DK179276B1 - Fully cast speaker cabinet with integrated bass reflex produced by sand casting in a gray cast iron alloy. CSRC - Google Patents
Fully cast speaker cabinet with integrated bass reflex produced by sand casting in a gray cast iron alloy. CSRC Download PDFInfo
- Publication number
- DK179276B1 DK179276B1 DKPA201300376A DKPA201300376A DK179276B1 DK 179276 B1 DK179276 B1 DK 179276B1 DK PA201300376 A DKPA201300376 A DK PA201300376A DK PA201300376 A DKPA201300376 A DK PA201300376A DK 179276 B1 DK179276 B1 DK 179276B1
- Authority
- DK
- Denmark
- Prior art keywords
- speaker
- sound
- cabinet
- speaker cabinet
- iron
- Prior art date
Links
Landscapes
- Details Of Audible-Bandwidth Transducers (AREA)
Abstract
Støbt lydgengivelse er et unik nyopfundet højtalerkoncept baseret på markedets bedste komponenter og et nyopfundet højtalerkabinetdesign, materialevalg og fremstillingsmetode. Se appendiks 9. Det unikke ved opfindelsen er, at frembringelsen er baseret på, at kabinettet produceres i et og kun et produktionstrin ved anvendelsen af sandstøbeteknologien samtidig med, at man har en naturlig indvendig petruberende geometri, det reflekterer de højfrekvente lydbølger samtidig med, at den integrerede basrefleks lader højtaleren ånde frit. Højtalerkabinettets geometriske udformning og materialevalg gør, at det er immunt over mekaniske vibrationer. Det unikke ved denne opfindelse er, at gråt støbejerns lyddæmpende egenskaber og styrke er blevet anvendt til i et eneste produktiontrin at producere et højtalerkabinet med en indvendig geometri, der reflekterer de højfrekvente lyde på en sådan måde, at der ikke skabes resonans samtidig med, at den integrerede basrefleks sikrer, at højtalerenheden kan ånde, således at der skabes stående trykbølger.Cast sound reproduction is a unique newly invented speaker concept based on the best components of the market and a newly invented speaker cabinet design, material selection and manufacturing method. See Appendix 9. The unique feature of the invention is that the generation is based on the fact that the cabinet is produced in one and only one stage of production using the sand casting technology while having a natural interior petrule geometry, reflecting the high frequency sound waves while the integrated bass reflex lets the speaker breathe freely. The geometric design and material selection of the speaker cabinet makes it immune to mechanical vibrations. The uniqueness of this invention is that gray cast iron's sound attenuating properties and strength have been used to produce, in a single production step, a speaker enclosure with an internal geometry that reflects the high-frequency sounds in such a way that no resonance is created while the integrated bass reflex ensures that the speaker unit can breathe, creating standing pressure waves.
Description
<1θ> DANMARK (10)< 1 θ> DENMARK (10)
<12> PATENTSKRIFT< 12 > PATENT WRITING
Patent- ogPatent and
Varemærkestyrelsen (51) Int.CI.: B22C 9/02(2006.01) B 22 D 3/00(2006.01) C 21C 1/00(2006.01)Trademark Office (51) Int.CI .: B22C 9/02 (2006.01) B 22 D 3/00 (2006.01) C 21C 1/00 (2006.01)
H 04 R 31/00 (2006.01) (21) Ansøgningsnummer: PA 2013 00376 (22) Indleveringsdato: 2013-06-19 (24) Løbedag: 2013-06-19 (41) Aim. tilgængelig: 2017-06-06 (45) Patentets meddelelse bkg. den: 2018-03-26 (73) Patenthaver: DANSK SKALFORM A/S, Birkevej 59, Tandrup, 9600 Aars, Danmark (72) Opfinder: Søren Dissing, Vestvej 1,9600 Aars, Danmark (74) Fuldmægtig: TMP Patent ApS, c/o Tenna Pedersen, Ternevej 2 B, 3 tv., 2000 Frederiksberg, Danmark (54) Benævnelse: Helstøbt højtalerkabinet med integreret basrefleks produceret ved sandstøbning i en grå støbejerns legering. CSRC (56) Fremdragne publikationer:H 04 R 31/00 (2006.01) (21) Application Number: PA 2013 00376 (22) Filing Date: 2013-06-19 (24) Running Day: 2013-06-19 (41) Aim. available: 2017-06-06 (45) Patent Notice bkg. on: 2018-03-26 (73) Patent holder: DANSK SKALFORM A / S, Birkevej 59, Tandrup, 9600 Aars, Denmark (72) Inventor: Søren Dissing, Vestvej 1,9600 Aars, Denmark (74) Proxy: TMP Patent ApS , c / o Tenna Pedersen, Ternevej 2 B, 3 tv., 2000 Frederiksberg, Denmark (54) Designation: Fully cast speaker cabinet with integrated bass reflex produced by sand casting in a gray cast iron alloy. CSRC (56) Published publications:
JP S59230394 A JP 2000125381 A JP 2001285977 A JP 2000125382 A JP S59107061 A CN 1283950 A DE 29609681 U1 EP 1682291 B1 (57) Sammendrag:JP S59230394 A JP 2000125381 A JP 2001285977 A JP 2000125382 A JP S59107061 A CN 1283950 A DE 29609681 U1 EP 1682291 B1 (57) Summary:
Støbt lydgengivelse er et unik nyopfundet højtalerkoncept baseret på markedets bedste komponenter og et nyopfundet højtalerkabinetdesign, materialevalg og fremstillingsmetode. Se appendiks 9. Det unikke ved opfindelsen er, at frembringelsen er baseret på, at kabinettet produceres i et og kun et produktionstrin ved anvendelsen af sandstøbeteknologien samtidig med, at man har en naturlig indvendig petruberende geometri, det reflekterer de højfrekvente lydbølger samtidig med, at den integrerede basrefleks lader højtaleren ånde frit. Højtalerkabinettets geometriske udformning og materialevalg gør, at det er immunt over mekaniske vibrationer. Det unikke ved denne opfindelse er, at gråt støbejerns lyddæmpende egenskaber og styrke er blevet anvendt til i et eneste produktiontrin at producere et højtalerkabinet med en indvendig geometri, der reflekterer de højfrekvente lyde på en sådan måde, at der ikke skabes resonans samtidig med, at den integrerede basrefleks sikrer, at højtalerenheden kan ånde, således at der skabes stående trykbølger.Cast sound reproduction is a unique newly invented speaker concept based on the best components of the market and a newly invented speaker cabinet design, material selection and manufacturing method. See Appendix 9. The unique feature of the invention is that the production is based on the fact that the cabinet is produced in one and only one stage of production using the sand casting technology while having a natural interior petrule geometry, and that reflects the high frequency sound waves while the integrated bass reflex lets the speaker breathe freely. The geometric design and material selection of the speaker cabinet makes it immune to mechanical vibrations. The uniqueness of this invention is that gray cast iron's sound attenuating properties and strength have been used to produce, in a single production step, a speaker enclosure with an internal geometry that reflects the high frequency sounds in such a way that no resonance is created while the integrated bass reflex ensures that the speaker unit can breathe, creating standing pressure waves.
