DK201600068A1 - RENTAL AND GEAR SETTING FOR A WINDMILL - Google Patents

RENTAL AND GEAR SETTING FOR A WINDMILL Download PDF

Info

Publication number
DK201600068A1
DK201600068A1 DK201600068A DKPA201600068A DK201600068A1 DK 201600068 A1 DK201600068 A1 DK 201600068A1 DK 201600068 A DK201600068 A DK 201600068A DK PA201600068 A DKPA201600068 A DK PA201600068A DK 201600068 A1 DK201600068 A1 DK 201600068A1
Authority
DK
Denmark
Prior art keywords
bearing
rollers
gear
outer ring
rotor
Prior art date
Application number
DK201600068A
Other languages
Danish (da)
Inventor
Jens Grønager
Original Assignee
Jens Grønager
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jens Grønager filed Critical Jens Grønager
Priority to DKPA201600068A priority Critical patent/DK180162B1/en
Publication of DK201600068A1 publication Critical patent/DK201600068A1/en
Application granted granted Critical
Publication of DK180162B1 publication Critical patent/DK180162B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/02Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

Vindmøllers økonomiske effektivitet bedres ved opskalering mens vægt til styrke forholdet mindskes. Det gælder især rotorens store bærende rulleleje, gearet og generatoren. Løsninger herpå har været gearløse generatorer, som så bliver tunge da mængden af magnetisk materiale er omvendt proportionalt med omdrejningstallet; eller flere mindre generatorer tilpasset vinden på et distributionsgear som vist i (1), (2) og (3). Rotorens store rulleleje får forholdsvis stort lejeslør så kun de øverste eller eksklusivt nederste ruller bærer hele vægten af rotoren og derved skal dimensioneres forholdsvis store. Nærværende opfindelse fordeler lasterne til flere ruller og hurtigtløbende lettere generatorer. Den har rotoren fastgjort til yderringen, hver rulle lejret bærende til nacellen og inderringen fritløbende. Yder- og inderring er forholdsvis stivere end rullernes lejring til nacellen, således at de øverste ruller bøjer lidt ned under vægten af rotoren så noget af tyngdekraften overføres til inderringen og videre til de nederste forholdsvis stift lejrede ruller. En fortanding kan overføre drejningsmoment til alle ruller eller inderringen kan trykkes ud mod de mellemste ruller, eller de koniske ruller kan dynamisk presses ind mellem yder- og inderring med forholdsvis konstant indpresningskraft. Det er vist på figur 1 og 6 i 3D belysning og figur 2 og figur 3 i radialt snit. Herved kan disse forholdsvis små rullers aksler bruges som gearet kraftudtag i forholdet lejerdiameter til rullediameter. Omkostningerne ved den ekstra lejring af hver rulle opvejes af besparelsen af den sædvanlige centeraksel og gear. Også den øgede friktion af et forspændt slørløst leje opvejes af, at den sædvanlige udpressende kantfriktion på de store ruller mangler. Disse fordele er især vigtige for vindmøller hvor navakslen og gearet ellers er tunge komponenter højt oppe; og lejeslør giver uhensigtsmæssige vibrationer af de lange komponenter. Uden nav, gear og generator...The economic efficiency of wind turbines is improved by upscaling while reducing weight to strength ratio. This is especially true of the large bearing roller bearing of the rotor, the gear and the generator. Solutions to this have been gearless generators which then become heavy as the amount of magnetic material is inversely proportional to the rpm; or several smaller generators adapted to the wind on a distribution gear as shown in (1), (2) and (3). The large roller bearing of the rotor gets a relatively large bearing veil so that only the upper or exclusive lower rollers carry all the weight of the rotor and thus have to be dimensioned relatively large. The present invention distributes the loads to multiple rollers and fast-running lighter generators. It has the rotor attached to the outer ring, each roller bearing bearing to the nacelle and the inner ring free-running. The outer and inner rings are relatively stiffer than the roller bearing to the nacelle, so that the upper rollers bend slightly below the weight of the rotor so that some of the gravity is transferred to the inner ring and further to the lower relatively rigidly mounted rollers. A tooth can transmit torque to all rollers or the inner ring can be pressed out against the middle rollers, or the tapered rollers can be dynamically pressed in between outer and inner ring with relatively constant compressive force. It is shown in Figures 1 and 6 in 3D illumination and Figure 2 and Figure 3 in radial section. Hereby, the shafts of these relatively small rollers can be used as geared power take-off in the bearing diameter to roller diameter ratio. The cost of the extra bearing of each roller is offset by the savings of the usual center shaft and gear. Also, the increased friction of a prestressed blurless bearing is offset by the lack of the usual extruding edge friction on the large rollers. These advantages are especially important for wind turbines where the hub shaft and gear are otherwise heavy components high up; and bearing blades provide inappropriate vibrations of the long components. Without hub, gear and generator ...

