DK201800042Y3 - Optical sensor for human pulse waveform - Google Patents

Optical sensor for human pulse waveform Download PDF

Info

Publication number
DK201800042Y3
DK201800042Y3 DKBA201800042U DKBA201800042U DK201800042Y3 DK 201800042 Y3 DK201800042 Y3 DK 201800042Y3 DK BA201800042 U DKBA201800042 U DK BA201800042U DK BA201800042 U DKBA201800042 U DK BA201800042U DK 201800042 Y3 DK201800042 Y3 DK 201800042Y3
Authority
DK
Denmark
Prior art keywords
emitter
module
sensor
optical sensor
person
Prior art date
Application number
DKBA201800042U
Other languages
Danish (da)
Inventor
Boleslavovich Tuminas Konstantin
Original Assignee
Boleslavovich Tuminas Konstantin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boleslavovich Tuminas Konstantin filed Critical Boleslavovich Tuminas Konstantin
Publication of DK201800042U1 publication Critical patent/DK201800042U1/en
Application granted granted Critical
Publication of DK201800042Y3 publication Critical patent/DK201800042Y3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6816Ear lobe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6817Ear canal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0238Optical sensor arrangements for performing transmission measurements on body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor

Abstract

Frembringelsen angår området for medicin og angår især den funktionelle diagnose af et menneskes tilstand, og kan anvendes under medicinske undersøgelser, herunder til undersøgelser af hæmodynamikker, og også til systemer til overvågning af træthedsgraden hos individer, der styrer køretøjer. En optisk sensor for humane pulsbølgeforme indbefatter et emittermodul og et fotomodtagermodul, som er arrangeret i kinematisk forbundne huse, og indbefatter yderligere et middel til positionering af fotomodtagerdmodulet i forhold til emittermodulet ved anvendelse af et elastisk element, som simultant er forbundet til emittermodulet og fotomodtagermodulet, og som muliggør forskydning af fotomodtagermodulet i forhold til emitteren, idet positionerne deraf sikres ved at ligge an til hudoverfladen hos en person; den ydre form af overfladen af en emitterholder er bragt til at ligge an mod den indre overflade af en nedre del af en persons ydre øre, idet emitterholderen er fremstillet af en opakt, elastisk materiale, og idet et positioneringmidlet indbefatter en lineær guide, hvis akse er parallel med en optisk akse, der linker emitteren og fotomodtagren.The invention relates to the field of medicine and, in particular, to the functional diagnosis of a human condition, and may be used in medical studies, including for hemodynamics studies, and also for systems of fatigue monitoring of individuals driving vehicles. An optical sensor for human pulse waveforms includes an emitter module and a photoconductor module arranged in kinematically connected housings, and further includes a means for positioning the photoconductor module with respect to the emitter module using an elastic element simultaneously connected to the emitter module and photomodel module. and enabling displacement of the photoreceptor module relative to the emitter, the positions thereof being secured by abutting the skin surface of a person; the outer shape of the surface of an emitter holder is brought into contact with the inner surface of a lower portion of a person's outer ear, the emitter holder being made of an opaque, elastic material, and a positioning means including a linear guide whose axis is parallel to an optical axis linking the emitter and photo receiver.

Description

09) DANMARK (10)09) DENMARK (10)

Figure DK201800042Y3_D0001

(12) BRUGSMODELSKRIFT (12) USE MODEL WRITING

Registreret brugsmodel uden prøvningRegistered utility model without testing

Patent- ogPatent and

Varemærkestyrelsen (51) Int.CI.: A61B 5/1455 (2006.01) (21) Ansøgningsnummer: BA 2018 00042 (22) Indleveringsdato: 2018-05-16 (24) Løbedag: 2016-11-15 (41) Aim. tilgængelig: 2018-05-16 (44) Registreringen bkg. og publiceret den: 2018-09-18 (86) International ansøgning nr.: PCT/RU2016/000780 (86) International indleveringsdag: 2016-11-15 (30) Prioritet:Trademark Office (51) Int.CI .: A61B 5/1455 (2006.01) (21) Application number: BA 2018 00042 (22) Filing date: 2018-05-16 (24) Running day: 2016-11-15 (41) Aim. available: 2018-05-16 (44) The registration bkg. and published on: 2018-09-18 (86) International application no .: PCT / RU2016 / 000780 (86) International filing date: 2016-11-15 (30) Priority:

2015-11-27 RU 2015151141 (73) Brugsmodelindehaver:2015-11-27 RU 2015151141 (73) Model owner:

Konstantin Boleslavovich Tuminas, ul. Kirochnaya, d. 64, kv. 101 191015 Sankt Petersborg, Rusland (72) Frembringer:Konstantin Boleslavovich Tuminas, ul. Kirochnaya, d. 64, kv. 101 191015 Saint Petersburg, Russia (72) Produces:

Konstantin Boleslavovich Tuminas, ul. Kirochnaya, d. 64, kv. 101 191015 Sankt Petersborg, Rusland (74) Fuldmægtig:Konstantin Boleslavovich Tuminas, ul. Kirochnaya, d. 64, kv. 101 191015 St. Petersburg, Russia (74) Plenipotentiary:

OTELLO ADVOKATANPARTSSELSKAB, Dalgasgade 25,8., 7400 Herning, Danmark (54) Titel: Optisk sensor for human pulsbølgeform (57) Sammendrag:OTELLO ADVOKATANPARTSSELSKAB, Dalgasgade 25.8., 7400 Herning, Denmark (54) Title: Optical sensor for human pulse waveform (57) Summary:

