DK175647B1 - New DNA contg. formate dehydrogenase gene and its control regions - providing high level expression of foreign proteins under stringent control - Google Patents
New DNA contg. formate dehydrogenase gene and its control regions - providing high level expression of foreign proteins under stringent control Download PDFInfo
- Publication number
- DK175647B1 DK175647B1 DK595788A DK595788A DK175647B1 DK 175647 B1 DK175647 B1 DK 175647B1 DK 595788 A DK595788 A DK 595788A DK 595788 A DK595788 A DK 595788A DK 175647 B1 DK175647 B1 DK 175647B1
- Authority
- DK
- Denmark
- Prior art keywords
- dna
- gene
- fmdh
- dna fragment
- microorganism
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
i DK 175647 B1in DK 175647 B1
Den foreliggendé opfindelse angår et DNA-fragment, der omfatter en promoter-region fra et gen, der koder for et protein der er afledt fra en methylotrophisk gær, og som har format dehydrogenase-(FMHD)-aktivitet, rekombinante vektorer indeholdende dette fragment, mikroorganismer indeholdende disse vektorer og en 5 fremgangsmåde til fremstilling af et stof ved anvendelse af mikroorganismerne ifølge den foreliggende opfindelse.The present invention relates to a DNA fragment comprising a promoter region of a gene encoding a protein derived from a methylotrophic yeast, which has dehydrogenase (FMHD) activity, recombinant vectors containing this fragment. microorganisms containing these vectors and a process for producing a substance using the microorganisms of the present invention.
I løbet af det sidste årti blev der isoleret adskillige gærstammer, som er i stand til at udnytte methanol som eneste carbon- og energikilde. Indtil for nylig var 10 studierne begrænset til det enzymatiske niveau og angik hovedsagelig to arter, nemlig Hansenula polymorpha og Candida boidinii.Over the past decade, several yeast strains have been isolated which are capable of utilizing methanol as the sole source of carbon and energy. Until recently, the 10 studies were limited to the enzymatic level and mainly concerned two species, namely Hansenula polymorpha and Candida boidinii.
De enzymatiske studier afslørede, at i methylotrofiske gærstammer bliver methanol oxideret via formaldehyd og formiat til C02 af henholdsvis métha-15 noloxidase (MOX), formaldehyddehydrogenase (FMD) og formiatdehydrogenase (FMDH). H202, som genereres under det første oxidationstrin, bliver nedbrudt af catalase. Cl-forbindelse assimileres ved en transketalase reaktion mellem xylulose-5-(P) og formaldehyd, hvoraf det sidstnævnte stammer fra dissimilationsvejen. Reaktionen katalyseres af dihydroxyacetonesynthase (DHAS).The enzymatic studies revealed that in methylotrophic yeast strains, methanol is oxidized via formaldehyde and formate to CO 2 by methanol 15 oxidase (MOX), formaldehyde dehydrogenase (FMD) and formate dehydrogenase (FMDH), respectively. H 2 O 2, which is generated during the first oxidation step, is degraded by catalase. Cl compound is assimilated by a transketalase reaction between xylulose-5- (P) and formaldehyde, the latter of which originates from the dissimilation pathway. The reaction is catalyzed by dihydroxyacetone synthase (DHAS).
20 Vækst af methylotrofisk gær på methanol følges af ændringer i den totale proteinsammensætning. Der er 3 store og ca. 5 mindre proteiner, der bliver nysyntetiseret. Væksten på methanol følges endvidere af fremkomsten af enorme peroxisomer. Disse organeller bærer nogle af de nøgleenzymer, der er involveret i 25 methanolmetabolisme, nemlig MOX, DHAS og catalase (1). De to andre methanol-enzymer, FMD og FMDH, er cytoplasmaproteiner. I methanoldyrkede celler udgør enzymerne FMDH, MOX og DHAS op til 40% af det totale celleprotein. Methanol udnyttelsesreaktionsvejen er meget opdelt, og integrationen af disse reaktioner er meget kompleks.Growth of methylotrophic yeast on methanol is followed by changes in the total protein composition. There are 3 large and approx. 5 minor proteins that are newly synthesized. The growth of methanol is also followed by the emergence of enormous peroxisomes. These organelles carry some of the key enzymes involved in methanol metabolism, namely MOX, DHAS and catalase (1). The other two methanol enzymes, FMD and FMDH, are cytoplasmic proteins. In methanol-grown cells, the enzymes FMDH, MOX and DHAS make up to 40% of the total cell protein. The methanol utilization reaction pathway is very divided and the integration of these reactions is very complex.
3030
Enzymerne til dissimilation af methanol reguleres af glucose katabolitrepression/-derepressionmekanismen (2). Methanol har en yderligere inducerende virkning ved at øge ekspressionsniveauet med en faktor 2-3. I H. polymorpha følger det assimi-latoriske DHAS enzym dette almene regulationsskema, men under vækst på be-The enzymes for dissimilation of methanol are regulated by the glucose catabolite repression / repression mechanism (2). Methanol has an additional inducing effect by increasing the expression level by a factor of 2-3. In H. polymorpha, the assimilatory DHAS enzyme follows this general regulatory scheme, but during growth on
DK 175647 B1 IDK 175647 B1 I
grænsende mængder glucose spiller dérepression, en yderligere post-transskrip-limiting amounts of glucose play derepression, an additional post-transcript.
tionel mekanisme, imidlertid en rolle i regulationen. Ihowever, a role in regulation. IN
For nylig blev 3 gener der koder for peroxisomale enzymer klonet fra Η. HRecently, 3 genes encoding peroxisomal enzymes were cloned from Η. H
5 polymorpha og Pichia pastoris, og analysen af nucleotidsekvenser af MOX-gener fra5 polymorpha and Pichia pastoris, and the analysis of nucleotide sequences of MOX genes from
H. polymorpha (3) og P. pastoris (4) og DAS-genet, som koder for DHAS fra Η. IH. polymorpha (3) and P. pastoris (4) and the DAS gene encoding DHAS from Η. IN
polymorpha (5), afslørede, at en afspaltelig signalsekvens ikke kræves for Hpolymorpha (5), revealed that a repeatable signal sequence is not required for H
transporten af MOX og DHAS ind i peroxisomet. Ithe transport of MOX and DHAS into the peroxisome. IN
10 Visse methanolgeners promotorer er meget effektive, og deres regulationsmåde er I10 The promoters of certain methanol genes are very effective and their mode of regulation is I
fordelagtig for industriel anvendelse. Ekspressionen af fremmede proteiner kan Iadvantageous for industrial use. The expression of foreign proteins can I
fremmes og placeres under streng kontrol. De store mængder proteiner (MOX, Ipromoted and placed under strict control. The large amounts of proteins (MOX, I
DHAS), som produceres på den måde af methylotrofisk gær, lagres i peroxiso- IDHAS), produced in this way by methylotrophic yeast, is stored in peroxisol
merne. En forståelse af denne mekanisme vil hjælpe til at løse nogle problemer Iclips. Understanding this mechanism will help to solve some problems
15 med stabiliteten af fremmede proteiner i gær. I15 with the stability of foreign proteins in yeast. IN
Der er et behov i det industrielle bioteknologiområde for mikrobiologiske regula- IThere is a need in the industrial biotechnology field for microbiological regulation
tionssystemer, hvorved store mængder af et specielt ønsket protein kan fremstilles Hionization systems whereby large amounts of a particularly desired protein can be prepared H
under streng kontrol. Selv om der allerede findes promotor-/terminatorsystemer, Hunder strict control. Although promoter / terminator systems already exist, H
20 som kan anvendes i genteknologisystemer til at kontrollere mængden af proteiner, H20 which can be used in genetic engineering systems to control the amount of proteins, H
der skal fremstilles, er der stadigvæk et stort behov for at yderligere regulerende Hto be manufactured, there is still a great need for additional regulatory H
systemer bliver tilgængelige, idet det har vist sig, at det er fordelagtige i biologiske Hsystems become available, having been found to be advantageous in biological H
systemer at tilvejebringe flere systemer, således at det mest effektive system kan Isystems to provide multiple systems so that the most efficient system can
vælges. De nuværende systemer er langt fra at være effektive, især når streng Iis selected. The current systems are far from effective, especially when string I
25 regulation og høj mitotisk stabilitet er krævet. I25 regulation and high mitotic stability are required. IN
Det var derfor et formål med den foreliggende opfindelse at tilvejebringe et mere IIt is therefore an object of the present invention to provide a more I
effektivt og meget let kontrollerbart regulationssystem. Iefficient and very easily controllable regulatory system. IN
30 Fordelen ved den foreliggende opfindelse kommer af, at der tilvejebringes et DNA- IThe advantage of the present invention comes from the provision of a DNA-I
fragment, som omfatter en promoter-region fra et gen, der koder for et protein frafragment comprising a promoter region of a gene encoding a protein from
en methylotrophisk gærstamme, og som har format Ia methylotrophic yeast strain and having the format I
dehydrogenase(FMDH)aktivitet, hvpr genet er identisk med eller svarer til et Hdehydrogenase (FMDH) activity, which gene is identical to or corresponds to an H
FMDH-gen, der kan opnås fra genomet fra Hansenula polymorpha, og i hvilket IFMDH gene obtainable from the genome of Hansenula polymorpha and in which I
35 DNA-fragment FMDH-genet findes i et 3,5 kb BamHI-Hindlll-fragment. I35 DNA fragment The FMDH gene is found in a 3.5 kb BamHI-HindIII fragment. IN
DK 175647 B1 3DK 175647 B1 3
For at påbegynde mere omfattende studier af grundforsknings- og bioteknologiske aspekter af methanoludnyttelse blev det gen, der koder for det cytoplasmiske methanolnøgleenzym FMDA klonet. Dette 1020 bp lange gens sekvens og dets 5 regulerende regioner er blevet klonet. FMDA bliver reguleret på transskriptionsniveauet af glucose catabolitrepressions/derepressions/methanolinduktions-mekanismen. DNA-fragmentet ifølge den foreliggende opfindelse er ekstremt nyttigt i den bioteknologiske industri på grund af det ovenfor beskrevne træk, at ekspres-sionen af fremmede proteiner kan fremmes og placeres under streng 10 kontrol.To begin more comprehensive studies of basic research and biotechnological aspects of methanol utilization, the gene encoding the cytoplasmic methanol key enzyme FMDA was cloned. This 1020 bp gene sequence and its 5 regulatory regions have been cloned. FMDA is regulated at the transcription level by the glucose catabolite repressions / derepressions / methanol induction mechanism. The DNA fragment of the present invention is extremely useful in the biotechnology industry because of the above-described feature that the expression of foreign proteins can be promoted and placed under strict control.