Fortsættes ...To be continued ...
HG. 1.HG. First
Beskrivelse:Description:
Opfindelsen angår en fremgangsmåde til fremstilling af et højtalerkabinet i et støbe materiale.The invention relates to a method of producing a speaker cabinet in a molding material.
JPS59230394 A samt JP2000125381 A beskriver begge fremstilling af højtalerkabinetter eller komponenter hertil, hvor anvendelse af gråt støbejern finder anvendelse.JPS59230394 A and JP2000125381 A both disclose the manufacture of speaker enclosures or components therefor where gray cast iron is used.
CN1283950 A beskriver fremstilling af jernholdige emner til højtalere vha. sandstøbning.CN1283950 A describes the manufacture of ferrous items for speakers using sand casting.
Normalt fremstilles højtalerkabinetter af træ MDF-plade malet eller beklædt med metalfolie, plastik eller tyndplade i rustfri stål med anvendelse af dæmpende indlægsmateriale for at reducere, og til tider helt at fjerne resonansen.Usually, speaker cabinets are made of wood MDF plate painted or lined with metal foil, plastic or thin plate in stainless steel using cushioning inserts to reduce, and sometimes completely remove the resonance.
Lad os tage udgangspunkt i menneskets hørelse, som kan opfatte tone i frekvensområdet ca. 20 - 20.000 Hz. Selve lyden er trykbølger med meget små trykvarianter, ca. en hundredetusindedel af atmosfæretrykket, se appendiks 4.Let's start with the human hearing, which can perceive tone in the frequency range approx. 20 - 20,000 Hz. The sound itself is pressure waves with very small pressure variants, approx. one hundred thousandth of the atmospheric pressure, see Appendix 4.
Kendetegnende for lyd er, at højfrekvente lyde hovedsageligt opfører sig på samme måde som lysstråler, hvorimod lavfrekvente lyde opføre sig som bølger.Characteristic of sound is that high-frequency sounds behave mainly in the same way as light rays, whereas low-frequency sounds behave like waves.
Enhederne, der frembringer lyden, svinger mekanisk og kan i givne situationer skabe resonans og forstyrre lydbilledet kraftigt, såfremt en af egensvingningerne af kabinettet rammes.The devices that produce the sound oscillate mechanically and can, in given situations, create resonance and greatly distort the sound image if one of the intrinsic oscillations of the cabinet is hit.
Materialevalget til kabinettet spiller ind på bestemmelsen af egenfrekvensen, idet det er alment kendt, at tendensen til resonans kan reduceres signifikant ved at reducere bulkdensiteten af kabinettet ved at polstre indersiden med dæmpende materiale.The choice of material for the cabinet influences the determination of the intrinsic frequency, as it is well known that the tendency for resonance can be significantly reduced by reducing the bulk density of the cabinet by padding the inside with damping material.
Ses der bort for den geometriske indflydelse af kabinettet i relation til kabinettets evne til at komme simplificeres til følgende udtryk.Disregarding the geometric influence of the cabinet in relation to the ability of the cabinet to come is simplified to the following expression.
selvsving, kan materialets indflydelseself-swing, can influence the material
Vy hvor E er materialets elasticitetsmodul og p er densiteten.Show where E is the modulus of elasticity of the material and p is the density.
Heraf fremgår det ved anvendelse af data som angivet nedenfor, at det materielle egensvingningsindex for MDF plader ~ 0,0625.From this, using the data set out below, it appears that the material eigenvalue index of MDF plates is ~ 0.0625.
For metallerne bliver det for Gråjern ~ 0,0508, SG-jern ~ 0,0573, Alu- bronze « 0,0430, Aluminium legeringer « 0,0907, stål « 0,0588 og rustfri stål « 0,5884.For the metals, for Gray Iron it will be ~ 0.0508, SG iron ~ 0.0573, Alu- bronze «0.0430, Aluminum alloys« 0.0907, steel «0.0588 and stainless steel« 0.5884.
Typiske data for MDF plader:Typical data for MDF plates:
RAW MDF PladeRAW MDF Plate
Primær anvendelse indendørs i byggerier. En glat og pæn plade som er ens og homogen i materialet. Velegnet til hylder, vindueskarme og lign.Primary use indoors in buildings. A smooth and neat plate that is similar and homogeneous in the material. Suitable for shelves, window frames and the like.