Frembringelsen angår området for medicin og angår især den funktionelle diagnose af et menneskes tilstand, og kan anvendes under medicinske undersøgelser, herunder til undersøgelser af hæmodynamikker, og også til systemer til overvågning af træthedsgraden hos individer, der styrer køretøjer. En optisk sensor for humane puls bølgeforme indbefatter et emittermodul og et fotomodtagermodul, som er arrangeret i kinematisk forbundne huse, og indbefatter yderligere et middel til positionering af fotomodtagerdmodulet i forhold til emitter modulet ved anvendelse af et elastisk element, som simultant er forbundet til emitter modulet og fotomodtagermodulet, og som muliggør forskydning af fotomodtagermodulet i forhold til emitteren, idet positionerne deraf sikres ved at ligge an til hudoverfladen hos en person; den ydre form af overfladen af en emitterholder er bragt til at ligge an mod den indre overflade afen nedre del afen persons ydre øre, idet emitterholderen er fremstillet afen opakt, elastisk materiale, og idet et positioneringmidlet indbefatter en lineær guide, hvis akse er parallel med en optisk akse, der linker emitteren og fotomodtagren.The invention relates to the field of medicine and, in particular, to the functional diagnosis of a human condition, and may be used in medical studies, including for hemodynamics studies, and also for systems of fatigue monitoring of individuals driving vehicles. An optical sensor for human pulse waveforms includes an emitter module and a photoconductor module arranged in kinematically connected housings, and further includes a means for positioning the photoconductor module with respect to the emitter module using an elastic member simultaneously connected to the emitter module. and the photoreceptor module, which enables displacement of the photoreceptor module relative to the emitter, the positions thereof being secured by abutting the skin surface of a person; the outer shape of the surface of an emitter holder is brought into contact with the inner surface of the lower part of a person's outer ear, the emitter holder being made of opaque, elastic material, and a positioning means including a linear guide whose axis is parallel to an optical axis linking the emitter and photo receiver.

Fortsættes...To be continued...

Figure DK201800042Y3_D0002

FIG. 1FIG. 1

Optisk sensor for human pulsbølgeformOptical sensor for human pulse waveform

Området for frembringelsenThe area of production

Frembringelsen angår området for medicin og især den funktionelle diagnose af et menneskes tilstand, og den kan anvendes til gennemførelse af medicinske undersøgelser, herunder til undersøgelser af hæmodynamikker, og også til systemer til overvågning af træthedsgraden hos individer, der styrer køretøjer.The invention relates to the field of medicine and, in particular, to the functional diagnosis of a human condition, and it can be used for conducting medical examinations, including for examining hemodynamics, and also for systems for monitoring the fatigue of individuals driving vehicles.

Baggrund for frembringelsenBackground to the creation

Pulsbølgeformen, som opstår grundet blod, der passerer gennem menneskelige arterier, bærer information angående tilstanden for dette menneskes kredsløbssystem. Sådan information er vigtig hvad angår forudsigelse af effekten af ugunstige miljømæssige faktorer på tilpasningsevnerne for det menneskelige legeme. En af de mest udbredte metoder til registrering af pulsbølgeformen er sphygmografi. Ved denne metode udnyttes sensorer, som er anbragt på en persons hud i områder direkte over arterier. Pulsbølgeformen registreres ved anvendelse af mekaniske eller optiske metoder baseret på sensorbevægelse forårsaget af en stigning i arterievolumen under huden.The pulse waveform, which occurs due to blood passing through human arteries, carries information regarding the state of this human circulatory system. Such information is important in predicting the effect of adverse environmental factors on the adaptability of the human body. One of the most widespread methods of recording the pulse waveform is sphygmography. This method utilizes sensors placed on a person's skin in areas directly above arteries. The pulse waveform is recorded using mechanical or optical methods based on sensor movement caused by an increase in arterial volume under the skin.