Description

LEJE- OG GEAROPSÆTNING TIL EN VINDMØLLE BAGGRUNDEN FOR OPFINDELSENRENTAL AND GEAR SETUP FOR A WINDMILL BACKGROUND OF THE INVENTION

Samtidig med vindmøllers opskalering til MW klasse er vægten af nacellen gået fra ca det dobbelte af rotoren til det 3-4 dobbelte. Fordi massekræfterne i tredje potens af vingelængden dominerer over vindkraften i anden potens heraf. De forholdsvis store komponenter i nacellen, der skal optage disse kræfter har også dårligere vægt i forhold til kraftudnyttelse. For eksempel vejer den store massive navaksel meget i tredje potens af dens radius mens kræfterne fortrinsvis optages i dens overflade i anden potens heraf. Samme forhold gør sig gældende for det store centrale indgangsgearhjul, der også fortrinsvis optager kræfter i sin periferi med spild af dets centrale masse til følge. Der er altså mulighed for at spare noget masse, som i kendt teknik blot er der, og ikke bruges til optagelse af kræfter ,og som med runde tal udgør en fjerdedel af nacelle vægten. Formålet med nærværende opfindelse er derfor at spare ca halvdelen af nævnte ikke kraftoptagende masse dvs omkring 10% af nacellens vægt. Et måske ikke så stort tal, men det kan have forholdsvis stor betydning for at flytte egenfrekvensen for tårn-nacelle op over exitationen fra vingerne.At the same time as the wind turbine's upscaling to MW class, the weight of the nacelle has gone from about twice the rotor to the 3-4 double. Because the mass forces in the third power of the wing length dominate over the wind power in the second power thereof. The relatively large components of the nacelle that are to absorb these forces also have poorer weight compared to power utilization. For example, the large massive hub shaft weighs a great deal in the third potency of its radius while the forces are preferably absorbed into its surface in the second potency thereof. The same applies to the large central input gear, which also preferably absorbs forces in its periphery resulting in wastage of its central mass. There is thus the possibility of saving some mass, which in the prior art is simply there, and is not used for absorbing forces, and which, with round numbers, constitute a quarter of the nacelle weight. The object of the present invention is therefore to save about half of said non-absorbing mass, ie about 10% of the weight of the nacelle. A perhaps not so large number, but it may be of considerable importance to move the tower-nacelle intrinsic frequency above the excitation from the wings.

KENDT TEKNIKPRIOR ART

Gearløse vindmøller med mangepolet generator på den store navaksel er kendt teknik. Kompleksiteten med mange poler og en stor tung mængde magnetisk materiale er nødvendig for at kompensere for det lave omdrejningstal; men vægten og kompleksiteten af centralgearet spares.Gearless wind turbines with multi-pole generator on the large hub shaft are known techniques. The complexity of many poles and a large heavy amount of magnetic material is necessary to compensate for the low rpm; but the weight and complexity of the central gear are saved.