Stabil og let at forarbejde. Fræseværktøj kan med fordel anvendes(,) hvor der ønskes udsmykninger eller rundinger på pladens kanter.Stable and easy to process. Milling tools can advantageously be used (,) where decorations or roundings are desired on the edges of the plate.
Rumvæg:room wall:
Elasticitetsmodul:Modulus of elasticity:
Bøjebrudstyrke:Bending Tensile strength:
Kilde:Source:
755 kg/m3 755 kg / m 3
2700 N/mm2 (EN 310)2700 N / mm 2 (EN 310)
N/mm2 (EN 310) www .raw-products.infoN / mm 2 (EN 310) www .raw-products.info
Swiss MDF DecorSwiss MDF Decor
Medium Density Fibreboard produced to formaldehyde quality class E1, with a decorative melamine faced surface to be used as specified in the EuropeanMedium Density Fibreboard produced to formaldehyde quality class E1, with a decorative melamine faced surface to be used as specified in the European
Kilde: www.kronospan.comSource: www.kronospan.com
Typical Mechanical Property Data for a Suit of Selected Material and Alloys.Typical Mechanical Property Data for a Suit of Selected Material and Alloys.
Gray Cast Iron (Grå jern)Gray Cast Iron
Density: 7100 kg/ mm3 Density: 7100 kg / mm 3
Tensile strength: 270 - 400 N/mm2 Tensile strength: 270 - 400 N / mm 2
Modulus of elasticity: 1,1-1,3*105 N/mm2 Modulus of elasticity: 1.1-1.3 * 10 5 N / mm 2
The unique damping effect of gray irons is associated to its inherited natural composite microstructure, which is strongly dependent on melting alloy composition and inoculation.The unique damping effect of gray irons is associated with its inherent natural composite microstructure, which is strongly dependent on melting alloy composition and inoculation.
Ductile Iron, Nodular Cast Iron (SG-jern)Ductile Iron, Nodular Cast Iron (SG Iron)
Density: 7200 kg/m3 Density: 7200 kg / m 3
Tensile strength: 270 - 400 N/mm2 Tensile strength: 270 - 400 N / mm 2
Modulus of elasticity: 1,7*105 N/mm2 Modulus of elasticity: 1.7 * 10 5 N / mm 2
Alu-Bronze Alloys:Alu-Bronze Alloys:
Density: 7890 kg/m3 Density: 7890 kg / m 3
Tensile strength 540-800 N/mm2 Tensile strength 540-800 N / mm 2
Modulus of elasticity: 1,15*105 N/mm2 Modulus of elasticity: 1.15 * 10 5 N / mm 2
Aluminum Bronzes are twice as effective as steel in their ability to dampen vibrations.Aluminum Bronzes are twice as effective as steel in their ability to dampen vibrations.
Aluminium:Aluminum:
Density: 2700 kg/m3 Density: 2700 kg / m 3
Tensile strength: ca 250 N/mm2 Tensile strength: approx. 250 N / mm 2
Modulus of elasticity: 6-7*104 N/mm2 Modulus of elasticity: 6-7 * 10 4 N / mm 2
Black Steel( aim konstruktionsstål):Black Steel (aim steel):
Density: 7800 kg/m3 Density: 7800 kg / m 3
Tensile strength, yield: ca 300 N/mm2 Tensile strength, yield: about 300 N / mm 2
Modulus of elasticity: 2.1 *105 N/mm2 Modulus of elasticity: 2.1 * 10 5 N / mm 2
Stainles Steel (Rustfri stål):Stainles Steel:
Density: 7800 kg/m3 Density: 7800 kg / m 3
Tensile strength, yield: ca 210 N/mm2 Tensile strength, yield: about 210 N / mm 2
Modulus of elasticity: 2.0*105 N/mm2 Modulus of elasticity: 2.0 * 10 5 N / mm 2
Af dette materialeindex ses det generelt, at der ikke er den store forskel på, om kabinettet laves i en metallegering eller træ, når der ikke tages hensyn til indvendig polstring. Gråt støbejern er et særdeles interessant materiale, idet den naturlige dæmpningskapacitet af dette materiale kan være mere end hundrede gange så stor som for alle de øvrige metaller.From this material index it is generally seen that there is no great difference between whether the cabinet is made in a metal alloy or wood when internal padding is not taken into account. Gray cast iron is a particularly interesting material, since the natural damping capacity of this material can be more than a hundred times that of all the other metals.
Går vi nu tilbage til det faktum, at lavfrekvent lyd opfører sig som trykbølger, hvorimod højfrekvent lyds bevægelsesmønster mere kan sammenlignes med lys, der reflekteres, kommer kabinettets indvendige overfladeudformning til gavn. Lyden fra diskanten bliver, når den reflekteres hele tiden, brudt på en sådan måde, at der ikke kan opstå stående lydbølger, der kan forstyrre lydbilledet fra højtalerenheden.Now we go back to the fact that low-frequency sound behaves like pressure waves, whereas the high-frequency sound pattern of movement can be compared more closely to reflected light, the interior surface design of the cabinet benefits. The sound of the treble, when constantly reflected, is interrupted in such a way that no standing sound waves can occur which may disturb the sound image of the speaker unit.
Dette mønster kan støbes ved at anvende en sandkerne, som placeres direkte i støbeforme og danner den indvendige geometri. Overfladens ujævne geometriske udformning tager i normalplanet udgangspunkt i et hexagonalt mønster, der kan være introvert/konkav eller extrovert/konveks. Herefter er det de naturlige slipvinkler, for at kernen kan komme ud af kærnekassen efter opskydning og hærdning, der (ændrer) geometrien af den petruberede overflade.This pattern can be molded by using a sand core which is placed directly in molds and forms the inner geometry. The uneven geometric design of the surface is normally based on a hexagonal pattern that can be introvert / concave or extrovert / convex. After that, it is the natural slip angles for the core to come out of the core box after firing and hardening that (change) the geometry of the petruled surface.
