DK176454B1 - Tilting train system for railway rolling stock - has memory storing track model data and detection system sensing absolute position both communicating with control unit which provides instructions to tilting actuators - Google Patents

Tilting train system for railway rolling stock - has memory storing track model data and detection system sensing absolute position both communicating with control unit which provides instructions to tilting actuators Download PDF

Info

Publication number
DK176454B1
DK176454B1 DK123895A DK123895A DK176454B1 DK 176454 B1 DK176454 B1 DK 176454B1 DK 123895 A DK123895 A DK 123895A DK 123895 A DK123895 A DK 123895A DK 176454 B1 DK176454 B1 DK 176454B1
Authority
DK
Denmark
Prior art keywords
vehicle
inclination
curve
control unit
bogie
Prior art date
Application number
DK123895A
Other languages
Danish (da)
Other versions
DK123895A (en
Inventor
Jose German Gimenez Ortiz
Juan Felix Garcia Amigot
Original Assignee
Construcciones Y Aux De Ferroc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Construcciones Y Aux De Ferroc filed Critical Construcciones Y Aux De Ferroc
Priority to DK123895A priority Critical patent/DK176454B1/en
Publication of DK123895A publication Critical patent/DK123895A/en
Application granted granted Critical
Publication of DK176454B1 publication Critical patent/DK176454B1/en

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

The tilting system includes a memory (5) in which each journey is divided into sections identified at least by the parameters radius of curvature, length of curve, difference in curve of inner and outer rail and absolute position. A position detector system (1) continually passes on the parameters of speed and actual absolute position of the vehicle to a control unit (2). A standard set of commands has been established in the control unit, quantified using the values of the parameters received from the memory, and the position detector system. A set of standard instructions is established and sent to tilting actuators (4) placed between the bogie chassis (8) and the frame (7) of the vehicle, via axle orientation system (3). This enables a variable related directly/indirectly to the uncompensated acceleration of the vehicle to match a preestablished profile. Relative turn measuring units can be provided between the frame and the bogie chassis, from which signals are sent to the control unit.

Description

DK 176454 B1DK 176454 B1

HÆLDNINGSSYSTEM TIL JERNBANEKØRETØJERTREATMENT SYSTEM FOR RAILWAY VEHICLES

Opfindelsen angår et arrangement ti! brug ved et jernbanekøretøj til tilvejebringelse af hældning mellem køretøjets stel og dets boggier ved passage af 5 kurver.The invention relates to an arrangement ten! use of a railway vehicle to provide a slope between the vehicle's frame and its bogies when crossing 5 curves.

Hældning af tog er en løsning på problemet med komfort, når der køres i en kurve med høje hastigheder. Forøgelsen af hastigheden i kurven forårsager imidlertid også en forøgelse af påvirkningerne på vognenes hjul, hvilket under de fleste 10 omstændigheder forhindrer udnyttelse af de muligheder for at forøge hastigheden, der frembydes ved hældningssystemet.Slope of trains is a solution to the problem of comfort when driving in a curve at high speeds. However, the increase in velocity in the curve also causes an increase in the effects on the wheels of the carriages, which in most circumstances prevents the utilization of the possibilities of increasing the velocity presented by the slope system.

Hældende tog, som er konstrueret hidtil, opererer ved hjælp af detektion og identifikation af karakteristikker af de kurver, som man støder på i realtid. De 15 udnytter de parametre, som er knyttet til køretøjets dynamiske reaktion, for eksempel hastighed og acceleration, som optages af sensorer fastgjort i toget. Når der blandt de signaler, der frembringes gennem sporvariationer målt af sensorerne om bord på toget (normale kurvehastighedsmålere og accelerometre), identificeres begyndelsen af en kurve, får dette hældningsindretningerne til at forårsage 20 forøgelse af hældningen af køretøjet i forhold til boggien ved hjælp af nogle forud fastsatte styreparametre.Slope trains, constructed so far, operate by detection and identification of characteristics of the curves encountered in real time. The 15 utilize the parameters associated with the vehicle's dynamic response, for example speed and acceleration, which are recorded by sensors attached to the train. When among the signals produced by track variations measured by the sensors on board the train (normal curve speed gauges and accelerometers), the beginning of a curve is identified, this causes the inclination devices to increase the slope of the vehicle relative to the bogie by some predefined control parameters.