En tryksensor (RU 2430344, G01L9/08, publiceret d. 27.9.2011, Bulletin 27) er kendt, idet sensoren omfatter et hus, en cirkulær metalmembran, en skiveformet kvarts-piezoelektrisk celle, der er monteret på overfladen af krystalholderen parallelt med membranen med et mellemrum mellem cellen og membranen, hvor centerpunkterne for den skiveformet piezoelektrisk celle og for membranen er bragt på linje med den langsgående akse for krystalholderen, og en cirkulær elektrode, som er anbragt på overfladen af den piezoelektriske celle i en central del deraf, en metalbase omfattende en bunddel, et indre fremspring og en indre rille, en metalstøttering med en ydre diameter svarende til den ydre diameter for membranen, en nitte med et fladt cylindrisk hoved, et elastisk fladt element med en central åbning, idet nitten passerer derigennem, og enjusteringsskrue med en sfærisk ende, hvor justeringsskruen er skruet ind i et gevindhul i centrummet af bunddelen af metalbasen, koaksialt dermed, og sådan at den sfæriske ende deraf har kontakt med den flade overflade af nittehovedet, idet der derved skabes en fast forbindelse mellem krystalholderen og det elastiske element kilefikseret langs perimeteren mellem det indre fremspring af basen og den indre overflade af støtteringen, idet den nedre overflade af støtteringen støtter metalmembranen, hvor den ydre cylindriske overflade af støtteringen er koblet i en løbende tilpasning med overfladen af den indre rille i basen, idet overfladen er begrænset i sin dybde ved bunddelen af denne ved det indre fremspring, og hvor den øvre og den nedre overflade af støtteringen og basefremspringsoverfladen er parallelle med krystalholderoverfladen, hvor den skiveformede kvarts-piezoelektriske celle er flad og hvor den cirkulære elektrode er arrangeret på overfladen af den piezoelektriske celle modsat membranen. Sensoren omfatter yderligere en første pneumatisk kanal, som er dannet et pneumatisk filter og en reaktor-choke, som inter-kommunikerer med hinanden og som henholdsvis er dannet en vertikal cylindrisk kanal i sidevæggen af basen, og som er fyldt med et filtermateriale, såsom filt, og en reaktorchoke dannet af en horisontal, cylindrisk kanal med en lille diameter, en anden pneumatisk kanal, som er dannet af en vertikal cylindrisk kanal i sidevæggen af basen, hvor en del af denne kanal er fyldt med et filtermateriale, og en horisontal, cylindrisk kanal med en fjederbelastet kompensationsventil, som er dannet af en cylinder med en ringformet rille langs overfladen deraf og en tryk-hætte, idet kanalerne inter-kommunikerer med hinanden, hvor indgangen af det pneumatiske filter og indgangen af den anden pneumatiske kanal er forbundet med indgangsåbningen af huset, idet reaktor-choke-udgangen og udgangen af den anden pneumatiske kanal er forbundet med hinanden med et volumen, som defineres af vægge, bunddelen af basen og den indre membranoverflade, og hvor dette volumen er forbundet med husets indgangsåbning via den anden pneumatiske kanal ved hjælp af kompensationsventilen, når sensoren vender tilbage til udgangspositionen. Den piezoelektriske sensor anvendes til sphygmografiske undersøgelser ved benyttelse af et okklusionsbånd, der arrangeres på underarmen.A pressure sensor (RU 2430344, G01L9 / 08, published on September 27, 2011, Bulletin 27) is known in that the sensor comprises a housing, a circular metal membrane, a disc-shaped quartz piezoelectric cell mounted on the surface of the crystal holder parallel to the membrane. with a gap between the cell and the membrane, where the center points of the disc-shaped piezoelectric cell and for the membrane are aligned with the longitudinal axis of the crystal holder, and a circular electrode disposed on the surface of the piezoelectric cell in a central portion thereof, a metal base comprising a bottom portion, an inner projection and an inner groove, a metal support ring having an outer diameter corresponding to the outer diameter of the membrane, a rivet with a flat cylindrical head, an elastic flat element with a central opening as the rivet passes therethrough, and a spherical end adjusting screw, the adjusting screw being screwed into a threaded hole in the center of the base of the metal base, coaxially therewith; o g such that the spherical end thereof contacts the flat surface of the rivet head, thereby creating a firm connection between the crystal holder and the elastic member wedge-fixed along the perimeter between the inner projection of the base and the inner surface of the support ring, the lower surface of the the support ring supports the metal membrane, wherein the outer cylindrical surface of the support ring is coupled in a continuous alignment with the surface of the inner groove in the base, the surface being limited in its depth at the bottom portion thereof by the inner projection and the upper and lower surfaces. of the support ring and base projection surface are parallel to the crystal holder surface, where the disc-shaped quartz piezoelectric cell is flat and where the circular electrode is arranged on the surface of the piezoelectric cell opposite the membrane. The sensor further comprises a first pneumatic duct which is formed a pneumatic filter and a reactor choke which interacts with each other and which is respectively formed a vertical cylindrical duct in the side wall of the base and which is filled with a filter material such as felt and a reactor shock formed by a horizontal, small diameter cylindrical channel, another pneumatic channel formed by a vertical cylindrical channel in the side wall of the base, a portion of this channel being filled with a filter material, and a horizontal, cylindrical channel with a spring loaded compensation valve formed by a cylinder having an annular groove along its surface and a pressure cap, the channels intercommunicating with each other, where the input of the pneumatic filter and the input of the second pneumatic channel are connected the inlet opening of the housing, the reactor choke output and the output of the second pneumatic duct being connected to each other by a volume defining of the wall, the bottom portion of the base and the inner membrane surface, and where this volume is connected to the inlet opening of the housing via the second pneumatic duct by means of the compensation valve when the sensor returns to its initial position. The piezoelectric sensor is used for sphygmographic studies using an occlusion band arranged on the forearm.

Ud over kontaktsensorer kendes også kontaktløse pulsbølgeform-sensorer. I en publikation (D.A. Usanov, A.V. Skripal, E.O. Kaschavtsev, Determining Pulse Waveform Based on a Semiconductor Laser Autodyne Signal, Letters to Technical Physics Journal, 2013, vol. 39, B. 5, s. 82-87) beskrives en sensor, som udgøres af en halvleder-laser-autodyn omfattende en laserdiode med kvantestørrelse InGaAIP-strukturer i en diffraktionsbegrænset enkeltrumlig mode og strålebølgelængde på 654 nm, en stabiliseret elektrisk strømkilde til drift af laseren, og en fotodetektor til måling af det genererede effektoutput af laseren. Nå den ovenfor beskrevne sensor benyttes til sphygmografiske undersøgelser, bør laseren rettes imod hudoverfladen i håndledsområdet, hvor den radiale pulsåre forekommer tættere på hudoverfladen. En del af strålingen, som reflekteres fra hudoverfladen, returnerer til laserresonatoren, idet den genererede lasereffekt, når pulsbølgeformen passerer langs pulsåren, derved ændres. Ændringen i lasereffektgenereringen registreres ved anvendelse af fotodetektoren, og outputsignalet deraf sendes til et dataprocesserings- og lagersystem.In addition to contact sensors, contactless pulse waveform sensors are also known. A publication (DA Usanov, AV Skripal, EO Kaschavtsev, Determining Pulse Waveform Based on a Semiconductor Laser Autodyne Signal, Letters to Technical Physics Journal, 2013, vol. 39, B. 5, pp. 82-87) describes a sensor, which is constituted by a semiconductor laser autodin comprising a quantum-sized laser diode InGaAIP structures in a diffraction limited single-spacer mode and beam wavelength of 654 nm, a stabilized electric power source for operation of the laser, and a photodetector for measuring the generated power output of the laser. When the sensor described above is used for sphygmographic studies, the laser should be directed to the skin surface of the wrist region, where the radial artery vein occurs closer to the skin surface. A portion of the radiation reflected from the skin surface returns to the laser resonator, generating laser power as the pulse waveform passes along the pulse vein, thereby changing. The change in laser power generation is detected using the photodetector and the output signal thereof is sent to a data processing and storage system.

Ulemperne ved de ovenfor nævnte, kendte indretninger er strukturel kompleksitet og uegnethed med hensyn til kropsbåren brug ved længerevarende overvågningssessioner af kredsløbssystemet, især med hensyn til overvågning af en person, der håndterer køretøjer.The disadvantages of the prior art devices mentioned above are structural complexity and unsuitability for body-worn use in prolonged monitoring sessions of the circulatory system, especially with regard to the monitoring of a person handling vehicles.