) DNA-fragmenter ifølge den foreliggende opfindelse kan modificeres ved rekombinant DNA-teknologiteknikker, der er velkendte på området, hvilket resulter i en modificeret promoter, der stadig bibeholder sin promoteraktivitet.) DNA fragments of the present invention can be modified by recombinant DNA technology techniques well known in the art, resulting in a modified promoter still retaining its promoter activity.
1515
En foretrukken udførelsesform af DNA-molekylet ifølge opfindelsen er vist i fig. 5.A preferred embodiment of the DNA molecule of the invention is shown in FIG. 5th
Eksempler på anvendelsen af FMDA-regulationssekvenserne ifølge den foreliggende opfindelse er kombinationer af DNA-sekvenserne med fremmede gener, der koder 20 for hepatitis B-virus Sl-S2-S-antigen og hepatitis-B-virus S-antigen-a-amylase fra S. castellii og glucoamylase fra S. castellii eller invertase fra Saccharomyces cerevi-siae.Examples of the use of the FMDA regulatory sequences of the present invention are combinations of the DNA sequences with foreign genes encoding hepatitis B virus S1-S2-S antigen and hepatitis B virus S antigen α-amylase from S. castellii and glucoamylase from S. castellii or invertase from Saccharomyces cerevisiae.
DNA-fragmenterne ifølge opfindelsen kan yderligere kombineres til DNA-sekvenser, 25 som koder for sekretoriske signaler såsom Hansenula polymorpha-membrantrans-lokationsignaler, fortrinsvis sådanne fra peroxisomale proteiner, methanoloxidase og dihydroxyacetonesyntase, Schwanniomyces castellii α-amylase- og glucoamy-lasesignaler eller Saccharomyces cerevisiae α-faktor- og invertasesignaler.The DNA fragments of the invention can be further combined into DNA sequences encoding secretory signals such as Hansenula polymorpha membrane translocation signals, preferably those of peroxisomal proteins, methanol oxidase and dihydroxyacetone synthase, Schwanniomyces castellii α-amylase and glucoamy α-factor and invertase signals.
30 Fremstilling af de DNA-fragmenter, der koder for kontrolregioner og strukturgenet for protein med FMDH-aktivitet, kan opnås fra naturligt DNA og/eller cDNA og/eller kemisk syntetiseret DNA.Preparation of the DNA fragments encoding control regions and the structural gene for protein with FMDH activity can be obtained from natural DNA and / or cDNA and / or chemically synthesized DNA.
Rekombinante vektorer kan fremstilles, hvilke indeholder DNA-sekvenserne ifølge 35 opfindelsen som sådanne, hvilke DNA-sekvenser koder for de regulerende regionerRecombinant vectors can be prepared which contain the DNA sequences of the invention as such, which DNA sequences encode the regulatory regions
DK 175647 B1 IDK 175647 B1 I
og/eller strukturgenerne for FMDH-protein, og de kan kombineres til yderligere Iand / or the structural genes for FMDH protein, and they can be combined to further I
DNA-sekvenser som beskrevet ovenfor. Rekombinante vektorer til at overføre IDNA sequences as described above. Recombinant Vectors to Transfer I
DNA-sekvenser til et ekspressionssystem er almindeligt anvendt på området og IDNA sequences for an expression system are commonly used in the art and I
kan vælges hensigtsmæssigt. For eksempel kan λ-Chano 4A-fagen bære de Ican be chosen appropriately. For example, the λ-Chano 4A phage may carry the I
5 beskrevne DNA-molekyler. I5 DNA molecules described. IN
De mikroorganismer, som er egnede til ekspressionen af de ønskede gener, kan IThe microorganisms suitable for the expression of the desired genes can be I
vælges blandt kendte mikroorganismer på området, som er tilpasset rekombinant Iis selected from known microorganisms in the field adapted for recombinant I
DNA-teknologier. Der foretrækkes imidlertid mikroorganismer, som er i stand til at IDNA technologies. However, microorganisms which are capable of
10 tolerere høje koncentrationer af fremmede proteiner. I10 tolerate high concentrations of foreign proteins. IN
Mest foretrukket er mikroorganismer af slægterne Candida, Hansenula eller Pichia. IMost preferred are microorganisms of the genus Candida, Hansenula or Pichia. IN
De nævnte mikroorganismer er i stand til at producere de ønskede stoffer enten ISaid microorganisms are capable of producing the desired substances either
15 ved integration af DNA-molekylerne ifølge opfindelsen ind i mikroorganismens I15 by integrating the DNA molecules of the invention into the microorganism I
kromosom eller ved at opretholde DNA-molekylerne på et ekstrakromosomalt DNA- Ichromosome or by maintaining the DNA molecules on an extrachromosomal DNA-I
molekyle via episomale vektorer. Imolecule via episomal vectors. IN
De proteiner, der kodes af fremmede gener, der er forbundet med DNA-moleky- IThe proteins encoded by foreign genes associated with DNA molecules
20 lerne ifølge den foreliggende opfindelse, og som fremstilles af de transformerede I20 of the present invention, which are made from the transformed I
mikroorganismer, kan opnås ved at dyrke mikroorganismerne på en måde, der er Hmicroorganisms, can be obtained by growing the microorganisms in a manner which is H
kendt på området, og ved at isolere proteinerne ifølge standard viden på området. Iknown in the art, and by isolating the proteins according to standard knowledge in the art. IN
Opfindelsen bliver nu illustreret på en mere detaljeret måde af følgende beskrivelse IThe invention is now illustrated in a more detailed manner by the following description I
25 og figurer. Figurerne viser: H25 and figures. The figures show: H
Figur 1: Analyse af proteinråekstrakter og in v/tro-translationsprodukter ved IFigure 1: Analysis of protein crude extracts and in vitro translation products at I
SDS-polyacrylamidgelelektoforese. ISDS-polyacrylamidgelelektoforese. IN
5 DK 175647 B1 bane 1. Bane 5, translation af hybridselekteret mRNA. Bane 6, immunpræcipitation af translationsprodukter fra bane 5.5 DK 175647 B1 lane 1. Lane 5, translation of hybrid-selected mRNA. Lane 6, immunoprecipitation of translation products from Lane 5.
Figur 2: Restriktionskort af DNA-fragment omfattende FMDH-genet.Figure 2: DNA fragment restriction map comprising the FMDH gene.
55
Pilen viser transskriptionsretningen.The arrow shows the direction of transcription.
jj
Figur 3: Sl-kortlægning; 10 Baner Ml, 1, 2, 3, 4, M2, a, b, c, d, adskillelse på alkalisk agarosegel.Figure 3: S1 mapping; Lanes M1, 1, 2, 3, 4, M2, a, b, c, d, separation on alkaline agarose gel.
Baner 5, M3, adskillelse på 6% polyacryl-amidgel/8M urinstof. Baner M1-M3-MW, markører. Baner 1, 2 -total beskyttelse (1) af 4,1 kb Eco RI/Hind Ill-fragment (2) omfattende genet. Baner 3, 4 - beskyttelse af 3'-ende-mærket 1,4 kb Barn HI/Hind Ill-fragment; 3-beskyttet 15 bånd; 4-1,4 kb intakt bånd. Bane 5 - beskyttelse af 1 kb Barn HI/Pst I-fragment med et enkelt mærke på Barn Hi-stedet.Lanes 5, M3, separation of 6% polyacrylamide gel / 8M urea. Lanes M1-M3-MW, markers. Lanes 1, 2-total protection (1) of the 4.1 kb Eco RI / Hind III fragment (2) comprising the gene. Lanes 3, 4 - protection of the 3 'end tag 1.4 kb Barn HI / Hind III fragment; 3-protected band; 4-1.4 kb intact band. Lane 5 - protection of 1 kb Barn HI / Pst I fragment with a single mark on the Barn Hi site.