Ved opfindelsen tilvejebringes en fremgangsmåde som angivet i beskrivelsens indledning, og hvor tillige højtalerkabinet fremstilles i en sandform til tilvejebringelse af en udvendig geometri samt ved en sandkerne til tilvejebringelse af en indvendig geometri, at højtalerkabinettet er helstøbt og fremstillet i et af følgende materialer: bronze, rustfrit stål, SG jern, aluminium eller fortrinsvis gråt støbejern, og at sandkernen tilvejebringer et indvendigt geometrisk mønster, som er et hexagonalt mønster, der er introvert/konkav eller extrovert/konveks, hvorved højtalerkabinettets færdigstøbte indvendige flade udgøres af hexagonale extroverte/konvekse eller introverte/konkave mønstre.The invention provides a method as set forth in the preamble of the specification, wherein the speaker cabinet is also manufactured in a sand mold to provide an outside geometry and a sand core to provide an inside geometry that the speaker cabinet is integrally molded and made of one of the following materials: bronze, stainless steel, SG iron, aluminum or preferably gray cast iron, and that the sand core provides an interior geometric pattern which is an introvert / concave or extrovert / convex hexagonal pattern, whereby the speaker enclosure's finished face is constituted by hexagonal extrovert / convex / concave patterns.
Yderligere udførelsesformer fremgår af kravene 2, 3 og 4.Further embodiments are set forth in claims 2, 3 and 4.
Basenheden, som frembringer de lavfrekvente lyde, flytter relativt meget luft, som kan relatere i stående trykbølger. Dette problem løses ved den indstøbte basrefleks.The base unit which produces the low frequency sounds moves relatively much air which can relate in standing pressure waves. This problem is solved by the embedded bass reflex.
Opfindelsen vil blive forklaret nærmere under henvisning til figurerne hvorThe invention will be explained in more detail with reference to the figures where
Figur 1 viser et højtalerkabinet ifølge opfindelsen set i perspektiv.Figure 1 shows a perspective view of a speaker cabinet according to the invention.
Figur 2A viser en sandkerne i perspektiv set skråt forfra.Figure 2A shows a perspective view of the sand core from the perspective.
Figur 2B viser en sandkerne i perspektiv set skråt bagfra.Figure 2B shows a perspective view of the sand core obliquely from behind.
Figur 3A, B viser CAD billeder af form og placering af sandkernen for et højtalerkabinet ifølge opfindelsen set henholdsvis skråt forfra og skråt bagfra.Figures 3A, B show CAD images of the shape and position of the sand core of a speaker enclosure according to the invention viewed from the front and the rear view respectively.
Figur 4A-C viser det komplet færdigstøbte højtalerkabinet ifølge opfindelse.Figures 4A-C show the complete pre-cast speaker enclosure of the invention.
Fig. 5 viser færdigproducerede højtalere Iron Sound CSRC ifølge opfindelsen.FIG. 5 shows pre-fabricated speakers Iron Sound CSRC according to the invention.
Figur 6A viser opdeling af frekvensområde.Figure 6A shows the division of frequency range.
Figur 6B viser sammenhæng mellem frekvens og et lydtryksniveau.Figure 6B shows the relationship between frequency and a sound pressure level.
Figur 7A viser resonansmåling af et CSRC kabinet fremstillet i SG jern og uden anvendelse af et mønster ifølge opfindelsen.Figure 7A shows the resonance measurement of a CSRC cabinet made in SG iron and without using a pattern according to the invention.
Figur 7B viser resonansmåling af et CSRC kabinet fremstillet i SG jern og med anvendelse af et mønster ifølge opfindelsen.Figure 7B shows the resonance measurement of a CSRC cabinet made in SG iron and using a pattern according to the invention.
Figur 7C viser resonansmåling af et CSRC kabinet fremstillet i gråt støbejern og med anvendelse af et mønster ifølge opfindelsen.Figure 7C shows the resonance measurement of a CSRC housing made of gray cast iron and using a pattern according to the invention.
Figur 1A viser et højtalerkabinet fremstillet ifølge opfindelsen, og hvor kabinettets indvendige overflade fremgår.Figure 1A shows a speaker cabinet made in accordance with the invention, showing the interior surface of the cabinet.
Fig. 2A-B viser sandkerner til fremstilling af et højtalerkabinet som vist i figur 1. Sandkernerne er vist forfra og bagfra og er CAD billeder af sandkernen, som skaber den indvendige geometri af højtaleren/kabinettet CSRC, mens figur 3A, B viser CAD billeder af form og placering af sandkernen for et højtalerkabinet ifølge opfindelsen set henholdsvis skråt forfra - figur 3A - og skråt bagfra - figur 3B.FIG. 2A-B shows sand cores for making a speaker enclosure as shown in Figure 1. The sand cores are shown front and back and are CAD images of the sand core, which creates the internal geometry of the speaker / cabinet CSRC, while Figure 3A, B shows CAD images of shape and positioning the sand core of a loudspeaker cabinet according to the invention viewed from the front, respectively - Fig. 3A - and from the rear, from Fig. 3B.
Figur 4A-C er billeder af det komplet færdigstøbte højtalerkabinet CSRC. Diskanten monteres direkte her i de tre huller vist øverst til venstre og basenheden i de fem huller nederst til højre. Resten fremstår som støbt uden bearbejdning.Figures 4A-C are images of the complete pre-cast CSRC speaker cabinet. The treble is mounted directly here in the three holes shown in the upper left and the base unit in the five holes in the lower right. The rest appears to be cast without machining.