En række sensorer til overvågning af fysiologiske parametre af det menneskelige kredsløbssystem, herunder måling af oxygenkoncentrationer i blodet, er velkendte; sådanne sensorer er strukturelt simple og kan bæres. Sådanne sensorer beskrives f.eks. de følgende patenter: US 7263396, A61B 5/00, publiceret d.28.08.2007; US 8532729, A61B 5/1455, publiceret d. 10.09.2013; US 8588880, A61B 5/1455, publiceret d. 19.11.2013. Strukturelt set er sådanne sensorer øreklips, som er tilpasset mekanisk fæstnelse til et menneskeligt legeme i øreområdet, fortrinsvist på øreflippen. Sådanne sensorer omfatter strålingskilder og fotomodtagere, idet der derved muliggøres målinger af optisk permeabilitet for biologisk væv, som er rig på blodkar og til registrering af oxygenkoncentration i blod.A variety of sensors for monitoring the physiological parameters of the human circulatory system, including measuring oxygen concentrations in the blood, are well known; such sensors are structurally simple and can be worn. Such sensors are described e.g. the following patents: US 7263396, A61B 5/00, published Aug. 28, 2007; US 8532729, A61B 5/1455, published 10.09.2013; US 8588880, A61B 5/1455, published Nov. 19, 2013. Structurally, such sensors are ear clips that are adapted to mechanical attachment to a human body in the ear area, preferably on the earlobe. Such sensors include radiation sources and photo receivers, thereby enabling measurement of optical permeability for biological tissues rich in blood vessels and for recording oxygen concentration in blood.

Den kendte løsning, som danner grundlag for den foreliggende frembringelse, er en kropsbåren fysiologisk sensor (US 8229532, A61B 5/1455, publiceret d. 24.07.2012) indbefattende et emittermodul og et fotomodtagermodul, som er arrangeret i kinematiskforbundne huse, hvor et output fra fotomodtageremodulet er et output fra sensoren, idet sensoren yderligere indbefatter et middel til positionering af fotomodtagermodulet i forhold til emittermodulet, idet midlet omfatter et elastisk element, som er forbundet både til emittermodulet og til fotomodtagermodulet, og som muliggør forskydning af fotomodtagermodulet i forhold til emittermodulet, medens positionerne deraf sikres ved at ligge an til hudoverfladen i området for det ydre øre hos en person.The known solution, which forms the basis of the present invention, is a body-worn physiological sensor (US 8229532, A61B 5/1455, published 24/07/2012) including an emitter module and a photoconductor module arranged in kinematically connected housings where an output the sensor receiver module is an output of the sensor, the sensor further including a means for positioning the sensor receiver module relative to the emitter module, the means comprising an elastic member which is connected to both the emitter module and the sensor receiver module and which enables the sensor receiver module to be displaced relative to the emitter module. , while the positions thereof are secured by abutting the skin surface in the area of the outer ear of a person.

Hovedulemperne ved den kendte løsning er lav nøjagtighed med hensyn til registrering af pulsbølgeformen.The main disadvantages of the known solution are low accuracy in recording the pulse waveform.

På trods af opfattelsen af en strukturel simplicitet, er kropsbåme sensorer komplette indretninger, som kan udføre selv de mest komplekse diagnostiske opgaver. Patientens helbred (og i visse tilfælde selve hans/hendes liv) afhænger af nøjagtigheden for sådanne sensoraflæsninger. Detaljer vedrørende udnyttelse af forskellige indretninger til gennemførelse af en ikke-invasiv diagnostisk metode til evaluering af det procentvise indhold af oxyhæmoglobin i blod er omtalt i detalje i publikationen af D.A. Rogatkin, Physical basics of optical oxymetry, Medical physics, 2012, issue 2, s. 97-114. De tekniske krav til udvikling og produktion af optiske oxymetre beskrives i publikationen vedrørende internationale standarder ISO 9919:2011, Medical electrical equipment -- Particular requirements for the basic safety and essential performance of pulse oximeter equipment for medical use.Despite the notion of structural simplicity, body arch sensors are complete devices that can perform even the most complex diagnostic tasks. The patient's health (and in some cases his / her own life) depends on the accuracy of such sensor readings. Details of utilization of various devices for conducting a non-invasive diagnostic method to evaluate the percentage oxyhemoglobin in blood are discussed in detail in the publication of D.A. Rogatkin, Physical basics of optical oxymetry, Medical physics, 2012, issue 2, pp. 97-114. The technical requirements for the development and production of optical oximeters are described in the publication regarding international standards ISO 9919: 2011, Medical electrical equipment - Particular requirements for the basic safety and essential performance of pulse oximeter equipment for medical use.

Ledet på vej af de høje krav, der stilles til nøjagtighed for sphygnometriske og oxymetriske målinger, som opnås med kropsbårne optiske pulsbølgeform-sensorer, sikkerheden med hensyn til fæstnelse deraf til legemet af personer, som overvåges over længerevarende perioder under bæring af indretningen i et bredt spektrum af klimatiske forhold og under udendørs lysforhold med minimal gene, kan et antal obligatoriske krav opsummeres som følger:Led by the high demands placed on accuracy for sphygnometric and oxymetric measurements obtained with body-borne optical pulse waveform sensors, the security of attachment thereof to the body of persons monitored over extended periods of time while carrying the device in a wide spectrum of climatic conditions and under outdoor lighting conditions with minimal nuisance, a number of mandatory requirements can be summarized as follows:

• Sensorstruktur skal muliggøre fæstnelse deraf til en menneskelig legemsdel, som ikke har tendens til utilsigtet kontakt med tøj og som også tilvejebringer højest mulig koncentration af kapillære blodkar;• Sensor structure should enable attachment thereof to a human body part which does not tend to accidental contact with clothing and which also provides the highest concentration of capillary blood vessels;