Baner a, b, c, d - beskyttelse af 3’-ende-maerket DNA-fragment indeholdende en del af genet ved mRNA præparation isoleret fra: henholdsvis induceret kultur, derepresseret (1% glycerol) kultur, 20 kultur i stationær fase med 3% glucose og kultur i midt-logfase med 3% glucose.Lanes a, b, c, d - protection of 3 'end-labeled DNA fragment containing part of the gene by mRNA preparation isolated from: induced culture, respectively, depressed (1% glycerol) culture, 20 stationary phase culture with 3 % glucose and mid-log phase culture with 3% glucose.
Figur 4: Sekventeringsstrategi - skematisk fremstilling.Figure 4: Sequencing strategy - schematic representation.
25 DNA-fragmenter indeholdende genet blev udsat for Bal31 nedbryd ning og de resulterende fragmenter blev subklonet ind i M13- og/eller . pUC-type vektorer. Fragmenterne blev sekventeret ved Sanger- og i tvivlstilfælde Maxam-Gilbert-metoderne.Twenty-five DNA fragments containing the gene were subjected to Bal31 degradation and the resulting fragments were subcloned into M13 and / or. pUC-type vectors. The fragments were sequenced by the Sanger and, in case of doubt, the Maxam-Gilbert methods.
30 Figur 5a: Nucleotidsekvens af FMDH-genet og dets 5'-, 3'-kontrolregioner.Figure 5a: Nucleotide sequence of the FMDH gene and its 5 ', 3' control regions.
Figur 5b: Nucleotidsekvens af FMDH-genet og dets 5’-, 3'-kontrolregioner.Figure 5b: Nucleotide sequence of the FMDH gene and its 5 ', 3' control regions.
Figur 5c: Nucleotidsekvens af FMDH-genet og dets 5'-, 3'-kontrolregioner.Figure 5c: Nucleotide sequence of the FMDH gene and its 5 ', 3' control regions.
3535
I DK 175647 B1 II DK 175647 B1 I
I II I
I Figur 6: Plasmid indeholdende fusionen af bakterielt p-lactamasegen med IIn Figure 6: Plasmid containing the fusion of bacterial β-lactamase gene with I
FMDH-promotor. IFMDH-promoter. IN
I Figur 7: Plasmid indeholdende hepatitis S-genet; HÅRS - H. polymorpha- IIn Figure 7: Plasmid containing the hepatitis S gene; HAIR - H. polymorpha- I
5 autonomt replikerende sekvens; URA3 - S. cerevisiae-gen; FMDH- I promotor (-9 type promotor).5 autonomously replicating sequence; URA3 - S. cerevisiae gene; FMDH- I promoter (-9 type promoter).
I Figur 8: Western blot-farvet ved peroxidase/protein A-metode. Polyklonale IIn Figure 8: Western blot stained by peroxidase / protein A method. Polyclonal I
I antistoffer (ikke klarlagt) blev anvendt i dette eksperiment: IAntibodies (not clarified) were used in this experiment:
I II I
I Bane a : LR9 vækst pi methanol IIn Lane a: LR9 growth in methanol I
I Bane i: transformant uden S-gen IIn Lane I: transformant without S-gene I
I 15 Baner k, !, m,: transformanter med S-gen dyrket påIn 15 Pathways k,!, M,: transformants with S-gene grown on
glucose (repression) Iglucose (repression) I
I Baner b, c, d, e, forskellige transformanter med S-gen IIn lanes b, c, d, e, different transformants with S gene I
f, g: dyrket på methanol If, g: grown on methanol I
20 I20 I
Baner n, o: henholdsvis 500 og 450 ng oprensetLanes n, o: 500 and 450 ng, respectively, purified
HSBAg IHSBAg I
Figur 9: Plasmid der udtrykker α-amylasegen; symboler er de samme IFigure 9: Plasmid expressing α-amylase gene; symbols are the same I
I 25 som i fig. 7. IIn FIG. 25 as in FIG. 7. I
I Figur 10: Vækst af transformanter på medium indeholdende methanol IIn Figure 10: Growth of Transformants on Medium Containing Methanol I
I (induktion). Enzymaktivitet (U/ml) blev målt i mediet og iI (induction). Enzyme activity (U / ml) was measured in the medium and i
celler (intracellulært enzymniveau). Den sidstnævnte værdi Icells (intracellular enzyme level). The latter value I
I 30 blev udtrykt som svarende til 1 ml af mediet. II 30 was expressed as 1 ml of the medium. IN
I Figur 11: Dannelsen af en ring efter pladen er blevet påført 50 μΙ afIn Figure 11: The formation of a ring after the plate has been applied 50 µΙ off
I mediet fra transformanter (øverste række) og fra kontrol IIn the medium from transformants (top row) and from control I
I ikke-tranformeret stamme LR9 (nederste række). IIn non-transformed strain LR9 (bottom row). IN
B 35 IB 35 I
7 DK 175647 B17 DK 175647 B1
Stammer, medier, vektorerStrains, media, vectors
En termofil homothallisk H. polymorpha-stamme (ATCC 34438) blev anvendt..Gær 5 blev dyrket ved 37°C på minimal YNB-medium som beskrevet {3, 5). Induktion af methanoludnyttelsessystemet blev opnået ved vækst i minimalmedium indeholdende 1% methanol; vækst på 3% glucose minimalmedium resulterede i repression af systemet.A thermophilic homothallic H. polymorpha strain (ATCC 34438) was used. Yeast 5 was grown at 37 ° C on minimal YNB medium as described {3, 5). Induction of the methanol utilization system was achieved by growth in minimal medium containing 1% methanol; growth of 3% glucose minimal medium resulted in system repression.
10 E. coii L90; c600recA, hsdM, araB blev anvendt til transformation; E. coli JM103, thi, strA, supE, endA, sbcB, hsdR, F'traD36, proAB, lad, ZM15 og E. coli KH802 gal, met, supE blev anvendt som vært for henholdsvis fag M13 og λ-15 vektor Charon 4A. Plasmid DNA og RF M 13 blev isoleret ved opskalerede alkalisk minilysatmetoder (6) efterfulgt af CsCI-ultracentrifugering.E. coii L90; c600recA, hsdM, araB was used for transformation; E. coli JM103, thi, strA, supE, endA, sbcB, hsdR, F'traD36, proAB, lad, ZM15 and E. coli KH802 gal, met, supE were used to host phage M13 and λ-15 vector Charon, respectively. 4A. Plasmid DNA and RF M 13 were isolated by scaled-up alkaline minilysate methods (6) followed by CsCl ultracentrifugation.
λ-vektor Charon 4A- og Charon 4-rekombinantkioner blev isoleret ved opskalerede pladelysatmetoder (6).λ vector Charon 4A and Charon 4 recombinant cions were isolated by scaled plate lysate methods (6).
20 H. polymorpha-total-DNA af en størrelse større end 50 kb blev isoleret fra sfæroplaster som tidligere beskrevet (5).20 H. polymorpha total DNA of size greater than 50 kb was isolated from spheroplasts as previously described (5).
Charon 4 H. polymorpha-DNA-bibliotek blev konstrueret ved at ligere delvist EcoRI-25 skåret H. po/ymo/p/ia-DNA med Chardn 4-arme som tidligere beskrevet (5).Charon 4 H. polymorpha DNA library was constructed by ligating partially EcoRI-25 cut H. po / ymo / p / ia DNA with Chardn 4 arms as previously described (5).
PolyA mRNA fra H. polymorpha og analyse af mRNA-et ved et in wtro-cellefrit kanin-reticulocytsystem er tidligere beskrevet (5).H. polymorpha polyA mRNA and analysis of the mRNA by an in vitro cell-free rabbit reticulocyte system has been described previously (5).
30 mRNA mærkning: mRNA blev delvist fragmenteret ved mild alkalisk behandling (7) og mærket ved 5‘-enden med λ-32Ρ-ΑΤΡ (Amersham).30 mRNA labeling: mRNA was partially fragmented by mild alkaline treatment (7) and labeled at the 5 'end with λ-32Ρ-ΑΤΡ (Amersham).
Den differentielle plaquefilterhybridisering blev i det væsentlige udført som beskrevet i (12). Rekombinant fager blev udpladet til ca. 3000 pfu pr. plade.The differential plaque filter hybridization was essentially performed as described in (12). Recombinant phages were plated to ca. 3000 pfu per plate.