Figur 5 er billeder af 3 færdigproducerede højtalere Iron Sound CSRC. Højtalerkabinetterne ses her i malet støbejern, men kan også fremstilles i bronzelegeringer, hvor overfladen kan være anløbet på forskellige måder for at fremme et farvespil, poleret rustfri stål, corten stål, aluminium eller segjern(SG).Figure 5 is images of 3 pre-produced speakers Iron Sound CSRC. The speaker enclosures are seen here in painted cast iron, but can also be made in bronze alloys, where the surface may be annealed in various ways to promote a color play, polished stainless steel, corten steel, aluminum or iron (SG).
Materialevalget er frit, idet det er produktionsmetoden koblet til formen, specielt den indvendige geometri, der kun kan laves via sandstøbnings processen af helstøbte kabinetter, der har betydning.The choice of material is free, since it is the production method coupled to the mold, especially the internal geometry, that can only be made via the sand casting process of single-molded cabinets that is important.
Støbt lydgengivelse er et unikt højtalerkoncept baseret på markedets bedste komponenter og et nyopfundet højtalerkabinetdesign, materialevalg og fremstillingsmetode.Cast sound reproduction is a unique speaker concept based on the best components of the market and a newly invented speaker cabinet design, material selection and manufacturing method.
For at belyse effekten af den indvendige 3D overflade versus en glat overflade samt materialevalg blev der støbt 3 kabinetter. Et i Sg-jern med glat overflade hvor alle ujævnhederne på kernen var spartiet ud, en i Sg- jern med en kerne med det beskrevne mønster samt en i gråt støbejern med mønster. Ved at sammenligne resonansmålinger direkte på disse tre kabinetter kan effekten af med/uden mønster samt materialevalg belyses. Der er store forskel på SG-jern og gråt støbejern mht. styrke og klang. Det vigtige her er, at når man slår på Sg-jern, så synger det, mens gråt støbejern er helt dødt.To illuminate the effect of the interior 3D surface versus a smooth surface as well as material selection, 3 cabinets were cast. One in Sg iron with smooth surface where all the irregularities on the core were spaced out, one in Sg iron with a core with the described pattern and one in gray cast iron with a pattern. By comparing resonance measurements directly on these three enclosures, the effect of with / without pattern and material selection can be elucidated. There is a big difference between SG iron and gray cast iron in terms of strength and sound. The important thing here is that when you turn on Sg iron, it sings while gray cast iron is completely dead.
Af figur 7A-C ses det tydeligt ved sammenligning af figur 7A med figur 7B, at det kabinet med det indvendige mønster har mindre resonanstilbøjelighed end det uden mønster. Ved sammenligning med figur 7C med figur 7B ses det, at det kabinet, der er støbt i gråjern med mønster, fungerer klart bedre end det tilsvarende støbt i Sg-jern.From Figures 7A-C, when comparing Figure 7A with Figure 7B, it is clearly seen that the interior pattern housing has less resonance propensity than that without pattern. By comparison with Figure 7C with Figure 7B, it is seen that the cabinet cast in gray iron with pattern clearly performs better than the corresponding cast in Sg iron.
Af disse målinger kan det helt klart ses, at højtalerkabinettet med indvendigt mønster i gråt støbejern fungerer bedst og derfor er den optimale løsning.From these measurements it can be clearly seen that the speaker cabinet with gray molded internal pattern works best and is therefore the optimal solution.
SammenfatningSummary
Støbt lydgengivelse er et unik nyopfundet højtalerkoncept baseret på markedets bedste komponenter og et nyopfundet højtalerkabinetdesign, materialevalg og fremstillingsmetode. Se figur 5.Cast sound reproduction is a unique newly invented speaker concept based on the best components of the market and a newly invented speaker cabinet design, material selection and manufacturing method. See Figure 5.
Det unikke ved opfindelsen er, at frembringelsen er baseret på, at kabinettet produceres i et og kun et produktionstrin ved anvendelsen af sandstøbeteknologien samtidig med, at man har en naturlig indvendig petruberende geometri, det reflekterer de højfrekvente lydbølger samtidig med, at den integrerede basrefleks lader højtaleren ånde frit.The unique feature of the invention is that the production is based on the fact that the cabinet is produced in one and only one stage of production using the sand casting technology while having a natural interior petrule geometry, reflecting the high frequency sound waves while charging the integrated bass reflex the speaker breath freely.
Højtalerkabinettets geometriske udformning og materialevalg gør, at det er immunt over mekaniske vibrationer.The geometric design and material selection of the speaker cabinet makes it immune to mechanical vibrations.
Det unikke ved denne opfindelse er, at gråt støbejerns lyddæmpende egenskaber og styrke er blevet anvendt til i et eneste produktionstrin at producere et højtalerkabinet med en indvendig geometri, der reflekterer de højfrekvente lyde på en sådan måde, at der ikke skabes resonans samtidig med, at den integrerede basrefleks sikrer, at højtalerenheden kan ånde, således at der skabes stående trykbølger.The uniqueness of this invention is that gray cast iron's sound attenuating properties and strength have been used to produce, in a single production step, a speaker enclosure with an internal geometry that reflects the high frequency sounds in such a way that no resonance is created while the integrated bass reflex ensures that the speaker unit can breathe, creating standing pressure waves.