RESUME AF OPFINDELSENSUMMARY OF THE INVENTION

Leje- og gearingsenheden i følge opfindelsen sparer også den centrale navaksel idet kraftudtaget fra det eneste tilbageværende lejes enkelte ruller giver det, der svarer til første trins gearing. Her er det naturligt at sætte mange forholdsvis små seriefremstillede generatorer på hver rulles aksel, hvorved man opnår de mange poler forholdsvis billigt. Er lejerne 6 og 7 på tegningerne 1 til 6 for rulleakslen fast forankret på maskinkabinen skal de øverste kunne bære hele vingerotorens vægt fastgjort til yderringen 2. Ellers kan en frit modsatroterende inderring som vist på figur 6 overføre det halve af vægten til de nederste ruller, når rullerne er lejret med en mindre fjederstivhed i forhold til maskinkabinen end inderringens stivhed. Alternativt kan en fast monteret inderring bære hele rotorvægten så lejerne 6 og 7 på mellemringen på figur 1 kun skal modstå den sædvanlige udpressende friktion fra de koniske ruller. En ulempe er dog at strømmen så må overføres via slipringe, fordi lejets mellemringe roterer med halv hastighed og gearingen bliver også halvdelen af førnævnte alternativer.The bearing and gear unit according to the invention also saves the central hub shaft, since the power take-off from the only remaining bearing single rollers provides that which corresponds to the first stage gearing. Here it is natural to put many relatively small series-made generators on the shaft of each roller, thus obtaining the many poles relatively inexpensively. If the bearings 6 and 7 of the drawings 1 to 6 for the roller shaft are firmly anchored to the machine cabin, the upper must be able to carry the entire weight of the blade rotor attached to the outer ring 2. Otherwise, a freely counter-rotating inner ring as shown in Figure 6 can transfer half the weight to the lower rollers, when the rollers are mounted with a less spring stiffness relative to the machine cabin than the stiffness of the inner ring. Alternatively, a fixedly mounted inner ring can carry the entire rotor weight so that the bearings 6 and 7 of the intermediate ring of Figure 1 only withstand the usual extruding friction from the tapered rollers. A disadvantage, however, is that the current must then be transmitted via slip rings, because the bearing intermediate rings rotate at half speed and the gearing also becomes half of the aforementioned alternatives.

Problemet med uens overførelse af kraft fra rotorvægt og friktionskraft til ruller under de øverste kan endvidere mindskes ved at deres fjedrende vandring i aksial retning presser dem mere ind i mellemrummet mellem inder- og yderring i positioner under den øverste. Og mindskes endnu mere hvis det er en aktiv vandring styret af aktuatorer. Udgiften til disse opvejes af længere lejelevetid fra mere ensartet belastning, mindre lejeslør og højere ydelse grundet den lavere lejefriktion, der dynamisk kan sænkes ved de hyppigere lave vindhastigheder, hvor også kravene til lejets optagelse af vindens tværkræfter er mindre. Under disse forhold bliver friktionen mindst hvis de nederste ruller ikke presses ind i mellem ringene og derved heller ikke får overført friktionskraft til de nederste generatorer eller motorer, så de bedst kraftoverføringsmæssigt kobles af. At de øverste ruller presses mest sammen og derved roterer hurtigst med størst friktionskraft passer nogenlunde med vanlig variabel elektrisk karakteristik.Furthermore, the problem of uneven transfer of force from rotor weight and friction force to rollers below the upper can be mitigated by their resilient travel in the axial direction pushing them more into the gap between inner and outer ring in positions below the upper. And diminished even more if it is an active walk controlled by actuators. The cost of these is offset by longer bearing life from more uniform load, smaller bearing veil and higher performance due to the lower bearing friction which can be dynamically lowered at the more frequent low wind speeds, where the requirements for the bearing's absorption of the wind forces are less. Under these conditions, the friction will be at least if the lower rollers are not pressed in between the rings and thereby also not get frictional force transferred to the lower generators or motors, so that they are best decoupled in transmission. The fact that the top rollers are compressed the most and thereby rotate the fastest with the greatest frictional force fits roughly with the usual variable electrical characteristic.

Vindens skiftende kræfter kan optages ved at have modstående par af ruller, der klemmer ind mod inder- yderringsmidte fra hver sin side..The changing forces of the wind can be absorbed by having opposite pairs of rollers clamping against the inner ring center from each side.

En udførelsesform har generatorer monteret på de enkelte rullers aksler udenfor mellemringene som vist på figur 3, således at denne leje- og gearingsenhed erstatter den sædvanlige navaksel med tilhørende lejer, centralt gear og generator i vindmøller. For en 7 MW mølle kræver dette et 0 15 m vingerotorleje for, at alene friktionen mod rullerne er nok til at overføre det samlede moment. En anden udførelsesform har rullernes yderste koniske ende forsynet med tænder svarende til planetgearhjul så friktionen ikke er en begrænsende faktor, hvorved lejediameteren kan komme ned på 8 m. En tredje udførelsesform vist på figur 3 har endnu et planetgeartrin efter dette, og permanentmagnet generatorerne anbragt forskudt for hinanden vist figur 5 hvorved rotorlejediameteren kan komme ned på 5m. Som vist i bilag 2 medfører de mindre ruller dog at friktionstabet stiger fra ca 8% for det store 0 15m leje til henholdsvis 9% og 10% for de mindre.One embodiment has generators mounted on the shafts of the individual rollers outside the intermediate rings as shown in Figure 3, so that this bearing and gear unit replaces the usual hub shaft with associated bearings, central gear and generator in wind turbines. For a 7 MW turbine, this requires a 0 15 m blade rotor bearing to ensure that the friction against the rollers alone is sufficient to transmit the total torque. In another embodiment, the outermost tapered end of the rollers is provided with teeth corresponding to planetary gears so that the friction is not a limiting factor, whereby the bearing diameter can come down to 8 m. A third embodiment shown in figure 3 has another planetary gear after this, and the permanent magnet generators are displaced. Figure 5 shows one another, whereby the rotor bearing diameter can come down to 5m. However, as shown in Appendix 2, the smaller rollers cause the friction loss to increase from about 8% for the large 0 15m bearing to 9% and 10% respectively for the smaller ones.