35 Plaques fra hver plade blev blottet til et sæt på 5-6 replika nitro-cellulosefiltre35 plaques from each plate were exposed to a set of 5-6 replica nitrocellulose filters
DK 175647 B1 IDK 175647 B1 I
(BA85, Schleicher og Schull). Filtrene blev hybridiseret til passende 32P-mRNA- I(BA85, Schleicher and Schull). The filters were hybridized to appropriate 32P mRNA-I
eller 32P-DNA-prober i 5 x SSPE, 50% formamid indeholdende yderligere 150 ng/ml Ior 32P DNA probes in 5 x SSPE, 50% formamide containing an additional 150 ng / ml I
tRNA, 10 ng/ml poly A, 5 x Denhardt's opløsning, 5 pg/ml rRNA fra H. polymorpha ItRNA, 10 ng / ml poly A, 5 x Denhardt's solution, 5 pg / ml H. polymorpha I rRNA
isoleret som beskrevet i (5, 6). Iisolated as described in (5, 6). IN
Sl-kortlægningseksperimenter blev i det væsentlige udført som beskrevet afS1 mapping experiments were performed essentially as described by
Favarolo et al. (8). Sl-nuclease fra NEN ved en koncentration på 1000 enheder/ml IFavarolo et al. (8). S1 nuclease from NEN at a concentration of 1000 units / ml I
blev anvendt. IWas used. IN
10 Hybridselektionsteknikken blev udført som beskrevet af Buneman et al. (9). Kort IThe hybrid selection technique was performed as described by Buneman et al. (9). Card I
fortalt blev DNA fra rekombinante subkloner kovalent bundet til et DPTE-derivat aftold, DNA from recombinant subclones was covalently bound to a DPTE derivative of
Sephacryl S-500. Totalt mRNA blev derefter hybridiseret med DNA/S-500 matrix. ISephacryl S-500. Total mRNA was then hybridized with DNA / S-500 matrix. IN
mRNA-molekyler, som ikke var komplementære til det immobiliserede DNA, blev ImRNA molecules that were not complementary to the immobilized DNA became I
vasket ud under meget strenge forhold (5, 9). Hybridiseret mRNA blev elueret med Iwashed out under very severe conditions (5, 9). Hybridized mRNA was eluted with I
15 H20 ved 100°C. Hybridselekteret mRNA blev derefter translateret i et cellefrit I15 H 2 O at 100 ° C. Hybrid-selected mRNA was then translated into a cell-free I
system, og tranlationsprodukterne blev analyseret ved immunpræcipitation som Isystem, and the translational products were analyzed by immunoprecipitation as I
tidligere beskrevet. Ipreviously described. IN
Sekvensanalyse: Forskellige overlappende fragmenter stammende fra exonuclease ISequence Analysis: Various overlapping fragments derived from exonuclease I
20 Bal31-nedbrydningen af DNA-fragmenter omfattende FMDH-genet blev klonet ind iThe Bal31 degradation of DNA fragments comprising the FMDH gene was cloned into
M13 fager mp9, mp8 og ind i plasmider pUC12, pUC13. De subklonede fragmenter IM13 phages mp9, mp8 and into plasmids pUC12, pUC13. The subcloned fragments I
blev sekventeret ved metoderne ifølge Sanger et al. (10) og Maxam-Gilbert (11). Iwere sequenced by the methods of Sanger et al. (10) and Maxam-Gilbert (11). IN
Formiatdehydrogenase blev oprenset til homogenitet fra methanoldyrkede Η. IFormate dehydrogenase was purified to homogeneity from methanol grown Η. IN
25 polymorpha-ceIler som beskrevet andetsteds. Antistoffer mod FMDH, denatureret25 polymorph cells as described elsewhere. Antibodies to FMDH, denatured
form, blev fremstillet i kaniner ifølge standard fremgangsmåder. Imold, was prepared in rabbits according to standard procedures. IN
Identifikation af mRNA-molekyier, der koder for FMDHIdentification of mRNA molecules encoding FMDH
30 In v/tro-translationsprodukter af total mRNA isoleret fra celler dyrket på 3% glucose (repression) eller 1% methanol (induktion) blev analyseret på SDS-PAGE-30 In vitro translation products of total mRNA isolated from cells grown on 3% glucose (repression) or 1% methanol (induction) were analyzed on SDS-PAGE
geler. Figur 1 viser en sammenligning af in Wtro-translationsprodukter af mRNA fra Igels. Figure 1 shows a comparison of in vitro translational products of I mRNA
inducerede (bane 1) og ikke-inducerede (bane 2) celler, samt immunpræcipitater Iinduced (lane 1) and uninduced (lane 2) cells, as well as immunoprecipitates I
fra den første præparation med specifikke antistoffer rettet mod FMDH (bane 4). Ifrom the first preparation with specific antibodies directed against FMDH (lane 4). IN
35 Desuden blev de elektroforetiske mønstre af råproteinekstrakter fra 1% methanol-, IIn addition, the electrophoretic patterns of crude protein extracts from 1% methanol, I
9 DK 175647 B1 0,5% glycerol/0,1% glucose- (derepression) og 3% glucosekulturer sammenlignet med den elektroforetiske mobilitet af oprenset FMDH (henholdsvis baner 7, 8, 9 og 10).9 DK 175647 B1 0.5% glycerol / 0.1% glucose (derepression) and 3% glucose cultures compared with the electrophoretic mobility of purified FMDH (lanes 7, 8, 9 and 10, respectively).
5 De opnåede resultater identificerede klart FMDH-proteinets placering på SDS-PAGE, og de tyder på, at FMDH-protein og dets mRNA er dominerende molekyler i celler dyrket på methanol (induktion). Placeringen af de to andre dominerende proteiner, MOX og DHAS, er også angivet. Fig. 1 viser også, at betragtelig ekspression bliver opnået under derepresserede forhold (bane 8) og at 3% glucose hæmmer 10 methanoludnyttelsessystemets enzymer. De ovennævnte konklusioner gjorde de nuværende opfindere i stand til gennem sucrosegradientcentrifugering at isolere et mRNA-fraktion rig i mRNA, der koder for FMDH (bane 3), til anvendelse i screeningsfremgangsmåden.5 The results obtained clearly identified the location of the FMDH protein on SDS-PAGE and suggest that FMDH protein and its mRNA are dominant molecules in cells grown on methanol (induction). The location of the other two dominant proteins, MOX and DHAS, is also indicated. FIG. Figure 1 also shows that considerable expression is obtained under depressed conditions (lane 8) and that 3% glucose inhibits the enzymes of the methanol utilization system. The foregoing conclusions enabled the present inventors to isolate, through sucrose gradient centrifugation, an mRNA fraction rich in mRNA encoding FMDH (lane 3) for use in the screening method.
15 Screening for FMDH-genScreening for FMDH gene
Den H. polymorpha-DNA-bank i Charon 4-fagen blev screenet ved differentiel plaquehybridisering (Materialer og metoder) med radioaktivt 32P-mærket mRNA fra inducerede og ikke-inducerede celler og med 32P-mRNA fra en fraktion rig i FMDH-20 mRNA (fig. 1, bane 3). Yderligere blev replikafiltre hybridiseret med 32P-DNA-prober fra kloner, der koder for MOX- og DAS-gener (3, 5). Sidstnævnte blev udført for at identificere og eliminere kloner, der koder for de to andre stærkt inducerbare gener. Ønskede fager blev udvalgt, og deres DNA blev yderligere karakteriseret.The H. polymorpha DNA bank of the Charon 4 phage was screened by differential plaque hybridization (Materials and Methods) with radioactive 32P-labeled mRNA from induced and uninduced cells and with 32P mRNA from a fraction rich in FMDH-20 mRNA (Fig. 1, lane 3). Further, replica filters were hybridized with 32P DNA probes from clones encoding MOX and DAS genes (3, 5). The latter was performed to identify and eliminate clones encoding the other two highly inducible genes. Desired phages were selected and their DNA further characterized.
2525
Karakterisering af rekombinante klonerCharacterization of recombinant clones
Den indledende identificering af en klon blev opnået ved hybridselekteringsteknikken, restriktionskortlægning og bestemmelse af størrelsen af det mRNA, der 30 kodes af en given klon.The initial identification of a clone was obtained by the hybrid selection technique, restriction mapping and determination of the size of the mRNA encoded by a given clone.