Mechanical Properties of Gray Iron - Damping CapacityMechanical Properties of Gray Iron - Damping Capacity
The relative ability of a material to absorb vibration is evaluated as its damping capacity. The quelling of vibration by converting the mechanical energy into heat can be very important in structures and in devices with moving parts. Components made of materials with a high damping capacity can reduce noise such as chatter, ringing and squealing, and also minimize the level of applied stresses.The relative ability of a material to absorb vibration is evaluated as its damping capacity. The quelling of vibration by converting the mechanical energy into heat can be very important in structures and in moving parts devices. Components made of materials with high damping capacity can reduce noise such as chatter, ringing and squealing, and also minimize the level of applied stresses.
The exceptionally high damping capacity of gray cast iron is one of the most valuable qualities of this material. For this reason it is ideally suited for machine bases and supports, engine cylinder blocks and brake components. The damping capacity of gray iron is considerably greater than that of steel or other kinds of iron. This behavior is attributed to the flake graphite structure of the gray iron, along with its unique stress-strain characteristics. The relative damping capacity of several different metals is illustrated in the tableThe exceptionally high damping capacity of gray cast iron is one of the most valuable qualities of this material. For this reason it is ideally suited for machine bases and supports, engine cylinder blocks and brake components. The damping capacity of gray iron is considerably greater than that of steel or other kinds of iron. This behavior is attributed to the flake graphite structure of the gray iron, along with its unique stress-strain characteristics. The relative damping capacity of several different metals is illustrated in the table
1. Damping capacity decreases with increasing strength since the larger amount of graphite present in the lower strength irons increases the energy absorbed. Larger cast section thicknesses increase damping capacity and inoculation usually decreases it. Heat treating can also have an appreciable effect on damping capacity.1. Damping capacity decreases with increasing strength as the larger amount of graphite present in the lower strength irons increases the energy absorbed. Larger cast section thicknesses increase damping capacity and inoculation usually decreases it. Heat treating can also have an appreciable effect on damping capacity.
Table 1. Relative Damping Capacity.Table 1. Relative Damping Capacity.
Materialmaterial
White Iron:White Iron:
Malleable Iron:Malleable Iron:
Ductile Iron:Ductile Iron:
Gray Iron, Fine Flake: Gray Iron, Course Flake: Steel:Gray Iron, Fine Flake: Gray Iron, Course Flake: Steel:
Armco: Iron Aluminum:Armco: Iron Aluminum:
2-4 * 104 8-15*104 5-20*104 20-100*104 100-500*104 4*104 5*104 0.4*104 2-4 * 10 4 8-15 * 10 4 5-20 * 10 4 20-100 * 10 4 100-500 * 10 4 4 * 10 4 5 * 10 4 0.4 * 10 4
Natural Log Ratio of Successive AmplitudeNatural Log Ratio of Successive Amplitude
Reference: http://www.atlasfdry.eom/grayiron-damping.htm#table4Reference: http: //www.atlasfdry.eom/grayiron-damping.htm#table4
Facts about SoundFacts about Sound
Hvad er lyd?What is sound?
Lyd er ganske små svingninger i lufttrykket, op og ned omkring atmosfærens tryk. Og små skal virkelig tages bogstaveligt. Selv for en lyd, der er så kraftig, at man skal bruge høreværn, svinger trykket kun ca. en hundredetusindedel af atmosfæretrykket. Altså svingninger op og ned mellem 0,99999 og 1,00001 gange atmosfæretrykket. Den svageste lyd vi kan høre, er på 0,0000000002 gange atmosfæretrykket.Sound is very small fluctuation in the air pressure, up and down around the pressure of the atmosphere. And little ones really need to be taken literally. Even for a sound that is so powerful that you have to use hearing protection, the pressure only fluctuates approx. one hundred thousandth of the atmospheric pressure. So fluctuations up and down between 0.99999 and 1.00001 times the atmospheric pressure. The weakest sound we can hear is at 0.000000000002 times the atmospheric pressure.
Lydtryk og lydtryksniveau.Sound pressure and sound pressure level.
Lydtrykket beskriver lydens fysiske styrke, altså om den er kraftig eller svag. Måleenheden for lydtryk er Pascal - ligesom for barometerstanden. Pascal forkortes Pa. Den svageste hørbare lyd er cirka 0,00002 Pa, og en meget kraftig lyd er f.eks. 20 Pa. Ved dette kraftige lydtryk giver lyden anledning til smerte.The sound pressure describes the physical strength of the sound, ie whether it is strong or weak. The unit of measurement for sound pressure is Pascal - just like the barometer level. Pascal abbreviated Pa. The weakest audible sound is about 0.00002 Pa, and a very loud sound is e.g. 20 Pa. With this powerful sound pressure, the sound causes pain.
Det er besværligt at arbejde med lydtryk i Pascal på grund af de store forskelle i værdierne for kraftige og svage lyde. I stedet bruger man i praksis lydtryksniveau, som måles i enheden decibel (dB). De to eksempler vil omregnet til lydtryksniveau være 0 dB for den svageste hørbare lyd og 120 dB for den kraftige lyd.It is difficult to work with sound pressure in Pascal because of the large differences in values for loud and weak sounds. Instead, in practice, sound pressure level is measured, which is measured in the unit decibel (dB). The two examples will be converted to sound pressure level 0 dB for the weakest audible sound and 120 dB for the loud sound.
Decibel skalaen er logaritmisk, og som en ekstra fordel, passer den bedre til vores opfattelse af lyd end den lineære Pascal skala. Som en tommelfingerregel kan man lige netop høre forskel i styrken på to lyde, hvis de har en forskel på 1 dB. En forskel på 3 dB er tydeligt hørbar, og hvis to lyde har en forskel på 10 dB, vil den ene lyde omtrent dobbelt så kraftig som den anden. Ved lave frekvenser sker den subjektive øgning af styrke dog hurtigere; ved 20-30 Hz skal der således kun ca. 5 dB til, før lyden opfattes som dobbelt så kraftig.The decibel scale is logarithmic and, as an added benefit, it fits our perception of sound better than the linear Pascal scale. As a rule of thumb, you can just hear a difference in the strength of two sounds if they have a difference of 1 dB. A difference of 3 dB is clearly audible, and if two sounds have a difference of 10 dB, one will sound about twice as loud as the other. However, at low frequencies, the subjective increase in strength occurs faster; Thus, at 20-30 Hz, only about 5 dB before the sound is perceived as twice as loud.