• Sensorfæstnelse til legemet skal være så sikker som mulig, uden utilsigtet flytning grundet menneskelig bevægelse, medens selv den mindste gene grundet forstyrrelse af eller forhindring af perifer blodcirkulation i fæstnelsesområdet undgås. Sensorvægt skal være minimal;• Sensor attachment to the body must be as safe as possible, without unintended movement due to human movement, while avoiding even the slightest nuisance due to disturbance or obstruction of peripheral blood circulation in the attachment area. Sensor weight should be minimal;

• Sensor-struktur skal udelukke eller mindske virkningen af fotomodtagerens eksponering for ydre lyskilder i højest mulig grad, medens den tilvejebringer det størst mulige signal/støjforhold;• Sensor structure should exclude or minimize the effect of the photographer's exposure to external light sources to the highest possible degree, while providing the greatest possible signal-to-noise ratio;

• Midlet til sikring af sensoren til det menneskelige legeme skal sørge for tilpasning af emitter- og modtagerpositioner til individuelle fysiologiske særkender for personen, der undersøges, uden at ændre kalibreringsparametre for indretningen eller for metoden til dataanalyse af dataene, som modtages.• The means for securing the sensor to the human body must provide the emitter and receiver positions for individual physiological characteristics of the subject being examined, without changing the calibration parameters of the device or the method of data analysis of the data being received.

Résumé af frembringelsenSummary of the production

Formålet med frembringelsen er at tilvejebringe forhøjet nøjagtighed ved registrering af pulsbølgeform og måling af menneskelige hæmodynamiske parametre ved, som teknisk effekt at opnå forhøjet signal/støj-forhold.The object of the invention is to provide increased accuracy in recording pulse waveform and measurement of human hemodynamic parameters by obtaining, as a technical effect, increased signal-to-noise ratio.

Den beskrevne tekniske effekt opnås med en optisk sensor for humane pulsbølgeforme, hvor den optiske sensor indbefatter et emittermodul og et fotomodtagermodul, som er arrangeret i kinematisk forbundne huse, hvor et output af fotomodtageremodulet er et ouput fra sensoren, idet den optiske sensor yderligere indbefatter et middel til positionering af fotomodtagermodulet i forhold til emittermodulet, idet midlet omfatter et elastisk element, som er forbundet både til emittermodulet og til fotomodtagermodulet, og som muliggør forskydning af fotomodtagermodulet i forhold til emittermodulet, medens positionerne deraf sikres ved at ligge an til hudoverfladen hos en person; hvor en ydre form af overfladen af en emitterholder er konfigureret til at ligge an mod en indre overflade af en nedre del af det ydre øre og det intertragale hak hos personen, hvor emitterholderen er fremstillet af et opakt, elastisk materiale, og hvor positioneringsmidlet indbefatter en lineær guide med en akse, der strækker sig parallelt med en optisk akse, som linker emitteren og fotomodtageren, medens en koaksial position for emitteren og fotomodtageren sikres.The described technical effect is achieved with an optical sensor for human pulse waveforms, wherein the optical sensor includes an emitter module and a photoconductor module arranged in kinematically connected housings, an output of the photoconductor module being an ouput from the sensor, the optical sensor further including an means for positioning the receiver module relative to the emitter module, the means comprising an elastic member which is connected both to the emitter module and to the sensor receiver module, and which allows the displacement of the sensor receiver module relative to the emitter module, while ensuring its positions by abutting the skin surface. person; wherein an outer shape of the surface of an emitter holder is configured to abut an inner surface of a lower portion of the outer ear and the intertragal notch of the person, wherein the emitter holder is made of an opaque, elastic material and the positioning means includes a linear guide with an axis extending parallel to an optical axis linking the emitter and the receiver, while ensuring a coaxial position for the emitter and the receiver.

Yderligere kan den optiske sensoremitter omfatte to strålingskilder med strålebølgelængder λΐ and λ2, som er udvalgt i spektralintervallerne λΐ = 640-720 nm og λ2 = 960-1040 nm.In addition, the optical sensor emitter may comprise two radiation sources with beam wavelengths λΐ and λ2 selected in the spectral ranges λΐ = 640-720 nm and λ2 = 960-1040 nm.

Pulsbølgeform-analyse (sphygmogram) hos mennesker tilvejebringer bevis for den generelle fysiologiske tilstand hos en person, såvel som af tilstanden af deres kredsløbssystem i særdeleshed, dvs. blodstømning til og fra kapillærer, vaskulær tonus og elasticitet, voluminal obstruktion af blodkar, vægelasticitet af store blodkar, myocardial kontraktil funktion etc. Undersøgelse af en pulsbølgeform ved anvendelse af optisk lystransmittans-sensorer indbefatter måling af dæmpning af stråling ved blodfyldt væv i forskellige spektralintervaller.Pulse waveform (sphygmogram) analysis in humans provides evidence of the general physiological state of a person, as well as of the state of their circulatory system in particular, ie. blood flow to and from capillaries, vascular tone and elasticity, volumetric obstruction of blood vessels, wall elasticity of large blood vessels, myocardial contractile function, etc. Examination of a pulse waveform using optical light transmittance sensors includes measurement of attenuation of radiation by blood filled tissue in different spectra.

Denne proces indbefatter simultan registrering af ændringer i vaskulært volumen under pulsbølgen (sphygmogrambølgeform) og oxyhæmoglobin-koncentration i blod (differentieret transmission ved forskellige bølgelængder). Det bør bemærkes, at hæmodynamikker alene bestemmes ud fra sphygmogram-bølgeformen, hvorimod blodoxygenering påvirker bølgeformamplituden, idet det formodes, at oxygenindholdet i blodet forbliver generelt konstant over forløbet af en enkelt pulsbølgeperiode. Nøjagtigheden for målt hæmodynamiske karakteristika specielt, og for sensorydeevne generelt afhænger af graden af opfyldelse af de essentielle krav til sensorstruktur og fæstnelse til en persons legeme.This process includes simultaneous recording of changes in vascular volume during the pulse wave (sphygmogram waveform) and oxyhemoglobin concentration in blood (differential transmission at different wavelengths). It should be noted that hemodynamics are determined solely from the sphygmogram waveform, whereas blood oxygenation affects the waveform amplitude, assuming that the oxygen content of the blood remains generally constant over the course of a single pulse wave period. The accuracy of measured hemodynamic characteristics in particular, and of sensor performance in general, depends on the degree of fulfillment of the essential requirements for sensor structure and attachment to a person's body.