Denne form for operation forårsager et antal ulemper, hvoraf vi nedenfor opremser: 25This type of operation causes a number of disadvantages, of which we list below: 25

Per definition er der en forsinkelse i identifikationen af kurven. Et specificeret tidsforløb må gå, før systemet detekterer, at der er en kurve.By definition, there is a delay in identifying the curve. A specified time must pass before the system detects that there is a curve.

30 - Standarden for køretøjets hældning, som frembringes af de systemer, der for tiden er i brug, er ikke den bedste for passagerkomforten.30 - The standard of inclination of the vehicle produced by the systems currently in use is not the best for passenger comfort.

2 DK 176454 B12 DK 176454 B1

Fomdberegnet operation af systemet, hvis den eksisterer, er uafhængig af arten af den kurve, som nærmer sig.Pre-calculated operation of the system, if it exists, is independent of the nature of the approaching curve.

Med henblik på at undgå disse problemer gør systemet, der er genstand for 5 opfindelsen, brug af forudgående kendskab til ruten og anvender et positionsdetekteringssystem (kaldt SDP), der detekterer togets position kontinuerligt med en nøjagtighed af nogle få meter, og gør brug af en intelligent styreenhed, som er programmeret med et standardsæt af kommandoparametre opnået ved anvendelse af et konventionelt program til dynamisk simulering af 10 køretøjets opførsel i en kurve, med en beregning af omvendt dynamik, og hvor den dynamiske parameter er den sideværts acceleration af passageren i køretøjet i overensstemmelse med en forud fastsat profil.In order to avoid these problems, the system of the invention makes use of prior knowledge of the route and employs a position detection system (called SDP) that continuously detects the position of the train with an accuracy of a few meters and makes use of a intelligent control unit programmed with a standard set of command parameters obtained using a conventional program to dynamically simulate the behavior of the vehicle in a curve, with an inverse dynamics calculation, and the dynamic parameter being the lateral acceleration of the passenger in the vehicle. consistent with a predetermined profile.

Da systemet "kender” ruten, som køretøjet følger, kan der til enhver detekteret 15 position i en kurve tilvejebringes den hældning, der giver den største komfort ved brug af det nævnte styresystem. Der er ingen forsinkelse, som i de kendte systemer, der først skal detekterer en acceleration, før der kan korrigeres for den.Since the system "knows" the route followed by the vehicle, at any detected position in a curve, the slope can be provided which provides the greatest comfort when using the said control system. There is no delay, as in the known systems which first must detect an acceleration before it can be corrected.

20 Fig. 1 er et blokdiagram af systemet, som er genstand for opfindelsen, fig. 2 er et diagramagtigt billede af en udførelse for opfindelsen i praksis, hvori boggiens chassis og jembanekøretøjets stel er antydet ved et firkantet omrids, 25 fig. 3 er et lodret snitbillede af en anden udførelse for opfindelsen i praksis, fig. 4 er et diagramagtigt billede af hældningsaktuatoren i fig. 3, og 30 fig. 5 er en fremstilling med koordinater af en profil af accelerationer (a), der skal benyttes i systemet.FIG. 1 is a block diagram of the system which is the subject of the invention; FIG. 2 is a diagrammatic view of an embodiment of the invention in practice in which the chassis of the bogie and the frame of the railroad vehicle are indicated by a square outline; FIG. 3 is a vertical sectional view of another embodiment of the invention in practice; FIG. 4 is a diagrammatic view of the slope actuator of FIG. 3, and FIG. 5 is a representation with coordinates of a profile of accelerations (a) to be used in the system.

3 DK 176454 B1 I det følgende beskrives et eksempel på en udførelse for opfindelsen i praksis, hvilken udførelse ikke er begrænsende. Vi udelukker absolut ikke andre former for udførelse, hvori kan indføres mindre ændringer, som ikke afviger fra den 5 grundlæggende ide; tværtimod omfatter denne opfindelse alle varianter.An example of an embodiment of the invention is described in practice, which embodiment is not limiting. We certainly do not exclude other forms of execution in which minor changes can be introduced which do not deviate from the basic idea; on the contrary, this invention encompasses all variants.

Dette hældningssystem består af følgende enheder (fig. 1):This slope system consists of the following units (Fig. 1):

Positionsdetektorsystemet (1) (kaldt SDP), der til enhver tid er ansvarlig 10 for at bestemme hastigheden og den absolutte position af køretøjet på sporet.The position detector system (1) (called SDP), responsible at all times 10 for determining the speed and absolute position of the vehicle on the track.

Hældningsstyreenheden (2) (UCB), som genererer instruktioner for hældningen og styrer deres udførelse i realtid.The slope controller (2) (UCB), which generates instructions for the slope and controls their execution in real time.

1515

Akselorienteringssystemet (3), som får de sideværts påvirkninger af køretøjets hjul i de to aksler i én og samme boggie til at udlignes og yderligere reducerer deres maksimale værdi i en kurve. På denne måde forøges køretøjets hastighed i en kurve.The axle orientation system (3), which causes the lateral effects of the vehicle wheels in the two axles in one and the same bogie to be equalized and further reduces their maximum value in a curve. In this way, the speed of the vehicle is increased in a curve.

20 Hældningsaktuatorerne (4) er ansvarlige for på en mekanisk måde at udføre hældningsinstruktionerne, der er frembragt af (UCB).The slope actuators (4) are responsible for mechanically executing the slope instructions generated by (UCB).

Køretøjet (6).The vehicle (6).

2525

Hukommelsesenheden (5) for ruten, som er delt i sektioner identificeret ved deres parametre, såsom absolut position, radius for krumning, længden af hver sektion af kurven, etc.The memory unit (5) of the route divided into sections identified by their parameters such as absolute position, radius of curvature, the length of each section of the curve, etc.

30 Hver kurve har en indgangskurve (cte), selve kurven (c) og en udgangskurve (cts) (fig. 5).Each curve has an input curve (cte), the curve itself (c) and an output curve (cts) (Fig. 5).

4 DK 176454 B1 I hukommelsesenheden (5) identificeres kurvens sektioner, hvori operationen af hældningssystemet skal begynde.4 DK 176454 B1 The memory unit (5) identifies the sections of the curve in which the operation of the slope system is to begin.

5 Hældningssystemet arbejder som følger. (SDP) (1) informerer (UCB) (2) om den absolutte faktiske position og kørehastighed for køretøjet. (UCB) (2) modtager denne information og konsulterer sin rutehukommelse (5) med henblik på at finde mtens parametre på dette sted. Hvis dette punkt falder sammen med en sektion af en kurve, hvor hældningssystemet skal operere, genereres et instruktionssignal 10 (cur) til hældningsaktuatoreme (4) og til akselorienteringssystemet (3) i overensstemmelse med et standardsæt af parametre, som er knyttet til kørehastigheden og rutens karakteristikker.5 The slope system works as follows. (SDP) (1) informs (UCB) (2) the absolute actual position and speed of the vehicle. (UCB) (2) receives this information and consults its route memory (5) in order to find the parameters of the meeting at this location. If this point coincides with a section of a curve on which the slope system is to operate, an instruction signal 10 (cur) is generated to the slope actuators (4) and to the shaft orientation system (3) in accordance with a standard set of parameters associated with the speed of travel and the route. characteristics.

Dette standardsæt af parametre er en standardiseret kurve (cur) med abscisser og 15 ordinater af følgende form: cur = func.param(vel,Lt,R,per,pos), hvor: cur = instruktionsstandard 20 func.param = parametrenes funktion vel = køretøjets kørehastighedThis standard set of parameters is a standardized curve (cur) with abscissaes and 15 ordinates of the following form: cur = func.param (well, Lt, R, per, pos), where: cur = instruction standard 20 func.param = the function of the parameters well = vehicle driving speed

Lt = længde af indgangskurven R = radius for rutens kurve per = forskel i krumning mellem indre og ydre skinne 25 pos = absolut position for hvilken cur er beregnet.Lt = length of the input curve R = radius of the curve of the route per = difference in curvature between inner and outer rail 25 pos = absolute position for which cur is calculated.

Sættet af parametre er tegnet op ved for eksempel at anvende polynomiske eller harmoniske funktioner.The set of parameters is plotted using, for example, polynomial or harmonic functions.

30 Sættet af parametre (func.param) er entydige for alle kurver og for hver art køretøj.30 The set of parameters (func.param) is unique for all curves and for each type of vehicle.

Med henblik på at opnå standardinstruktionen (cur) i hvert tilfælde er det 5 DK 176454 B1 tilstrækkeligt at indsætte værdierne for vel, Lt, R, per og pos i den ovenstående formel.In order to obtain the standard instruction (cur) in each case, it is sufficient to insert the values of well, Lt, R, per and pos in the above formula.

Dette standardsæt af parametre eller standardopførsel for køretøjet i en kurve er 5 defineret for brugeren som den mest passende for typen af den rute, der skal følges af køretøjet, og det er afhængigt de dynamiske karakteristikker for køretøjet, typen af den benyttede aktuator så vel som dens fysiske placering, og dette kan opnås på konventionel måde ved hjælp af teoretiske eller praktiske analysemeto der.This standard set of parameters or standard behavior of the vehicle in a curve is defined by the user as the most appropriate for the type of route to be followed by the vehicle, and it depends on the dynamic characteristics of the vehicle, the type of actuator used as well as its physical location, and this can be achieved in conventional manner by means of theoretical or practical methods of analysis.

1010

Et eksempel på, hvordan dette standardsæt af parametre i et konkret tilfælde kan opnås, er følgende. Ved en given type af rute, der skal dækkes, givne dynamiske karakteristikker for køretøjet, typen af anvendt aktuator og dens placering i køretøjet, frembringer man ved hjælp af en datamat en dynamisk simulation for 15 køretøjets opførsel i en kurve.An example of how this standard set of parameters can be achieved in a specific case is the following. For a given type of route to be covered, given the dynamic characteristics of the vehicle, the type of actuator used and its location in the vehicle, a computer simulates a dynamic simulation of the behavior of the vehicle in a curve.

Dette (konventionelle) simulationsprogram har, blandt andre egenskaber, en omvendt dynamisk beregningspakke. Med denne egenskab er det muligt at finde ud af, hvilken standard, der skal følges ved et kommandosignal 20 (standardkommando) fra en aktuator, for at en dynamisk parameter for køretøjet skal følge en forud fastsat standard. Dette betyder, at man, når man på forhånd kender svaret på problemet (den forud fastsatte standard for en dynamisk parameter for køretøjet), skal finde ud af, hvad der er spørgsmålet (standarden for aktuatoren). Den opnåede standard indstilles og gives parametre ved hjælp af en 25 konventionel metode, hvilket sker ved brugen af polynomiske eller harmoniske funktioner.This (conventional) simulation program has, among other features, a reverse dynamic computation package. With this feature, it is possible to determine which standard is to be followed by a command signal 20 (default command) from an actuator in order for a dynamic parameter of the vehicle to follow a predetermined standard. This means that once you know the answer to the problem (the predetermined standard for a dynamic parameter of the vehicle), you have to find out what the question is (the standard for the actuator). The obtained standard is set and given parameters by a conventional method, which is done using polynomial or harmonic functions.

For dette hældningssystem er den forud fastsatte standard, der er fastsat som målet, et trapezformet omrids for den sideværts acceleration (a), der opleves af 30 passageren (fig. 5). Formen af denne kurve er proportional med profilen for rutens 6 DK 176454 B1 krumning (l/R) og amplituden for den maksimale sideværts acceleration (amax) for passageren, der for eksempel begrænses til 0,55 m/s2.For this inclination system, the pre-set standard set as the target is a trapezoidal outline of the lateral acceleration (a) experienced by the passenger (Fig. 5). The shape of this curve is proportional to the profile of the curvature (l / R) of the route and the amplitude of the maximum lateral acceleration (amax) of the passenger, which is, for example, limited to 0.55 m / s2.

cte = indgangskurve 5 c = selve kurven cts = udgangskurvecte = input curve 5 c = curve itself cts = output curve

Pa = absolut positionPa = absolute position

Aktuatorerne (4) er dem, som initierer hældningen. De er anbragt mellem boggiens 10 (8) chassis og, direkte eller indirekte, køretøjets (7) stel. De kan være af forskellige typer såsom hydrauliske, elektromekaniske, etc. Med henblik på at frembringe den ønskede hældningseffekt i stellet (7), kan de have visse mekaniske elementer mellem boggien og stellet, hvilket sikrer en relativ drejning mellem begge. De omfatter også nogle drejningsmålere (9), der leverer (UCB) (2).The actuators (4) are the ones that initiate the slope. They are located between the chassis of the bogie 10 (8) and, directly or indirectly, the frame of the vehicle (7). They can be of different types such as hydraulic, electromechanical, etc. In order to produce the desired inclination effect in the frame (7), they may have certain mechanical elements between the bogie and the frame, which ensures a relative rotation between both. They also include some turning meters (9) that provide (UCB) (2).

1515

Vi beskriver herefter to eksempler på en praktisk udførelse, der ikke er begrænsende, hvilke udførelser viser den mekaniske konfiguration af et hældende køretøj: Leddelt konfiguration og konfiguration med differentieret ophængning.We then describe two examples of a practical non-limiting embodiment showing the mechanical configuration of an inclined vehicle: articulated configuration and differential suspension configuration.

20 Konfiguration 1: Leddelt (fig. 2)Configuration 1: Articulated (Fig. 2)

Denne konfiguration er baseret på indføjelse mellem boggiechassis'et (8) og stellet (7) på et jernbanekøretøj af en hældningstværbjælke (10) vist med et firkantet omrids, for eksempel ved hjælp af skafterne (11). Denne hældningstværbjælke (10) bærer bunden af den anden lodrette ophængning (12), der kan være af 25 konventionel type med fjedre eller pneumatiske cylindre. Den eneste relative bevægelse, der tillades mellem boggiechassis'et og hældningstværbjælken, er en drejning i bevægelsesretningen (balanceringsdrejning).This configuration is based on insertion between the bogie chassis (8) and the frame (7) on a rail vehicle of a inclined cross beam (10) shown with a square outline, for example by means of the shafts (11). This inclined cross bar (10) carries the bottom of the second vertical suspension (12) which may be of conventional type with springs or pneumatic cylinders. The only relative movement allowed between the bogie chassis and the inclination cross bar is a rotation in the direction of movement (balancing rotation).

Konfiguration 2: Anden differentieret ophængning (fig. 3 og 4).Configuration 2: Second differentiated suspension (Figs. 3 and 4).

30 Den anden mulige konfiguration for hældningssystemet består i fastgørelse i en konventionel boggie af to hældningsaktuatorer (4) mellem boggiechassis'et (81) og 7 DK 176454 B1 bunden (b) af den anden lodrette ophængning (13). Opgaven for disse aktuatorer (4) er at frembringe en relativ forskydning af den anden lodrette ophængnings bund (b) i forhold til boggiechassis'et (81).The second possible configuration for the inclination system consists in attaching to a conventional bogie two tilt actuators (4) between the bogie chassis (81) and the bottom (b) of the second vertical suspension (13). The task of these actuators (4) is to produce a relative displacement of the second vertical suspension bottom (b) relative to the bogie chassis (81).

5 Vi beskriver herefter et eksempel på anvendelsen af denne løsning, som består af indføjelsen af to hydrauliske cylindre (14) med enkel virkning og af vippetypen ophængt inde i bunden af de skrueformede Ijedre (15) i den anden ophængning i en konventionel passagerboggie. Cylinderens legeme er indeholdt inde i det indvendige rum af Ijederen.5 We then describe an example of the application of this solution, which consists of the insertion of two hydraulic cylinders (14) of single action and of the rocker type suspended inside the bottom of the helical springs (15) in the second suspension of a conventional passenger bogie. The body of the cylinder is contained within the interior space of the spring.

1010

Problemet, der opstår ved denne løsning, er, at cylinderen (14) må bære vægten af stellet (7), der er oven på denne.The problem that arises from this solution is that the cylinder (14) must carry the weight of the frame (7) on top of it.

Fig. 3 viser et tværsnit i en konventionel boggie, der har lodret ophængning af 15 fledertypen, i hvilken man kan se samlingen af hældningscylinderen baseret på denne konfiguration.FIG. 3 is a cross-sectional view of a conventional bogie which has a vertical flange type suspension, in which one can see the assembly of the tilt cylinder based on this configuration.

Det vil forstås, at man i stedet for profilen af sideværts og vinkelmæssig acceleration kan programmere profilen for hastigheden eller forskydningen (kun 20 hvis den skal opnås) for køretøjet/passageren, eller med ukompenseret acceleration, hvilket er den ukompenserede sideværts acceleration gennem tyngdekraft eller andre beslægtede variable.It will be understood that instead of the profile of lateral and angular acceleration, one can program the profile of the speed or displacement (only 20 if it is to be achieved) of the vehicle / passenger, or with uncompensated acceleration, which is the uncompensated lateral acceleration through gravity or other related variables.

Claims (5)

8 DK 176454 B18 DK 176454 B1 1. Hældningssystem for jernbanekøretøjer til tilvejebringelse af hældning af 5 køretøjsstellet i forhold til dets boggier, når jernbanekøretøjet kører gennem en kurve, kendetegnet ved, at systemet består af a) en hukommelsesenhed (5), hvori køretøjets rute er delt i sektioner, som er identificeret i det mindste ved parametre for kurvernes længder og 10 krumningsradius, og ved kurveforskellen mellem ydre og indre skinne og ved køretøjets absolutte position, b) et positionsdetektorsystem (1), der kontinuerligt sender parametre for køretøjets hastighed og absolutte position til - 15 c) en intelligent styreenhed (2) med et standardsæt af' kommandoer, fastlagt ved værdierne af parametre, som er modtaget fra hukommelsesenheden (1) og positionsdetektorsystemet (5) samt ved et konventionelt program til dynamisk beregning af køretøjets opførsel i en kurve, indbefattende en 20 beregning af omvendt dynamik, idet den dynamiske parameter er den sideværts acceleration af en passager i køretøjet i overensstemmelse med en forud fastlagt profil, hvorved der fastsættes et sæt standardinstruktioner, der sendes til - 25 d) hældningsaktuatorenheder, som muliggør indstilling af hældningen i overensstemmelse med de modtagne instruktioner.An inclination system for railway vehicles to provide inclination of the 5 vehicle frame with respect to its bogies as the railway vehicle travels through a curve, characterized in that the system consists of (a) a memory unit (5) in which the route of the vehicle is divided into sections which are identified at least by parameters of curves length and radius of curvature, and by the curve difference between outer and inner rail and at the absolute position of the vehicle; (b) a position detector system (1) that continuously transmits the vehicle speed and absolute position parameters to - 15 c) an intelligent control unit (2) with a standard set of commands determined by the values of parameters received from the memory unit (1) and the position detector system (5), and by a conventional program for dynamically calculating the behavior of the vehicle in a curve, including a 20 calculation of inverse dynamics, the dynamic parameter being the lateral accelerati on on a passenger in the vehicle in accordance with a predetermined profile, thereby establishing a set of standard instructions sent to - 25 d) inclination actuator units which permit adjustment of the inclination in accordance with the instructions received. 2. Hældningssystem for jembanekøretøjer ifølge krav l.kedetegnet ved at systemet har sensorer (9), der afføder den relative drejning mellem 30 køretøjsstellet og en boggie, og som sender signaler til styreenheden. g DK 176454 B12. A slope system for rail vehicles according to claim 1, characterized in that the system has sensors (9) which provide the relative rotation between the vehicle frame and a bogie and which send signals to the control unit. g DK 176454 B1 3. Hældningssystem for jernbanekøretøjer ifølge de foregående krav, k e n d e -t egnet ved, at der mellem køretøjsstellet og boggien (8) er en tværbjælke (10) der er forbundet til boggien ved en ledforbindelse i hældningsretningen. 5Railway inclination system according to the preceding claims, characterized in that a cross beam (10) is connected between the vehicle frame and the bogie (8) to the bogie by a joint connection in the inclination direction. 5 4. Hældningssystem for jernbanekøretøjer ifølge krav 1, hvor boggien (8) og køretøjsstellet (7) er forbundet ved fjederophæng, (13), (15), k e n d e t e g -n e t ved at aktuatoreme (4) er anbragt mellem boggien og fjederophængets vederlag i køretøjsstellet. 10Railway inclination system according to claim 1, wherein the bogie (8) and the vehicle frame (7) are connected by spring suspension, (13), (15), characterized in that the actuators (4) are arranged between the bogie and the suspension of the suspension in the vehicle frame. . 10 5. Hældningssystem for jernbanekøretøjer ifølge krav 5, kendetegnet ved at aktuatoreme er hydrauliske cylindre og er anbragt inde i ophængets fjedre (15) 15Railway inclination system according to claim 5, characterized in that the actuators are hydraulic cylinders and are arranged inside the suspension springs (15) 15
DK123895A 1995-11-07 1995-11-07 Tilting train system for railway rolling stock - has memory storing track model data and detection system sensing absolute position both communicating with control unit which provides instructions to tilting actuators DK176454B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK123895A DK176454B1 (en) 1995-11-07 1995-11-07 Tilting train system for railway rolling stock - has memory storing track model data and detection system sensing absolute position both communicating with control unit which provides instructions to tilting actuators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK123895A DK176454B1 (en) 1995-11-07 1995-11-07 Tilting train system for railway rolling stock - has memory storing track model data and detection system sensing absolute position both communicating with control unit which provides instructions to tilting actuators
DK123895 1995-11-07

Publications (2)

Publication Number Publication Date
DK123895A DK123895A (en) 1997-05-08
DK176454B1 true DK176454B1 (en) 2008-03-10

Family

ID=8102568

Family Applications (1)

Application Number Title Priority Date Filing Date
DK123895A DK176454B1 (en) 1995-11-07 1995-11-07 Tilting train system for railway rolling stock - has memory storing track model data and detection system sensing absolute position both communicating with control unit which provides instructions to tilting actuators

Country Status (1)

Country Link
DK (1) DK176454B1 (en)

Also Published As

Publication number Publication date
DK123895A (en) 1997-05-08

Similar Documents

Publication Publication Date Title
US5987368A (en) Sprung- and unsprung-structure relative-velocity computing apparatus for vehicle
JP4199273B2 (en) Vehicle state estimation device
CA1324646C (en) Hybrid suspension position and body velocity sensing system for automotive suspension control system
JP2009508751A (en) SUSPENSION CONTROL DEVICE, VEHICLE EQUIPPED WITH SAME DEVICE, IMPLEMENTATION METHOD AND PROGRAM
JP2009508753A (en) Suspension control device, vehicle equipped with the device, manufacturing method, and program
JPS63251318A (en) Suspension control system adaptive to running condition of automobile
US5636576A (en) Tilting system for railway rolling stock
US6419240B1 (en) Vehicle roll control
EP2913241A1 (en) Method for designing a traction unit for a rail vehicle
US5331903A (en) System for controlling the rotation of the body of a railway vehicle about its longitudinal axis
CN109766635B (en) Optimized layout method for state perception sensor of mechanical part of locomotive
DK176454B1 (en) Tilting train system for railway rolling stock - has memory storing track model data and detection system sensing absolute position both communicating with control unit which provides instructions to tilting actuators
Hudha et al. Modelling, validation and roll moment rejection control of pneumatically actuated active roll control for improving vehicle lateral dynamics performance
JP5067620B2 (en) Suspension control device
DE19502670C2 (en) Running gear for rail vehicles
CN113677546A (en) System and method for controlling stability of a vehicle equipped with a semi-active suspension
Daniyan et al. Design and simulation of a controller for an active suspension system of a rail car
JP2011213183A (en) Device and method for detecting abnormality of variable damping shaft damper
JP6952531B2 (en) Railway vehicle abnormality diagnosis system
CA2162829C (en) Tilting system for railway rolling stock
EP0466449B1 (en) Damping arrangements
JPH05213195A (en) Method for restraining vibration of railway vehicle by active control
JP2019031145A (en) Vibration suppressing system for railway vehicle and method for the same
JPH06278605A (en) Damping device for vehicle
JP6530329B2 (en) Abnormality detection method and abnormality detection device for secondary spring system

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20131130