Hybridselektering DNA fra Charon 4-rekombinant klon JM blev kovalent bundet til DPTE S-500 35 matrix, mRNA der var komplementært til JM-klonen blev selekteret og dets inHybrid selection DNA from Charon 4 recombinant clone JM was covalently linked to DPTE S-500 matrix, mRNA complementary to the JM clone was selected and its
I DK 175647 B1 II DK 175647 B1 I
I II I
v/tro-translationsprodukter blev analyseret. Fig. 1 viser at det hybridselekterede Iv / faith translation products were analyzed. FIG. 1 shows that the hybrid selected I
mRNA ved in wiro-translation giver et stort peptidprodukt med den samme ImRNA by in vitro translation yields a large peptide product with the same I
elektroforetiske mobilitet som FMDH-pep-tid (bane 5). Når peptider fra bane 5 blev Ielectrophoretic mobility such as FMDH pep time (lane 5). When lane 5 peptides became I
præcipiteret med specifikke antistoffer (bane 6), blev et stort bånd på størrelse Iprecipitated with specific antibodies (lane 6) became a large band of size I
5 med FMDH-båndet og andre svage bånd synlige. I et kontroleksperiment med ikke- I5 with the FMDH band and other weak bands visible. In a control experiment with non- I
induceret mRNA blev ikke-påviseligt mRNA af FMDH-typen selekteret ved denne Iinduced mRNA, non-detectable FMDH type mRNA was selected by this I
teknik. Tilstedeværelsen af andre svage bånd, der er synlige i baner 5 og 6, er Itechnique. The presence of other weak bands visible in lanes 5 and 6 is I
sandsynligvis artefakter af den anvendte hybridselekteringsteknik. Iprobably artifacts of the hybrid selection technique used. IN
10 Disse data antyder stærkt, at klon JM indeholder FMDH-genet. I10 These data strongly suggest that clone JM contains the FMDH gene. IN
I Restriktionskort og transskriptionens størrelse og retning IRestriction cards and the size and direction of the transcript
Restriktionskortet for klon JM og dens subkloner er vist i fig. 2. DNA-fragmenter IThe restriction map for clone JM and its subclones is shown in FIG. 2. DNA fragments I
15 omfattende genet blev identificeret ved at hybridisere Southern blots med 32P- I15 comprising the gene was identified by hybridizing Southern blots with 32P-I
mærket induceret mRNA. Ilabeled induced mRNA. IN
Et 8,5 kb EcoRI H. polymorpha-DNA-fragment fra klon JM indeholder et gen. En IAn 8.5 kb EcoRI H. polymorpha DNA fragment from clone JM contains a gene. And I
I yderligere analyse muliggjorde at genet og dets formodede regulerende regioner IIn further analysis, the gene and its putative regulatory regions enabled I
I 20 kunne subklones pi Hindlll/EcoRI 4,1 kb fragmenter in pBR325. IIn 20, subcloned into HindIII / EcoRI 4.1 kb fragments into pBR325. IN
I Si-kortlægning IIn Si mapping I
I Et ikke-radioaktivt Hindlll/EcoRI 4,1 kb fragment fra plasmid p3Ml blev isoleret og IIn a non-radioactive HindIII / EcoRI 4.1 kb fragment from plasmid p3M1 was isolated and I
25 forbundet med induceret og ikke-induceret mRNA. Størrelsen af DNA beskyttet af I25 associated with induced and uninduced mRNA. The size of DNA protected by I
I dets beslægtede mRNA mod nuclease Si's virkning blev analyseret ved agarose- IIn its related mRNA against the action of nuclease Si was analyzed by agarose I
I elektroforese efterfulgt af Southern blotting og hybridisering med passende 32P- IIn electrophoresis followed by Southern blotting and hybridization with appropriate 32 P-I
I DNA for at visualisere fragmentet. Fig. 3, bane 1 viser, at induceret mRNA beskyt- IIn DNA to visualize the fragment. FIG. 3, lane 1 shows that induced mRNA protects I
I ter et 1,2 kb langt fragment. Dette tyder på, at genet koder for et protein på ca. IIt is a 1.2 kb fragment. This suggests that the gene encodes a protein of approx. IN
I 30 35000-37000 dalton. Denne værdi blev fundet for FMDH-proteinet. Idet FMDH er II 30 35000-37000 dalton. This value was found for the FMDH protein. Because FMDH is you
I det eneste stærkt inducerbart protein i dette molekylvægtsområde, støtter dette IIn the only highly inducible protein in this molecular weight range, this supports I
resultat genets identifikation. Iresult in the identification of the gene. IN
Genets 3'-ende, transskriptionsretn/'ng og mængden af FMDH-transkript DK 175647 B1 11The 3 'end of the gene, transcription direction and the amount of FMDH transcript DK 175647 B1 11
To fragmenter indeholdende genet, 1,0 kb BamHl/Pstl og 1,4 kb Hind-III/BamHI, blev isoleret, og et 3’-ende-mærke blev introduceret ved BamHI-stedet. Kun mær-5 ket pi det højre (fig. 3, bane 3-4) 1,4 kb Hindlll/BamHI-fragment blev beskyttet ved at være forbundet til mRNA, hvilket tyder på at transskriptionsretningen går fra venstre til højre (pil i fig. 2). Størrelsen af dette bind (bane 4) tyder på, at genets 3'-ende findes 850 bp til højre for BamHI-stedet. Dette type eksperiment blev også anvendt til groft at etablere mængden af FMDH-mRNA-molekyle i det 10 totale polyA + mRNA isoleret fra celler dyrket under forskellige forhold. En kendt mængde 32P-3'-ende-mærket DNA indeholdende en del af genet blev hybridiseret til varierende mængder mRNA. Ved overskud af DNA er den radioaktivitet, der er til stede i et bånd beskyttet mod SI af en given mængde mRNA, et mål for mængden af FMDH-mRNA i præparatet. Disse data tyder på, at FMDH-mRNA bidrager med 15 henholdsvis ca. 7% ± 1% og 3% til 4% af det totale polyA + mRNA i præparater fra inducerede og ikke-inducerede vækstforhold. Fig. 3, baner a, b, c og d viser sammenligningen mellem intensiteten af det DNA-bånd, der resulterer fra Sl-eksperimenter, hvor 3 pg DNA blev hybridiseret med 10 pg af total polyA + mRNA.Two fragments containing the gene, 1.0 kb BamHl / Pstl and 1.4 kb Hind-III / BamHI, were isolated and a 3 'end tag was introduced at the BamHI site. Only the label on the right (Fig. 3, lanes 3-4) 1.4 kb HindIII / BamHI fragment was protected by being linked to mRNA, suggesting that the transcription direction goes from left to right (arrow in Fig. 2). The size of this binding (lane 4) suggests that the 3 'end of the gene is found 850 bp to the right of the BamHI site. This type of experiment was also used to roughly establish the amount of FMDH mRNA molecule in the 10 total polyA + mRNA isolated from cells grown under different conditions. A known amount of 32P-3 'end-tagged DNA containing part of the gene was hybridized to varying amounts of mRNA. In excess of DNA, the radioactivity present in a band protected from SI by a given amount of mRNA is a measure of the amount of FMDH mRNA in the preparation. These data suggest that FMDH mRNA contributes 15 and ca. 7% ± 1% and 3% to 4% of the total polyA + mRNA in preparations from induced and uninduced growth conditions. FIG. 3, lanes a, b, c and d show the comparison between the intensity of the DNA band resulting from S1 experiments where 3 µg of DNA was hybridized with 10 µg of total polyA + mRNA.
Det vises også klart, at i midt-logfaser af 3% glucose- (repression) kulturer, er kun 20 ubetydelige mængder FMDH-transkript synlige, medens den samme kultur ved stationærfasen allerede viser betragtelige mængder transkript. Dette er et godt eksempel på derepressionsfænomenet - i stationærfasen bliver glucose udtømt.It is also clearly shown that in mid-log phases of 3% glucose (repression) cultures, only 20 negligible amounts of FMDH transcript are visible, while the same culture at the stationary phase already shows considerable amounts of transcript. This is a good example of the phenomenon of depression - in the stationary phase glucose is depleted.
Genets 5'-ende 25The 5 'end of the gene 25
Et 1,0 db BAmHI/PstI fragment med et enkelt 5’-ende-mærke ved BamHI gav ved Sl-kortlægning multiple bånd i området fra 255 til 265 bp (fig. 3, bane 5). Sammenligningen af denne værdi med sekvensdata angav, at transskription startede ca. ved -12-positionen fra det første ATG. Hovedbåndet viser starten ved "A" 30 omgivet af pyrimidinspor.A 1.0 db BAmHI / PstI fragment with a single 5 'end label at BamHI gave, by S1 mapping, multiple bands ranging from 255 to 265 bp (Fig. 3, lane 5). The comparison of this value with sequence data indicated that transcription started approx. at the -12 position from the first ATG. The headband shows the start at "A" 30 surrounded by pyrimidine grooves.
Nucleotidsekvensnucleotide
Nucleotidsekvensen af FMDH-genet og det omgivende område blev bestemt ved 35 metoderne ifølge Sanger (10) og Maxam-Gilbert (11). De fragmenter, der skulleThe nucleotide sequence of the FMDH gene and the surrounding region was determined by the methods of Sanger (10) and Maxam-Gilbert (11). The fragments that should
DK 175647 B1 IDK 175647 B1 I
sekventeres, blev genereret ved at fjerne DNA indeholdende genet med Bal31 . Isequenced, was generated by removing DNA containing the gene with Bal31. IN
Fig. 4 viser, at alle genets regioner blev sekventeret flere gange i begge retninger. HFIG. 4 shows that all the regions of the gene were sequenced several times in both directions. H
I tvivlstilfælde blev data fra M13-metoden korrigeret med data fra Maxam- IIn case of doubt, data from the M13 method were corrected with data from Maxam-I
Gilbertmetoderne. Nucleotidsekvensen er vist i fig. 5. Genet indeholder en åben IGilbert methods. The nucleotide sequence is shown in FIG. 5. The gene contains an open I
5 læseramme (ORF) på 1020 nucleotider og koder for et protein på 340 Da. I5 reading frame (ORF) of 1020 nucleotides and encodes a protein of 340 Da. IN
Proteinets molekylvægt, som beregnet fra disse data, er 35700 Da, som er i HThe molecular weight of the protein, as calculated from these data, is 35700 Da, which is in H
god overensstemmelse med de værdier, der er opnået af SDS-PAGE for oprenset Hgood agreement with the values obtained by SDS-PAGE for purified H
protein. Genet blev positivt identificeret som værende FMDH-genet ved at sam- Iprotein. The gene was positively identified as being the FMDH gene by co-I
menligne genets N-ende afledt af DNA-sekvensen med data opnået ved NH-ende- Icompared the N-end of the gene derived from the DNA sequence with data obtained at NH-end I
10 analyse af det oprensede protein.10 analysis of the purified protein.