Strukturen af den beskrevne frembringelse omfatter en ny teknisk løsning (påberåbte features), idet man med kombinationen deraf opnår den påberåbte tekniske effekt, idet disse features omfatter de følgende:The structure of the described embodiment comprises a new technical solution (claimed features), with the combination thereof obtaining the claimed technical effect, these features comprising the following:

1) En ydre form af en overflade af en emitterholder er konfigureret til at ligge an imod en indre overflade af en nedre del af en persons ydre øre i området, som defineres af tragus og antitragus. Dette muliggør sikker fæstnelse til personens legeme i et område, som ikke har tendens til at komme i direkte kontakt med tøj, og som dog omfatter tilstrækkeligt tæt kapillærnet. I modsætning til kendte sensorer, som er tilpasset sikring til øreflippen, tilvejebringer strukturen af den foreliggende frembringelse fæstnelse til en bruskagtig del af det ydre øre, idet mulig gene (følelsesløshed) forårsaget af længerevarende bæring af sensoren derved elimineres, og den tilvejebringer yderligere et højere niveau og kvalitet af outputsignalet fra sensoren grundet større blodkarsdensitet og -diameter for væv ved det ydre øre i området for sensorplaceringen. Yderligere er tyngdepunktet for sensoren lokaliseret mellem den optiske akse for sensoren og positioneringsguide-midlet. Dette arrangement muliggør minimering af vridningsmoment og dets effekt på sensoroutputsignalet under bæring (idet støjniveauer, som opstår grundet naturlige hovedbevægelser, minimeres), medens æstetisk, visuel appeal for sensoren, som bæres, opretholdes, hvilket specielt er vigtigt for kvinder.1) An outer shape of a surface of an emitter holder is configured to abut an inner surface of a lower portion of a person's outer ear in the region defined by the tragus and antitragus. This allows for secure attachment to the person's body in an area which does not tend to come into direct contact with clothing, but which includes sufficiently close capillary mesh. Contrary to known sensors adapted to the ear lobe fuse, the structure of the present invention provides attachment to a cartilaginous portion of the outer ear, thereby eliminating possible nuisance (numbness) caused by prolonged wear of the sensor and providing a further higher level and quality of the output signal from the sensor due to greater blood vessel density and diameter of the outer ear tissue in the sensor location area. Further, the center of gravity of the sensor is located between the optical axis of the sensor and the positioning guide. This arrangement allows for the minimization of torque and its effect on the sensor output signal during wear (minimizing noise levels due to natural head movements) while maintaining aesthetic, visual appeal for the sensor being worn, which is especially important for women.

2) For at forhindre eksponering fra omgivelserne på sensor-fotomodtageren, forårsaget af stråling fra eksterne kilder, er emitteren forsynet med en opak holder, så en ydre overflade af emitteren ligger an imod den indre overflade af den nedre del af personens ydre øre og følger konturen af den ydre overflade af antitragus. Holderen tilvejebringer et fald i fotomodtagerens2) To prevent exposure from the surroundings of the sensor-receiver, caused by radiation from external sources, the emitter is provided with an opaque holder so that an outer surface of the emitter abuts the inner surface of the lower part of the person's outer ear and follows the contour of the outer surface of the antitragus. The holder provides a decrease in the photocopier

Ί eksponeringsniveauer under foranderlige belysningsforhold og reducerer tryk på overfladen af det ydre øre og giver en mere komfortabel længerevarende bæring.Ί Exposure levels under changing lighting conditions and reduce pressure on the surface of the outer ear and provide a more comfortable longer-lasting wear.

3) Sensorstrukturen tilvejebringer en individuel-specifikjustering med hensyn til relativ positionering af emitter- og fotomodtagermodulerne, medens orienteringen deraf bibeholdes ved benyttelse af en lineær guide.3) The sensor structure provides an individual-specific adjustment with respect to relative positioning of the emitter and receiver modules while maintaining its orientation using a linear guide.

Kort beskrivelse af figurerneBrief description of the figures

Frembringelsen beskrives med reference til den vedføjede figurer.The production is described with reference to the attached figure.

Fig. 1 er en generel afbildning af den beskrevne sensor,FIG. 1 is a general view of the sensor described,

Fig. 2 er et snitbillede af sensorstrukturen,FIG. 2 is a sectional view of the sensor structure,

Fig. 3 er en skematisk illustration af et menneskeligt øre og viser fæstnelsespositionen for sensoren,FIG. 3 is a schematic illustration of a human ear showing the attachment position of the sensor,

Fig. 4 illustrerer resultater af en sammenligningstest mellem den beskrevne sensor og en sensor ifølge kendt teknik, hvor resultaterne bekræfter validiteten af den påberåbte tekniske effekt.FIG. 4 illustrates results of a comparison test between the described sensor and a prior art sensor, the results confirming the validity of the claimed technical effect.

Fig. 2 indbefatter de følgende referencenumre: emitter 1; emitterholder 2; hus for emitter modul 3; fotomodtager 4; hus for fotomodtager 5; lineær guide 6; og fjedre 7.FIG. 2 includes the following reference numbers: emitter 1; emitter holder 2; emitter module housing 3; photo receiver 4; photo receiver housing 5; linear guide 6; and springs 7.

Fig. 3 indbefatter de følgende referencenumre: tragus 8; antitragus 9; intertragalt hak 10 (skyggeområde svarende til området, hvor emitterholderen 2 af den beskrevne sensor ligger an til øret); og øreflip 11.FIG. 3 includes the following reference numbers: tragus 8; antitragus 9; intertragal notch 10 (shadow area corresponding to the region where the emitter holder 2 of the described sensor abuts against the ear); and earlobe 11.

Den beskrevne sensor omfatter en emitter 1, som er monteret inden i en holder 2 og arrangeret inden i et emittermodulhus 3,og en fotomodtager 4, som er monteret inden i en holder og arrangeret inden i et fotomodtagermodul-hus 5. Emitteren 1 omfatter for eksempel en rød LED og en infrarød LED, som emitterer stråling inden for spektralintervaller på hhv. 640 720 nm og 960 -1040 nm, idet det er kendt, at ekstinktionskoefficienterne for oxyhæmoglobin og desoxyhæmoglobin er mest markant forskellige i de ovennævnte intervaller. Husene 3 og 5 for hhv. emittermodulet og fotomodtagermodulet 4 er fremtillet af et let, holdbart plastmateriale, f.eks. polycarbonat. Strukturen af den beskrevne sensor muliggør lineær forskydning af emittermodulhuset 3 i forhold til fotomodtagermodulhuset 5 langs en lineær guide 6, idet aksen deraf er parallel med den optiske akse for indretningen, og som forbinder emitteren 1 og sensorelementet for fotomodtageren 4. Lineære fjedre 7, som er symmetrisk monteret på begge sider af den lineære guide 6 tilvejebringer tiltrækningskraft”, hvor emitteren 1 rettes imod fotomodtageren 4 i en hvilket som helst position grundet virkningen af den lineære guide 6. Holderen 2 for emitteren 1 er fremstillet af et elastisk, opakt materiale, f.eks. carboniseret silicone. Denne udførelsesform af holderen forhindrer eksponering fra omgivelserne af fotomodtageren 4.The sensor described comprises an emitter 1 mounted within a holder 2 and arranged within an emitter module housing 3, and a photo receiver 4 mounted within a holder and arranged within a photo receiver module housing 5. The emitter 1 comprises: for example, a red LED and an infrared LED, which emit radiation within spectral ranges of respectively. 640 720 nm and 960 -1040 nm, it being known that the extinction coefficients of oxyhemoglobin and deoxyhemoglobin are most markedly different in the above ranges. Houses 3 and 5 for respectively. the emitter module and the photo receiver module 4 are made of a light, durable plastic material, e.g. polycarbonate. The structure of the described sensor enables linear displacement of the emitter module housing 3 with respect to the photoconductor module housing 5 along a linear guide 6, the axis thereof being parallel to the optical axis of the device and connecting the emitter 1 and the sensor element of the photoconductor 4. Linear springs 7 which is symmetrically mounted on both sides of the linear guide 6 providing attractiveness ", wherein the emitter 1 is directed toward the photoconductor 4 in any position due to the action of the linear guide 6. The holder 2 of the emitter 1 is made of a resilient, opaque material. eg. carbonized silicone. This embodiment of the holder prevents exposure from the surroundings of the photo receiver 4.

Fig. 4 viser to grafer, der illustrerer bølgeformer for en patient under undersøgelse, hvor data er modtaget fra to sensorer med identisk optisk/elektronisk struktur, men med forskellige konstruktioner. En nedre graf viser puls-grafformen, som modtages fra output fra den kendte sensor, hvorimod en øvre graf viser bølgeformen, som modtages med den påberåbte sensor. Et forstørret billede viser yderligere områder af begge grafer ved lokale maksimumsværdier. Analyse af pulsbølgeformerne viser, at signal/støj-forholdet for den foreliggende frembringelse overskrider samme for den kendte sensor med omtrent 30 db. Denne forøgede kvalitet tilvejebringer en forøgelse af registreringsnøjagtigheden for menneskelig hæmodynamik. Det forstørrelse område (Billede A) viser klart pulsbølgeform-karakteristika for et lokalt maksimumområde, hvorimod sådanne karakteristika for bølgeformen målt med kendt teknik (Billede B) er fuldstændigt maskeret af støjFIG. Figure 4 shows two graphs illustrating waveforms for a patient under study, where data is received from two sensors with identical optical / electronic structure but with different constructs. A lower graph shows the pulse graph form received from the output of the known sensor, whereas an upper graph shows the waveform received with the invoked sensor. An enlarged image shows additional areas of both graphs at local maximum values. Analysis of the pulse waveforms shows that the signal-to-noise ratio of the present generation exceeds the same for the known sensor by about 30 db. This increased quality provides an increase in the detection accuracy of human hemodynamics. The magnification area (Image A) clearly shows pulse waveform characteristics of a local maximum range, whereas such characteristics of the waveform measured by prior art (Image B) are completely masked by noise

Således omfatter den beskrevne optiske sensor for human pulsbølgeform en kombination af features, hvormed den tekniske effekt med forøget målt nøjagtighed opnås grundet en forøgelse af værdien for signal/støj-forhold.Thus, the described human sensor pulse waveform optical sensor comprises a combination of features whereby the technical power with increased measured accuracy is obtained due to an increase in signal-to-noise ratio value.

Claims (2)