Fortandingen kan også være alene på de enkelte ruller med tandhjul mellem rullerne til at overføre effekten til en central generator vist på figur 6. Når vinden øges opnås den nødvendige øgede friktionskraft ved at yderringen presses op mod rullernes tilstrækkelig lille konusvinkel, som beregnet i bilag 2 og tandhjulenes tænder kan blive successivt bredere op mod det centrale 11, så belastning bliver ens og vægt mindst.The toothing can also be on the individual rollers with gears between the rollers to transfer the power to a central generator shown in Figure 6. As the wind increases, the necessary increased frictional force is obtained by pressing the outer ring against the rollers' sufficiently small cone angle, as calculated in Appendix 2. and the teeth of the gears may be successively wider towards the central 11, so that load becomes equal and weight at least.

En fjerde udførelsesform har motorer monteret på de enkelte rullers aksler udenfor mellemringene med fjeder- eller aktuatorforspændte lejer, således at denne leje- og gearingsenhed erstatter krøjekrans eller vingedrejekrans med tilhørende motorer og bremser i vindmøller.A fourth embodiment has motors mounted on the shafts of the individual rollers outside the intermediate rings with spring or actuator biased bearings, so that this bearing and gear unit replaces the crank or wing turn ring with associated motors and brakes in wind turbines.

KORT BESKRIVELSE AF TEGNINGERNEBRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 viser leje og gear enhed i 3D perspektiv.FIG. 1 shows the bearing and gear unit in 3D perspective.

FIG. 2 er et snit af 1 som viser rullerne og deres lejring i detalje.FIG. 2 is a section of 1 showing the rollers and their bearing in detail.

FIG. 3 udvider fig. 2 med endnu et geartrin og generator.FIG. 3 expands FIG. 2 with another gear stage and generator.

FIG. 4 er en endnu mere detaljeret rotationssymmetrisk visning af fig. 3 FIG. 5 viser tæt pakning af gear og generator enhederne forskudt for hinanden. FIG. 6 viser ruller og gear støttet af en fritløbende inderring.FIG. 4 is an even more detailed rotationally symmetrical view of FIG. 3 FIG. Figure 5 shows tight packing of gear and generator units offset to each other. FIG. 6 shows rollers and gears supported by a free-running inner ring.

DETALJERET BESKRIVELSE AF DE FORETRUKNE UDFØRELSERDETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

TEGNINGENS figur 1 viser leje-gear-generator konstruktionen i 3D belysning. 1 og 2 er inder- henholdsvis yderringen hvor 1 for en 7MW mølle har afstanden to en halv meter til lejets centerakse i vindretningen. 4 er mellemringen hvortil rullerne 5 er fastgjort med lejerne 6 og 7.FIGURE 1 of the drawing shows the bearing-gear generator construction in 3D lighting. 1 and 2 are the inner ring and outer ring, respectively, where 1 for a 7MW mill has the distance two and a half meters to the center of the bearing in the wind direction. 4 is the intermediate ring to which the rollers 5 are secured with the bearings 6 and 7.

Figur 2 er det tilsvarende radiale snit gennem A-A, hvor også en del af den bærende forbindelse 3 mellem de to modstående mellemringsdele 4 er vist bag den viste rulle 5.Figure 2 is the corresponding radial section through A-A, where also a portion of the supporting connection 3 between the two opposite intermediate ring portions 4 is shown behind the shown roller 5.

