connected to said first thruster means by a first shaft, and wherein said second thruster means can be driven by a second engine, said second engine being positioned at the stern of said hull and connected to said second thruster means by a second shaft. Said engines can have a respective longitudinal axis and can be arranged within the hull in a respective lateral part of it, in such a way that the longitudinal axis of each engine forms a respective angle with the longitudinal axis of said hull.
[0040] It is preferable that the value of each angle is between 0° and 90°.
[0041] It is further preferable that said longitudinal axes of said motors are parallel and said angles are equal.
[0042] According to the invention, said tugboat can comprise a winch arranged at the bow of said hull, in the proximity or in correspondence of said first thruster means, and/or a winch arranged at the stern of said hull, in proximity or in correspondence of said second thruster means. A respective tow cable can be wind/unwind on each winch in such a way that the force for towing/assisting said vessel, exerted by a winch at the bow or stern, is applied on a respective point of said bow or said stern.
[0043] In particular, said tugboat can comprise a central control bridge and at least one corresponding chock for each winch, in such a way that: • said winch is arranged between said control bridge and said bow, and the corresponding chock is arranged between said winch and said bow; and/or • said winch is arranged between said control bridge and said stern, and the corresponding chock is arranged between said winch and said stern.
[0044] Again according to the invention, said engines can be positioned externally to said control bridge, wherein said control bridge has preferably a substantially circular section.
[0045] In a first embodiment, the tugboat can comprise an engine room, whcih comprises said two engines.
[0046] In a second embodiment, the tugboat can comprise two engine rooms, each of which is respectively arranged at bow and stern of said hull and comprises a respective engine.
[0047] Furthermore, said tugboat can comprise steering and controlling means for steering and controlling said first and second thruster means, said steering and controlling means being aligned along an axis which coincides with said longitudinal axis.
[0048] The present invention will be now described, for illustrative, but not limitative purposes, according to an embodiment, making particular reference to the enclosed drawings, wherein:
Figure 1 is a perspective view of the hull of a tugboat according to the present invention,
Figure 2A is a three dimensional view of the longitudinal section of the hull of Fig. 1, without a keel, thruster means and fenders; Figure 2B is a side view of the hull of Fig. 1;
Figure 3 is a section of the hull of Fig. 1 showing the first and second thruster means, as well as the respective engines of said thruster means, arranged inside the hull itself, wherein the keels have been cut away;
Figures 4A-4B are respectively a first view and a second top view of the hull of Fig. 1;
Figures 5A-5B are respectively a view of the rear and front of the hull of Fig. 1;
Figure 5C is a side view of the bow part of the hull of Fig. 1;
Figure 5D shows the water lines of the hull of Fig. 1 seen from the stern;
Figure 5E shows the water lines of the hull of Fig. 1 seen from the bow;
Figure 5F shows a comparison between the water lines of the hull of Fig. 1 seen from the bow and the water lines of the hull of Fig. 1 seen from the stern;
Figure 6 is a side view of a first embodiment of a tugboat for towing/assisting a vessel, which comprises the hull according to the invention;
Figure 7 is a rear view of the tugboat of fig. 6;
Figures 8A-8B schematically show the tugboat of fig. 6, while it respectively exerts the function of indirect and direct escorting of a vessel;
Figure 9 is a first top view of the tugboat of fig. 6 from which a portion has been cut away to show the control bridge of the tugboat itself;
Figure 10 is a second top view of the tugboat of fig. 6 from which a portion has been removed to show the engine room of the tugboat itself, below the control bridge;
Figure 11 is a top view of a second embodiment of the tugboat, from which a portion has been removed to show two engine rooms of the tugboat itself, below the control bridge.
[0049] With reference to Figures 1-5, a hull 1 for a tugboat R (shown in Figures 6 and 7) for towing a vessel is disclosed.
[0050] Said hull 1 comprises a hull (i.e. the part of the hull intended to be submerged) and two deep keels, a first keel 11 and a second keel 12, the latter facing said first keel, which have a first end on the underbody 2 and a second free end, wherein said two keels extend from said underbody 2 downwards in perpendicular or substantially perpendicular manner (Figs. 1,2A, 2B). Said two keels 11,12 are parallel and arranged at the sides of the hull 1, in a substantially central position, and are connected to said underbody 2 respectively in correspondence of the bow and the stern of said hull 1. In particular, said keels 11,12 are a single piece with the hull 1 and are configured in such a way as to form a tunnel 14 with at least a portion of the bottom 1Aof said hull 1. In other words, the tunnel 14 is a downwardly open tunnel, wherein the keels 11,12 are the side walls of said tunnel and said at least a portion of said bottom 1A of the hull 1 is the upper part of said tunnel.
[0051] Therefore, the hull object of the invention is a monolithic hull. This allows each component of the hull to participate in the overall structural strength of the hull itself. In the case of the tugboat R provided with said hull and capable of transfering a quantity of kinetic energy to a vessel, when the tugboat goes alongside to the vessel for pushing it, the impact areas of the hull absorb the shock and transmit to said vessel the thrust power in a homogeneous way. This amount of kinetic energy is high for both the speed of the tugboat, when the latter goes alongside to the vessel, and the mass of the tugboat concentrated in a reduced volume of the hull of the tugboat itself.
[0052] First thruster means 3 and second thruster means 4 are arranged on the hull 1, in correspondence respectively of the bow and stern. In particular, said first thruster means 3 and said second thruster means 4 are arranged on the hull 1 so as to be aligned along a longitudinal axis L (Fig. 4A).