BrugsmodelkravUse Model Requirements 1. Optisk sensor for humane pulsbølgeforme, hvor den optiske sensor indbefatter et emittermodul og et fotomodtagermodul, som er arrangeret i kinematisk forbundne huse, hvor et output fra fotomodtageremodulet er et output fra sensoren, idet den optiske sensor yderligere indbefatter et middel til positionering af fotomodtagermodulet i forhold til emittermodulet, idet midlet omfatter et elastisk element, som er forbundet både til emittermodulet og fotomodtagermodulet, og som muliggør forskydning af fotomodtagermodulet i forhold til emittermodulet, medens positionerne deraf sikres ved at ligge an til hudoverfladen hos en person;An optical sensor for human pulse waveforms, wherein the optical sensor includes an emitter module and a sensor receiver module arranged in kinematically connected housings, wherein an output of the sensor receiver module is an output of the sensor, the optical sensor further including a means for positioning the sensor module. relative to the emitter module, the means comprising an elastic member which is connected to both the emitter module and the photodetector module, and which allows the photodetector module to be displaced relative to the emitter module, while the positions thereof are secured by contacting the skin surface of a person; som er ny ved at, en ydre form af overfladen af en emitterholder er konfigureret til at ligge an mod en indre overflade af en nedre del af personens ydre øre, hvor emitterholderen er fremstillet af et opakt, elastisk materiale, og hvor positioneringsmidlet indbefatter en lineær guide med en akse, der strækker sig parallelt til en optisk akse, der linker emitteren og fotomodtageren, hvorved en koaksial position for emitteren og fotomodtageren sikres.new in that an outer shape of the surface of an emitter holder is configured to abut an inner surface of a lower part of the person's outer ear, wherein the emitter holder is made of an opaque, elastic material and the positioning means includes a linear guide with an axis extending parallel to an optical axis linking the emitter and the receiver, thereby ensuring a coaxial position for the emitter and the receiver. 2. Optisk sensor for humane pulsbølgeforme ifølge krav 1, kendetegnet ved, at emitteren omfatter to strålingskilder og at strålingsbølgelængder λ1 and λ2 er udvalgt i spektralintervallerne λ1 = 640-720 nm og λ2 = 960-1040 nm.Human pulse waveform optical sensor according to claim 1, characterized in that the emitter comprises two radiation sources and that radiation wavelengths λ1 and λ2 are selected in the spectral ranges λ1 = 640-720 nm and λ2 = 960-1040 nm. 1/41.4
DKBA201800042U 2015-11-27 2018-05-16 Optical sensor for human pulse waveform DK201800042Y3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2015151141 2015-11-27
RU2015151141 2015-11-27
PCT/RU2016/000780 WO2017091107A1 (en) 2015-11-27 2016-11-15 Optical sensor of human pulse waveform

Publications (2)

Publication Number Publication Date
DK201800042U1 DK201800042U1 (en) 2018-05-25
DK201800042Y3 true DK201800042Y3 (en) 2018-09-18

Family

ID=58763604

Family Applications (1)

Application Number Title Priority Date Filing Date
DKBA201800042U DK201800042Y3 (en) 2015-11-27 2018-05-16 Optical sensor for human pulse waveform

Country Status (11)

Country Link
JP (1) JP3220623U (en)
KR (1) KR200493275Y1 (en)
CN (1) CN209074622U (en)
AT (1) AT16286U1 (en)
DE (1) DE212016000234U1 (en)
DK (1) DK201800042Y3 (en)
ES (1) ES1215395Y (en)
FI (1) FI12263U1 (en)
MY (1) MY195070A (en)
PH (1) PH22018500007Y1 (en)
WO (1) WO2017091107A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189596A1 (en) * 2018-03-29 2019-10-03 北海道公立大学法人 札幌医科大学 Biological information measurement device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2329973A1 (en) * 1973-06-13 1975-01-09 Philips Patentverwaltung Optical pulse-taker with light-beam gap - for body part of patient, light guide from gap to photocell
US7263396B2 (en) * 2003-08-08 2007-08-28 Cardiodigital Limited Ear sensor assembly
US8588880B2 (en) * 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US11033231B2 (en) * 2015-03-03 2021-06-15 Valencell, Inc. Stabilized monitoring devices

Also Published As

Publication number Publication date
PH22018500007U1 (en) 2021-06-16
KR200493275Y1 (en) 2021-03-03
CN209074622U (en) 2019-07-09
WO2017091107A1 (en) 2017-06-01
PH22018500007Y1 (en) 2021-06-16
KR20180002384U (en) 2018-08-03
ES1215395Y (en) 2018-10-04
ES1215395U (en) 2018-07-13
DK201800042U1 (en) 2018-05-25
JP3220623U (en) 2019-03-28
DE212016000234U1 (en) 2018-07-12
AT16286U1 (en) 2019-05-15
FI12263U1 (en) 2019-01-15
MY195070A (en) 2023-01-06

Similar Documents

Publication Publication Date Title
US20200375547A1 (en) Methods and apparatus for detecting motion via optomechanics
US11324445B2 (en) Headsets with angled sensor modules
US11471103B2 (en) Ear-worn devices for physiological monitoring
KR102299361B1 (en) Apparatus and method for monitoring blood pressure, wearable device having function of blood pressure monitoring
US10076282B2 (en) Wearable monitoring devices having sensors and light guides
US9504394B2 (en) Electro-optical system, apparatus, and method for ambulatory monitoring
ES2338624B1 (en) SYSTEM AND APPARATUS FOR NON-INVASIVE MEASUREMENT OF GLUCOSE LEVELS IN BLOOD.
US9451911B1 (en) Test model for wearable devices
WO2016191588A1 (en) Device and method for generating calibration factors for use in determining biological indicator levels in tissue
DK201800042Y3 (en) Optical sensor for human pulse waveform
Saikia et al. A configurable wireless optical brain monitor based on internet-of-things services
Mohapatra et al. A novel sensor for wrist based optical heart rate monitor
RU162684U1 (en) HUMAN PULSE WAVE FORM OPTICAL SENSOR
WO2019244611A1 (en) Measurement device, measurement method, and measurement program
KR20140112989A (en) Apparatus for measuring bio-signal
RU218811U1 (en) OPTICAL SENSOR OF HUMAN PHYSIOLOGICAL STATE
Quaresima et al. Medical near infrared spectroscopy: a prestigious history and a bright future
IT201900002139U1 (en) Human pulsatory waveform optical sensor
KR101580195B1 (en) Terminal for bio-sensor measurement
WO2018163784A1 (en) Measurement device, measurement method, and program
Nawn Investigating the Effects of Sensor Mass, Applied Heat, and Applied Pressure on Motion Artifact in Photoplethysmography within a Military Transport Environment

Legal Events

Date Code Title Description
UME Utility model registered

Effective date: 20180918