På figur 3 er forbindelsen 3 udformet som en central mellemringssamler hvortil mellemringsakslerne 4 for de modstående rulle-gear-generatorenheder 20 er stift fastgjort.In Figure 3, the connection 3 is designed as a central intermediate ring collector to which the intermediate ring shafts 4 of the opposite roller gear generator units 20 are rigidly attached.

Figur 4 viser et rotationssymmetrisk snit gennem to modstående rulle-gear-gene-ratorenheder 20 gennem deres symmetriakse 19 med benævnelse at deres komponenter. Aksialrullelejet 7 leverer det nødvendige modtryk til den koniske rulle 5, der inderst hviler på et andet rulleleje 6. Uden på denne videreførte rulle med samme skravering kan planetgearhjulet 8 dreje sig lidt i forhold til 5. Planetgearhjulet 8 er i indgreb med tænder på yderringen 2 og evt også inderrin-gen 1 (der i så fald svarer til et solhjul) og har samme koniske tand indgrebscirkel som den koniske rulle 5. Ved ideel fabrikationsnøjagtighed ville der ikke være behov for den løse meget langsomt roterende pasning mellem 5 og 8‘s akselekstension fordi de ville rotere med samme hastighed.Figure 4 shows a rotationally symmetrical section through two opposing roller gear generator units 20 through their axis of symmetry 19, denoting their components. The axial roller bearing 7 provides the necessary back pressure for the tapered roller 5, which rests at the bottom of another roller bearing 6. Without this continued roller with the same shading, the planetary gear 8 can rotate slightly relative to 5. The planetary gear 8 engages teeth on the outer ring 2 and possibly also the inner ring 1 (which corresponds to a sun wheel) and has the same tapered engagement circle as the tapered roller 5. At ideal fabrication accuracy, the very slow rotating fit between 5 and 8 would not be needed. shaft extension because they would rotate at the same speed.

Tænderne er egentlig kun nødvendige for en 7MW mølle når inderringens diameter, som her er under 15 meter, som ellers muliggør overførsel af det samlede moment med en traktionsolie med friktionskoefficient på 0,1 vist i bilag 1.The teeth are really only needed for a 7MW mill when the inner ring diameter, which is below 15 meters, which otherwise allows the transfer of the total torque with a traction oil with a coefficient of friction of 0.1 shown in Appendix 1.

Fra planethjulet 8 udgår en eller flere aksler 9 for det næste geartrins planethjul 10 som er i indgreb med fortandingen på yderringen 16 og solhjulet 11. Dette er lejret i et nåleleje 13 lige under planethjulet og et kugleleje 12 i den anden ende. Fastmonteret på solhjulet 11 er generatorrotoren 14, mens statoren 15 er fastgjort til yderskærmen 16, hvis ene ende er stift fastgjort til rulleakslen 4 mens den anden er støttet radielt med et leje 17 mod solhjulsakslen 11.From the planetary wheel 8, one or more shafts 9 of the next gear stage's planetary wheel 10 are engaged which engage the gear on the outer ring 16 and the sun gear 11. This is mounted in a needle bearing 13 just below the planetary wheel and a ball bearing 12 at the other end. Fixed to the sun gear 11 is the generator rotor 14, while the stator 15 is attached to the outer shade 16, one end of which is rigidly attached to the roller shaft 4 while the other is supported radially with a bearing 17 against the sun gear shaft 11.

Yderskærmen 16, der evt. roterer med halv hastighed af yderringen 2 i forhold til både yder- og inderring slutter op mod disse med fx en labyrinttætning 18, som muliggør et oliebad omkring planethjulene 10 og 8. Et yderligere oliereservoir kan etableres i yderringen 2 eller bag lejerne 7 og 12.The outer screen 16, which may rotates at half speed of the outer ring 2 with respect to both outer and inner rings ending up against these with, for example, a maze seal 18, which enables an oil bath around the planet wheels 10 and 8. An additional oil reservoir can be established in the outer ring 2 or behind the bearings 7 and 12.

I den udformning, hvor yderskærm med stator roterer i.f.t inderringen, er det nødvendigt at overføre effekten herfra v.h.a. slipringe. Man kan dog nøjes med slipringe på den ene side af vingerotorlejet ved at føre strømmen fra den anden sides generatorer gennem de hule rulleaksler 4.In the design in which the outer screen with stator rotates i.f.t the inner ring, it is necessary to transmit the effect from here by means of a stator. slip rings. However, slip rings on one side of the wing rotor bearing can be satisfied by passing the current from the other side's generators through the hollow roller shafts 4.