5'-3'-enderegioner H5'-3 'end regions H
I eukaryoternes 5'-kontrol regulerende region er en fælles sekvens HIn the 5 'control regulatory region of the eukaryotes, a common sequence is H
15 -3A(9)XXlAUG4GX6py blevet angivet at være nødvendig for effektivt transskribe- I15 -3A (9) XXlAUG4GX6py has been reported to be necessary for efficient transcription.
rede og translaterede gener (12, 13). I FMDH-genet følges reglen kun delvis hvorprepared and translated genes (12, 13). In the FMDH gene, the rule is only partially followed where
sekvensen -3AUC+1AUG+4AX+6A er til stede. Den første ATG er efterfulgt af Ithe sequence -3AUC + 1AUG + 4AX + 6A is present. The first ATG is followed by I
stopcodoner i alle læserammer. Sekvensen CTATAAATA, der i eukaryoter er Istop codons in all reading frames. The sequence CTATAAATA that in eukaryotes is I
involveret i transskriptionsinitiering, findes ved -40-stillingen. Andre træk, derinvolved in transcription initiation, found at the -40 position. Other features that
20 formodes at spille en rolle i transskriptionskontrol i gæren S. cerevisiae, såsom H20 is thought to play a role in transcriptional control in the yeast S. cerevisiae, such as H
CAACAA eller CACACA (12) er ikke til stede i FMDH. ICAACAA or CACACA (12) are not present in FMDH. IN
I de fleste gærstammer, der er blevet undersøgt indtil nu, indeholder genets 3’- IIn most yeast strains that have been studied to date, the gene contains 3'-I
enderegion karakteristiske sekvenser, som, ifølge visse forfattere, spiller en rolle i Iend region characteristic sequences which, according to some authors, play a role in I
25 den rigtige transskriptionsterminering og virker som polyadenyleringssignaler (14, I25 the correct transcription termination and acts as polyadenylation signals (14, 1
15). Zared og Sherman (16) og Bennetzen og Hall (17) formodede at en sekvens I15). Zared and Sherman (16) and Bennetzen and Hall (17) assumed that a sequence I
T-rig...TAG..-.TAGT(eller TATGT)...AT...TTT eller T...TAAATAA...A(eller . IT-rig ... TAG ..-. TAG (or TATGT) ... AT ... TTT or T ... TAAATAA ... A (or. I
G)...T...A-..AT spiller disse roller. Lighed med disse fælles sekvenser findes IG) ... T ... A - .. AT plays these roles. Similarities to these common sequences can be found
sjældent i FMDH-genet. Nogle repeterende sekvenser blev fundet, når nogle Hrarely in the FMDH gene. Some repetitive sequences were found when some H
30 potentielle signaler blev søgt. Sekvenserne TTGGA og TAGG er gentaget to gange. IThirty potential signals were sought. The sequences TTGGA and TAGG are repeated twice. IN
A A ATAT AA, som ligner et polyadenyleringssignal fra dyr, findes 30 bp nedstrøms IA A ATAT AA, similar to an animal polyadenylation signal, is found 30 bp downstream I
for ORF's ende. Ifor the end of the ORF. IN
13 DK 175647 B1 EKSEMPEL 1EXAMPLE 1
For at kunne være i stand til at undersøge de funktionelle regioner af FMDH 5’-opstrømsregionen, blev en serie deletioner fra denne region isoleret. For at opnå 5 promotoren uden det strukturelle gen blev et pUC-type plasmid indeholdende det 1,4 kb Barn Hl-fragment først udsat for Bal31 exonucleasebehandling efter plas-midet var blevet lineariseret pi et rigtigt punkt. I begyndelsen blev opmærksomheden fokuseret på det promotorfragment, som havde deletionen i positionen -5 fra det første ATG; fragmentet kaldes "-5-promotor". Også "-9-” deleteret 10 promotor blev anvendt i visse eksperimenter.In order to be able to investigate the functional regions of the FMDH 5 'upstream region, a series of deletions from this region were isolated. To obtain the promoter without the structural gene, a pUC-type plasmid containing the 1.4 kb Barn HI fragment was first subjected to Bal31 exonuclease treatment after the plasmid had been linearized at a proper point. Initially, attention was focused on the promoter fragment that had the deletion at position -5 from the first ATG; the fragment is called "-5 promoter". Also the "-9-" deleted promoter was used in certain experiments.
"-5-Promotoren” blev fusioneret til det bakterielle β-lactamasegens (Bla) åbne læsningsramme. Genet blev anvendt i laboratoriet som en meget egnet model til at undersøge ekspressionen af fremmed protein under kontrol af gærpromotorer.The "-5 promoter" was fused to the open reading frame of the bacterial β-lactamase (Bla) gene. The gene was used in the laboratory as a very suitable model to study the expression of foreign protein under the control of yeast promoters.
15 p-lactamasens signalsekvens var ikke til stede i den opnåede konstruktion, hvilket muliggjorde målingen af enzymaktivitet i gærproteinekstrakter. Det fusionerede DNA-fragment blev klonet ind i plasmidet indeholdende H.polymorpha-autonomt replikerende sekvens (HARS1) (fig. 6) og S. cerev/s/ae-Ura3-genet, som virker som 20 markør for H. polymorpha-transformation. Mængden af β-lactamase, der blev produceret i H. poiymorpha-transformanter, blev målt ved enzymatiske tests og immuntests. Tabel 1 viser β-lactamases syntese under kontrol af FMDH-promotor i celler dyrket i forskellige medier (forskellige carbonkilder).The signal sequence of the β-lactamase was not present in the obtained construct, enabling the measurement of enzyme activity in yeast protein extracts. The fused DNA fragment was cloned into the plasmid containing H. polymorpha autonomously replicating sequence (HARS1) (Fig. 6) and the S. cerev / s / ae Ura3 gene, which acts as a marker for H. polymorpha transformation. . The amount of β-lactamase produced in H. poiymorpha transformants was measured by enzymatic tests and immune tests. Table 1 shows the synthesis of β-lactamase under control of FMDH promoter in cells grown in different media (different carbon sources).
25 Tabel 1 viser, at den isolerede FMDH-promotor kontrolleres rigtigt og strengt af repressions/derepressions/induktionsmekanismen. En estimation af mængden af syntetiseret protein viser, at systemet ifølge opfindelsen er karakteriseret ved meget effektiv transskription og translation af det fremmede protein. I kontroleksperimentet blev β-lactamase udtrykt i S. cerevisiae under kontrol af en stærk S.Table 1 shows that the isolated FMDH promoter is properly and strictly controlled by the repressor / derepression / induction mechanism. An estimate of the amount of synthesized protein shows that the system of the invention is characterized by highly efficient transcription and translation of the foreign protein. In the control experiment, β-lactamase was expressed in S. cerevisiae under the control of a strong S.
30 cerev/s/ae-PDC-(pyruvat decarboxylasejpromotor på et 2-pm-plasmid (50 kopier pr. celle). De opnåede værdier var lavere med en faktor 5-6 end værdierne for H. polymorpha.30 cerev / s / ae PDC (pyruvate decarboxylase yeast promoter on a 2-pm plasmid (50 copies per cell). The values obtained were lower by a factor of 5-6 than the values for H. polymorpha.
I DK 175647 B1 II DK 175647 B1 I
IIN
Tabel 1: Produktion af β-lactamase ITable 1: Production of β-lactamase I
I klon enzymatisk test immuntest IIn clone enzymatic test immunoassay I
5 (U/mg protein) (% af totalt celleprotein) I5 (U / mg protein) (% of total cell protein) I
I GLU GLIC Met-OH GLU GLIC Met-OH II GLU GLIC Met-OH GLU GLIC Met-OH I
I 10 II 10 I
I Ir 45 30 4000 15000 3-4 6-8 II Ir 45 30 4000 15000 3-4 6-8 I
I L 5 70 10000 28000 6-8 10-12 II L 5 70 10000 28000 6-8 10-12 I
I 15 GLU - vækst pi 3% glucose (repression) I GLIC - vækst på 1% glycerol (derepression)In 15 GLU - growth in 3% glucose (repression) In GLIC - growth in 1% glycerol (derepression)
I Met-OH - vækst på 1% methanol (induktion) IMet-OH - growth of 1% methanol (induction) I
I I alle tilfælde blev sen-logaritmiskfaseceller udtaget til måling. Det plasmid, der IIn all cases, late-logarithmic phase cells were sampled. The plasmid that I
20 indeholder fusionen, har 50-60 kopier pr. celle. I20 contains the merger, has 50-60 copies per cell. IN
I EKSEMPEL 2 IEXAMPLE 2 I
I Ekspression af gener, der koder for hepatitis B overfladeantigener (HSBAg) under IExpression of genes encoding hepatitis B surface antigens (HSBAg) under I
I 25 kontrol af FMDH-promotor IIn control of FMDH promoter I
I 1. Konstruktion af det plasmid, der udtrykker hepatitisproteinerne IConstruction of the plasmid expressing hepatitis proteins I
I Et hepatitis B 1,2 kb DNA-fragment koder for et langt S2-Sl-S-protein (pre-S), IIn A hepatitis B 1.2 kb DNA fragment encodes a long S2-S1-S protein (pre-S), I
I 30 som efter behandling (fjernelse af S2-Sl-delen) omdannes til S-proteinet. Virus- IIn 30 as after treatment (removal of the S2-S1 moiety), the S protein is converted. Virus I
I kappen består af begge proteiner. IThe envelope consists of both proteins. IN
I Til de nuværende ekspressionseksperimenter er der anvendt 1,2 kb fragmentet II For the present expression experiments, the 1.2 kb fragment I has been used
I samt en kortere del af dette DNA, som kun koder for S-protein. Sidstnævnte er IIn as well as a shorter portion of this DNA, which encodes only S protein. The latter is you
I 35 også i stand til at danne antigene pseudo-viruspartikler. II also capable of forming antigenic pseudo-virus particles. IN
DK 175647 B1 IDK 175647 B1 I
Begge hepatitis S-gener er blevet sat ind i den universale vektor. Som vist i fig. 1 IBoth hepatitis S genes have been inserted into the universal vector. As shown in FIG. 1 I
og skema 1 indeholder vektoren en autonomt replikerende sekvens (HÅRS), UraS4 Iand Scheme 1, the vector contains an autonomously replicating sequence (HAIR), UraS4 I
genet fra S. cerevisiae som en selektiv markør og H. polymorpha-promotor Ithe gene from S. cerevisiae as a selective marker and H. polymorpha promoter I
5 efterfulgt af en kort linker. Efter S-genet er der placeret et DNA-fragment I5 followed by a short linker. After the S gene, a DNA fragment I is located
I stammende fra H. polymorpha-MOX-genet, som udviser transskriptionsterminator- II derived from the H. polymorpha-MOX gene, which exhibits transcription terminator I
funktionen. Fig. 7 viser konstruktionen indeholdende S-genet. Ifunction. FIG. Figure 7 shows the construct containing the S gene. IN
2. Transformation af H. polymorpha og screening for kloner, der udtrykker HSBAg I2. Transformation of H. polymorpha and screening for clones expressing HSBAg I
H. polymorpha Ura3 mutant LR9 blev transformeret med de ovenfor beskrevne IH. polymorpha Ura3 mutant LR9 was transformed with the I described above
plasmider. Gærtransformanterne blev derefter omgående screenet for HSBAg- Iplasmids. The yeast transformants were then immediately screened for HSBAg-I
ekpression under anvendelse af polyklonale antistoffer. Som immunscreening er Iexpression using polyclonal antibodies. As an immune screening, you are
der anvendt western blotting (peroxidaseprotein A eller, for at forbedre følsom- Iused western blotting (peroxidase protein A or, to improve sensitive I)
15 heden, ,25J-protein A). Screeningsfremgangsmåden blev hæmmet betragteligt af IPresently, 25J protein A). The screening method was significantly inhibited by I
seraernes stærke krydsreaktivitet med H. polymorpha råekstraktproteiner. Det Ithe strong cross-reactivity of the sera with H. polymorpha crude extract proteins. The ten
lykkedes imidlertid at vise det udtrykte antigen. Ihowever, succeeded in showing the expressed antigen. IN
Fig. 8 viser western blotting-proteinekstrakterne fra celler transformeret med IFIG. 8 shows the western blotting protein extracts from cells transformed with I
20 hepatitisgener dyrket på methanol, og den viser yderligere et antigent bånd med I20 hepatitis genes grown on methanol and it further shows an antigenic band with I
S-proteinets forventede molekylvægt. Kontrolekstrakterne fra transformanter IExpected molecular weight of the S protein. The control extracts from transformants I
dyrket på glucose (repression af FMDH-promotor) har ikke dette bånd. De re- Igrown on glucose (repression of FMDH promoter) does not have this band. The re- I
sultater, der er vist i fig. 8, stammer fra transformanter, der indeholder FMDH -9- Iresults shown in FIG. 8, are derived from transformants containing FMDH -9- I
promotor, dvs. promotor, der er deriveret ved at fjerne DNA-fragmentet inde- Ipromoter, ie promoter derived by removing the DNA fragment inside I
25 holdende promotorfunktionen til position -9 fra den første ATG.25 holding the promoter function to position -9 from the first ATG.
Der blev også ved at teste Sl-nuclease kortlægning analyseret mRNA produceret i transformanterne. Resultaterne tyder på, at transformanterne producerer mange S-gen-mRNA-molekyler og at transskriptionen er strengt kontrolleret af repres-30 sions/derepressions/induktionsmekanismen.Also, by testing S1 nuclease mapping, mRNA produced in the transformants was analyzed. The results indicate that the transformants produce many S-gene mRNA molecules and that the transcription is strictly controlled by the repression / derepression / induction mechanism.
Resultaterne ovenfor blev bekræftet ved en positiv RlA-test af proteinekstrakter stammende fra transformerede celler. Ved testen blev der anvendt monoklonale antistoffer rettet mod nativt S-protein.The above results were confirmed by a positive R1A test of protein extracts derived from transformed cells. The test used monoclonal antibodies directed against native S protein.
------ I DK 175647 B1------ I DK 175647 B1
EKSEMPEL 3 IEXAMPLE 3 I
Ekspression og sekretion af a-amylase fra Schwanniomyces castellii i Η. IExpression and secretion of α-amylase from Schwanniomyces castellii in Η. IN
polymorpha under kontrol af FMDH-promotor Ipolymorpha under the control of FMDH promoter I
For at undersøge muligheden for ekspression i H. polymorpha blev der ITo investigate the possibility of expression in H. polymorpha, I
valgt et α-amylasegen fra gæren S. castellii. Genet koder for det 56 kb protein, Iselected an α-amylase gene from the yeast S. castellii. The gene encodes the 56 kb protein, I
som i S. castellii fuldstændigt udsondres til mediet; denne sekretionsprocess følges Iwhich in S. castellii is completely secreted to the medium; this secretion process is followed
af glycolysering af proteinet. Iof glycolysis of the protein. IN
Et EcoRI-fragment omfattende strukturgenet og dets terminator blev sat ind i IAn EcoRI fragment comprising the structural gene and its terminator was inserted into I
ekspressionsplasmidet (fig. 9). Ithe expression plasmid (Fig. 9). IN
H. polymorpha blev transformeret med dette plasmid, og transformanterne blev IH. polymorpha was transformed with this plasmid and the transformants became I
15 testet for ekspression og sekretion af -amylase under anvendelse af en I15 tested for expression and secretion of amylase using an I
stivelsesnedbrydningstest (ringdannelse på stivelse-iodplader) eller en enzymkinetik testkit (α-amylase Merkotest A). Resultaterne viser klart, at a-amylase produceres under kontrol af FMDH-promotor. Endvidere udsondres proteinet til mediet. Fig. 10 viser at i midt-logfase udsondres ca. 90% af proteinet 20 til mediet. Stivelse-iodpladetesten bekræftede disse resultater (fig. 11).starch degradation test (starch iodine plate annealing) or an enzyme kinetics test kit (α-amylase Merkotest A). The results clearly show that α-amylase is produced under the control of FMDH promoter. Furthermore, the protein is secreted into the medium. FIG. 10 shows that in the mid-log phase, approx. 90% of the protein 20 to the medium. The starch iodine plate test confirmed these results (Fig. 11).
Disse data viser også, at det er muligt at opnå et højt ekspressionsniveau under derepresserede forhold. Specielt denne egenskab af systemet er meget værdifuld og vigtig til bioteknologiske formål, dvs. at syntesen af fremmede proteiner kan 25 starte uden tilsætning af methanol som inducer, ved bare at udtømme glucose i mediet og/eller ved at tilsætte glycerol. Et system, som kan behandles på en sådan enkel måde, og som samtidigt tilvejebringer en meget effektiv ekspression, der giver mængder af proteiner egnet til anvendelse i den bioteknologiske industri, er ikke tidligere blevet tilvejebragt.These data also show that it is possible to achieve a high level of expression under depressed conditions. In particular, this property of the system is very valuable and important for biotechnological purposes, ie. that the synthesis of foreign proteins can start without the addition of methanol as an inducer by simply depleting glucose in the medium and / or by adding glycerol. A system which can be processed in such a simple manner, and at the same time provides a very efficient expression, giving quantities of proteins suitable for use in the biotechnology industry, has not been previously provided.
I separate undersøgelser er det blevet vist, at andre H. polymorpha-promotorer såsom MOX og DAS ikke reagerer så stærkt på derepressionssignaler. Med DAS-promotor bliver ekspression under derepresserede forhold yderligere formindsket af post-transskriptionel kontrol.In separate studies, it has been shown that other H. polymorpha promoters such as MOX and DAS do not respond as strongly to derepression signals. With DAS promoter, expression under derepressed conditions is further diminished by post-transcriptional control.