Frekvenserfrequencies
Lydens tonehøjde er bestemt af, hvor hurtige svingningerne er. Man kalder det lydens frekvens, og den måles i Hertz, som forkortes Hz. Dybe toner har lave frekvenser (få Hz), høje toner har høje frekvenser (mange Hz).The pitch of the sound is determined by how fast the oscillations are. It is called the frequency of sound and it is measured in Hertz, which is abbreviated Hz. Deep tones have low frequencies (few Hz), high tones have high frequencies (many Hz).
De fleste lyde ligger mellem 20 Hz og 20000 Hz. Nogle gange kalder man det for det hørbare område. Udtrykket er dog ikke særlig velvalgt, fordi man faktisk godt kan høre frekvenser under 20 Hz, medens det er de færreste mennesker, der kan høre frekvenser helt op til 20000 Hz.Most sounds are between 20 Hz and 20000 Hz. Sometimes it is called the audible area. However, the term is not very well chosen because it is actually good to hear frequencies below 20 Hz, while it is the fewest people who can hear frequencies up to 20000 Hz.
Lyd med frekvenser over 20000 Hz kaldes ultralyd, og lyd med frekvenser fra ca. 2000 Hz til 20000 Hz kaldes højfrekvente lyde. Lavfrekvente lyde er bastoner eller dybe buldrende lyde med frekvenser fra 20 Hz til ca. 200 Hz. Lyd med frekvenser under 20 Hz kaldes infralyd. Imellem de højfrekvente og lavfrekvente lyde har man mellemtonerne, hvor almindelig tale blandt andet er placeret. 1000 Hz kaldes også 1 kilohertz, forkortet kHz. 20000 Hz kan for eksempel også skrives som 20 kHz. Opdelingen af frekvensområdet er illustreret på figur 6A.Sound with frequencies above 20000 Hz is called ultrasound, and sound with frequencies from approx. 2000 Hz to 20000 Hz are called high frequency sounds. Low frequency sounds are bass tones or deep roaring sounds with frequencies from 20 Hz to approx. 200 Hz. Sound with frequencies below 20 Hz is called infrared. Between the high-frequency and low-frequency sounds, there are the middle tones, where common speech is placed, among other things. 1000 Hz is also called 1 kilohertz, abbreviated kHz. 20000 Hz, for example, can also be written as 20 kHz. The division of the frequency range is illustrated in Figure 6A.
Den menneskelige hørelseThe human hearing
Den menneskelige hørelse er ikke lige god til at opfange lyde med forskellige frekvenser. Lavfrekvente lyde skal generelt være kraftigere end mellem- og højfrekvente lyde, før de bliver hørbare.Human hearing is not as good at capturing sounds at different frequencies. In general, low-frequency sounds must be more powerful than medium- and high-frequency sounds before they become audible.
Man har undersøgt menneskers følsomhed overfor forskellige frekvenser ved at bestemme høretærskelen (dvs. grænsen for, hvor svage toner vi kan høre). Der findes en standard over høretærskelen for 18-25 årige normalthørende personer. Den er vist i figur 6B. I figuren er desuden vist med stiplet linie høretærskelen for infralydområdet. Denne er baseret på målinger med langt færre personer, og den er ikke standardiseret.The sensitivity of people to different frequencies has been investigated by determining the hearing threshold (ie, the limit of how weak tones we can hear). There is a standard above the hearing threshold for 18-25 year old normal hearing persons. It is shown in Figure 6B. The figure also shows a dashed line of hearing threshold for the infrared sound area. This one is based on measurements with far fewer people and it is not standardized.
Det ses, at omkring 1 kHz er høretærskelen tæt ved 0 dB. Ved 3-4 kHz er tærsklen lavere, altså hører vi bedre ved disse frekvenser. Lad dig ikke distrahere af, at dB-værdierne her er negative. Der er ikke tale om negativ lyd eller anti-lyd, men lydens styrke er blot svagere end det(,) vi benævner som 0 på den logaritmiske akse. Ved høje frekvenser stiger kurven, svarende til, at vi har sværere ved at høre disse toner. Også ved lave frekvenser stiger tærskelen - endda endnu mere - altså hører vi dårligere her. Ved 100 Hz er tærskelen mere end 20 dB, og der skal næsten 80 dB til, før gennemsnitsmennesket kan høre en 20 Hz tone.It is seen that around 1 kHz the hearing threshold is close to 0 dB. At 3-4 kHz the threshold is lower, so we hear better at these frequencies. Don't be distracted by the fact that the dB values here are negative. It is not a negative sound or an anti sound, but the sound power is just weaker than what (,) we call 0 on the logarithmic axis. At high frequencies, the curve rises, which means we have a harder time hearing these tones. Even at low frequencies, the threshold rises - even more - so we hear worse here. At 100 Hz, the threshold is more than 20 dB and almost 80 dB is needed before the average person can hear a 20 Hz tone.
Høreevnen og dermed høretærskelen varierer fra person til person. Den standardiserede tærskel er beregnet som et gennemsnit over mange mennesker, og derfor vil nogle høre bedre og andre ringere.The hearing ability and thus the hearing threshold varies from person to person. The standardized threshold is calculated as an average over many people and therefore some will hear better and others inferior.