Hver af de for en 7 MW mølle 72 hund red kilowatts rulle-, gear- og generatorenheder 20 kan fabrikeres og samles som selvstændige enheder. Disse enheder monteres mellem frithængende yder- 2 og inderring 1 ved at deres rulleholderaksel 4 fastspændes mellemringsholderen 3 fra begge sider. Derved kan et foruddefineret lejeslør etableres og eventuelt genetableres ved efterspænding efter lejeslitage. Den ekstra slitage fra kanterne om hulproppen til indsættelse af ruller i konventionelle store krøjelejer undgås, såvel som slitagen fra konventionelle rulleenders friktion mod yder- eller inderringens indpressende kant.Each of the 72 MW 72 kilowatt roller, gear and generator units 20 for a 7 MW turbine can be manufactured and assembled as standalone units. These units are mounted between free-hanging outer 2 and inner ring 1 by fastening their roller holder shaft 4 from the middle ring holder 3 from both sides. Thereby a predefined bearing veil can be established and possibly re-established by tension after bearing wear. The extra wear and tear from the edges of the hollow plug for inserting rollers into conventional large bend bearings is avoided, as well as the wear from the friction of conventional roll ends to the pressing or outer ring of the outer ring.

Figur 5 viser i snittet B-B af figur 1, hvordan en kortere udførelse af rulle-, gear- og generatorenheden 21 kan monteres i indsnævringen af yderskærmen 16 for 20 med mindre afstand mellem disse og dermed mere kompakt udførelse til følge.Figure 5 shows in section B-B of Figure 1 how a shorter embodiment of the roller, gear and generator unit 21 can be mounted in the narrowing of the outer shield 16 for 20 with less distance between them and thus more compact design.

For at få plads til 36 generatorer for en 7 MW mølle på den ene side af et 0 5m vingerotorleje er det nødvendigt at lave denne indsnævring af yderskærmen mellem tallene 16 og 17 så hver anden generator sidder tættere på vingerotorlejet og passer ind i dette hak.To accommodate 36 generators for a 7 MW turbine on one side of a 0 5m wing rotor bearing, it is necessary to make this narrowing of the outer shield between the numbers 16 and 17 so that every other generator sits closer to the wing rotor bearing and fits into this notch.

Figur 6 viser hvordan en fritløbende inderring 1 overfører kræfterne fra yderringen 2 på de øverste ruller 5a til de nederste 8a. Inderringen støtter kun de ruller som øget vind fra højre øger kraften på, og de er lejret roterbart i forhold til nacellen i lejer på begge sider af inderringen i positionerne 6 og 7. Der er kun bærende ruller på øverste henholdsvis nederste fjerdedel og de overfører omdrejningskraften til hinanden via påsat tandhjul 9 til mellemliggende tandhjul 10 til det centrale øverste henholdsvis nederste tandhul 11. De to sidste kan så overføre den opgea-rede omdrejningskraft via to lodrette aksler 12 til et centralt vinkelgear 13 på en central generator 14. De for lejet styrende ruller er ikke vist, men er monteret ligesom rullerne 5 på figur 1 i fire jævnt fordelte positioner på højre indre koniske flade af yderringen 15.Figure 6 shows how a free-flowing inner ring 1 transfers the forces from the outer ring 2 of the upper rollers 5a to the lower 8a. The inner ring only supports the rollers for which increased wind from the right increases the force, and they are mounted rotatably relative to the nacelle in bearings on both sides of the inner ring in positions 6 and 7. There are only bearing rollers on the upper and lower quarter respectively and they transmit the rotational force. to one another via mounted sprocket 9 to intermediate sprocket 10 to the central upper and lower sprocket 11. The last two can then transmit the applied torque via two vertical shafts 12 to a central angular gear 13 on a central generator 14. rollers are not shown but are mounted like rollers 5 of Figure 1 in four evenly spaced positions on the right inner conical surface of outer ring 15.