[0053] According to a peculiar feature of the invention, the hull 1 has a first airfoil W1 which extends from the bow, and in particular by the first thrusters means 3, to the main section SM of the hull and a second airfoil W2 which extends from the stern, and in particular by the second thruster means 4, to the main section SM of the hull. Said two airfoils W1, W2 are substantially symmetrical with respect to the main section SM of the hull. In particular, the first airfoil W1 of the hull 1 comprises a first portion, external to the tunnel 14, which extends from the first thruster means 3 to the keels 11,12, and a second portion, internal to the tunnel 14, which extends from said keels to the main section SM of the hull. The second airfoil W1 of the hull 1 comprises a first portion, external to the tunnel 14, which extends from the second thruster means 4 to the keels 11,12, and a second portion, interna to the tunnel 14, which extends from said keels to the main section SM of the hull. Said first thrusters means 3 and said second thruster means 4 are arranged on a first portion, external to the tunnel 14,of a respective airfoil W1, W2.
[0054] In particular, the hull 1 has first cross sections S1, S2, S3,... Sn, each of which is disposed between said first thruster means 3 and said main section SM of the hull, and second cross-sections ST, S2', S3', ... Sn', each of which is disposed between said second thruster means 4 and said main section SM of the hull. Said first cross sections S1, S2, S3, ... Sn and said second cross sections ST, S2', S3',... Sn' increase progressively according to a respective airfoil W1, W2 (Fig. 2B, 3) in the direction that goes from the respective thruster means to the main section SM.
[0055] The general configuration of the hull, with particular reference to airfoils W1, W2 and the keels 11, 12, is designed to reduce the power losses of the thruster means arranged aligned along the same axis, i.e. the longitudinal axis L of the hull 1, thereby increasing the efficiency. In fact, each airfoil W1, W2 of the hull 1 together with the tunnel 14, formed by the keels 11,12 being in one piece with the hull 1, allows to channel a water flow generated by the first thruster means 3 or the second thruster means 4 inside the tunnel itself. Thanks to the tunnel 14 and each airfoil W1, W2 of the hull 1, the water flow first undergoes an acceleration, substantially up to the middle of said tunnel, i.e. in correspondence of the main section SM of the hull 1, and then, in proximity of the middle of said tunnel, begins to decelerate because the bigger amount of water of said water flow tends to disperse into the surrounding environment, below the keels. Since the tunnel 14 is a downwardingly open tunnel, the greater amount of water of the water flow has a component which is dispersed downwards, according an airfoil of the hull. In this way, only a minimal amount of water of said water flow reaches respectively said second thruster means 4 or said first thruster means 3.
[0056] With such a configuration of the hull 1, the water flow generated by the first (second) thruster means increases its speed as said water flow is obliged to follow an airfoil and to be channeled in the tunnel, and reaches its maximum speed substantially at the tunnel middle point, where the pressure of water is minimal (technical effect due to the known laws of fluid dynamics). The increase of speed of the water flow generates a thrust that, is higher than that generated from the hulls of known type with the same power. Once the water flow has passed the tunnel middle point, its speed decreases as the greater quantity of water of said water flow tends to disperse into the surrounding environment, below the keels.
[0057] Figures 5D and 5E show the water lines of the hull seen from the bow and stern respectively. Figure 5F shows a comparison of the water lines of the hull as seen from the bow (the right part of the figure) with the water lines of the hull seen from the stern (the left part of the figure).
[0058] Advantageously, the underbody 2 of the hull 1 participates and increases the thrust applied to the hull by thruster means aligned along the longitudinal axis of the hull, the efficiency of which is improved by virtue of the fact that a minimum amount of water flow generated by the first (second) thruster means reaches the second (first) thruster means, interfering with said second (first) thruster means.
[0059] Another advantage is given by the arrangement of the two keels 11, 12 which improves both the stability of the course of the tugboat and the resistance to side dragging of the tugboat itself, when said tugboat is engaged in an escorting/towing function.
[0060] In the example being described, each of said thruster means 3, 4 has a longitudinal axis D which is inclined with respect to the base line B in such a way as to form an angle Θ, between 0° and 7°, between said longitudinal axis L and an axis E perpendicular to the base line B. Said first thruster means 3 and said second thruster means 4 comprises a respective azimuth propulsor 31,41. Afirst azimuth propulsor31 is provided at the bow of the hull 1 and a second azimuth propulsor41 is provided at the stern of the hull itself. Each azimuth propulsor 31,41 is driven by a respective engine 33, 44 (fig. 3).
[0061] Furthermore, said hull 1 comprises a fin 13 which is centrally disposed between said two keels 11, 12, at the stern of the hull 1. Such a fin 13 has multiple functions: to support the rear of the tugboat when the latter is in the dry dock, to stabilize the dynamic behavior of the hull during the navigation, to slow down at least partially the speed of the water flow generated by the first (second) thruster means and directed towards the second (first) thruster means so as to increase the efficiency of said second (first) thruster means. Said fin 13 is preferably one piece with the hull 1 so that the entire structure of the hull is monolithic.
[0062] According to another peculiar feature of the invention, the configuration of the hull is configured in such a way that the draft of said keels 11, 12 is greater than that of said thruster means 3,4. In other words, the free end of said keels 11,12 has a depth greater than that of the azimuth propulsors 31, 41. Although in the example being described said keels have a depth greater than the azimuth propulsors, said keels may have a depth equal to or substantially equal than that of the azimuth propulsors, without departing from the scope of the invention. This means that the azimuth propulsors 31, 41 never cross a horizontal plane O tangent to the free ends of the keels. Therefore, the configuration of the hull 2 allows to said azimuth propulsors 31,41 to be incorporated in the hull 1, in a respective first portion of each airfoil W1, W2, external to the tunnel 14. Compared to the hulls of known type, wherein the submerged part is constituted in greater measure by the azimuth propulsors (about 3 meters), in particular by the propellers, and to a lesser extent by the part of the hull below the water plane (about 1.5 meters), in the hull 1 of the invention, the submerged part is formed directly from the part of the hull below the water plane G, as the azimuth propulsors 31, 41 does not increase the depth of the submerged part of the hull 1 , being incorporated in the hull itself. Moreover, advantageously, in the case where the tugboat R both in dry dock for repair or maintenance, said azimuth propulsors 31,41 do not touch the support plane. Similarly, in the case where the tugboat R is accidentally aground, said azimuth propulsors 31,41 do not touch the the sea bottom.
[0063] With particular reference to Figures 4A, 4B, the hull 1 has a longitudinal axis L which divides it into a first lateral part L1 and a second lateral part L2 and a transverse axis T that divides it into a first front part A1 and a second rear part A2, including respectively the bow and the stern of said hull 1. In particular, the hull 1 has a structure configured in a such way that the front part A1 is different from the rear part A2, and more particularly that the front part A1 is asymmetrical with respect to the rear part A2.
[0064] As previously said, said thruster means 3, 4 are aligned along the longitudinal axis L of the hull 1. This allows the tugboat R to ensure the thrust directly at the ends of its longitudinal axis and control the power transferred to the vessel to be towed/assisted, guaranting maximum maneuverability and maximum control of said vessel.
[0065] In the embodiment being described, said thruster means 3, 4 are arranged in such a way that the base line B of the hull 1 passesthrough the center of said thruster means 3, 4, i.e. the center of the propellers of the azimuth propulsors 31,41. In other words, the propellers of the azimuth propulsors 31, 41 rotate around a rotation axis and the base line B coincides with said rotation axis.
[0066] Although not shown in the figures, the base line B of the hull 1 can pass above the center of said thruster means, in such a way that the greater part of the water flow generated by the thruster means is not obstructed by the underbody.
[0067] According to the invention, the hull 1 is configured in such a way that it has a ratio between its width and its length of not more than 1:2, and the underbody 2 of the hull 1 is configured in such a way that the ratio between the depth of said underbody and the width of the hull is not more than 1:3. In particular, the underbody is configured in such a way as to have a high displacement so that the tugboat R has a greater stability with respect to a tugboat of known type with the same barycenter.
[0068] The particular configuration of the hull 1, and therefore of the underbody 2 being part of said hull, allows the tugboat R to have a barycenter in a lower position than that of the known tugbots, generally flat, so that said tugboat R has a greater stability and a good sea-keeping behaviour during navigation compared to the known tugboats. Indeed, the fact that during navigation, the volume submerged in water comprising the hull object of the invention is greater than that of the known tugboats, makes it more stable.
[0069] According to the invention, the hull 1 comprises a first pushing fender 10Aand a second pushing fender 10B, each of which is arranged externally to the hull itself, on a respective lateral part L1, L2 so as to be always below the water plane G, during the navigation of the tugboat R. In particular, each pushing fender 10A, 10B is disposed on a respective lateral part L1, L2 of the hull 1 in such a way as to be on the base line B of the hull itself. Hence, said pushing fenders 10A, 10B are positioned on the hull 1 at the same height of the center of the propellers of the azimuth propulsors 31,41 (Figs. 5A, 5B, 5C).
[0070] In the case of lateral thrust of a vessel by the tugboat R, the mechanical energy is transmitted to the underbody of the vessel, through both the hull of the tugboat and that of the vessel, and said pushing fenders 10A, 10B allow a homogeneous lateral thrust so as to oppose the overturning moment, since the hull has a monolithic structure.
[0071] Furthermore, the keels 11, 12 of the hull always participate to the displacement of the vessel and their contribution is not variable in function of the angle of inclination of the tugboat.
[0072] It is preferable that each pushing fender 10A, 10B is made of rubber and has a cylindrical shape.
[0073] Advantageously, due to the configuration of the hull 1 and to said pushing fenders 10A, 10B, the tugboat R can push a vessel to be towed/assisted with all the thrusting force of its propulsors, keeping its longitudinal axis parallel to that of said vessel, in such a way as to accompany the vessel in advancing and, at the same time, apply a thrust on it. Indeed, the fact that the pushing fenders 10A, 10B are positioned on the same axis that passes through the center of the propulsors, allows to oppose to the overturning moment, caused by the same propellers, when the tugboat R pushes at full power the vessel to be towed/assisted, with its longitudinal axis parallel to the longitudinal axis of said vessel. Consequently, such a vessel can be pushed safely and accompanied by the tugboat in its advancing.
[0074] It is also preferable that said tugboat R comprises a third pushing fender 11 which is arranged externally to the hull 1 so as to be above the water plane G.
[0075] In light of the foregoing, the hull 1 object of the invention is characterized by a no flat under body, which has a stern part different from the bow part and two azimuth propulsors respectively positioned at the bow end and the stern end, and it is deeper with respect to that of the known hulls, wherein the water lines are designed to allow minimal interference of the water flow with the propellers of the azimuth propulsors. As already said, the airfoils W1, W2 of the hull 1 and the tunnel 14 allow to channel the water flow inside the tunnel 14 itself and give a directional stability to the tugboat during navigation, and also to oppose to side dragging, during the towing of a vessel or an escort service of a vessel.
[0076] Therefore, when a tugboat comprising said hull is in the water, in order to move said tugboat in a first direction, said first thruster means 3 take water from the surrounding environment and generate a water flow in a second direction, opposite to said first direction. As previously said, due to the configuration of the hull, the speed of said water flow increases up to middle point of the tunnel 14 (i.e. in correspondence of the main section SM of the hull), where it reaches the maximum speed, and where the pressure of water is minimal. Then the speed begins to decrease as the greater amount of water of said water flow tends to disperse into the surrounding environment, below the keels, and a minimum quantity of water of said flow of water reaches the second thruster means 4. Consequently, the power loss of the thruster means is reduced, due to the fact that thruster means are arranged aligned along the same axis, and the efficiency of the second thruster means 4 increases. The underbody 2 of the hull 1 participate and increases the thrust applied to the hull by thruster means. In fact, the underbody 2 amplifies the thrust power at low speeds, typical of a tugboat, whose maximum towing/pushing force exerted on a vessel occurs at a speed close to zero velocity.
[0077] If a water flow is generated by said second thruster means 4, only a minimal amount of water of said water flow reaches said first thruster means 3.
[0078] With reference to Figures 6 and 7 is shown a tugboat R which comprises the hull 1 object of the invention.
[0079] Said tugboat is provided with two winches V (towing winches), on each of which a tow cable C is wind/unwind. Afirst winch V is positioned at the bow of the hull and a second winch V is positioned at the stern of the hull.
[0080] With particular reference to the box of Figure 6, the detail of the first winch V positioned at the bow of the hull is shown.
[0081] Although not shown in the figures, the tugboat R can be provided with only one winch V, positioned at the bow or stern of the hull 1, or any number of winches.
[0082] The configuration of the underbody 2 provided with two keels 11,12 being parallel and facing each other, allows to offer a high transverse resistance when the tugboat R exerts the function of indirect escorting in turning a vessel N which proceeds in the same direction of advancing of said tugboat, when it is necessary that the tugboat R exerts a strong force on the tow cable C using its engines at full speed ahead (Fig. 8A).
[0083] As can be seen from Figure 8A, the tugboat R exerts its towing force on the vessel V through the first winch V at the bow of the hull. Said winch V is positioned in the vicinity of the first thruster means 3, and preferably in correspondence of said thruster means 3, in such a way that the point of exertion of said towing force coincides with said first thruster means 3. In particular, said first winch V is positioned between the control bridge P of the tugboat R, centrally placed, and the bow of the tugboat itself, and the tow cable C exit a chok F positioned between said first winch V and said bow.
[0084] In the case of indirect escorting, the tugboat R goes full steam ahead.
[0085] The high displacement of the tugboat, the mass of the tugboat, the high ability to oppose to side dragging of the tugboat R, due to the configuration of the hull having a deep underbody and two keels parallel and facing each other, as well as due to the azimuth propulsors arranged at the ends of the longitudinal axis of the hull, the possibility of applying a towing power in a controlled manner along the longitudinal axis of the tugboat, the latter coinciding with that of the hull, amplify the operating capacity of the tugboat, and improve the safety of the towing operations in the indirect escorting function, avoiding that the tugboat R positions itself transversally to the direction of the tow cable (so-called girting phenomenon), loses the control and is therefore overturned.
[0086] Similarly, even when the tugboat R exerts a direct escorting function, the point of exertion of the towing force coincides with the first thruster means 3 at the bow of the hull (Fig. 8B). In direct escorting function, the tugboat R reverses its motion, and its propulsion force is of opposite sign to that of a vessel N.
[0087] In both situations above described, in case of damage to its machines, the tugboat R aligns to the vessels N to be towed and the tension on the tow cable C tends to zero.
[0088] With reference to Figures 8A and 8B, the large arrow indicates the direction of advancing of the tugboat R, while the small arrows in the proximity of the azimuth propulsors 31,41 of the tugboat R indicate the direction of the thrust.
[0089] Although not shown in Figures 8A, 8B, the tugboat R may exerts its towing force to the vessel V through the winch V positioned at the stern of the hull.
[0090] Said second winch is positioned in the proximity of said second thruster means 4, and preferably in correspondence of said second thruster means, in such a way that the point of exertion of a towing force coincides with said second thruster means 4. In particular, the second winch V is positioned between the control bridge P and the stern of the tugboat R, and the tow cable C exits a chok F positioned between said second winch and said stern.
[0091] With particular reference to Figure 9, the control bridge P of said tugboat R is schematically shown. Said control bridge P is positioned at the center of the tugboat R and is configured in such a way as to have a substantially circular shape, with the center corresponding to the point of intersection between the longitudinal axis L and the transverse axis T.
[0092] With reference to Figure 10, the engine room M of the tugboat R is schematically shown.
[0093] The engine room M is positioned below the control bridge P and comprises two engines, a first engine 33 positioned at the bow and connected to said first thruster means 3 by means of a first shaft 3A, and a second engine 44 positioned at the stern and connected to said second thruster means 4 by means of a second shaft 4B.
[0094] Said engines 33, 44 have a respective longitudinal axis A33, A44 and are arranged on a respective lateral part L1, L2 of the hull 1 in such a way that their longitudinal axes are parallel and form a predetermined angle with respect to the longitudinal axis L of the hull, respectively an angle a and an angle β.
[0095] Although in the example being described the two longitudinal axes A33 and A44 of the engines 33, 44 are parallel, and therefore the angle a is equal to the angle β, it is possible to provide that said longitudinal axes are inclined with respect to the longitudinal axis L, without necessarily being parallel.
[0096] This solution allows to reduce the overall dimensions and extract one of said two engines or both engines directly from the main deck, when necessary, for example, in case of maintenance, without the need of cutting a portion of the outer wall of the hull 1 to obtain an opening, as happens for the tugboats of known type. In order to allow the extraction of the engines, an opening and a closing element, such as a plate to be fixed on said the main deck to close said opening, are provided on the the main deck. In particular, an empty space between each engine and said closing element is provided. In other words, there are no electrical means or mechanical means or further elements or parts that may interfere with the extraction of each engine from the above.
[0097] In particular, each angle a and β may have a value between 0° and 90°. In other words, the value of each of said angles can be equal to 0° or greater than 0° up to a value equal to 90°. In the specific case in which the value of each of said angles is 0°, the engines 33, 44 are arranged along the same longitudinal axis which coincides with the longitudinal axis L of the hull.
[0098] Furthermore, said tugboat R comprises steering and controlling means (not shown in the figures) for steering and controlling said thruster means 3, 4, positioned in the control bridge of the tugboat itself, which are aligned along an axis which coincides with the longitudinal axis L of the thruster means themselves, allowing the pilot of said tugboat to have an intuitive control of the direction and the power, both towing and pushing, in the desired direction. Indeed, the thrust is applied on the poles of the axis of symmetry which coincides with the longitudinal axis and thus causes intuitive reactions of the tugboat to the variation of the commands.
[0099] According to a second embodiment of the tugboat R shown in Figure 11, the tugboat R comprises two engine rooms M1 and M2, separate between them, arranged respectively at the bow and stern of the hull 1. In particular, the tugboat R comprises a first engine room M1, arranged at the bow, which comprises said first engine 33, and a second engine room M2, arranged at the stern, which comprises said second engine 44. This allows to remove any separation element, such as a septum or a bulkhead that separates the engines 33, 44 by the respective thruster means 3, 4 connected to said engines.
[0100] Advantageously, as already mentioned, the hull object of the invention, due to its configuration, i.e. a hull having a under body with a high draft and provided with thruster means included in the hull, allows a tugboat for towing/assisting a vessel to have a greater stability, greater maneuverability and to apply a power, both towing and pushing, on the vessel to be towed/assisted, without significant differences in terms of efficiency in every direction. Furthermore, the configuration of the hull with a high draft makes the tugboat suitable for a navigation not only in protected waters, but even in the open sea. As a result, the stability obtained by the configuration of the hull allows on one hand that the ratio between the width and length of the tugboat does not exceed 1:2 for hulls of about 30m in length, so that said tugboat can move in restricted spaces, such as ports and locks, and on the other hand that the relationship between the submerged part of the hull and the width of the tugboat does not exceed 1:3.
[0101] A second advantage is that the azimuth propulsors are protected from accidental impacts both during navigation and when the tugboat is in dry dock for maintenance.
[0102] Another advantage is the fact that it is possible to store a high quantity of fuel in the internal volume of the underbody, due to the configuration of the under body itself, so that a sufficient provision can be guaranteed even for offshore navigation.
[0103] The present invention has been described for illustrative, but not limitative purposes with reference to a preferred embodiment, but it well evident that one skilled in the art can introduce modifications to the same without departing from the relevant scope as defined in the enclosed claims.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • .US3750607A XQ006] [0013] . USS694877A Γ00171 [00191 • WQ2011 j 391.54A [0021]

Claims (17)

1. Tunnelskrog (1) afen slæbebåd (R) til at slæbe /assistere et fartøj (N), hvor tunnelskroget har et vandlinjeplan (G), en basislinje (B), et hovedafsnit, såvel som en langsgående akse (L), som inddeler tunnelskroget (1) i en første lateral del (LI) og en anden lateral del (L2), tunnelskroget (1) omfattende en bund (1 A), en bov, en bagstavn, og yderligere omfattende: - et underlegeme (2), underlegemet omfattende en første køl (11) og en anden køl (12), hvor den første køl (11) er parallel med og vender mod den anden køl (12), - første skubbeorgan (3) og andet skubbeorgan (4), hvor hver køl (11, 12) er anbragt på en respektiv side af underlegemet (2), i en i alt væsentligt central position, og er forbundet med underlegemet (2) henholdsvis i overensstemmelse med boven og bagstavnen af tunnelskroget (1), de to køle (11, 12) strækker sig i dybde vinkelret eller på en i alt væsentligt vinkelret måde for at have en dybgang lig med eller større end den af det første og andet skubbeorgan (3, 4), og hvor det første skubbeorgan (3) og det andet skubbeorgan (4) er positioneret henholdsvis ved boven og bagstavnen af tunnelskroget (1), og er i alt væsentligt på linje langs den langsgående akse (L) af tunnelskroget (1); hvor tunnelskroget (1) er kendetegnet ved at de to køle (11, 12) er integreret med tunnelskroget (1) og er konfigureret på sådan en måde at de danner en tunnel (14) med mindst en del af bunden (1 A) af tunnelskroget (1), og ved at tunnelskroget (1) har et langsgående afsnit med en konkav bovdel, en konkav bagstavnsdel og en konveks mellemliggende del, positioneret mellem bovdelen og bagstavnsdelen, og har en første konkav bunddel (Wl) som strækker sig fra det første skubbeorgan (3) til hovedafsnittet (SM), og en anden konkav bunddel (W2) som strækker sig fra det andet skubbeorgan (4) til hovedafsnittet (SM); hvor de to konkave bunddele (Wl, W2) er i alt væsentligt symmetriske i forhold til hovedafsnittet (SM); hver konkave bunddel (Wl, W2) omfattende en respektiv første del, udvendigt for tunnellen (14), som strækker sig fra det respektive skubbeorgan (3, 4) til kølene (11,12), og en anden del, indvendig for tunnellen (14), som strækker sig fra kølene (11,12) til hovedafsnittet (SM), hvor det første og andet skubbeorgan (3, 4) er anbragt i den første del, udvendigt for tunnellen (14), afen respektiv konkav bunddel (Wl, W2), således at, når en vandstrømning genereres af det første skubbeorgan (3) eller af det andet skubbeorgan (4), ledes vandstrømningen igennem tunnellen (14), efterfølgende en respektiv konkav bunddel (Wl, W2), og kun en minimal mængde afvand afvandstrømningen når henholdsvis det andet skubbeorgan (4) eller det første skubbeorgan (3).A tunnel hull (1) of a tug (R) for towing / assisting a vessel (N), wherein the tunnel hull has a waterline plane (G), a baseline (B), a main section, as well as a longitudinal axis (L), which divides the tunnel hull (1) into a first lateral portion (LI) and a second lateral portion (L2), the tunnel hull (1) comprising a bottom (1A), a bow, a backbone, and further comprising: - a lower body (2) , the lower body comprising a first keel (11) and a second keel (12), the first keel (11) being parallel to and facing the second keel (12), - first pushing means (3) and second pushing means (4), wherein each keel (11, 12) is disposed on a respective side of the lower body (2), in a substantially central position, and is connected to the lower body (2), respectively, in accordance with the top and rear of the tunnel hull (1), two coolers (11, 12) extend in depth perpendicular or in a substantially perpendicular manner to have a draft equal to or greater than that of the first and second pushing means (3, 4), and wherein the first pushing means (3) and the second pushing means (4) are respectively positioned at the top and rear of the tunnel hull (1) and are substantially aligned along the longitudinal axis (L ) of the tunnel hull (1); wherein the tunnel hull (1) is characterized in that the two coolers (11, 12) are integrated with the tunnel hull (1) and configured in such a way that they form a tunnel (14) with at least part of the bottom (1 A) of the tunnel hull (1), and in that the tunnel hull (1) has a longitudinal section with a concave upper portion, a concave posterior portion and a convex intermediate portion, positioned between the bow portion and rear portion, and has a first concave bottom portion (W1) extending from it. first pushing member (3) to the main section (SM), and a second concave bottom portion (W2) extending from the second pushing means (4) to the main section (SM); wherein the two concave bottom portions (W1, W2) are substantially symmetrical with respect to the main section (SM); each concave bottom portion (W1, W2) comprising a respective first portion, exterior of the tunnel (14) extending from the respective pushing means (3, 4) to the keels (11, 12), and a second portion, internal to the tunnel ( 14) extending from the keels (11,12) to the main section (SM), wherein the first and second pushing means (3, 4) are arranged in the first part, outside the tunnel (14), of a respective concave bottom part (W1). , W2) such that when a water flow is generated by the first pushing means (3) or by the second pushing means (4), the water flow is conducted through the tunnel (14), followed by a respective concave bottom part (W1, W2), and only a minimal amount of water The flow of water reaches the second pushing means (4) or the first pushing means (3) respectively. 2. Tunnelskrog (1) ifølge det foregående krav, kendetegnet ved at de to køle (11, 12) er i en position forskudt mod boven af tunnelskroget (1).Tunnel hull (1) according to the preceding claim, characterized in that the two coolers (11, 12) are offset in a position towards the top of the tunnel hull (1). 3. Tunnelskrog (1) ifølge et hvilket som helst af de foregående krav, kendetegnet ved at det første skubbeorgan (3) og det andet skubbeorgan (4) har en respektiv midte og ved at det første skubbeorgan (3) og det andet skubbeorgan (4) er anbragt således at basislinjen (B) af tunnelskroget (1) passerer fra hver midte eller over hver midte.Tunnel hull (1) according to any one of the preceding claims, characterized in that the first pushing means (3) and the second pushing means (4) have a respective center and in that the first pushing means (3) and the second pushing means ( 4) is arranged such that the baseline (B) of the tunnel hull (1) passes from each center or over each center. 4. Tunnelskrog (1) ifølge et hvilket som helst af de foregående krav, kendetegnet ved at tunnelskroget (1) omfatter en finne (13) centralt anbragt på bunden (1 A) af tunnelskroget (1), ved bagstavnen af selve tunnelskroget (1); hvor finnen er fortrinsvis integreret med tunnelskroget (1).Tunnel hull (1) according to any one of the preceding claims, characterized in that the tunnel hull (1) comprises a fin (13) centrally located on the bottom (1A) of the tunnel hull (1), at the rear of the tunnel hull (1) ); wherein the fin is preferably integrated with the tunnel hull (1). 5. Tunnelskrog (1) ifølge et hvilket som helst af de foregående krav, kendetegnet ved at omfatter en første skubbefender (10A) og en anden skubbefender (10B), hver af hvilke er udvendigt anbragt til tunnelskroget (1), på en respektiv lateral del (LI, L2), for at være under vandlinjeplanet (G).Tunnel hull (1) according to any one of the preceding claims, characterized by comprising a first push fender (10A) and a second push fender (10B), each of which is externally arranged to the tunnel hull (1), on a respective lateral part (L1, L2), to be below the waterline plane (G). 6. Tunnelskrog (1) ifølge det foregående krav, kendetegnet ved at skubbefenderne (10A, 10B) er positioneret på tunnelskroget (1) for at være i overensstemmelse med basislinjen (B) af tunnelskroget (1).Tunnel hull (1) according to the preceding claim, characterized in that the push fenders (10A, 10B) are positioned on the tunnel hull (1) to conform to the baseline (B) of the tunnel hull (1). 7. Tunnelskrog (1) ifølge et hvilket som helst af de foregående krav, kendetegnet ved at det omfatter en tredje skubbefender (11), anbragt udvendigt for tunnelskroget (1) for at være over vandlinjeplanet (G).Tunnel hull (1) according to any one of the preceding claims, characterized in that it comprises a third push fender (11), located externally of the tunnel hull (1) to be above the waterline plane (G). 8. Tunnelskrog (1) ifølge et hvilket som helst af de foregående krav, kendetegnet ved at det første skubbeorgan (3) og det andet skubbeorgan (4) omfatter henholdsvis mindst en azimut propulsor (31, 41).Tunnel hull (1) according to any one of the preceding claims, characterized in that the first pushing means (3) and the second pushing means (4) comprise at least one azimuth propulsor (31, 41) respectively. 9. Slæbebåd (R) til at slæbe/assistere et fartøj (N), kendetegnet ved at den omfatter et tunnelskrog (1) ifølge et hvilket som helst af de foregående krav, og ved at det første skubbeorgan (3) er drevet af en første motor (33), hvor den første motor (33) er positioneret ved boven af tunnelskroget (1) og forbundet med det første skubbeorgan (3) af en første aksel (3A), og ved at det andet skubbeorgan (4) er drevet af en anden motor (44), hvor den anden motor (44) er positioneret ved bagstavnen af tunnelskroget (1) og forbundet med det andet skubbeorgan (4) med en anden aksel (4B); hvilke motorer (33, 44) har en respektiv langsgående akse (A33, A44) og er anbragt inden i tunnelskroget (1), i en respektiv lateral del (LI, L2) af den, på sådan en måde at den langsgående akse (A33, A44) af hver motor (33, 44) danner med den langsgående akse (L) af tunnelskroget (1) en respektiv vinkel (α, β).Tug (R) for towing / assisting a vessel (N), characterized in that it comprises a tunnel hull (1) according to any one of the preceding claims, and in that the first pushing means (3) is driven by a first motor (33), wherein the first motor (33) is positioned at the top of the tunnel hull (1) and connected to the first pushing member (3) of a first shaft (3A), and the second pushing means (4) being driven a second motor (44), wherein the second motor (44) is positioned at the rear of the tunnel hull (1) and connected to the second pushing member (4) with a second shaft (4B); the motors (33, 44) having a respective longitudinal axis (A33, A44) and disposed within the tunnel hull (1), in a respective lateral portion (L1, L2) thereof, in such a way that the longitudinal axis (A33) , A44) of each motor (33, 44) forms with the longitudinal axis (L) of the tunnel hull (1) a respective angle (α, β). 10. Slæbebåd (R) ifølge det foregående krav, kendetegnet ved at værdien af hver vinkel (α, β) er mellem 0° og 90°.Tug (R) according to the preceding claim, characterized in that the value of each angle (α, β) is between 0 ° and 90 °. 11. Slæbebåd (R) ifølge krav 9 eller 10, kendetegnet ved at den langsgående akse (A33, A44) af motorerne (33, 44) er parallelle og vinklerne (α, β) er ens.Tug (R) according to claim 9 or 10, characterized in that the longitudinal axis (A33, A44) of the motors (33, 44) are parallel and the angles (α, β) are equal. 12. Slæbebåd (R) ifølge et hvilket som helst af kravene 9-11, kendetegnet ved at den omfatter et spil (V) anbragt ved boven af tunnelskroget, i nærheden af eller i overensstemmelse med det første skubbeorgan (3), og/eller et spil (V) anbragt ved bagstavnen af tunnelskroget (1), i nærheden af eller i overensstemmelse med det andet skubbeorgan (4), hvor et respektivt trækkabel (C) spoles/afspoles på hvert spil (V) på sådan en måde at kraften til at slæbe /assistere fartøjet (N), udøvet af et spil (V) ved boven eller bagstavnen, påføres på et respektivt punkt af boven eller bagstavnen.Tug (R) according to any one of claims 9-11, characterized in that it comprises a winch (V) arranged at the top of the tunnel hull, in the vicinity of or in accordance with the first pushing means (3), and / or a coil (V) disposed at the rear of the tunnel hull (1), near or in accordance with the second pushing means (4), where a respective pulling cable (C) is coiled / coiled on each coil (V) in such a way that the force to tow / assist the vessel (N), exerted by a play (V) at the top or rear, is applied at a respective point of the top or rear. 13. Slæbebåd (R) ifølge det foregående krav, kendetegnet ved at den omfatter en central styrebro (P) og mindst en tilsvarende bremseklods (F) for hvert spil (V), på sådan en måde at: - spillet (V) er anbragt mellem styrebroen (P) og boven, og den tilsvarende bremseklods (F) er anbragt mellem spillet (V) og boven; og/eller - spillet (V) er anbragt mellem styrebroen (P) og bagstavnen, og den tilsvarende bremseklods (F) er anbragt mellem spillet (V) og bagstavnen.A tug (R) according to the preceding claim, characterized in that it comprises a central steering bridge (P) and at least one corresponding brake pad (F) for each winch (V), in such a way that: - the winch (V) is arranged between the guide bridge (P) and the top, and the corresponding brake pad (F) is arranged between the play (V) and the top; and / or - the game (V) is positioned between the guide bridge (P) and the rear end, and the corresponding brake pad (F) is located between the game (V) and the rear end. 14. Slæbebåd (R) ifølge det foregående krav, kendetegnet ved at motorerne (33, 44) er positioneret udvendigt for styrebroen (P); hvor styrebroen (P) fortrinsvis har et i alt væsentligt cirkulært tværsnit.Tug (R) according to the preceding claim, characterized in that the motors (33, 44) are positioned externally of the guide bridge (P); the guide bridge (P) preferably having a substantially circular cross-section. 15. Slæbebåd (R) ifølge et hvilket som helst af kravene 9-14, kendetegnet ved at den omfatter et motorrum (M); hvilket motorrum (M) omfatter de to motorer (33, 44).Tug (R) according to any of claims 9-14, characterized in that it comprises an engine compartment (M); which engine compartment (M) comprises the two engines (33, 44). 16. Slæbebåd (R) ifølge et hvilket som helst af kravene 9-14, kendetegnet ved at den omfatter to motorrum (Ml, M2), hvert af hvilke er henholdsvis anbragt ved bov og bagstavn af tunnelskroget (1) og omfatter en respektiv motor (33, 44).A tug (R) according to any one of claims 9-14, characterized in that it comprises two engine compartments (M1, M2), each of which is respectively at the bow and rear of the tunnel hull (1) and comprises a respective engine. (33, 44). 17. Slæbebåd (R) ifølge et hvilket som helst af kravene 9-16, kendetegnet ved at den omfatter styrings- og kontrolleringsorganer til at styre og kontrollere det første og andet skubbeorgan (3, 4), hvor styrings- og kontrolleringsorganerne er på linje langs en akse som sammenfalder med den langsgående akse (L).Tug (R) according to any one of claims 9-16, characterized in that it comprises control and control means for controlling and controlling the first and second pushing means (3, 4), wherein the control and control means are aligned. along an axis that coincides with the longitudinal axis (L).
DK13745729.7T 2012-06-20 2013-06-07 Improved hull of a tug boat and the tug comprising the improved hull DK2864188T3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000287A ITRM20120287A1 (en) 2012-06-20 2012-06-20 PERFECTED HULL OF A TOWING AND TOWING BOX INCLUDING THE PERFECTED HULL.
PCT/IT2013/000163 WO2013190583A1 (en) 2012-06-20 2013-06-07 Improved hull of a tugboat and tugboat comprising said improved hull

Publications (1)

Publication Number Publication Date
DK2864188T3 true DK2864188T3 (en) 2016-03-21

Family

ID=46727422

Family Applications (1)

Application Number Title Priority Date Filing Date
DK13745729.7T DK2864188T3 (en) 2012-06-20 2013-06-07 Improved hull of a tug boat and the tug comprising the improved hull

Country Status (12)

Country Link
US (1) US20150191224A1 (en)
EP (1) EP2864188B1 (en)
CN (1) CN103381877B (en)
AU (1) AU2013278822A1 (en)
BR (1) BR112014030201A2 (en)
CA (1) CA2874963A1 (en)
DK (1) DK2864188T3 (en)
ES (1) ES2565312T3 (en)
HK (1) HK1209392A1 (en)
IT (2) ITRM20120287A1 (en)
SG (1) SG11201408058XA (en)
WO (1) WO2013190583A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661813B (en) * 2013-11-18 2016-03-02 江苏省镇江船厂(集团)有限公司 The method for arranging of the two anchor winch of Z-drive tug bow
DK179591B1 (en) * 2016-03-31 2019-02-21 A.P. Møller - Mærsk A/S A tugboat with a capsizing and sinking prevention system
DK201670186A1 (en) * 2016-03-31 2017-10-16 A P Møller - Mærsk As A method and system for operating one or more tugboats
DK201670185A1 (en) * 2016-03-31 2017-10-16 A P Møller - Mærsk As A method and system for operating one or more tugboats
NL2017577B1 (en) * 2016-10-05 2018-04-13 Rotortug Holding B V Tugboat having azimuthal propelling units
CN113371152B (en) * 2021-07-30 2022-11-08 广船国际有限公司 Segmented construction method for bow door of ro-ro passenger ship

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE27666E (en) * 1971-06-11 1973-06-12 Boat fender structures
US3750607A (en) * 1971-06-23 1973-08-07 D Seymour Shallow-draft boat
US5694877A (en) * 1996-06-24 1997-12-09 Hvide Marine Incorporated Ship docking vessel
CN1177557A (en) * 1996-06-24 1998-04-01 维德海运有限公司 Auxiliary ship for assisting approach of ship
US6449931B1 (en) * 2000-02-02 2002-09-17 The Master's Dredging Company, Inc. Aquatic vegetation shredder having bow and stern mounted high speed, large chopping propellers
US6357375B1 (en) * 2000-11-27 2002-03-19 Donald Ray Ellis Boat thruster control apparatus
NO316066B1 (en) * 2002-04-25 2003-12-08 Winch Bollard As Tugboat
US7509920B2 (en) * 2006-10-06 2009-03-31 Alan Taylor Inflatable fender system and method
NL2004687C2 (en) * 2010-05-07 2011-11-08 Baldo Dielen Assessoria Ltda Vessel.
US8844459B2 (en) * 2011-03-02 2014-09-30 Robert H. Perez Tug-barge offshore cargo transport

Also Published As

Publication number Publication date
ITRM20120287A1 (en) 2013-12-21
CN103381877A (en) 2013-11-06
SG11201408058XA (en) 2015-01-29
BR112014030201A2 (en) 2017-06-27
WO2013190583A1 (en) 2013-12-27
EP2864188B1 (en) 2015-12-23
AU2013278822A1 (en) 2014-12-18
HK1209392A1 (en) 2016-04-01
ITRM20130328A1 (en) 2013-12-21
US20150191224A1 (en) 2015-07-09
ES2565312T3 (en) 2016-04-01
CN103381877B (en) 2016-12-28
CA2874963A1 (en) 2013-12-27
EP2864188A1 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
DK2864188T3 (en) Improved hull of a tug boat and the tug comprising the improved hull
FI94508C (en) Icebreaking vessels
JP5563103B2 (en) Device for reducing flow resistance in moon pools
KR20140105518A (en) Floating body wind power generating device and method of mooring floating body wind power generating device
EP3523194B1 (en) Tugboat having azimuthal propelling units
US20100107949A1 (en) Multi-purpose icebreaker
CN105829202B (en) For the ice breaker preferably operated in shallow icing water
KR20050115229A (en) Steering and propulsion arrangement for ship
DK2704946T3 (en) tugboat
EP2547581B1 (en) Ship with azimuting tractor drive
US8181588B2 (en) Automatic reversing-reposition rocker arm
CN104129486A (en) Ship propulsion device with great propulsion force
KR101687857B1 (en) Icebreaking vessel and method of breaking ice
ES2750845T3 (en) Large displacement hull ship
KR101879253B1 (en) Propeller ship with front positioned twin rudders
CN207595230U (en) No rudder flexibly turns to anti-side shipwreck
RU2800467C2 (en) Steering gear of shallow-draught container ship and container transport ship for inland waterways
RU222507U1 (en) TUG HULL
US20220204150A1 (en) Steering mechanism for shallow draft container carrier and inland waterway container transport vessel
RU217176U1 (en) HULL OF THE SHIP-TUG
Hovilainen et al. Next Generation to Break the Ice-The Oblique Icebreaker
HEGGSTAD STABILITY OF GROUNDED SUBMARINES