De fleste ligger (inden for) et interval på ±10 dB, altså fra 10 dB under kurven til 10 dB over kurven. Allerede fra man er i tyverne, begynder hørelsen dog at forringes, og det går først og fremmest ud over evnen til at høre de høje frekvenser.Most are (within) a range of ± 10 dB, ie from 10 dB below the curve to 10 dB above the curve. Even from one's twenties, however, hearing begins to deteriorate, and above all, it goes beyond the ability to hear the high frequencies.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA201300376A DK179276B1 (en) | 2013-06-19 | 2013-06-19 | Fully cast speaker cabinet with integrated bass reflex produced by sand casting in a gray cast iron alloy. CSRC |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA201300376A DK179276B1 (en) | 2013-06-19 | 2013-06-19 | Fully cast speaker cabinet with integrated bass reflex produced by sand casting in a gray cast iron alloy. CSRC |
Publications (2)
Publication Number | Publication Date |
---|---|
DK201300376A1 DK201300376A1 (en) | 2017-06-12 |
DK179276B1 true DK179276B1 (en) | 2018-03-26 |
Family
ID=59010861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DKPA201300376A DK179276B1 (en) | 2013-06-19 | 2013-06-19 | Fully cast speaker cabinet with integrated bass reflex produced by sand casting in a gray cast iron alloy. CSRC |
Country Status (1)
Country | Link |
---|---|
DK (1) | DK179276B1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59107061A (en) * | 1982-12-09 | 1984-06-21 | Takaoka Kogyo Kk | Base for speaker box |
JPS59230394A (en) * | 1983-06-13 | 1984-12-24 | Takaoka Kogyo Kk | Speaker box |
DE29609681U1 (en) * | 1996-05-31 | 1996-08-14 | Karl Schmidt Fabrik für Gießereibedarf GmbH & Co., 61389 Schmitten | Cooling pin with bracket |
JP2000125382A (en) * | 1998-10-13 | 2000-04-28 | Aisin Takaoka Ltd | Speaker box |
JP2000125381A (en) * | 1998-10-13 | 2000-04-28 | Aisin Takaoka Ltd | Speaker box |
CN1283950A (en) * | 1999-08-09 | 2001-02-14 | 高铨佐 | Technology for making magnetically conductive iron core of loudspeake |
JP2001285977A (en) * | 2000-03-30 | 2001-10-12 | Usui Chutetsu Kogyo Kk | Speaker box of integrated structure by spherical graphite cast iron |
EP1682291B1 (en) * | 2003-11-11 | 2007-05-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Filler-containing aerogels |
-
2013
- 2013-06-19 DK DKPA201300376A patent/DK179276B1/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59107061A (en) * | 1982-12-09 | 1984-06-21 | Takaoka Kogyo Kk | Base for speaker box |
JPS59230394A (en) * | 1983-06-13 | 1984-12-24 | Takaoka Kogyo Kk | Speaker box |
DE29609681U1 (en) * | 1996-05-31 | 1996-08-14 | Karl Schmidt Fabrik für Gießereibedarf GmbH & Co., 61389 Schmitten | Cooling pin with bracket |
JP2000125382A (en) * | 1998-10-13 | 2000-04-28 | Aisin Takaoka Ltd | Speaker box |
JP2000125381A (en) * | 1998-10-13 | 2000-04-28 | Aisin Takaoka Ltd | Speaker box |
CN1283950A (en) * | 1999-08-09 | 2001-02-14 | 高铨佐 | Technology for making magnetically conductive iron core of loudspeake |
JP2001285977A (en) * | 2000-03-30 | 2001-10-12 | Usui Chutetsu Kogyo Kk | Speaker box of integrated structure by spherical graphite cast iron |
EP1682291B1 (en) * | 2003-11-11 | 2007-05-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Filler-containing aerogels |
Also Published As
Publication number | Publication date |
---|---|
DK201300376A1 (en) | 2017-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106954151B (en) | Bone-conduction speaker | |
EP2105040A4 (en) | Ear module for a personal sound system | |
US20140348349A1 (en) | Speaker device | |
JP5069756B2 (en) | Method and apparatus for optimizing sound output characteristics of bass drum | |
CN209767807U (en) | Microphone and loudspeaker box integrated machine | |
EP1675429A3 (en) | Headset for blocking noise | |
CN110812810A (en) | Golf club head | |
JP2017003121A (en) | Damping device | |
JP6724078B2 (en) | System for bone conduction speakers | |
DK179276B1 (en) | Fully cast speaker cabinet with integrated bass reflex produced by sand casting in a gray cast iron alloy. CSRC | |
CN204948303U (en) | A kind of moving coil earphone | |
CN110619865B (en) | Film multi-cavity material with excellent sound absorption performance | |
JP7360358B2 (en) | System for bone conduction speakers | |
US2263408A (en) | Means for improving the sound emitted by microphones, loudspeakers, and the like | |
TW202418839A (en) | Sound production portion | |
Blandin et al. | Influence of the vocal tract on voice directivity | |
KR20020026352A (en) | Method for production of ceramic product and ceramic product | |
Mijic et al. | Analysis of contribution of acoustic resonators found in Serbian Orthodox churches | |
JP6421289B1 (en) | Electric guitar body structure with improved acoustic characteristics | |
CN100479534C (en) | Setting method and apparatus for panel loudspeaker case with inner lining micropunch sound absorption material | |
JP2016146537A (en) | Vibratory device of speaker device | |
CN103826172B (en) | A kind of acoustic space appearance speaker | |
WO2022211131A1 (en) | Speaker system | |
JP2012159832A (en) | Saddle, bridge, fret, and nut of string instrument | |
CN203118422U (en) | Novel acoustical quality improvement-based vertical piano soundboard |