Claims (10)

KRAV 1: Leje- og gearopsætning til en vindmølle bestående af en yderring påmonteret rotoren og et antal ruller forbundet til generator eller motor kendetegnet ved at de rullende elementer er roterbart fastgjort til nacellen og bærer yderringen KRAVClaim 1: Bearing and gear assembly for a wind turbine consisting of an outer ring mounted on the rotor and a number of rollers connected to the generator or motor characterized in that the rolling elements are rotatably fixed to the nacelle and carry the outer ring KRAV 2: Leje- og gearopsætning til en vindmølle i følge krav 1 kendetegnet ved at de øverste ruller er monteret indeni yderringen, mens de nederste er monteret uden på og således bærer noget af yderring med rotor udefra. KRAV2: Bearing and gear assembly for a wind turbine according to claim 1, characterized in that the upper rollers are mounted inside the outer ring, while the lower ones are mounted on the outside and thus carry some of the outer ring with rotor from the outside. REQUIREMENTS 3: Leje- og gearopsætning til en vindmølle ifølge krav 1 eller 2 kendetegnet ved at de rullende elementer er støttet af en inderring inde fra. KRAV3: Bearing and gear assembly for a wind turbine according to claim 1 or 2, characterized in that the rolling elements are supported by an inner ring from the inside. REQUIREMENTS 4: Leje- og gearopsætning til en vindmølle ifølge krav 1, 2 eller 3 kendetegnet ved at de rullende elementer er fastgjort til nacellen med varierende stivhed. KRAV4: Bearing and gear assembly for a wind turbine according to claim 1, 2 or 3, characterized in that the rolling elements are attached to the nacelle with varying stiffness. REQUIREMENTS 5: Leje- og gearopsætning til en vindmølle bestående af en yderring påmonteret rotoren og et antal ruller forbundet til generator eller motor kendetegnet ved at de rullende elementer er roterbart fastgjort til en fælles mellemring for alle rullerne, der roterer med halv omdrejningshastighed af yderringen om en inderring fastgjort til nacellen. KRAV5: Bearing and gear assembly for a wind turbine consisting of an outer ring mounted on the rotor and a number of rollers connected to the generator or motor characterized in that the rolling elements are rotatably fixed to a common intermediate ring for all the rollers rotating at half speed of the outer ring about a inner ring attached to the nacelle. REQUIREMENTS 6: Leje- og gearopsætning til en vindmølle ifølge krav 5 kendetegnet ved at de rullende elementer er fastgjort via en aktuator, der flytter rullerne i deres rotationsakses retning ind mod yderringens centerplan. KRAV6: Bearing and gear assembly for a wind turbine according to claim 5, characterized in that the rolling elements are secured via an actuator which moves the rollers in the direction of their axis of rotation towards the center plane of the outer ring. REQUIREMENTS 7: Leje- og gearopsætning til en vindmølle ifølge krav 1, 2 eller 3 kendetegnet ved at flere rullende elementer er forbundet til samme generator eller motor og vindens usymmetriske moment optages af et andet leje på yderringens symmetriakse. KRAV7: Bearing and gear assembly for a wind turbine according to claim 1, 2 or 3, characterized in that several rolling elements are connected to the same generator or motor and the asymmetrical torque of the wind is taken up by another bearing on the axis of symmetry of the outer ring. REQUIREMENTS 8: Leje- og gearopsætning til en vindmølle ifølge krav 1,2, 3 eller 4 kendetegnet ved at flere rullende elementer er forbundet til samme generator eller motor og vindens bøjende momenter optages af andre vinklede rullende elementer mod yderringen. KRAV8: Bearing and gear assembly for a wind turbine according to claims 1,2, 3 or 4, characterized in that several rolling elements are connected to the same generator or motor and the bending moments of the wind are taken up by other angled rolling elements against the outer ring. REQUIREMENTS 9: Leje- og gearopsætning til en vindmølle i følge krav 1 eller 5 kendetegnet ved at generator eller motor er monteret forskudt på successive ruller som vist figur 5. KRAV9: Bearing and gear assembly for a wind turbine according to claim 1 or 5, characterized in that the generator or motor is mounted offset on successive rollers as shown in Figure 5. REQUIREMENTS 10: Leje- og gearopsætning til en vindmølle i følge krav 1 eller 5 kendetegnet ved at første trins gearhjul for et enkelt rullende element er lejret bevægeligt i forhold til akslen for det rullende element.10: Bearing and gear assembly for a wind turbine according to claim 1 or 5, characterized in that the first-stage gear wheel for a single rolling element is movable in relation to the shaft of the rolling element.
DKPA201600068A 2012-07-06 2016-02-02 RENTAL AND GEAR SETUP FOR A WIND TURBINE DK180162B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DKPA201600068A DK180162B1 (en) 2012-07-06 2016-02-02 RENTAL AND GEAR SETUP FOR A WIND TURBINE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DK201200452 2012-07-06
DKPA201200452 2012-07-06
PCT/DK2013/000046 WO2014005587A1 (en) 2012-07-06 2013-07-04 Bearing and gear unit for wind turbines
DK2013000046 2013-07-04
DKPA201600068A DK180162B1 (en) 2012-07-06 2016-02-02 RENTAL AND GEAR SETUP FOR A WIND TURBINE
DK201600068 2016-02-02

Publications (2)

Publication Number Publication Date
DK201600068A1 true DK201600068A1 (en) 2016-02-15
DK180162B1 DK180162B1 (en) 2020-07-03

Family

ID=49881364

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA201600068A DK180162B1 (en) 2012-07-06 2016-02-02 RENTAL AND GEAR SETUP FOR A WIND TURBINE

Country Status (2)

Country Link
DK (1) DK180162B1 (en)
WO (1) WO2014005587A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521953B1 (en) 2018-12-13 2020-07-15 Miba Gleitlager Austria Gmbh Gondola for a wind turbine
AT521882B1 (en) 2018-12-13 2021-05-15 Miba Gleitlager Austria Gmbh Plain bearings, in particular for a gearbox of a wind turbine
AT521884B1 (en) 2018-12-13 2020-10-15 Miba Gleitlager Austria Gmbh Method for changing a slide bearing element of a rotor bearing of a wind turbine, as well as a nacelle for a wind turbine
AT521775B1 (en) 2018-12-13 2020-06-15 Miba Gleitlager Austria Gmbh Planetary gear for a wind turbine
AT521885B1 (en) 2018-12-13 2020-09-15 Miba Gleitlager Austria Gmbh Gondola for a wind turbine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304002B1 (en) * 2000-04-19 2001-10-16 Dehlsen Associates, L.L.C. Distributed powertrain for high torque, low electric power generator
DE10043593B4 (en) * 2000-09-01 2014-01-09 Renk Ag Transmission for wind generators
DE102007008758A1 (en) * 2007-02-22 2008-08-28 Schuler Pressen Gmbh & Co. Kg Transmission hub unit for a wind turbine

Also Published As

Publication number Publication date
DK180162B1 (en) 2020-07-03
WO2014005587A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
DK201600068A1 (en) RENTAL AND GEAR SETTING FOR A WINDMILL
EA022481B1 (en) Wind turbine with compensated motor torque
CN105864364B (en) A kind of compound planetary formula wind-driven generator wheel-box
CN106014866A (en) Transmission device of wind turbine generator system
US11111902B2 (en) Nacelle and rotor for a wind turbine, and method
KR101525553B1 (en) Wind power generator with vertical rotor
CN112814845A (en) Umbrella-shaped multi-ring differential rotation type full-fan-blade double-synchronous high-efficiency wind wheel power generation device
CN206458785U (en) A kind of variable paddle speed reducer
CN202579969U (en) Compact-type planetary carrier for yawing gear box
CN215333235U (en) Umbrella-shaped multi-ring differential rotation type full-fan-blade double-synchronous high-efficiency wind wheel power generation device
CN201486772U (en) High-power vertical shaft wind turbine
JP4546097B2 (en) Wind power generator
CN107992095A (en) A kind of double-axis tracking device
JP2021019500A (en) Power transmission device
CN103161690A (en) External mounting type horizontal-axis wind driven generator and transmission structure thereof
WO2011089036A1 (en) Planetary gear unit with rotating ring gear
CN207406435U (en) A kind of wind energy is converted into the power generation mechanism of mechanical energy
RU2749799C1 (en) Wind power aggregate
CN207161254U (en) A kind of novel wind generator with big blade face
JP6836769B2 (en) Fluid machinery and power generators
US11598317B2 (en) Yaw bearings for a wind turbine
WO2008131604A1 (en) Wind engine with horizontal lift-force-type vane
KR200271513Y1 (en) Double Hub Attached Propeller Type Wind Power Generator
CN202370764U (en) Transmission structure of externally hung vertical-axis wind turbine generator and wind turbine generator
CN210371874U (en) Gearbox speed change device of wind turbine generator

Legal Events

Date Code Title Description
PME Patent granted

Effective date: 20200703