DK 175647 B1 IDK 175647 B1 I
REFERENCER IREFERENCES I
11. Douma, A.L., Veenhuis, M., Koning, W.r Evers, M., og Harder, W., Arch, of I11. Douma, A.L., Veenhuis, M., King, W.r Evers, M., and Harder, W., Arch, of I
Microbiol., (1985), 145, 237. IMicrobiol., (1985), 145, 237. I
2. Roggenkamp, R., Janowicz, Z., Stanikowski, B. og Hollenberg, C.P., (1984) I2. Roggenkamp, R., Janowicz, Z., Stanikowski, B. and Hollenberg, C.P., (1984) I
Mol. Gen. Genet. 194, 489*493. IMoth. Gen. Genet. 194, 489 * 493. IN
3. Ledeboer, A.M., Maat, J., Visser, C., Bos, J.W., Verrips, C.T., Janowicz, Z.; I3. Ledeboer, A.M., Maat, J., Visser, C., Bos, J.W., Verrips, C.T., Janowicz, Z.; IN
10 Eckart, M., Roggenkamp, R. og Hollenberg, C.P. (1985) Nucleic Acid Res., I10 Eckart, M., Roggenkamp, R. and Hollenberg, C.P. (1985) Nucleic Acid Res., I
3063. I3063. I
4. Ellis, S. B., et al.. Isolation of alcohol oxidase and two other methanol I4. Ellis, S. B., et al. Isolation of alcohol oxidase and two other methanol I
regulatory genes from the yeast Pichia pastoris. Molecular and Cellular Iregulatory genes from the yeast Pichia pastoris. Molecular and Cellular I
15 Biology (1985) 5:1111-21. IBiology (1985) 5: 1111-21. IN
5. Janowicz, Z.A., Eckart, M. R., Drewke, C., Roggenkamp, R.O., Hollenberg, I5. Janowicz, Z.A., Eckart, M.R., Drewke, C., Roggenkamp, R.O., Hollenberg, I.
C.P., Maat, J., Ledeboer, A.M., Visser, C. og Verrips, C.T., Nucl. acid Res.C.P., Maat, J., Ledeboer, A.M., Visser, C. and Verrips, C.T., Nucl. acid Res.
(1985) 13, 3043.(1985) 13, 3043.
6. Williams, B. G. og Blattner, F.R. (1979) J. Virol. 29, 555.6. Williams, B.G. and Blattner, F.R. (1979) J. Virol. 29, 555.
7. Goldbach, R.W., Borst, P., Bollen-de-Boer, J.E. og van Bruggen, E.F.J.7. Goldbach, R.W., Borst, P., Bollen-de-Boer, J.E. and van Bruggen, E.F.J.
(1978) Biochem. et Biophys. Acta 521, 169-186.(1978) Biochem. and Biophys. Acta 521, 169-186.
8. Favarolo, J., Treisman, R. og Kamen, R. (1980) Methods in Enzymology 65, 718.8. Favarolo, J., Treisman, R. and Kamen, R. (1980) Methods in Enzymology 65, 718.
9. BOnemann, H., Westhoff, P. og Hermann, R.G. (1982) Nucl. Acid. Res. 10, 30 7163-7178.9. BOnemann, H., Westhoff, P. and Hermann, R.G. (1982) Nucl. Acid. Res. 10, 30 7163-7178.
10. Sanger, F., Coulson, A.R., Barreli, B.G., Smith, A.J.H. og Roe, B.A. (1980) J.10. Singer, F., Coulson, A.R., Barreli, B.G., Smith, A.J.H. and Roe, B.A. (1980) J.
Mol. Biol. 143, 161-178.Moth. Biol. 143, 161-178.
35 11. Maxam, A.M. og Gilbert, Methods Enzymol, (1980) 65, 499.11. Maxam, A.M. and Gilbert, Methods Enzymol, (1980) 65, 499.
I DK 175647 B1In DK 175647 B1
12. van Dijken, S.P. Veenhuis, M. og Harder, W. (1982) Ann. N.Y. Acad. Sci. I12. van Dijken, S.P. Veenhuis, M. and Harder, W. (1982) Ann. NEW. Acad. Sci. IN
386, 200-216. I386, 200-216. IN
5 13. Kozak, M. (1981) Nucl. Acid Res. 9, 5233-5252. I13. Kozak, M. (1981) Nucl. Acid Res. 9, 5233-5252. IN
14. Sahm, H. (1977) Adv. Biochem. Eng. 6, 77-103. I14. Sahm, H. (1977) Adv. Biochem. Meadow. 6, 77-103. IN
15. Veenhuis, M., van Dijken, J.P. og Harder, W. (1983) Adv. Microbiol. Physiol. I15. Veenhuis, M., van Dijken, J.P. and Harder, W. (1983) Adv. Microbiol. Physiol. IN
10 23, 2-76. I10 23, 2-76. IN
16. Zaret, K.S. og Sherman, F. (1982) Cell 28, 563-573. I16. Zaret, K.S. and Sherman, F. (1982) Cell 28, 563-573. IN
17. Bennetsen, J.H. og Hall, B.D. (1982) J. Biol. Chem. 257, 3018-3025. I17. Bennetsen, J.H. and Hall, B.D. (1982) J. Biol. Chem. 257, 3018-3025. IN
Claims (34)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK595788A DK175647B1 (en) | 1988-10-26 | 1988-10-26 | New DNA contg. formate dehydrogenase gene and its control regions - providing high level expression of foreign proteins under stringent control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK595788 | 1988-10-26 | ||
DK595788A DK175647B1 (en) | 1988-10-26 | 1988-10-26 | New DNA contg. formate dehydrogenase gene and its control regions - providing high level expression of foreign proteins under stringent control |
Publications (3)
Publication Number | Publication Date |
---|---|
DK595788D0 DK595788D0 (en) | 1988-10-26 |
DK595788A DK595788A (en) | 1990-04-27 |
DK175647B1 true DK175647B1 (en) | 2005-01-03 |
Family
ID=8146436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK595788A DK175647B1 (en) | 1988-10-26 | 1988-10-26 | New DNA contg. formate dehydrogenase gene and its control regions - providing high level expression of foreign proteins under stringent control |
Country Status (1)
Country | Link |
---|---|
DK (1) | DK175647B1 (en) |
-
1988
- 1988-10-26 DK DK595788A patent/DK175647B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DK595788A (en) | 1990-04-27 |
DK595788D0 (en) | 1988-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5389525A (en) | DNA-molecules coding for FMDH control regions and structural gene for a protein having FMDH-activity and their use thereof | |
Ellis et al. | Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris | |
Sarthy et al. | Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae | |
Guiard | Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L (+)‐lactate cytochrome c oxidoreductase (cytochrome b2). | |
Oudshoorn et al. | Subunit II of yeast QH2: cytochrome‐c oxidoreductase: Nucleotide sequence of the gene and features of the protein | |
FI81379B (en) | Use of Kluyveromyces as a host for transforming and expressing foreign genes | |
Einerhand et al. | Regulation of transcription of the gene coding for peroxisomal 3‐oxoacyl‐CoA thiolase of Saccharomcyes cerevisiae | |
JP2641457B2 (en) | Yeast promoter | |
Janowicz et al. | Cloning and charactesization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha | |
Schultz et al. | Regulated overproduction of the GAL4 gene product greatly increases expression from galactose-inducible promoters on multi-copy expression vectors in yeast | |
Lawson et al. | Disruption and mutagenesis of the Saccharomyces cerevisiae PDX1 gene encoding the protein X component of the pyruvate dehydrogenase complex | |
Cohen et al. | Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2 | |
Uesono et al. | Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85 | |
Bitter et al. | Expression of interferon-gamma from hybrid yeast GPD promoters containing upstream regulatory sequences from the GAL1-GAL10 intergenic region | |
Scott et al. | Characterization of TPI gene expression in isogeneic wild-type and gcr1-deletion mutant strains of Saccharomyces cerevisiae | |
Ruohonen et al. | Optimization of Bacillus α‐amylase production by Saccharomyces cerevisiae | |
Raschke et al. | Inducible expression of a heterologous protein in Hansenula polymorpha using the alcohol oxidase 1 promoter of Pichia pastoris | |
US5627046A (en) | Yeast promoter and its use | |
US5068185A (en) | Trains of yeast for the expression of heterologous genes | |
US5616474A (en) | K. lactis transaldolase gene promoter and use thereof | |
DK175647B1 (en) | New DNA contg. formate dehydrogenase gene and its control regions - providing high level expression of foreign proteins under stringent control | |
Tikhomirova et al. | Transformation of methylotrophic yeast Hansenula polymorpha: cloning and expression of genes | |
CA1339012C (en) | Dna-molecules coding for fmdh (formate dehydrogenase) control regions and structured gene for a protein having fmdh-activity and their uses | |
Velati-Bellini et al. | High levels of inducible expression of cloned β-galactosidase of Kluyveromyces lactis in Saccharomyces cerevisiae | |
KR100252787B1 (en) | Multi-parallel introduction self-replicating sequence from Hansenula polymorpha |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |