DK175254B1 - Phosphinothricin resistance gene sequence and its use - Google Patents
Phosphinothricin resistance gene sequence and its use Download PDFInfo
- Publication number
- DK175254B1 DK175254B1 DK198704378A DK437887A DK175254B1 DK 175254 B1 DK175254 B1 DK 175254B1 DK 198704378 A DK198704378 A DK 198704378A DK 437887 A DK437887 A DK 437887A DK 175254 B1 DK175254 B1 DK 175254B1
- Authority
- DK
- Denmark
- Prior art keywords
- ptt
- ptc
- resistance
- gene sequence
- fragment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/006—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
- C12P41/007—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/64—General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8209—Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
- C12N15/8277—Phosphinotricin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Steroid Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Catalysts (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
DK 175254 B1 iDK 175254 B1 i
Phosphinothricin (PTC, 2-amino-4-methylphosphinosmør-syre) er en glutaminsyntetase-inhibitor. PTC er en "byggesten" i antibiotikummet phosphinothricyl-alanyl-alanin.Phosphinothricin (PTC, 2-amino-4-methylphosphinobutyric acid) is a glutamine synthetase inhibitor. PTC is a "building block" of the phosphinothricyl-alanyl-alanine antibiotic.
Dette tripeptid (PTT) er aktivt overfor gram-positive og 5 gram-negative bakterier og ligeledes overfor svampen Botrytis , cinerea (Bayer et al., Helv. Chim. Acta 55 (1972) 224). PTTThis tripeptide (PTT) is active against gram-positive and 5 gram-negative bacteria and also against the fungus Botrytis, cinerea (Bayer et al., Chim. Acta 55 (1972) 224). PTT
produceres af stammen Streptomyces viridochromogenes Tu 494 (DSM 40736, DSM 4112).is produced by the strain Streptomyces viridochromogenes Tu 494 (DSM 40736, DSM 4112).
Fra tysk patentskrift nr. 2.717.440 er det kendt, at 10 PTC virker som totalherbicid. I den offentliggjorte PCT-ansøgning WO nr. 86/02.097 er beskrevet planter, hvis resistens mod PTC skyldes, at de overproducerer glutaminsyntetase. Sådanne overproduktioner, eksempelvis som følge af en genamplifikation, gemmer dog risikoen for ustabilitet i 15 sig. Såfremt der er tale om en sådan ustabilitet, ville overproduktionen af glutaminsyntetase således gå tilbage, og den kompetitive inhibitorvirkning af PTC ville atter blive virksom.From German Patent No. 2,717,440 it is known that 10 PTC acts as total herbicide. In published PCT application WO 86 / 02.097, plants whose resistance to PTC is due to their overproduction of glutamine synthetase are described. However, such overproductions, for example as a result of a gene amplification, save the risk of instability itself. Thus, in the case of such instability, the overproduction of glutamine synthetase would decline and the competitive inhibitory effect of PTC would become effective again.
Opfindelsen, som er defineret i patentkravene, angår 20 i modsætning hertil en resistensgensekvens mod PTC og anvendelsen deraf til fremstilling af PTC-resistente planter. Yderligere kan denne gensekvens ligeledes finde anvendelse som resistensmarkør. Endvidere egner genet sig til selektiv N-acetylering af L-formen af racemisk PTC.In contrast, the invention defined in the claims relates to a resistance gene sequence against PTC and its use in the production of PTC resistant plants. Furthermore, this gene sequence can also be used as a resistance marker. Furthermore, the gene is suitable for selective N-acetylation of the L-form of racemic PTC.
25 Resistensgensekvensen ifølge opfindelsen mod PTC kan fås ud fra hele DNA'et af Streptomyces viridochromogenes < DSM 4112, der er selekteret med hensyn til PTT-resistens, ved klipning med BamHI, kloning af et 4,0 kb stort fragment og selektion med hensyn til PTT-resistens. Restriktionskortet 30 (figur 1) karakteriserer dette 4,0 kb-fragment nærmere.The resistance gene sequence of the invention against PTC can be obtained from the entire DNA of Streptomyces viridochromogenes <DSM 4112 selected for PTT resistance, by clipping with BamHI, cloning a 4.0 kb fragment and selection for PTT resistance. The restriction map 30 (Figure 1) further characterizes this 4.0 kb fragment.
Ved kloning af delområder af dette 4 kb-fragment lokaliseres beliggenheden af kodeområdet nærmere. Herved viser det sig, at resistensgenet ligger på det 1,6 kb lange Sstll-SstI-fragment (positionerne 0,55 - 2,15 i fig. 1).By cloning subregions of this 4 kb fragment, the location of the code area is located closer. Hereby, it appears that the resistance gene is on the 1.6 kb SstII-SstI fragment (positions 0.55 - 2.15 in Fig. 1).
35 Ved nedbrydning med Bglll fås det 0,8 kb store fragment, som efter indbygning i et plasmid og transformation af S.By digestion with BglII, the 0.8 kb fragment is obtained which, after incorporation into a plasmid and transformation of S.
I DK 175254 B1 II DK 175254 B1 I
I 2 II 2 I
I lividans giver PTT-resistens. Denne resistens er betinget IIn lividans, PTT provides resistance. This resistance is conditional
I af N-acetyleringen af PCT. II of the N-acetylation of PCT. IN
I Sekvenseringen ifølge Maxam og Gilbert af det 0,8 kb IIn the sequencing according to Maxam and Gilbert of the 0.8 kb I
I lange fragment giver DNA-sekvensen I (bilag). Fra de åbne IIn long fragments, the DNA sequence yields I (appendix). From the open I
I 5 læserammer i denne sekvens kan man finde beliggenheden af '' IIn 5 reading frames in this sequence one can find the location of '' I
I resistensgenet (fra stilling 258) . Slutningen af gensekvensen IIn the resistance gene (from position 258). End of gene sequence I
I ligger ved den næstsidste af de gengivne nucleotider (stil- IYou are at the penultimate of the rendered nucleotides (style I
I ling 806), dvs., at det sidste nucleotid (stilling 807) er IIn length 806), i.e., the last nucleotide (position 807) is I
I begyndelsen af stop-kodonet. IAt the beginning of the stop codon. IN
I 10 I DNA-sekvensen I er "Shine-Dalgarno-Sekvensen" frem- IIn the 10 I DNA sequence I, the "Shine-Dalgarno Sequence" is produced
I hævet ved understregning, ligesom det som start-kodon vir- IYou raised by underlining, just as it does as a start codon
I kende GTG. Den bestemmende læseramme er ligeledes udtrykt IYou know GTG. The defining reading frame is also expressed in I
I i den øverste linie. IIn the top line. IN
I DNA-sekvensen II viser restriktionsskæringsstederne IIn the DNA sequence II, the restriction cutting sites I show
I 15 i det sekvenserede gen. Enzymer, som skærer sekvensen mere IIn 15 of the sequenced gene. Enzymes that cut the sequence more
I end seks gange, er ikke angivet. IMore than six times, not specified. IN
I Antibiotikummet PTT optages af bakterier og nedbrydes IIn the antibiotic PTT is absorbed by bacteria and degraded
I til dannelse af PTC. Dette inhiberer i bakterier ligeledes II to form PTC. This also inhibits bacteria
I glutaminsyntetasen, således at bakterierene dør af glutamin- IIn the glutamine synthetase, so that the bacteria die from glutamine-I
I 20 mangel. PTT-producerende bakterier skal følgelig besidde en IIn 20 shortages. Accordingly, PTT-producing bacteria must possess an I
I mekanisme, som beskytter dem mod virkningen af PTT, altså IIn mechanism that protects them from the effect of PTT, that is to say
I enten hindrer genoptagelsen af det producerede PTT eller IEither hinder the resumption of the produced PTT or I
I muliggør en ændring af nedbrydningsproduktet PTC. Overras- IYou enable a change of the degradation product PTC. Surprise- I
I kende er PTT-producenten S. viridochromogenes DSM 4112 imid- IIn the known PTT manufacturer S. viridochromogenes DSM 4112 is imid
I 25 lertid følsomt overfor dets eget antibiotikum. Uventet er IFor 25 years sensitive to its own antibiotic. Unexpectedly, you are
I det imidlertid lykkedes, ved selektion med hensyn til PTT- IHowever, it succeeded in selecting PTT-I
I -resistens med den overraskende høje rate på ca. 10“^ at ^ IIn-resistance with the surprisingly high rate of approx. 10 “^ at ^ I
I finde selektanter, som er resistente overfor PTT og lige- IYou will find selectants that are resistant to PTT and equal
I ledes undertrykker baggrundsvæksten af de nærliggende kolo- „ IYou are led to suppress the background growth of the nearby colonies
I 30 nier. IIn 30 kidneys. IN
I Ud fra DNA fra disse selektanter anlægges en genbank II From DNA of these selectants, a gene bank I is created
I ved, at DNA'et isoleres, spaltes med BamHI og ligeres til IYou know that the DNA is isolated, cleaved with BamHI and ligated to I
I en streptomycetvektor. Ligeringsblandingen transformeres i IIn a streptomycet vector. The ligation mixture is transformed into I
I den i handelen gængse stamme S. lividans TK 23, idet der IIn the commercially available strain S. lividans TK 23, where I
I 35 for hver 1 mg ligeringsblanding fås fra ca. 5000 til 10.000 II 35 for each 1 mg ligation mixture is obtained from ca. 5000 to 10,000 I
I transformanter med en indbygning fra ca. 1 til ca. 5 kb. IIn transformants with a built-in of approx. 1 to approx. 5 kb. IN
3 DK 175254 B13 DK 175254 B1
Blandt transformanterne befinder sig PTT-resistente S. livi-dans-stammer. Ved isolering af plasmidet og retransformation i S. lividans kan det vises, at resistensen er plasmidkodet.Among the transformants are PTT-resistant S. livi-dance strains. Upon isolation of the plasmid and retransformation in S. lividans, it may be shown that the resistance is plasmid encoded.
Det for resistensen ansvarlige gen ligger på et 4 kb-BamHI-5 -fragment (fig. l) . Kodeområdet er lokaliseret på det 0,8 kb lange Bglll-fragment. BamHI-fragmentet indeholder ikke nogle skæringssteder for enzymerne Clal, EcoRI, EcoRV, Hind-III, Hpal, Kpnl, Pvul, PvuII og Xhol.The gene responsible for resistance resides on a 4 kb Bam HI-5 fragment (Fig. 1). The code area is located on the 0.8 kb BglII fragment. The BamHI fragment does not contain any intersection sites for the enzymes Clal, EcoRI, EcoRV, Hind-III, Hpal, KpnI, PvuI, PvuII and XhoI.
Sammenligningen med restriktionskortet for et ikke 10 nærmere karakteriseret resistensgen fra S. hygroscopicus FERM BP-130/ATCC 21705 (europæisk patentansøgning med offentliggørelsesnummeret 173.327, fig. 7) viser, at resistensgensekvensen ifølge opfindelsen er forskelligt fra det kendte gen, hvilket man har fundet ved søgningen efter PTT-15 biosyntesegenerne.Comparison with the restriction map of an unspecified resistance gene from S. hygroscopicus FERM BP-130 / ATCC 21705 (European Patent Application Publication No. 173,327, Fig. 7) shows that the resistance gene sequence of the invention is different from the known gene found by the search for the PTT-15 biosynthetic genes.
Ved inkubation af celleekstrakter af S. viridochromo-genes DSM 4112 og S. lividans TK 23 på den ene side og de PTT-resistente S. viridochromogenes-selektanter og en plas-midbærende S. lividans-transformant på den anden side med 2 0 PTC og acetyl-koenzym A kan det vises, at de sidstnævnte celler viser en acetylerende aktivitet. Chromatografiske undersøgelsesresultater viser, at acetyleringen sker på aminogruppen.By incubating cell extracts of S. viridochromogenes DSM 4112 and S. lividans TK 23 on the one hand and the PTT-resistant S. viridochromogenes selectants and a plasmid bearing S. lividans transformant on the other side with 20 PTC and acetyl-coenzyme A, it can be shown that the latter cells show an acetylating activity. Chromatographic examination results show that acetylation occurs on the amino group.
Da man ligeledes, i E. coli kan konstatere en PTT-25 resistens, og resistensmekanismen således ligeledes fungerer i gram-negative bakterier, kan en resistens på grund af transportfænomener udelukkes. Resistensgesekvensen ifølge opfindelsen kan følgelig efter kobling til vegetabilske promotorer med egnede vektorer transformeres til planter, 30 og der kan således fremstilles PTT-resistente planter.Also, since in E. coli a PTT-25 resistance can be detected, and the resistance mechanism also functions in gram-negative bacteria, a resistance due to transport phenomena can be excluded. Accordingly, upon coupling to vegetable promoters with suitable vectors, the resistance sequence of the invention can be transformed into plants, and PTT-resistant plants can thus be produced.
N-acetyleringen af PTC kan ligeledes anvendes til racematadskillelse af syntetisk D,L-PTC, da der selektivt kun sker en acetylering af L-formen.The N-acetylation of PTC can also be used for racial separation of synthetic D, L-PTC since selectively only acetylation of the L-form occurs.
Opfindelsen angår følgelig også anvendelsen af resi-35 stensgensekvensen til selektiv N-acetylering af L-formen af racemisk PTC.Accordingly, the invention also relates to the use of the resistance gene sequence for selective N-acetylation of the L-form of racemic PTC.
I DK 175254 B1 II DK 175254 B1 I
i 4 Ii 4 I
I Den af resistensgensekvensen ifølge opfindelsen kodede IIn the I gene encoded by the resistance gene sequence of the invention
I PCT--acetyltransferase kan altså benyttes til at adskille IThus, in PCT acetyltransferase can be used to separate I
I racemisk PCT, såsom den eksempelvis kan fremstilles ifølge IIn racemic PCT such as may be prepared, for example, according to I
I tysk patentskrift nr.2.717.440, i de optiske antipoder ved, IIn German Patent No. 2,717,440, in the optical antipodes, I
I 5 at racematet udsættes for den acetylerende virkning af dette IIn that the racemate is exposed to the acetylating effect of this
I enzym, idet L-formen selektivt angribes, medens D-formen ^ IIn enzyme, the L-form being selectively attacked, while the D-form ^ I
I forbliver uændret. Den således tilvejebragte blanding kan IYou remain unchanged. The mixture thus obtained can i
I derefter på baggrund af dens forskellige egenskaber adskilles IYou are then separated on the basis of its various properties
I på i og for sig kendt måde. IIn a manner known per se. IN
I 10 Det er kendt at bringe N-acyl-D, L-aminosyrer i kontakt II It is known to contact N-acyl-D, L-amino acids
I med eventuelt bærerfikserede acylaser, idet L-aminosyren II with optionally carrier-fixed acylases, the L-amino acid I
I selektivt frigives, hvilken syre kan ekstraheres fra blandin- II selectively releases which acid can be extracted from the mixture
I gen med N-acyl-D-aminosyre efter syrning med ikke-vandbiand- IIn gene with N-acyl-D-amino acid after acidification with non-water mixture
I bare opløsningsmidler (britisk patentskrift nr. 1.369.462). IIn solvents only (British Patent No. 1,369,462). IN
I 15 En tilsvarende adskillelse af N-acyl-D,L-PTC er eksempelvis IFor example, a corresponding separation of N-acyl-D, L-PTC is I
I kendt fra tysk offentliggørelsesskrift nr. 2.939.269 eller IKnown from German Publication No. 2,939,269 or I
I US-patentskrift nr. 4.226.941. IIn U.S. Patent No. 4,226,941. IN
I Det ifølge opfindelsen tilbageblevne D-PCT kan på IIn the D-PCT remaining in accordance with the invention, on I
I kendt måde racemiseres (europæisk patentansøgning med of- IIn a known way, European patent application is racemized with of- I
I 20 fentliggørelsesnummeret (EP-A) 137.371, eksempel 8) , og IIn the publication number (EP-A) 137,371, Example 8) and I
I derpå føres tilbage til processen. IYou are then returned to the process. IN
I Isoleringen af enzymet, hvorved man her og i det IIn the isolation of the enzyme, by which here and in it I
I følgende ligeledes altid skal forstå den enzymatisk virksomme IIn the following also always understand the enzymatically active I
I del, er mulig, men ikke nødvendig. Såfremt enzymet isoleres, IIn part, is possible, but not necessary. If the enzyme is isolated, I
I 25 kan det anvendes i fri eller bærerfikseret form. Egnede IIn 25, it can be used in free or carrier-fixed form. Suitable I
I bærere er eksempelvis beskrevet i EP-A nr. 141.223. Hen- IFor example, carriers are described in EP-A No. 141,223. Her- I
I sigtsmæssigt isoleres enzymet dog ikke, men man anvender ^ IPreferably, however, the enzyme is not isolated, but one is used
I vilkårlige PTC-resisténte celler, som eksprimerer enzymet IIn any PTC-resistant cells expressing the enzyme I
I ifølge opfindelsen. Således kan man hensigtsmæssigt anvende . IIn accordance with the invention. Thus, one can conveniently use. IN
I 30 de PTT-resistente selektanter af S. viridochromogenes DSM IIn the PTT-resistant selectants of S. viridochromogenes DSM I
I 4112. Fordelagtigt kan imidlertid også komme en vilkårlig, II 4112. However, advantageous may also be any, I
I med gensekvensen ifølge opfindelsen transformeret celle til II, transformed with the gene sequence of the invention into I
I anvendelse, som er i stand til at eksprimere PTC-acetyl- IIn use capable of expressing PTC-acetyl-I
I transferasen. Genet ifølge opfindelsen, hvorved man her IIn the transferase. The gene according to the invention, whereby
I 35 ligeledes skal forstå aktive dele af dette, kan i den for- II must also understand active parts of this, in the for- I
I bindelse i plasmidintegreret form eller med andre gængse IIn binding in plasmid integrated form or with other common I
5 DK 175254 B1 gentekniske metoder, eksempelvis ved transfektion. Hensigtsmæssig er eksempelvis indbygningen i et E. coli-ekspres-sionsplasmid og transformation af E. coli med et sådant plasmid, eksempelvis ifølge de fra EP-A nr. 163.249 og 5 171.024 kendte fremgangsmåder.5 GB 175254 B1 genetic engineering methods, for example by transfection. Convenient, for example, is the incorporation into an E. coli expression plasmid and transformation of E. coli with such a plasmid, for example, according to the methods known from EP-A Nos. 163,249 and 5,171,024.
Til N-acetylering ifølge opfindelsen af L-PTC i race-matet kan man anvende de celler, som eksprimerer PTC-acetyl-transferasen, i fri eller fikseret form, idet de gængse fikseringsmetoder finder anvendelse (eksempelvis tysk of-10 fentliggørelsesskrift nr. 3.237.341 og deri citeret litteratur) .For N-acetylation according to the invention of the L-PTC in the racemate, the cells expressing the PTC-acetyl transferase can be used in free or fixed form, with the usual fixation methods used (e.g. German Publication No. 3.237 .341 and literature cited therein).
Den enzymetiske acetylering ifølge opfindelsen af L-- PTC sker på den for enzymatiske omsætninger gængse måde, idet fremgangsmådebetingelserne retter sig efter den anvendte 15 organismes givne forhold. Principielt kommer hertil de samme metoder som for den ovennævnte selektive afacyleringsfrem-gangsmåde i betragtning.The enzymatic acetylation according to the invention of L-PTC is carried out in the manner customary for enzymatic reactions, the process conditions according to the given conditions of the organism used. In principle, the same methods as for the aforementioned selective afacylation method are considered.
I de følgende eksempler belyses opfindelsen nærmere.In the following examples, the invention is further elucidated.
Dele og procentangivelser er på vægtbasis, medmindre intet 20 andet er angivet.Parts and percentages are by weight, unless otherwise stated.
Eksempel 1: PTT-resistente selektanterExample 1: PTT resistant selectants
Stammen S. viridochromogenes DSM 4112 dyrkes på minimal medium (Hopwood et al., Genetic Manipulation of Strep-25 tomyces, A Laboratory Manual, The John Innes Foundation,The strain S. viridochromogenes DSM 4112 is grown on minimal medium (Hopwood et al., Genetic Manipulation of Strep-25 tomyces, A Laboratory Manual, The John Innes Foundation,
Norwich, England (1985), s. 233), og der tilsættes PTT i stigende koncentrationer. Ved en koncentration på 100 ^g/ml findes der en resistent koloni pr. ca. 105 kolonier. 1 2 3 4 5 6Norwich, England (1985), p. 233) and PTT is added in increasing concentrations. At a concentration of 100 µg / ml, one resistant colony per ca. 105 colonies. 1 2 3 4 5 6
Eksempel 2: Fremstilling af vektoren 2Example 2: Preparation of the vector 2
Plasmidet pSVHl (europæisk patentskrift nr. 070.522) 3 skæres med Bglll, det ca. 7,1 kb store fragment isoleres og 4 ligeres med 1,1 kb Bell-fragmentet med thiostrepton-resi- 5 stensen (europæisk patentansøgning med offentliggørelsesnum- 6 meret 158.201). Man får det 8,15 store plasmid pEB2 (fig.The plasmid pSVH1 (European Patent No. 070,522) 3 is cut with BglII, the approx. 7.1 kb fragment is isolated and 4 ligated with the 1.1 kb Bell fragment with thiostrepton resistance (European patent application with publication number 158,201). The 8.15 large plasmid pEB2 is obtained (FIG.
2) .2).
I DK 175254 B1 II DK 175254 B1 I
I 6 II 6 I
I Eksempel 3: Isolering af resistensgenet IIn Example 3: Isolation of the resistance gene I
I Fra selektanteme ifølge eksempel l isolerer man II From the selectants of Example 1, I is isolated
I hele DNA'et og spalter det med BamHI. Plasmidet pEB2 åbnes IThroughout the DNA and cleave it with BamHI. The plasmid pEB2 is opened I
I ligeledes med BamHI, de to blandinger forenes og ligeres. IIn the same way with BamHI, the two mixtures are combined and ligated. IN
I 5 Ligeringsblandingen transformeres ved S. lividans TK 23 ' IIn 5 The ligation mixture is transformed by S. lividans TK 23 'I
I (som kan fås ved John Innes Foundation) , idet der pr. 1 //g II (available from the John Innes Foundation), as per 1 // g I
I ligeringsblanding fås fra 5000 til 10.000 transformanter IIn ligation mixture, from 5000 to 10,000 transformants are obtained
I med en indbygning fra ca. 1 til ca. 5 kb. Ved selektion med IWith a built-in from approx. 1 to approx. 5 kb. By selection with I
I hensyn til PTT-resistens fås to resistente S. lividans-kolo- IFor PTT resistance, two resistant S. lividans colo- I are obtained
I 10 nier. Ud fra disse isoleres det optagne plasmid og skæres IIn 10 kidneys. From these, the recorded plasmid is isolated and cut
I med BamHI. Man får et 4 kb BamHI-fragment, som bærer det IIn with BamHI. A 4 kb BamHI fragment is obtained which carries it
I for resistensen ansvarlige gen. Dette plasmid får betegnelsen IIn the gene responsible for resistance. This plasmid is designated I
I pPRl (fig. 3). IIn pPR1 (Fig. 3). IN
I Ved retransformation til S. lividans TK 23 kan det II By retransformation to S. lividans TK 23, I can
I 15 vises, at PTT-resistensen er plasmidkodet, da transformanter- IIn Figure 15, PTT resistance is shown to be plasmid-encoded since transformants I
I ne vokser på minimalmedium, som indeholder 100 μg PTT pr. ml. II grow on minimal medium containing 100 μg PTT per ml. ml. IN
I Eksempel 4: Påvisning af inaktiveringen af PTC ved N-acetyl- IIn Example 4: Detection of the inactivation of PTC by N-acetyl-I
I ering IIn honor I
I 20 Til påvisning af den acetylerede aktivitet af det II 20 To detect the acetylated activity of the I
I klonede fragment undersøges følgende stammer: IIn cloned fragments, the following strains are examined:
I S. viridochromogenes DSM 40736, S. viridochromogenes (PTT- II S. viridochromogenes DSM 40736, S. viridochromogenes (PTT-I
I -resistente mutanter), S. lividans TK23 og S. lividans TK II-resistant mutants), S. lividans TK23 and S. lividans TK I
I 23 (pPRl). II 23 (pPR1). IN
I 25 Dertil podes stammerne i lysemedium A (europæisk IIn addition, the strains are seeded in light medium A (European I
I patentansøgning med offentliggørelsesnummeret 158.872, s. IIn patent application with publication number 158,872, p
I 6) og inkuberes i 2 dage ved 30°C i et rundry s t eapparat. I6) and incubated for 2 days at 30 ° C in a washing machine. IN
I Efter høsten oplukkes 1 g mycelium i en egnet puffer (eksem- IAfter harvest, 1 g of mycelium is dissolved in a suitable buffer (Example I
I pelvis RS-buffer: C. J. Thompson et al., J. Bacteriol. 151 IIn pelvis RS buffer: C. J. Thompson et al., J. Bacteriol. 151 I
I 30 (1982), 678-685) med ultralyd. Et typisk eksperiment til IIn 30 (1982), 678-685) with ultrasound. A typical experiment for I
I måling af PTT-nedbrydningen forløber som følger*. IThe measurement of PTT degradation proceeds as follows *. IN
I Til 250 ^liter råekstrakt sættes der 100 filter PTC- ITo 250 µl of crude extract is added 100 filter PTC-I
I -opløsning (250 j/g/ml) og 50 μϋίθΓ (4 mg/ml) acetyl-CoA, II solution (250 µg / ml) and 50 μϋίθΓ (4 mg / ml) acetyl-CoA, I
I og der inkuberes i 2 timer ved 30°C. De derefter endnu til- IIncubate for 2 hours at 30 ° C. They then added more
I 35 stedeværende PTC-mængder måles ved hjælp af HPLC. Derved IIn 35 PTC amounts present are measured by HPLC. Thereby I
I får man følgende resultat: IYou get the following result:
7 DK 175254 B17 DK 175254 B1
Stamme ikke-omsat PTCStrain untranslated PTC
anvendt PTCapplied PTC
5 S. lividans TK23 100% S. viridochromogenes 72% (DSM 40736) S. viridochromogenes 7% selektanter 10 S. lividans TK 23 (pPRl) 31%5 S. lividans TK23 100% S. viridochromogenes 72% (DSM 40736) S. viridochromogenes 7% selectants 10 S. lividans TK 23 (pPRl) 31%
At det drejer sig om en N-acetylering af PTC, kan påvises ved sammenligning med referencestoffer ved tyndtlags-chromatografi (ingen farvning med ninhydrin).The presence of N-acetylation of PTC can be demonstrated by comparison with reference substances by thin-layer chromatography (no staining with ninhydrin).
I DK 175254 B1 II DK 175254 B1 I
I II I
I DNA-Sekvens I IIn DNA Sequence I I
I IleTrpSerAspValLeuGlyAIaGlyProValLeuProGlyAspAspPhePheSerLeuGlyGlyThrSerlle II IleTrpSerAspValLeuGlyAIaGlyProValLeuProGlyAspAspPhePheSerLeuGlyGlyThrSerlle I
I A5pLeu61uArgArgPro61y61yArgSerGlyAleAlaArgGlyArgLeuLeuLeuProArgArgHi5LeuHi5 II A5pLeu61uArgArgPro61y61yArgSerGlyAleAlaArgGlyArgLeuLeuLeuProArgArgHi5LeuHi5 I
I ArgSerSlyAIaThpSerTrpGlyProValArgCysCysProGlyThrThrSerSerProSerAlaAlaProPro II ArgSerSlyAIaThpSerTrpGlyProValArgCysCysProGlyThrThrSerSerProSerAlaAlaProPro I
I AGATCTG6AGCGACGTCCTG&GGGCCGGTCCGSTGCTGCCCGG6SAC6ACTTCTTCTCCCTCGSCGGCACCTCCA 75 II AGATCTG6AGCGACGTCCTG & GGGCCGGTCCGSTGCTGCCCGG6SAC6ACTTCTTCTCCCTCGSCGGCACCTCCA 75 I
I TCTA6ACCTC6CTGCAGGACCCCC6GCCAGGCCACGAC5G6CCCCTSCTGAAGAAGA6G&A5CC6CC5TGGAGGT _ II TCTA6ACCTC6CTGCAGGACCCCC6GCCAGGCCACGAC5G6CCCCTSCTGAAGAAGA6G & A5CC6CC5TGGAGGT _ I
I SerArgSerArgArgGlyProProArgAspProAlaAlaArgProArgSerArgArgGlyArgArgCysArgTrp II SerArgSerArgArgGlyProProArgAspProAlaAlaArgProArgSerArgArgGlyArgArgCysArgTrp I
I AspProAlaUalAspGlnPpoGlyThrArgHisGlnGlyPpoValUalGluGluGlyGluAlaAla61yGlyA5P II AspProAlaUalAspGlnPpoGlyThrArgHisGlnGlyPpoValUalGluGluGlyGluAlaAla61yGlyA5P I
I IleGlnLeuSepThrArgProAlaProGlyThrSerGlyProSerSerLysLysGluArgProPpoyalGluttei II IleGlnLeuSepThrArgProAlaProGlyThrSerGlyProSerSerLysLysGluArgProPpoyalGluttei I
I SerAlaLeuArgUaiyalSerApglleArgLysGluLeuGly^JalPpoLeuArgLeuAlayalllePheGluThr II SerAlaLeuArgUaiyalSerApglleArgLysGluLeuGly ^ JalPpoLeuArgLeuAlayalllePheGluThr I
I LeuGly'JalAlaGlyGlyLeuAlaHisProGlnGlyThpArgApgAlaThpPpoAlaArgApgAapLeuApgAsp II LeuGly'JalAlaGlyGlyLeuAlaHisProGlnGlyThpArgApgAlaThpPpoAlaArgApgAapLeuApgAsp I
I SerArgArgCys&lyTrpSerArgAlaSerAlaArgAsnSerAlaCysHisSerGlySerProOP Ser5erApg . II SerArgArgCys & lyTrpSerArgAlaSerAlaArgAsnSerAlaCysHisSerGlySerProOP Ser5erApg. IN
I TCTC&GCGTTGCGGGTG5TCTCGC6CATCCGCAA6GAACTC6GC6TGCCACTCCG&CTCGCC6T5ATCTTCGAGA 150 II TCTC & GCGTTGCGGGTG5TCTCGC6CATCCGCAA6GAACTC6GC6TGCCACTCCG & CTCGCC6T5ATCTTCGAGA 150 I
I A6AGCCGCAACGCCCACCAGAGCGCSTA6SCGTTCCTTGAGCCGCACGGTGA6SCCGASCGGCACTAGAAGCTCT II A6AGCCGCAACGCCCACCAGAGCGCSTA6SCGTTCCTTGAGCCGCACGGTGA6SCCGASCGGCACTAGAAGCTCT I
I ArgProThpAlaProProArgAlaCysGlyCysProUalArgArgAlaUalGlyAlaArgArgSerArgArgSer II ArgProThpAlaProProArgAlaCysGlyCysProUalArgArgAlaUalGlyAlaArgArgSerArgArgSer I
I ArgApgGlnProHi 5AspArgAlaAspAlaLeuPhe61uAlaHisTrp61uProGluSlyHisAspGluLeuArg II ArgApgGlnProHi 5AspArgAlaAspAlaLeuPhe61uAlaHisTrp61uProGluSlyHisAspGluLeuArg I
I 51uAlaAsnArgThrThr61uArgf1etArgLeu5erSerProThrGly5erArgSerAlaThrIleLys5erVal II 51uAlaAsnArgThrThr61uArgf1etArgLeu5erSerProThrGly5erArgSerAlaThrIleLys5erVal I
I ProSerleuGluAlaValAlaGluSer-ValLeuArgGluLeuLysGlyThrAM OC Arg&lyAlaArgHisPro II ProSerleuGluAlaValAlaGluSer-ValLeuArgGluLeuLysGlyThrAM OC Arg & lyAlaArgHisPro I
I AlaValProGlySerGlyGlyArglleArgThrProArgThrSluGlyAspVelValLysApgCysProProPro II AlaValProGlySerGlyGlyArglleArgThrProArgThrSluGlyAspVelValLysApgCysProProPro I
I ArgArgProTrpLysArgTppProAsnPpoTyrSerAlaAsnOP ArgGlyArgSerLysGluValProAlaThr II ArgArgProTrpLysArgTppProAsnPpoTyrSerAlaAsnOP ArgGlyArgSerLysGluValProAlaThr I
I CGCCGTCCCTGGAASCGGTGGCCGAATCCGTACTCCGCGAACTGAAG5G6ACSTA6TAAAGAG6TGCCCGCCACC 225 II CGCCGTCCCTGGAASCGGTGGCCGAATCCGTACTCCGCGAACTGAAG5G6ACSTA6TAAAGAG6TGCCCGCCACC 225 I
I gcggcagggaccttcgccaccsgcttaggcatgaggcgcttgacttcccctgcatcatttctccacgggcggtgg II gcggcagggaccttcgccaccsgcttaggcatgaggcgcttgacttcccctgcatcatttctccacgggcggtgg I
I AlaThrGlyProLeuProProArgIleArgyalGlyArgValSerPrD5erThrThrPheLeuHi5Gly61yGly II AlaThrGlyProLeuProProArgIleArgyalGlyArgValSerPrD5erThrThrPheLeuHi5Gly61yGly I
I ApgGlyGlnPheArgHisGlyPheGlyTyrGluAlaPheGlnLeuProArgLeuLeuSerThrSlyAlaUalArg II ApgGlyGlnPheArgHisGlyPheGlyTyrGluAlaPheGlnLeuProArgLeuLeuSerThrSlyAlaUalArg I
I GlyAspArgSepAlaThrAlaSerAapThrSerArgSerSerPheProyalTyrTyrLeuProAiaArgTppGJy II GlyAspArgSepAlaThrAlaSerAapThrSerArgSerSerPheProyalTyrTyrLeuProAiaArgTppGYy I
I LeuSerGlnAsnThrG1uGIyArgProHi sUa]5erPro61uArgArgProya1 GIul1eArgProA] aThpAla II LeuSerGlnAsnThrG1uGIyArgProHi sUa] 5erPro61uArgArgProya1 GIul1eArgProA] aThpAla I
I AiaPheAlaGluHisArgArgLysThrThrArgGluProArgThrThrProGlyArgAspPpoSerArgHisArg II AiaPheAlaGluHisArgArgLysThrThrArgGluProArgThrThrProGlyArgAspPpoSerArgHisArg I
I ArgPheArgApgThrProLysGluAspHisThrOP AlaGlnAsnAspAlaArgSerArgSepyalProProPro II ArgPheArgApgThrProLysGluAspHisThrOP AlaGlnAsnAspAlaArgSerArgSepyalProProPro I
I C6CTTTCSCAGAACACCGAA6SAAGACCACAC5IÉA6CCCA6AAC&ACSCCCG6TC6A6ATCC6TCCCGCCACC& 300 II C6CTTTCSCAGAACACCGAA6SAAGACCACAC5IÉA6CCCA6AAC & ACSCCCG6TC6A6ATCC6TCCCGCCACC & 300 I
I BCGAAAGCSTCTT&TS&CTTCCTTCT65TGTGCACTCG65TCTT5CT&C&GGCCÅ&CTCTAGGCA&&&CG6TGGC II BCGAAAGCSTCTT & TS & CTTCCTTCT65TGTGCACTCG65TCTT5CT & C & GGCCÅ & CTCTAGGCA &&& CG6TGGC I
I AlaLysAlaSerCysArgLeuPheyelValArQ5erGlyLeuValVal61yProArgSer61yAspArgTrpArg II AlaLysAlaSerCysArgLeuPheyelValArQ5erGlyLeuValVal61yProArgSer61yAspArgTrpArg I
I LysArgLeu^alGlyPheSerSerTrpyalHisAIaTrpPheSerAlaArgAspLauAspThrGiyGlyGlyGly II LysArgLeu ^ alGlyPhyserSerTrpyalHisAIaTrpPheSerAlaArgAspLauAspThrGiyGlyGlyGly I
I Ser61uCy5PheyalSerProLeuGlyCysThrLeuGlySerArgArg6lyThrSerIleArgGlyAlaWalAla II Ser61uCy5PheyalSerProLeuGlyCysThrLeuGlySerArgArg6lyThrSerIleArgGlyAlaWalAla I
I AlaAspMetAlaAlaValCysAspIleyalAsnHisTyrlleGluThrSerThrValAsnPheArgThrGluPro II AlaAspMetAlaAlaValCysAspIleyalAsnHisTyrlleGluThrSerThrValAsnPheArgThrGluPro I
I ArgArgHxsGlySlyGlyLeuArgHisArgGlnSerLeuHisArgAspGluHisGlyGlnLeuProTyrGlyAla II ArgArgHxsGlySlyGlyLeuArgHisArgGlnSerLeuHisArgAspGluHisGlyGlnLeuProTyrGlyAla I
I ProProThrTrpArgArgSerAlaThrSerSerlleThrThrSerArgArgAlaArgSerThrSerValArgSer II ProProThrTrpArgArgSerAlaThrSerSerlleThrThrSerArgArgAlaArgSerThrSerValArgSer I
I CCSCCGACATS5CG5CGGTCT6CGACATCSTCAATCACTACATCGASACSASCACGGTCAACTTCCSTACGGAGC 375 II CCSCCGACATS5CG5CGGTCT6CGACATCSTCAATCACTACATCGASACSASCACGGTCAACTTCCSTACGGAGC 375 I
I SGC5GCTGTACCSCC&CCAGAC6CT6TA6CAGTTA5T6AT6TAGCTCT6CTC6TGCCA6TTGAA&SCAT6CCTCG II SGC5GCTGTACCSCC & CCAGAC6CT6TA6CAGTTA5T6AT6TAGCTCT6CTC6TGCCA6TTGAA & SCAT6CCTCG I
I ArgArgCysProProProArgArgCysArgOP AspSerCysArgSerSerCysProOP SerGlyTyrProAla II ArgArgCysProProProArgArgCysArgOP AspSerCysArgSerSerCysProOP SerGlyTyrProAla I
I SlyUalHisArgArgAspAlayalAspAspIleUaiyalAspLeuArgAlaArgAspyelGluThrArgLeuArg II SlyUalHisArgArgAspAlayalAspAspIleUaiyalAspLeuArgAlaArgAspyelGluThrArgLeuArg I
I AiaSerMetAlaAlaThrSlnSerMetThrLeuOP AM MetSerValLeuValThrLeuLysArgVaiSerGly II AiaSerMetAlaAlaThrSlnSerMetThrLeuOP AM MetSerValLeuValThrLeuLysArgVaiSerGly I
I GlnThrProSlnGIuTppIleAspAspLeuGIuArgLeuSlnAspArgTyrProTrpLeuValAlaGIuVaiGlu II GlnThrProSlnGIuTppIleAspAspLeuGIuArgLeuSlnAspArgTyrProTrpLeuValAlaGIuVaiGlu I
I AlaAspSerAla61yUalAspArgArgPro61yAlaProProGlyProLeuProLeuAlaArgArgArgGly61y II AlaAspSerAla61yUalAspArgArgPro61yAlaProProGlyProLeuProLeuAlaArgArgArgGly61y I
I ArgArgLeuArgArg5er61ySerThrThrTrpSerAlaSerArgThrAlaThrProGlySerSerProArgTrp II ArgArgLeuArgArg5er61ySerThrThrTrpSerAlaSerArgThrAlaThrProGlySerSerProArgTrp I
I C6CAGACTCCGCA9GAGTGGATCGAC5ACCTG6AGC6CCTCCAGGACCGCTACCCCT6GCTC6TC6CCGAG6TGG 450 II C6CAGACTCCGCA9GAGTGGATCGAC5ACCTG6AGC6CCTCCAGGACCGCTACCCCT6GCTC6TC6CCGAG6TGG 450 I
I 6CGTCTGA6&C5TCCTCACCTASCTGCT6GACCTC6CGGAG6TCCT66C6AT6GG6ACCGA6CAGC66CTCCACC II 6CGTCTGA6 & C5TCCTCACCTASCTGCT6GACCTC6CGGAG6TCCT66C6AT6GG6ACCGA6CAGC66CTCCACC I
I Ala5er61uAlaProThrSerArgArg61yProAla61y61yProGlySerGlyArgAlaArgArgArgProPrD II Ala5er61uAlaProThrSerArgArg61yProAla61y61yProGlySerGlyArgAlaArgArgArgProPrD I
I LeuSerArgLeuLeuProA5pValUal61nLeuAla51uLeuValAlaValSlyPrD61uA5p61yLeuHisLeu II LeuSerArgLeuLeuProA5pValUal61nLeuAla51uLeuValAlaValSlyPrD61uA5p61yLeuHisLeu I
I CysUalGlyCysSerHisIleSerSerArgSerArgArgTrpSerArgAM SlyGlnSerThrAlaSerThrSer II CysUalGlyCysSerHisIleSerSerArgSerArgArgTrpSerArgAM SlyGlnSerThrAlaSerThrSer I
9 DK 175254 B1 DNA-Sekvens I (fortsat)9 DK 175254 B1 DNA Sequence I (continued)
GlyUalUalAlaGlylleAlaTyrAlaGlyProTrpLysAlaArgAsnAlaTypAspTrpThpUalGluSerThr GlyArQArgApgArgHiaArgLeuArgArgProLeuGluGlyProGlnArgLeuApgLeuAspArgArgValAsp * ArgAla5erSerProAla5erProThrProA]aProSlyArgProAlaThrProThrThr61yPro5er5erArg AGG&C6TC6TCGCC66CATC6CCTACGCC6GCCCCT66AA6GCCCGCAACGCCTAC6ACT6GACCSTCGA6TCGA B25GlyUalUalAlaGlylleAlaTyrAlaGlyProTrpLysAlaArgAsnAlaTypAspTrpThpUalGluSerThr GlyArQArgApgArgHiaArgLeuArgArgProLeuGluGlyProGlnArgLeuApgLeuAspArgArgValAsp * ArgAla5erSerProAla5erProThrProA] aProSlyArgProAlaThrProThrThr61yPro5er5erArg AGG & C6TC6TCGCC66CATC6CCTACGCC6GCCCCT66AA6GCCCGCAACGCCTAC6ACT6GACCSTCGA6TCGA B25
TCCC&CAGCAGCGGCCGTAGCGGATGCGGCCGGGGACCTTCCGGSCGTTGCGGATGCTGACCTGGCAGCTCAGCTTCCC & CAGCAGCGGCCGTAGCGGATGCGGCCGGGGACCTTCCGGSCGTTGCGGATGCTGACCTGGCAGCTCAGCT
ProArgArgArgArgCysArgArgArgArgSlyArgSerProSlyCysArgArgArgSerSerApgArgThrSer AIaAspA5pGlyAIaAsp5IyVei61yAla61yProLeuSIyAiaVal61yVeU/aiPro61yA3pLeuArgArg ProThrThrAiaProMetAlaAM AlaProGlyGlnPheAiaArgLeuAlaAM SerSlnyalThrSerAspUalProArgArgArgArgCysArgArgArgArgSlyArgSerProSlyCysArgArgArgSerSerApgArgThrSer AIaAspA5pGlyAIaAsp5IyVei61yAla61yProLeuSIyAiaVal61yVeU / aiPro61yA3pLeuArgArg ProThrThrAiaProMetAlaAM AlaProGlyGlnPheAiaArgLeuAlaAM SerSlnyalThrSerAspUal
ValTyrValSerHisArgHisSlnArgLeuGlyLeuGlySerThrLeuTyrThrHisLeLiLeuLysSerfletGlu GlyValArgLeuPrDProAlaProAlaAlaArgThrGlyLeuHisProLeuHisPrePpoAlaGluUalHisGly ArgCysThrSepProThr61yThrSer61ySerA5pTppAlaProPro5erThrPpoThrCysOP SerProTrp cggtgtacgtctcccaccggcaccagcgsctcggactgggctccaccctctacacccacctgctgaagtccatgg seeValTyrValSerHisArgHisSlnArgLeuGlyLeuGlySerThrLeuTyrThrHisLeLiLeuLysSerfletGlu GlyValArgLeuPrDProAlaProAlaAlaArgThrGlyLeuHisProLeuHisPrePpoAlaGluUalHisGly ArgCysThrSepProThr61yThrSer61ySerA5pTppAlaProPro5erThrPpoThrCysOP SerProTrp cggtgtacgtctcccaccggcaccagcgsctcggactgggctccaccctctacacccacctgctgaagtccatgg see
6CCACATGCAGAGGGTGGCCGTG6TCGCCGAGCCT6ACCCGAGSTSSGAGATGTGGGTGSACGACTTCASGTACC6CCACATGCAGAGGGTGGCCGTG6TCGCCGAGCCT6ACCCGAGSTSSGAGATGTGGGTGSACGACTTCASGTACC
ProThrApgArgSlySlyAlaGlyAlaAlaApgUalPpoSepTppGlyApgCysGlyGlyAlaSerThpTrpPpoProThrApgArgSlySlyAlaGlyAlaAlaApgUalPpoSepTppGlyApgCysGlyGlyAlaSerThpTrpPpo
Hi.5ValA5pGlyValProValLeuPro61uSerSlnAla61y61y61uVal61yVal61nGlnLeuGlyHi5Leu ThpTyrThr61uTppArgCy5TppApgSerProSerPpo61uValArgAM ValTrpArgSerPheAspMetSerHi.5ValA5pGlyValProValLeuPro61uSerSlnAla61y61y61uVal61yVal61nGlnLeuGlyHi5Leu ThpTyrThr61uTppArgCy5TppApgSerProSerPpo61uValArgS ValTrpArgS
AlaGlnGlyPheLysSerVelValAlaVaIIleGlyLeuPpoAsnAspProSerValArgLeuHisGluAlaLeu 61yPraGlyLeu61n61uArg61yArgArgHi sArgThpAlaGlnArgProGluArgAlaPpoAlaApgGlyAla ApgProArgAleSerArgAlaTppSerPpoSepSerAspCysProThrThrArgAlaCysAlaCysThpArgApg ASGCCCAGGGCTTCAA6A&CGTGGTCGCCGTCATCGGACT6CCCAAC6ACCCGAGC6T6CGCCT6CACSAGGC6C G7S TCCSSGTCCCSAAGTTCTC5CACCAGCGGCAGTAGCCTGACGGGTTGCTGG&CTCGCACGCGGAC6T6CTCCGCG Pro61yProSerOP SepArgPpoApgArgOP ApgValAlaTppApgSlySerApgAlaGlyAlaArgProAlaAlaGlnGlyPheLysSerVelValAlaVaIIleGlyLeuPpoAsnAspProSerValArgLeuHisGluAlaLeu 61yPraGlyLeu61n61uArg61yArgArgHi sArgThpAlaGlnArgProGluArgAlaPpoAlaApgGlyAla ApgProArgAleSerArgAlaTppSerPpoSepSerAspCysProThrThrArgAlaCysAlaCysThpArgApg ASGCCCAGGGCTTCAA6A & CGTGGTCGCCGTCATCGGACT6CCCAAC6ACCCGAGC6T6CGCCT6CACSAGGC6C G7 TCCSSGTCCCSAAGTTCTC5CACCAGCGGCAGTAGCCTGACGGGTTGCTGG & CTCGCACGCGGAC6T6CTCCGCG Pro61yProSerOP SepArgPpoApgArgOP ApgValAlaTppApgSlySerApgAlaGlyAlaArgProAla
GlyLeuAlaGluLeuAlaHiaAspGlyAspAspSerGlnGlyValValArgAlaHisAlaGlnValLeuApg&luGlyLeuAlaGluLeuAlaHiaAspGlyAspAspSerGlnGlyValValArgAlaHisAlaGlnValLeuApg & lu
AlaTrpProLy3LeuLeuThrThrAlaThrMetPro5er61yLeu5ep61yLeuThrArgArgCysSepAlaSerAlaTrpProLy3LeuLeuThrThrAlaThrMetPro5er61yLeu5ep61yLeuThrArgArgCysSepAlaSer
SlyTypThpAlaArgGlyThrLeuArgAleAlaGlyTypLysHisGlyGlyTrpHisAspValSlyPheTppGln ArglleHisApgAlaArgAspAlaAle61ySerArgLeuGlnAlaApg61yLeuAlaApgApg61yValLeuAla 5epAspThpPpoArgAleGlyArgCysGlyGlnProAlaThrSerThr61yAlaGlyThrThrTppGly5ep61y TCG6ATACACC6C6C6CG66ACSCT6CG6SCAGCCG&CTACAA6CAC6666GCT6GCAC6ACGT6GGSTTCT6SC 750 AGCCTATGTGGCGCGCGCCCT6CGACGCCCGTCGGCCGAT6TTCGTSCCCCC5ACC5TGCT6CACCCCAA5ACCG ApglleCysApgAlaArgSepAlaAlaPpoLeuApgSerCysAlaArgProSerAlaApgApgPpoThrArgAla , SerVal61yArgAlaProArgGlnProCysGlyAlaValLeuValProAlaProValValHisPpoGluProLeuSlyTypThpAlaArgGlyThrLeuArgAleAlaGlyTypLysHisGlyGlyTrpHisAspValSlyPheTppGln ArglleHisApgAlaArgAspAlaAle61ySerArgLeuGlnAlaApg61yLeuAlaApgApg61yValLeuAla 5epAspThpPpoArgAleGlyArgCysGlyGlnProAlaThrSerThr61yAlaGlyThrThrTppGly5ep61y TCG6ATACACC6C6C6CG66ACSCT6CG6SCAGCCG & CTACAA6CAC6666GCT6GCAC6ACGT6GGSTTCT6SC 750 AGCCTATGTGGCGCGCGCCCT6CGACGCCCGTCGGCCGAT6TTCGTSCCCCC5ACC5TGCT6CACCCCAA5ACCG ApglleCysApgAlaArgSepAlaAlaPpoLeuApgSerCysAlaArgProSerAlaApgApgPpoThrArgAla, SerVal61yArgAlaProArgGlnProCysGlyAlaValLeuValProAlaProValValHisPpoGluProLeu
ProTyrVaiAlaArgPpoValSerArgAlaAlaProAtt LeuCysPrDPpo61nCy5SerThpPpoAsnGlnCysProTyrVaiAlaArgPpoValSerArgAlaAlaProAtt LeuCysPrDPpo61nCy5SerThpPpoAsnGlnCys
ArgAspPheGluLeuProAlaProProApgPpoValArgProValThpGinlle AiaArøLeuArgAlaAlaSlyProAlaProPpoArgProAleArgHisThpAsp SerAlaThr5erSepCysArgProApgProAlaPro5ep61yPro5erHisArg5er ASC6CSACTTCGASCT6CCGSCCCCGCCCCGCCCCSTCCSGCCCGTCACACAGATCT 807 TCGC6CT5AAGCTCGACGSCCG6GGCGGGGCG6GGCAG5CCG6GCAGT6T6TCTAGA AlaArgSerArgAlaAlaPro51yAlaGly61yArg61yAlaArgOP ValSerArgArgAspPheGluLeuProAlaProProApgPpoValArgProValThpGinlle AiaArøLeuArgAlaAlaSlyProAlaProPpoArgProAleArgHisThpAsp SerAlaThr5erSepCysArgProApgProAlaPro5ep61yPro5erHisArg5er ASC6CSACTTCGASCT6CCGSCCCCGCCCCGCCCCSTCCSGCCCGTCACACAGATCT 807 TCGC6CT5AAGCTCGACGSCCG6GGCGGGGCG6GGCAG5CCG6GCAGT6T6TCTAGA AlaArgSerArgAlaAlaPro51yAlaGly61yArg61yAlaArgOP ValSerArg
AlaValGluLeuGlnApgSlyApgSlyAlaGlyAspProGlyAspCysLeuAspAlaValGluLeuGlnApgSlyApgSlyAlaGlyAspProGlyAspCysLeuAsp
ApgSerLysSerSer&lyAla61y61yArgGlyThrArgGlyThrValCy5lleApgSerLysSerSer & lyAla61y61yArgGlyThrArgGlyThrValCy5lle
I DK 175254 B1 II DK 175254 B1 I
I 10 II 10 I
I DNA-Sekvens II IIn DNA Sequence II I
I 1 A&A7CT5GA6CGAC6TCCTG666SCCG&7CC5&7GCT6CCCG6G6AC6ACTTCT7C7CCC II 1 A & A7CT5GA6CGAC6TCCTG666SCCG & 7CC5 & 7GCT6CCCG6G6AC6ACTTCT7C7CCC I
I 7CTA&ACC7C5CTGCA66ACCCCC6GCCAGGCCACGAC&G6CCCC7GCTGAA6AA6A&&6 II 7CTA & ACC7C5CTGCA66ACCCCC6GCCAGGCCACGAC & G6CCCC7GCTGAA6AA6A && 6 I
A A A A * A A A A A IA A A A * A A A A A I
I 1 BGLII XHOII, 2 DPNI SAU3A . 5 G5U1 , 12 AATII ACYI, 13 MAE11 II 1 BGLII XHOII, 2 DPNI SAU3A. 5 G5U1, 12 AATII ACYI, 13 MAE11 I
I , 17 APYI ECORII, 2B R5RII, 27 AOAII, 35 BBVl , 39 AOAI NCII II, 17 APYI ECORII, 2B R5RII, 27 AOAII, 35 BBVl, 39 AOAI NCII I
I SMAI, 40 NCII, 52 MBOII, 59 MNLI, II SMAI, 40 NCII, 52 MBOII, 59 MNLI, I
I El 7CGGCG6CACCTCCATCTC66C6TT6CGGGT6GTCTC5C6CATCC6CAAG6AACTCG6C6 II E1 7CGGCG6CACCTCCATCTC66C6TT6CGGGT6GTCTC5C6CATCC6CAAG6AACTCG6C6 I
I A5CC6CCST55AG67AGAGCCGCAAC6CCCACCASA5CGC67A6GCST7CCTT6ASCCSC , II A5CC6CCST55AG67AGAGCCGCAAC6CCCACCASA5CGC67A6GCST7CCTT6ASCCSC, I
H a · IH a · I
I GB HGICl , 70 mi, 97 FNUD3I, 100 SFANI, 101 FOKI, II GB HGICl, 70 mi, 97 FNUD3I, 100 SFANI, 101 FOKI, I
I 121 T6CCACTCDG5CTC6CCG7GATCTTC6A5AC6CCGTCCCT6GAAGCGGT66CCGAA7CDG II 121 T6CCACTCDG5CTC6CCG7GATCTTC6A5AC6CCGTCCCT6GAAGCGGT66CCGAA7CDG I
I ACG5TGA6GCCGAGCG&CACTA6AA6CTCT6C6GCAGGGACCTTCGCCADC6GCTTAGGC II ACG5TGA6GCCGAGCG & CACTA6AA6CTCT6C6GCAGGGACCTTCGCCADC6GCTTAGGC I
A * A A AAAA * A A AAA
I 122 BGLl, 140 DPNI 5AU3A, 142 MBOII, 149 ACYI H&AI TTH1111, II 122 BGLl, 140 DPNI 5AU3A, 142 MBOII, 149 ACYI H&AI TTH1111, I
I 158 APYI ECORII, 1B9 CFRI 6DIII . 174 HlNFI, 180 R5AI , II 158 APYI ECORII, 1B9 CFRI 6DIII. 174 HlNFI, 180 R5AI, I
I 181 TACTCCGCGAACTGAA6GG6ACG7AGTAAAGA>6CCCGCCACCCGCTTTCGCA6AACA II 181 TACTCCGCGAACTGAA6GG6ACG7AGTAAAGA & GT6CCCGCCACCCGCTTTCGCA6AACA I
I AT6A66C6CTT6ACTTCCCCT6CATCATTTCTCCACGG6CGST666C6AAAGC6TCTT6T II AT6A66C6CTT6ACTTCCCCT6CATCATTTCTCCACGG6CGST666C6AAAGC6TCTT6T I
Η IΗ I
I 18B FNUDII, 201 MAE II. 2Π MNL I , 213 HGICl, 214 5DUI. II 18B FNUDII, 201 MAE II. 2Π MNL I, 213 HGICl, 214 5DUI. IN
I 241 CCGAA6GAAGACCACACGT6AGCCCAGAACGACGCCC6G7CGAGATCCGTCCCGCCACCG II 241 CCGAA6GAAGACCACACGT6AGCCCAGAACGACGCCC6G7CGAGATCCGTCCCGCCACCG I
I 6&CTTCCTTCT6GTGTGCACTCGGG7CTTGCTGC5GGCCAGCTCTAGGCABG6CGST6GC II 6 & CTTCCTTCT6GTGTGCACTCGGG7CTTGCTGC5GGCCAGCTCTAGGCABG6CGST6GC I
A a * A AA a * A A
I 247 MBOII, 254 AFUII , 255 PMACI, 255 MAEII , 260 HSIJII SDUI II 247 MBOII, 254 AFUII, 255 PMACI, 255 MAEII, 260 HSIJII SDUI I
I , 271 ACYI H&AI, 275 NCII, 283 XHOII. 284 B1NI DPNI SAU3A, II, 271 ACYI H&AI, 275 NCII, 283 XHOII. 284 B1NI DPNI SAU3A, I
I 301 CCSCC6ACATB5CG6C6GTCT5C5ACATC6TCAA7CACTACATCSA&ACGAGCACG5TCA II 301 CCSCC6ACATB5CG6C6GTCT5C5ACATC6TCAA7CACTACATCSA & ACGAGCACG5TCA I
I 6GCS5CT6TACCSCC6CCA0ACGCTG7A6CA&TTAGTGAT5TAGCTC7GCTCGT5CCAST II 6GCS5CT6TACCSCC6CCA0ACGCTG7A6CA & TTAGTGAT5TAGCTC7GCTCGT5CCAST I
I 303 B6LI. 308 NLAIII, 3Z4 TTH111I, 350 HGIAI 5DUI, 357 HINCI II 303 B6LI. 308 NLAIII, 3Z4 TTH111I, 350 HGIAI 5DUI, 357 HINCI I
I II I
I 3G1 ACTTCC&T AC&GA6CC6CAGAC7CC6CAG&AST&GATCSAC6ACCT S6A&C6CCTCCAGS II 3G1 ACTTCC & T AC & GA6CC6CAGAC7CC6CAG & AST & GATCSAC6ACCT S6A & C6CCTCCAGS I
I 76AAGGCATGCCTC66CS7CTGASGC6TCCTCACCTA6CT6CT6GACCTCGC6GAS6TCC II 76AAGGCATGCCTC66CS7CTGASGC6TCCTCACCTA6CT6CT6GACCTCGC6GAS6TCC I
I A II A I
I 3B7 RSAI, 360 HINFI, 394 BINI, 395 DPNI SAU3A, 404 APYI ECOR II 3B7 RSAI, 360 HINFI, 394 BINI, 395 DPNI SAU3A, 404 APYI ECOR I
I II, 405 GSUI, 409 HAEII, 413 MNLI , 414 6SU1. 415 APYI ECORII II II, 405 GSUI, 409 HAEII, 413 MNLI, 414 6SU1. 415 APYI ECORII I
I , 419 AOAII, . II, 419 AOAII ,. IN
I 421 ACC5CTACCCCT66CTCGTCGCC5AGGT66AG6SCGTCGTCGCCG5CATCGCCTAC6CCG II 421 ACC5CTACCCCT66CTCGTCGCC5AGGT66AG6SCGTCGTCGCCG5CATCGCCTAC6CCG I
I TGGC6ATGG6GACCGAGCA5C5BCTCCACCTCCCGCA5CAGCSGCC5TA6C6GATGC66C II TGGC6ATGG6GACCGAGCA5C5BCTCCACCTCCCGCA5CAGCSGCC5TA6C6GATGC66C I
H A « IH A «I
I 430 APYI ECORII, 444 MNLI, 450 MNLI, 453 ACYI, 454 HGAI, 462 II 430 APYI ECORII, 444 MNLI, 450 MNLI, 453 ACYI, 454 HGAI, 462 I
NAEI , 466 SFANI, 477 NAEI , INAEI, 466 SFANI, 477 NAEI, I
I 4B1 GCCCC7G6AAG6CCC6CAACSCCTAC6ACT56ACCGTCSA57C6AC66T67ACGTCTCCC II 4B1 GCCCC7G6AAG6CCC6CAACSCCTAC6ACT56ACCGTCSA57C6AC66T67ACGTCTCCC I
I CGGS5ACC7TCC565C6776C&6A7GC76ACCTSGCAGC7CAGC76CCACAT6CASA6SG II CGGS5ACC7TCC565C6776C & 6A7GC76ACCTSGCAGC7CAGC76CCACAT6CASA6SG I
I 484 APYI ECORII, 511 AUAII. 519 HINFI, 521 ACCI HINCII SALI , II 484 APYI ECORII, 511 AUAII. 519 HINFI, 521 ACCI HINCII SALI, I
I 530 R5AI , 532 MAEII, II 530 R5AI, 532 MAEII, I
11 DK 175254 B1 DNA-Sekvens II (fortsat) 541 ACC6&CACCAGCGGCTCG6ACTG6GCTCCACCCTCTACACCCACCTGCTGAAGTCCf TGGCC5TGGTCGCCGA6CCT6ACCC6A6GTGG6A6A7GT56ST5GACGACTTCAS5Tf11 DK 175254 B1 DNA Sequence II (continued) 541 ACC6 & CACCAGCGGCTCG6ACTG6GCTCCACCCTCTACACCCACCTGCTGAAGTCCf TGGCC5TGGTCGCCGA6CCT6ACCC6A6GTGG6A6A7GT56ST5GACGACTTCAS5
A A Μ ΑΜΑ AAA A Μ ΑΜΑ AA
544 H5ICI, 549 NSPBII. 563 H6IJII SOUI , 572 MNLI, 578 TAQII, 583 BSPMI, 595 NCOI STY1, 59G NLAIII , G00 MNLI.544 H5ICI, 549 NSPBII. 563 H6IJII SOUI, 572 MNLI, 578 TAQII, 583 BSPMI, 595 NCOI STY1, 59G NLAIII, G00 MNLI.
B01 AGGCCCAGGSCTTCAAGAGC6T6GTCGCC5TCATCG6ACT6CCCAACGACCCGA6CGTGC TCCG6GTCCCGAAGTTCTCGCACCAGCGGDAGTAGCCTGADG5GTTGCTG6GCT0GCAC6 A Λ 605 APYI EC0R1I, 550 AVAI, 661 6CCT6CACGA6GCGCTCG5ATACACCGCGCGC66GAC6CTGCGGGCAGCCGGCTACAA6C CSGACGTGCTCCSCGAGCCTATGTGGCGCGCGCCCT6CGAC6CCC5TC6GCCGATGTTC6 A A a a a a aa aa a GB9 MNLI, 671 HAEII, B86 FNUDII, E87 BSSHII, BB8 FNUDII, B90 FNUDII, B95 HGAI , 658 BBUI . 705 BB<JI, 708 ΝΑΕ I , 716 ΤΤΗ1ΠΙ I .B01 AGGCCCAGGSCTTCAAGAGC6T6GTCGCC5TCATCG6ACT6CCCAACGACCCGA6CGTGC TCCG6GTCCCGAAGTTCTCGCACCAGCGGDAGTAGCCTGADG5GTTGCTG6GCT0GCAC6 A Λ APYI EC0R1I 605, 550 AVAI, 661 6CCT6CACGA6GCGCTCG5ATACACCGCGCGC66GAC6CTGCGGGCAGCCGGCTACAA6C CSGACGTGCTCCSCGAGCCTATGTGGCGCGCGCCCT6CGAC6CCC5TC6GCCGATGTTC6 a a a a a a aa aa a Gb9 MnlI, 671 HaeII, Fnu DII B86, E87 BssHII, BB8 Fnu DII, Fnu DII B90, B95 HgaI, 658 BBUI. 705 BB <JI, 708 ΝΑΕ I, 716 ΤΤΗ1ΠΙ I.
721 ACG666GCTGGCACGACGTSGG6TTCTGGCAGC6CGACTTCGAGCTGCCGGCCCCGCCCC TGCCCCC6ACCGTGCT6CACCCCAA6ACC6TCGCGCTGAAGCTCGACGGCCGG6GCG65G721 ACG666GCTGGCACGACGTSGG6TTCTGGCAGC6CGACTTCGAGCTGCCGGCCCCGCCCC TGCCCCC6ACCGTGCT6CACCCCAA6ACC6TCGCGCTGAAGCTCGACGGCCGG6GCG65G
A A A a A A AA A A and A A A
732 DRAIII, 736 MAE11 , 749 BBUI , 753 FNUDII, 763 ALU] , 7B4 B BUI . 767 NAEI ,732 DRAIII, 736 MAE11, 749 BBUI, 753 FNUDII, 763 ALU], 7B4 B BUI. 767 NAEI,
781 6CCCC6TCCGSCCCGTCACACAGATCT CGGGGCA66CCGG6CA6TGTGTCTAGA781 6CCCC6TCCGSCCCGTCACACAGATCT CGGGGCA66CCGG6CA6TGTGTCTAGA
A A AA A A
795 MAEIII , 802 BGLII XHOII , 803 DPNI SAU3A ,795 MAEIII, 802 BGLII XHOII, 803 DPNI SAU3A,
Claims (7)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3628747 | 1986-08-23 | ||
DE19863628747 DE3628747A1 (en) | 1986-08-23 | 1986-08-23 | Phosphinothricin resistance gene and its use |
DE3637307 | 1986-11-03 | ||
DE3637307 | 1986-11-03 | ||
DE19863642829 DE3642829A1 (en) | 1986-08-23 | 1986-12-16 | Phosphinothricin-resistance gene |
DE3642829 | 1986-12-16 | ||
DE19873700313 DE3700313A1 (en) | 1986-08-23 | 1987-01-08 | Use of a phosphinothricin-resistance gene |
DE3700313 | 1987-01-08 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK437887D0 DK437887D0 (en) | 1987-08-21 |
DK437887A DK437887A (en) | 1988-02-24 |
DK175254B1 true DK175254B1 (en) | 2004-07-26 |
Family
ID=27433686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK198704378A DK175254B1 (en) | 1986-08-23 | 1987-08-21 | Phosphinothricin resistance gene sequence and its use |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP0257542B1 (en) |
JP (4) | JPH0797994B2 (en) |
CN (2) | CN1040772C (en) |
AT (1) | ATE75776T1 (en) |
AU (1) | AU604743B2 (en) |
CA (1) | CA1337597C (en) |
DK (1) | DK175254B1 (en) |
ES (1) | ES2038631T3 (en) |
FI (1) | FI100251B (en) |
GR (1) | GR3005200T3 (en) |
HU (1) | HU217208B (en) |
IL (1) | IL83604A (en) |
NZ (1) | NZ221526A (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3765449D1 (en) * | 1986-03-11 | 1990-11-15 | Plant Genetic Systems Nv | PLANT CELLS RESISTED BY GENE TECHNOLOGY AND RESISTANT TO GLUTAMINE SYNTHETASE INHIBITORS. |
CN87100603A (en) * | 1987-01-21 | 1988-08-10 | 昂科公司 | Vaccines against melanoma |
DE3716309A1 (en) * | 1987-05-15 | 1988-11-24 | Hoechst Ag | RESISTANCE TO PHOSPHINOTHRICIN |
DE3732972A1 (en) * | 1987-07-02 | 1989-01-12 | Hoechst Ag | RESISTANCE GENES TO PHOSPHINOTHRICIN AND ITS USE |
DE4126414A1 (en) * | 1991-08-09 | 1993-02-11 | Hoechst Ag | DEACETYLASE GENES FOR PRODUCING PHOSPHINOTHRICIN OR PHOSPHINOTHRICYL-ALANYL-ALANINE, METHOD FOR THEIR INSULATION AND THEIR USE |
DE4222407C1 (en) * | 1992-07-08 | 1993-10-07 | Max Planck Gesellschaft | Modular promoter construct |
US6586367B2 (en) | 1996-09-05 | 2003-07-01 | Syngenta Crop Protection, Inc. | Process for the control of weeds |
AR008158A1 (en) * | 1996-09-05 | 1999-12-09 | Syngenta Participations Ag | PROCESS FOR THE CONTROL OF BAD HERBS IN USEFUL PLANTS CROPS THAT ARE RESISTANT TO A PHOSPH-HERBICIDE AND A HERBICIDAL COMPOSITION FOR SUCH USE. |
DE19836684A1 (en) | 1998-08-13 | 2000-02-17 | Hoechst Schering Agrevo Gmbh | Use of a synergistic herbicidal combination including a glufosinate- or glyphosate-type, imidazolinone or protoporphyrinogen oxidase to control weeds in rice |
DE19836700A1 (en) | 1998-08-13 | 2000-02-17 | Hoechst Schering Agrevo Gmbh | Use of a synergistic herbicide combination including a glufosinate- or glyphosate-type, imidazolinone or protoporphyrinogen oxidase inhibitory azole herbicide to control weeds in cereals |
DE19836659A1 (en) | 1998-08-13 | 2000-02-17 | Hoechst Schering Agrevo Gmbh | Use of synergistic herbicide combination including glufosinate- or glyphosate-type, imidazolinone, protoporphyrinogen oxidase inhibitory azole or hydroxybenzonitrile herbicide, to control weeds in cotton |
DE19836660A1 (en) | 1998-08-13 | 2000-02-17 | Hoechst Schering Agrevo Gmbh | Use of a synergistic herbicide combination including a glufosinate- or glyphosate-type, imidazolinone or protoporphyrinogen oxidase inhibitory azole herbicide to control weeds in soya |
PL218413B1 (en) | 1998-08-13 | 2014-12-31 | Bayer Cropscience Ag | Use of herbicide combinations for controlling harmful plants in crops of maize and a method for controlling harmful plants in tolerant crops of maize |
CA2475485C (en) | 2002-02-26 | 2012-08-28 | Syngenta Limited | A method of selectively producing male or female sterile plants |
CA2586241C (en) | 2004-11-17 | 2013-07-30 | Hokko Chemical Industry Co., Ltd. | Herbicide-resistance gene and utilization thereof |
KR100743611B1 (en) * | 2006-03-28 | 2007-08-01 | 최광술 | Cable control system industrial robot |
AR074941A1 (en) | 2009-01-07 | 2011-02-23 | Bayer Cropscience Sa | TRANSPLASTOMIC PLANTS EXEMPTED FROM SELECTOR MARKER |
CN102869769A (en) | 2009-12-23 | 2013-01-09 | 拜尔知识产权有限公司 | Plants tolerant to HPPD inhibitor herbicides |
EP2516630B1 (en) | 2009-12-23 | 2017-11-15 | Bayer Intellectual Property GmbH | Plants tolerant to hppd inhibitor herbicides |
EP2516631B1 (en) | 2009-12-23 | 2018-02-14 | Bayer Intellectual Property GmbH | Plants tolerant to hppd inhibitor herbicides |
BR112012015697A2 (en) | 2009-12-23 | 2015-08-25 | Bayer Intelectual Property Gmbh | Herbicide tolerant plants of hppd inhibitors. |
WO2011076889A1 (en) | 2009-12-23 | 2011-06-30 | Bayer Cropscience Ag | Plants tolerant to hppd inhibitor herbicides |
WO2011144684A1 (en) | 2010-05-21 | 2011-11-24 | Bayer Cropscience Ag | Herbicidal agents for tolerant or resistant rice cultures |
WO2011144683A1 (en) | 2010-05-21 | 2011-11-24 | Bayer Cropscience Ag | Herbicidal agents for tolerant or resistant rape cultures |
BR112012029616A2 (en) | 2010-05-21 | 2015-10-20 | Bayer Ip Gmbh | herbicidal agents for tolerant or resistant cereal crops |
BR112012029621A2 (en) | 2010-05-21 | 2015-09-22 | Bayer Ip Gmbh | herbicidal agents for tolerant or resistant maize crops |
WO2012004013A2 (en) | 2010-07-08 | 2012-01-12 | Bayer Bioscience N.V. | Glucosinolate transporter protein and uses thereof |
US20140090102A1 (en) | 2011-01-24 | 2014-03-27 | Stéphane Pien | Use of the rd29 promoter or fragments thereof for stress-inducible expression of transgenes in cotton |
EP2524602A1 (en) | 2011-05-20 | 2012-11-21 | Bayer CropScience AG | Herbicide agent for tolerant or resistant soya cultures |
UA117816C2 (en) | 2012-11-06 | 2018-10-10 | Байєр Кропсайєнс Акцієнгезелльшафт | Herbicidal combinations for tolerant soybean cultures |
DE202014101590U1 (en) | 2014-04-03 | 2014-04-29 | Igus Gmbh | Guidance system for supply lines and robots with guidance system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3765449D1 (en) * | 1986-03-11 | 1990-11-15 | Plant Genetic Systems Nv | PLANT CELLS RESISTED BY GENE TECHNOLOGY AND RESISTANT TO GLUTAMINE SYNTHETASE INHIBITORS. |
-
1987
- 1987-08-19 ES ES198787112023T patent/ES2038631T3/en not_active Expired - Lifetime
- 1987-08-19 AT AT87112023T patent/ATE75776T1/en not_active IP Right Cessation
- 1987-08-19 EP EP87112023A patent/EP0257542B1/en not_active Expired - Lifetime
- 1987-08-20 FI FI873610A patent/FI100251B/en not_active IP Right Cessation
- 1987-08-21 CA CA000545037A patent/CA1337597C/en not_active Expired - Lifetime
- 1987-08-21 IL IL8360487A patent/IL83604A/en not_active IP Right Cessation
- 1987-08-21 AU AU77318/87A patent/AU604743B2/en not_active Expired
- 1987-08-21 NZ NZ221526A patent/NZ221526A/en unknown
- 1987-08-21 DK DK198704378A patent/DK175254B1/en not_active IP Right Cessation
- 1987-08-22 CN CN87105764A patent/CN1040772C/en not_active Expired - Lifetime
- 1987-08-22 JP JP62209123A patent/JPH0797994B2/en not_active Expired - Lifetime
- 1987-08-23 HU HU727/87A patent/HU217208B/en unknown
-
1990
- 1990-02-28 JP JP2049140A patent/JP2749424B2/en not_active Expired - Lifetime
-
1992
- 1992-07-16 GR GR920401371T patent/GR3005200T3/el unknown
-
1994
- 1994-10-14 JP JP6249627A patent/JPH07147985A/en active Pending
-
1996
- 1996-10-09 JP JP8268910A patent/JP2815847B2/en not_active Expired - Lifetime
-
1998
- 1998-06-19 CN CN98115017A patent/CN1124347C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
HU217208B (en) | 1999-12-28 |
DK437887A (en) | 1988-02-24 |
JPS6371183A (en) | 1988-03-31 |
CN1225393A (en) | 1999-08-11 |
FI873610A0 (en) | 1987-08-20 |
EP0257542A2 (en) | 1988-03-02 |
JPH03103193A (en) | 1991-04-30 |
IL83604A (en) | 2004-02-19 |
CN1040772C (en) | 1998-11-18 |
CA1337597C (en) | 1995-11-21 |
JP2749424B2 (en) | 1998-05-13 |
CN1124347C (en) | 2003-10-15 |
JPH0797994B2 (en) | 1995-10-25 |
FI100251B (en) | 1997-10-31 |
AU604743B2 (en) | 1991-01-03 |
NZ221526A (en) | 1989-03-29 |
AU7731887A (en) | 1988-05-19 |
IL83604A0 (en) | 1988-01-31 |
HUT44621A (en) | 1988-03-28 |
FI873610A (en) | 1988-02-24 |
JPH07147985A (en) | 1995-06-13 |
EP0257542B1 (en) | 1992-05-06 |
CN87105764A (en) | 1988-11-30 |
JP2815847B2 (en) | 1998-10-27 |
GR3005200T3 (en) | 1993-05-24 |
JPH09107981A (en) | 1997-04-28 |
ATE75776T1 (en) | 1992-05-15 |
ES2038631T3 (en) | 1993-08-01 |
EP0257542A3 (en) | 1990-03-07 |
DK437887D0 (en) | 1987-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK175254B1 (en) | Phosphinothricin resistance gene sequence and its use | |
US5879903A (en) | Phosphinothricin-resistance gene, and its use | |
US5637489A (en) | Phosphinothricin-resistance gene, and its use | |
US5276268A (en) | Phosphinothricin-resistance gene, and its use | |
KR100312456B1 (en) | Gene Derived from Pseudomonas fluorescens Which Promotes the Secretion of Foreign Protein in Microorganism | |
CN111117942B (en) | Genetic engineering bacterium for producing lincomycin and construction method and application thereof | |
JPH02150284A (en) | Increasing method for production of secondary metabolites using clustered biosynthetic gene | |
EP0711348A1 (en) | Process for the efficient production of 7-adca via 3-(carboxyethylthio)propionyl-7-adca | |
US5759831A (en) | DNA molecules and vectors regarding clavulanic acid biosynthesis enzymes | |
Kolar et al. | Molecular characterization and functional analysis in Aspergillus nidulans of the 5′-region of the Penicillium chrysogenum isopenicillin N synthetase gene | |
EP0173327B1 (en) | Bialaphos producing gene | |
JPH02167078A (en) | Method of separation and use of biosynthesis gene and | |
KR20000065202A (en) | Gene glutamic acid dehydrogenase, βNacetylhexosaminidase, γactin promoter and its filamentous fungal expression, secretion and use in antisense system | |
US5652132A (en) | Oxido reductase enzyme system obtainable from P. chrysogenum, the set of genes encoding the same and the use of oxido reductase enzyme systems or genes encoding the same for increasing antibiotic production | |
CA2878644A1 (en) | Uk-2 biosynthetic genes and method for improving uk-2 productivity using the same | |
US20050164335A1 (en) | Methods and organisms for production of b6 vitamers | |
EP1383886B1 (en) | D-hydantoinase from ochrobactrum anthropi | |
US5308765A (en) | Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically acitve carboxylic acids and their enantiomeric esters using said transformants | |
EA004569B1 (en) | Streptomyces avermitilis gene directing the ratio of b2:b1 avermectins | |
AU2002254519A1 (en) | D-hydantoinase from ochrobactrum anthropi | |
DE69627856T2 (en) | PENICILLIUM CHRYSOGENUM PHENYLACETYL-CoA LIGASE | |
WO2004035010A2 (en) | Methods and organisms for production of b6 vitamers | |
JPH05236988A (en) | Production of polypeptide | |
Kanzaki et al. | Improved bioassay method for plant transformation inhibitors | |
NOLTE et al. | Purification and characterization of chloramphenicol acetyltransferase from Flavobacterium CB60 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |