DK174763B1 - Thermal gasification plant - Google Patents

Thermal gasification plant Download PDF

Info

Publication number
DK174763B1
DK174763B1 DK199900575A DKPA199900575A DK174763B1 DK 174763 B1 DK174763 B1 DK 174763B1 DK 199900575 A DK199900575 A DK 199900575A DK PA199900575 A DKPA199900575 A DK PA199900575A DK 174763 B1 DK174763 B1 DK 174763B1
Authority
DK
Denmark
Prior art keywords
heat exchanger
gas
flow
thermal gasification
air flow
Prior art date
Application number
DK199900575A
Other languages
Danish (da)
Inventor
Thomas Koch
Lars Kioerboe
Original Assignee
Tk En As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tk En As filed Critical Tk En As
Priority to DK199900575A priority Critical patent/DK174763B1/en
Priority to AU42862/00A priority patent/AU4286200A/en
Priority to EP00922474A priority patent/EP1180233A1/en
Priority to PCT/DK2000/000217 priority patent/WO2000068631A1/en
Publication of DK199900575A publication Critical patent/DK199900575A/en
Application granted granted Critical
Publication of DK174763B1 publication Critical patent/DK174763B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • F28G13/005Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00 cleaning by increasing the temperature of heat exchange surfaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B43/00Preventing or removing incrustations
    • C10B43/02Removing incrustations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Description

i DK 174763 B1in DK 174763 B1

Opfindelsen angår et termisk forgasningsanlæg, som dels omfatter en forgasser til at fremstille gas af et biobrændsel, dels en varmeveksler med mindst én varmetransmissionsvæg, der adskiller to varmevekslersider, som er indrettet med modsatte 5 strømningsretninger i forhold til hinanden og under drift tjener til gennemstrømning af henholdsvis en varm gasstrøm fra forgasseren og en kold luftstrøm fra en luftstrømsgenerator.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a thermal gasification plant comprising, in part, a gasifier for producing gas from a biofuel, and a heat exchanger having at least one heat transmission wall separating two heat exchanger sides arranged in opposite directions with respect to each other and in operation serving to flow through respectively a hot gas stream from the carburetor and a cold air stream from an air stream generator.

Biobrændsel findes i rigt omfang i form af eksempelvis træflis.Biofuels are available to a large extent in the form of wood chips, for example.

10 Brændslet har et forholdsvist stort volumen i forhold til dets indhold af energi. Det er derfor ikke særligt økonomisk at anvende biobrændsel i store centrale anlæg, der kræver, at brændslet må transporteres over forholdsvis store afstande, 15 I stedet kan biobrændslet med fordel udnyttes i mindre, decentralt placerede termiske forgasningsanlæg med mindre forgassere til at fremstille gas til en gasmotor, der eksempelvis kan drive en elgenerator til produktion af elektrisk strøm. Til dette formål må den fremstillede gas 20 imidlertid være ret ren, dvs. gassen må ikke have et væsentligt indhold af partikler og tjære.10 The fuel has a relatively large volume in relation to its energy content. Therefore, it is not very economical to use biofuel in large central plants that require the fuel to be transported over relatively large distances. 15 Instead, the biofuel can advantageously be utilized in smaller, decentralized thermal gasification plants with smaller gasifiers to produce gas for a gas. gas engine which can, for example, drive an electric generator for the production of electric power. For this purpose, however, the gas 20 produced must be quite pure, i.e. the gas must not have a significant content of particles and tar.

Sådanne mindre forgassere er almindeligvis af fast bed typen. Forgasses i modstrøm, opnås en god varmegenvinding, men den 25 producerede gas er til gengæld meget uren. I medstrøm opnås en langt renere gas, men med den følgeulempe, at der kræves et separat varmegenvindingssystem for at anlægget skal kunne opnå en høj udnyttelsesgrad af biobrændslets indhold af energi.Such smaller carburetors are generally of the fixed bed type. If gas is gasified in the countercurrent, a good heat recovery is obtained, but the gas produced is very impure. In co-flow, a far cleaner gas is obtained, but with the disadvantage that a separate heat recovery system is required for the plant to achieve a high utilization rate of the biofuel's energy content.

30 De fleste kommercielle og halvkommercielle gasrensesystemer er af vådrensetypen. Der anvendes således typisk en skrubber til at overføre urenheder i form af tjære fra gasfase til væskefase. Ofte fjerner skrubberen også det støv, som ikke allerede er blevet frasepareret i eksempelvis en støvudskiller, 35 der er placeret før skrubbersysternet. Desuden køler skrubberen gassen, som mættes med fugt.30 Most commercial and semi-commercial gas purification systems are of the wet cleaning type. Thus, a scrubber is typically used to transfer tar-like impurities from gas phase to liquid phase. Often, the scrubber also removes the dust that has not already been separated in, for example, a dust separator 35 placed before the scrubber system. In addition, the scrubber cools the gas, which is saturated with moisture.

2 DK 174763 B12 DK 174763 B1

Gassens indhold af varme kan genvindes, men kun op til forholdsvis lave temperaturer. Varmen kan derfor kun anvendes ved lave temperaturer, således som det eksempelvis er tilfældet 5 i fjernvarmeanlæg.The gas content of heat can be recovered, but only up to relatively low temperatures. Therefore, the heat can only be used at low temperatures, as is the case, for example, in district heating systems.

Selv om der med ovennævnte skrubbersysterner kan opnås udmærkede resultater, moder anvendelsen af disse vådrensesysterner dog altid det meget alvorlige problem, at de er nødt til at skille 10 sig af med det stærkt forurenede og meget giftige spildevand, som er et uundgåeligt biprodukt af den våde renseproces. Der findes ingen generel god løsning på dette problem.Although with the above scrubbing systems excellent results can be obtained, however, the use of these wet cleaning systems always faces the very serious problem of having to dispose of the highly contaminated and highly toxic wastewater, which is an inevitable by-product of the wet cleaning process. There is no overall good solution to this problem.

Systemer, der anvender gas-væske eller gas-gas varmevekslere, 15 lider af det problem, at gassens indhold af tjære og støv er tilbøjelig til at afsætte sig som belægninger på varmevekslernes varmeflader. Derved reduceres varmetransmissionen i en given varmeveksler med tiden så meget, at det bliver nødvendigt at rense varmeveksleren for at retablere dens ydeevne. Dette 20 arbejde er besværligt og brydsomt, og der kan desuden opstå problemer med at få deponeret de afrensede belægninger.Systems using gas-liquid or gas-gas heat exchangers suffer from the problem that the gas content of tar and dust tends to deposit as coatings on the heat exchangers of the heat exchangers. This reduces the heat transmission in a given heat exchanger over time to such an extent that it becomes necessary to clean the heat exchanger to restore its performance. This 20 work is cumbersome and fragile, and there may also be problems in depositing the cleaned coatings.

Ovennævnte ulemper har hidtil haft den konsekvens, at der ikke i nævneværdigt omfang er anvendt en proces i et termisk 25 forgasningsanlæg, hvor den varme gas fra forgasseren ledes gennem en varmeveksler og herunder køles med kølegas eller -luft. De betydelige fordele, der ellers ville kunne opnås ved en sådan proces, er derfor aldrig blevet implementeret.The aforementioned disadvantages have so far had the consequence that no process has been used to any appreciable extent in a thermal gasification plant, where the hot gas from the carburetor is passed through a heat exchanger and is cooled with cooling gas or air, among other things. Therefore, the significant benefits that would otherwise be gained from such a process have never been implemented.

30 Fra US 4,582,129 kendes en gas-gas varmeveksler. Denne kendte gas-gas varmeveksler anvender et gennemstrømsretningsskift til at fjerne støvdynger ved indgangen til varmeveksleren, hvilket medfører en uhensigtsmæssig lav virkningsgrad.From US 4,582,129 a gas-gas heat exchanger is known. This known gas-gas heat exchanger uses a flow direction change to remove dust jets at the entrance to the heat exchanger, resulting in an unduly low efficiency.

35 Formålet med opfindelsen er at anvise et termisk forgasningsanlæg af den indledningsvis nævnte art til ved hjælp 3 DK 174763 B1 af tør rensning af gassen fra forgasseren at fremstille en generatorgas af så høj kvalitet, at gassen problemfrit lader sig anvende til at drive en gasmotor.The object of the invention is to provide a thermal gasification plant of the kind mentioned above to produce, by dry cleaning of the gas from the carburetor, a generator gas of such high quality that the gas can easily be used to operate a gas engine.

5 Det nye og særegne ifølge opfindelsen, hvorved dette opnås, består i, at anlægget er indrettet til periodevis at bringe gas- og luftstrømmen til at bytte varmevekslersider og til at skifte gennemstrømsretning.5 The new and distinctive feature of the invention, by which this is achieved, consists in that the system is arranged to periodically bring the gas and air flow to change heat exchanger sides and to change the flow direction.

10 Gassen fra forgasseren har almindeligvis et ikke ubetydeligt indhold af tjære, der er tilbøjelig til at afsætte sig som belægninger på varmefladerne i varmevekslerens kolde ende. Derved reduceres varmevekslerens effekt.10 The gas from the carburetor generally has a not insignificant content of tar which tends to settle as coatings on the heat surfaces at the cold end of the heat exchanger. This reduces the effect of the heat exchanger.

15 Ved at lade gas- og luftstrøm bytte varmevekslersider opnås, at der nu strømmer luft på den varmevekslerside, der tidligere blev gennemstrømmet af gas, og ved at skifte gennemstrømsretning opnås, at varmevekslerens tidligere kolde ende nu bliver dens varme ende.15 By changing the gas and air flow heat exchanger sides, it is achieved that air now flows on the heat exchanger side that was previously flowed by gas, and by changing the flow direction, the former cold end of the heat exchanger now becomes its hot end.

2020

Den varme luft i varmevekslerens nu varme ende påvirker tjærebelægningerne på den belagte varmeflade med en så høj temperatur, at belægningerne krakker, nedbrydes og forflygtiges og i denne tilstand føres med luften ud af varmeveksleren.The hot air at the now hot end of the heat exchanger affects the tar coatings on the coated heating surface at such a high temperature that the coatings crack, decompose and volatilize and in this state are carried with the air out of the heat exchanger.

25 Derved renses den tidligere belagte varmeflade, således at varmevekslerens ydeevne retableres.Thereby the previously coated heat surface is cleaned so that the heat exchanger performance is restored.

Den varme afgangsluft fra varmeveksleren kan med fordel anvendes til forgasningsprocessen i forgasseren, hvorved 30 luftens medbragte indhold af brændbare gasser fra tjærebelægningerne samtidigt nyttiggøres. Derved opnår det termiske forgasningsanlæg en optimal god energiøkonomi.The hot exhaust air from the heat exchanger can advantageously be used for the gasification process in the carburetor, thereby simultaneously utilizing the entrained content of combustible gases from the tar coatings. In this way, the thermal gasification plant achieves an optimum good energy economy.

Kræves der mere luft til at nedkøle gassen i varmeveksleren end 35 til brug for forgasningsprocessen i forgasseren, kan varmeveksleren desuden være indrettet til gennemstrømning af 4 DK 174763 B1 endnu en luftstrøm, som herunder ligeledes varmes op af den gennemstremmende varme gas. Denne varme anden luftstrøm kan anvendes til successivt at tørre biomassen og/eller anvendes som varmekilde i et fjernvarmeanlæg.In addition, if more air is required to cool the gas in the heat exchanger than 35 for use in the gasification process in the carburetor, the heat exchanger can also be arranged for flowing through yet another air flow, which is also heated by the flowing hot gas. This hot second air stream can be used to successively dry the biomass and / or be used as a heat source in a district heating plant.

55

Det termisk forgasningsanlæg kan desuden have en støvudskiller til at befri gassen for partikulære materialer, inden gassen når frem til varmeveksleren.The thermal gasification plant may additionally have a dust separator to release the gas from particulate materials before the gas reaches the heat exchanger.

10 Opfindelsen forklares nærmere nedenfor, idet der beskrives en alene eksempelvis udførelsesform under henvisning til tegningen, hvor fig. 1 skematisk viser et termisk forgasningsanlæg ifølge 15 opfindelsen, fig. 2 skematisk viser en varmeveksler til det i fig. 1 viste termiske forgasningsanlæg i én driftfase, og 20 fig. 3 viser samme i en anden driftfase.The invention will be explained in more detail below, by way of example only, by way of example, with reference to the accompanying drawings, in which: FIG. 1 shows schematically a thermal gasification system according to the invention; FIG. 2 diagrammatically shows a heat exchanger for the embodiment of FIG. 1 in one operating phase, and FIG. 3 shows the same in another operating phase.

Det i fig. 1 viste termiske forgasningsanlæg er i sin helhed angivet med henvisningstallet 1. Anlægget anvendes til at forgasse et biobrændsel 2, der tilføres fra en forrådsbeholder 25 3. Biobrændslet føres ved hjælp af en transportør 4 i pilens retning hen til en sluse 5, der successivt leder biobrændslet ned i en forgasser 6.The FIG. 1 is indicated in its entirety by reference numeral 1. The plant is used to gasify a biofuel 2 supplied from a storage container 25 3. The biofuel is conveyed by means of a conveyor 4 in the direction of the arrow to a sluice 5 which successively leads the biofuel into a carburetor 6.

Forgasseren er af i og for sig kendt art og vil derfor ikke 30 blive beskrevet nærmere her. Til det viste anlæg anvendes en medstrømsforgasser for at sikre, at gassen opnår en høj i afgangstemperatur.The carburetor is of a kind known per se and will therefore not be described further here. A co-current carburetor is used for the system shown to ensure that the gas achieves a high outlet temperature.

Forgasseren har en askeafgang 7 og er via en afgangskanal 8 35 forbundet med en støvudskiller 9 til at fjerne partikulært materiale fra gassen. Fra støvudskilleren strømmer gassen via 5 DK 174763 B1 en gaskanal 10 over i en varmeveksler 11, hvor gassen køles ned og renses for tjære. Den nu rensede gas føres via en anden gaskanal 12 til en gasmotor 13, der driver en elgenerator 14 til generering af elektrisk strøm.The carburetor has an ash discharge 7 and is connected via a discharge duct 8 35 to a dust separator 9 for removing particulate matter from the gas. From the dust separator, the gas flows via a gas duct 10 into a heat exchanger 11, where the gas is cooled down and purified for tar. The now purified gas is fed via a second gas duct 12 to a gas engine 13 which drives an electric generator 14 to generate electric current.

5 I varmeveksleren strømmer gassen i modstrøm med en første og anden luftstrøm fra henholdsvis en første blæser 15 og anden blæser 16.5 In the heat exchanger, the gas flows countercurrently with a first and second air flow from a first blower 15 and a second blower 16 respectively.

10 Den første luftstrøm ledes via en første luftkanal 17 ind foroven i forgasseren til brug for den forgasningsproces, der finder sted i forgasseren. Som tidligere nævnt, strømmer den første luftstrøm i medstrøm med biobrændslet i forgasseren for derved at bibringe gassen en høj afgangstemperatur.The first air flow is conducted via a first air duct 17 into the top of the carburetor for use in the gasification process taking place in the carburetor. As previously mentioned, the first air stream co-flows with the biofuel in the carburetor, thereby imparting a high exhaust temperature to the gas.

1515

Den anden luftstrøm ledes via en anden luftkanal 18 til, i det viste tilfælde, en tørreindretning 19 til at tørre biobrændslet 2.The second air stream is conducted via a second air duct 18 to, in the case shown, a drying device 19 for drying the biofuel 2.

20 Fig. 2 og 3 viser meget skematisk, hvorledes den i fig. 1 viste varmeveksler 11 er indrettet og virker. Varmeveksleren er delt op i et første og andet gennemstrømningsafsnit 20'; 20". Hvert af disse afsnit er af en første og anden varmetransmissionsvæg, henholdsvis 21',22'; 21",22" igen delt op i en første, anden og 25 tredie varmevekslerside, henholdsvis 23', 24', 25'; 23", 24", 25".FIG. 2 and 3 show very schematically how the embodiment of FIG. 1, the heat exchanger 11 shown is arranged and functioning. The heat exchanger is divided into a first and second flow sections 20 '; 20 ". Each of these sections is of a first and second heat transmission walls, 21 ', 22', 21", 22 "again divided into a first, second and 25 third heat exchanger sides, 23 ', 24', 25 ', respectively; 23 ", 24", 25 ".

Den første varmevekslerside 23' i det første gennemstrømnings-afsnit 20' er via en kanal 26 forbundet med den anden 30 varmevekslerside 24" i det andet gennemstrømningsafsnit 20", v medens den anden varmevekslerside 24' i det første gennemstrøm ningsafsnit 20' via en anden varmevekslerkanal 27 er forbundet med den første varmevekslerside 23" i det andet gennemstrømningsafsnit 20". Den tredie varmevekslerside 25'; 25" i 35 henholdsvis det første og andet gennemstrømningsafsnit 20'; 20" er ikke forbundet med hinanden.The first heat exchanger side 23 'in the first flow section 20' is connected via a duct 26 to the second heat exchanger side 24 "in the second flow section 20", while the second heat exchanger side 24 'in the first flow section 20' through a second flow section heat exchanger channel 27 is connected to the first heat exchanger side 23 "in the second flow section 20". The third heat exchanger side 25 '; 25 "in 35, respectively, the first and second flow sections 20 '; 20" are not interconnected.

6 DK 174763 B16 DK 174763 B1

Det bemærkes, at de to gennemstrømningsafsnit 20';20" alternativt kan være direkte forbundet med hinanden, dvs. uden varmevekslerkanalerne 26 og 27.It should be noted that the two flow sections 20 '; 20 "may alternatively be directly connected to each other, i.e. without the heat exchanger ducts 26 and 27.

55

Som vist i fig. 2, strømmer gassen x ddd gennem varmeveksleren fra højre til venstre via det andet afsnits første varmevekslerside 23", den anden varmevekslerkanal 27 og det første afsnits anden varmevekslerside 24'. Samtidig strømmer 10 den første luftstrøm y i modsat retning, dvs. fra venstre til højre via det første afsnits første varmevekslerside 23', den første varmevekslerkanal 26 og det andet afsnits anden varmevekslerside 24", medens den anden luftstrøm z *“ > strømmer i samme retning som den 15 første luftstrøm, men alene gennem det første afsnits tredie varmevekslerside 25'. Gassen x gennemstrømmer således varmeveksleren i modstrøm med de to luftstrømme y og z. Det første afsnit 20' bliver derved varmevekslerens kolde ende.As shown in FIG. 2, the gas x ddd flows through the heat exchanger from right to left via the first section of the first heat exchanger 23 ", the second heat exchanger channel 27 and the second section of the second heat exchanger side 24 '. At the same time 10 the first air stream y flows in the opposite direction, i.e. from left to right via the first section first heat exchanger side 23 ', the first heat exchanger channel 26 and the second section second heat exchanger side 24 ", while the second air flow z *"> flows in the same direction as the first air flow, but only through the third section third heat exchanger 25' . Thus, the gas x flows through the heat exchanger countercurrently with the two air streams y and z. The first section 20 'thereby becomes the cold end of the heat exchanger.

20 Varmeveksleren 11 er udlagt således i afhængighed af de tre massestrømme og disses temperaturer ved indgangen til varmeveksleren, at gassens inhold af tjære ikke kan kondensere i det varme andet afsnit 20", men kun i det kolde første afsnit 20', dvs. på dettes varmetransmissionsvægge 21' og 22' . Derved 25 sættes disse vægge til med belægninger, der successivt vil reducere varmevekslerens ydeevne, således at det termiske forgasningsanlæg ikke længere vil kunne fungere effektivt.The heat exchanger 11 is arranged so as to depend on the three mass flows and their temperatures at the entrance to the heat exchanger that the gas content of tar cannot condense in the hot second section 20 ", but only in the cold first section 20 ', i.e. in its heat transmission walls 21 'and 22', thereby adding 25 to these walls with coatings that will successively reduce the heat exchanger's performance so that the thermal gasification system can no longer function effectively.

For at undgå, at en sådan tilstand udvikler sig, er det 30 termiske forgasningsanlæg indrettet således (ikke vist) , at gasstrømmen x og den første luftstrøm y periodevis kan bytte 1 varmevekslerside og skifte gennemstrømningsretning, medens den anden luftstrøm z samtidigt skifter såvel position som gennemstrømningsretning.In order to prevent such a situation from developing, the thermal gasification system is arranged (not shown) so that the gas stream x and the first air stream y can periodically change 1 heat exchanger side and change the flow direction, while the second air flow z simultaneously changes both position and flow.

35 7 DK 174763 B135 7 DK 174763 B1

Denne situation er vist i fig. 3. Som det ses, er det tidligere kolde første afsnit 20' nu blevet til varmevekslerens varme afsnit, hvor den af den varme gasstrøm x stærkt opvarmede første luftstrøm bestryger de to vægge 21' og 22 ’, som i ét 5 eller andet omfang nu er sat til med belægninger. Den varme første luftstrøm y varmepåvirker disse belægninger således, at belægningerne krakker, nedbrydes og forflygtiges og i denne tilstand optages af den første luftstrøm y. Derved renses varmeveksleren for belægninger.This situation is shown in FIG. 3. As can be seen, the formerly cold first section 20 'has now become the heat section of the heat exchanger, whereby the hot gas stream x strongly heated first air stream coats the two walls 21' and 22 ', which to one extent or another now is added with coatings. The hot first air stream γ heats these coatings such that the coatings crack, decompose and volatilize and in this state are occupied by the first air stream γ. Thereby the heat exchanger is cleaned of coatings.

1010

Medens det ene varmevekslerafsnit 20',20" på denne måde renses for belægninger, sættes det andet afsnits varmeflader imidlertid samtidigt til med belægninger. Derfor skiftes der periodevis frem og tilbage mellem den i fig. 2 og den i fig. 3 15 viste drifttilstand, således at varmevekslerens varmeflader aldrig når at blive sat til med belægninger i uacceptabelt omfang.However, while cleaning one of the heat exchanger sections 20 ', 20 "in this way for coatings, the second section's heating surfaces are simultaneously added with coatings. Therefore, periodically back and forth between the operation of FIG. 2 and FIG. so that the heat exchanger's heat surfaces never reach being applied with unacceptable coatings.

Som tidligere nævnt, anvendes den første luftstrøm y i den 20 forgasningsproces, der finder sted i forgasseren. Derved udnyttes dens varmeindhold fuldt ud. Desuden nyttiggøres de brændbare produkter, der blev optaget af luftstrømmen y under afrensningen af belægningerne på varmevekslerens varmeflader.As mentioned earlier, the first air stream γ is used in the gasification process that takes place in the carburetor. Thereby, its heat content is fully utilized. In addition, the combustible products that were absorbed by the air stream γ during the cleaning of the coatings on the heat exchanger heat surfaces are utilized.

Som det ligeledes tidligere er nævnt, nyttiggøres den anden 25 luftstrøms z varmeindhold samtidigt til at tørre biobrændslet.As also mentioned earlier, the second 25 air stream z heat content is utilized simultaneously to dry the biofuel.

Varmeveksleren er desuden indrettet således, at gassen køles ned til omkring 10 - 20^C over dugpunktet, dvs. til mellem 70 og 800c, før den nu uden yderligere rensning lader sig anvende 30 som brændstof til gasmotoren.The heat exchanger is further arranged such that the gas is cooled down to about 10-20 ° C above the dew point, ie. to between 70 and 800c before being used without further purification as fuel for the gas engine.

Det termisk forgasningsanlæg ifølge opfindelsen kan således stedse arbejde med en optimal god energiøkonomi og producere en ren generatorgas, der er velegnet som brændstof til en 35 gasmotor. Gassen renses tørt, hvorved de ulenper, som er forbundet med de konventionelle vådrensemetoder, undgås.Thus, the thermal gasification plant according to the invention can instead work with an optimum good energy economy and produce a clean generator gas which is suitable as fuel for a gas engine. The gas is purified dry, avoiding the disadvantages associated with the conventional wet cleaning methods.

8 DK 174763 B18 DK 174763 B1

Varmeveksleren er ovenfor beskrevet og i fig. 2 og 3 vist helt principielt, og den kan naturligvis inden for opfindelsens ramme være indrettet på en hvilken som helst hensigtsmæssig 5 måde. 1The heat exchanger is described above and in FIG. 2 and 3 are shown in principle, and of course it can be arranged in any convenient manner within the scope of the invention. 1

Claims (8)

9 DK 174763 B19 DK 174763 B1 1. Termisk forgasningsanlæg (1), som dels omfatter en 5 forgasser (6) til at fremstille gas af et biobrændsel (2), dels , en varmeveksler (11) med mindst én varmetransmissionsvæg (21), der adskiller to varmevekslersider (23;24), som er indrettet < med modsatte strømningsretninger i forhold til hinanden og under drift tjener til gennemstrømning af henholdsvis en varm 10 gasstrøm (x) fra forgasseren (6) og en kold luftstrøm (y) fra en luftstrømsgenerator (15;16), kendetegnet ved, at det termiske forgasningsanlæg (1) er indrettet til periodevis at bringe gasstrømmen (x) og luftstrømmen (y) til at bytte varmevekslersider (23;24) og skifte gennemstrøms retning. 15A thermal gasification system (1), which comprises, in part, a gasifier (6) for producing gas from a biofuel (2) and, in part, a heat exchanger (11) with at least one heat transmission wall (21) separating two heat exchanger sides (23; 24) which are arranged with opposite flow directions relative to each other and during operation serve to flow respectively a hot gas stream (x) from the carburetor (6) and a cold air stream (y) from an air flow generator (15; 16), characterized in that the thermal gasification system (1) is arranged to periodically cause the gas flow (x) and the air flow (y) to change heat exchanger sides (23; 24) and change the flow direction. 15 2. Termisk forgasningsanlæg (1) ifølge krav 1, kendetegnet ved, at varmeveksleren (11) har en anden varmetransmissionsvæg (22), der afgrænser en tredie varmevekslers ide (25) til en anden luftstrøm (z) med samme strømningsretning som den første 20 luftstrøm (y).Thermal gasification system (1) according to claim 1, characterized in that the heat exchanger (11) has a second heat transmission wall (22) defining the idea of a third heat exchanger (25) for a second air flow (z) with the same flow direction as the first 20 air flow (y). 3. Termisk forgasningsanlæg (1) ifølge krav 1 eller 2, kendetegnet ved, at varmeveksleren (11) er delt op i to gennemstrømningsafsnit (201; 20") 25Thermal gasification system (1) according to claim 1 or 2, characterized in that the heat exchanger (11) is divided into two flow sections (201; 20 "). 4. Termisk forgasningsanlæg (1) ifølge krav 3, kendetegnet ved, at den tredie varmevekslerside (25) kun gennemstrømmes af den anden luftstrøm (z) i det gennemstrømningsafsnit {20’;20“), som i en given driftsituation sidst gennemstrømmes af gasstrømmen 30 (x). ifThermal gasification system (1) according to claim 3, characterized in that the third heat exchanger side (25) is only flowed through the second air flow (z) in the flow section (20 '; 20 "), which in a given operating situation is last flowed by the gas flow (X). if 5. Termisk forgasningsanlæg (1) ifølge ethvert af kravene 1 -4, kendetegnet ved, at anlægget omfatter et rørsystem (17), der forbinder forgasseren (6) med varmevekslerens (11) afgange for 35 den første luftstrøm (y).Thermal gasification system (1) according to any one of claims 1 to 4, characterized in that the system comprises a pipe system (17) connecting the carburetor (6) to the outlets of the heat exchanger (11) for the first air flow (y). 10 DK 174763 B110 DK 174763 B1 6. Termisk forgasningsanlæg (1) ifølge ethvert af kravene 1 - 5, kendetegnet ved, at anlægget omfatter et rørsystem (18), der forbinder en indretning (19) til torring af biobrændslet (2) med varmevekslerens (11) afgange for den anden luftstrøm (z). 5Thermal gasification system (1) according to any one of claims 1 to 5, characterized in that the system comprises a pipe system (18) connecting a device (19) for drying the biofuel (2) with the outlets of the heat exchanger (11) for the other. air flow (z). 5 7. Termisk forgasningsanlæg (1) ifølge ethvert af kravene 1 - 6, kendetegnet ved, at anlægget omfatter et rørsystem, der forbinder en varmeforbrugende indretning, f.eks. et fjernvarmeanlæg med varmevekslerens (11) afgange for den anden 10 luftstrøm (z).Thermal gasification system (1) according to any one of claims 1 to 6, characterized in that the system comprises a pipe system connecting a heat-consuming device, e.g. a district heating system with the exits of the heat exchanger (11) for the second air stream (z). 8. Termisk forgasningsanlæg (1) ifølge ethvert af kravene 1 - 7, kendetegnet ved, at anlægget omfatter en støvudskiller (9), som er indskudt mellem forgasseren (6) og varmeveksleren (11) , 15 og som tjener til at fjerne partikulære materialer fra gassen, før denne når frem til varmeveksleren (11). 20 25 30 ti 35Thermal gasification system (1) according to any one of claims 1 to 7, characterized in that the system comprises a dust separator (9) which is inserted between the carburetor (6) and the heat exchanger (11), which serves to remove particulate materials. from the gas before it reaches the heat exchanger (11). 20 25 30 to 35
DK199900575A 1999-04-27 1999-04-27 Thermal gasification plant DK174763B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK199900575A DK174763B1 (en) 1999-04-27 1999-04-27 Thermal gasification plant
AU42862/00A AU4286200A (en) 1999-04-27 2000-04-27 Thermal gasification installation
EP00922474A EP1180233A1 (en) 1999-04-27 2000-04-27 Thermal gasification installation
PCT/DK2000/000217 WO2000068631A1 (en) 1999-04-27 2000-04-27 Thermal gasification installation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK57599 1999-04-27
DK199900575A DK174763B1 (en) 1999-04-27 1999-04-27 Thermal gasification plant

Publications (2)

Publication Number Publication Date
DK199900575A DK199900575A (en) 2000-10-28
DK174763B1 true DK174763B1 (en) 2003-10-27

Family

ID=8095109

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199900575A DK174763B1 (en) 1999-04-27 1999-04-27 Thermal gasification plant

Country Status (4)

Country Link
EP (1) EP1180233A1 (en)
AU (1) AU4286200A (en)
DK (1) DK174763B1 (en)
WO (1) WO2000068631A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI110817B (en) 2000-02-01 2003-03-31 Waertsilae Tech Oy Ab Heat recovery plant and method for minimizing soiling of a heat recovery plant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1006197A (en) * 1899-11-13 1911-10-17 United Salt Company Means for removing incrustations of calcium sulfate from brine-heating surfaces.
US2490759A (en) * 1942-06-13 1949-12-06 Rosenblad Corp Method of cleaning scale
JPS5333561B1 (en) * 1968-09-12 1978-09-14
FR2265862B1 (en) * 1974-03-25 1978-10-06 Raffinerie Tirlemontoise Sa
DE2715536C2 (en) * 1977-04-07 1982-07-15 Bergwerksverband Gmbh Method and device for recovering waste heat from coke ovens
US4308807A (en) * 1980-03-17 1982-01-05 Stokes Samuel L Apparatus for pyrolysis of municipal waste utilizing heat recovery
EP0095510B1 (en) * 1981-12-07 1987-12-09 Matsushita Electric Industrial Co., Ltd. Heat exchange system

Also Published As

Publication number Publication date
AU4286200A (en) 2000-11-21
WO2000068631A1 (en) 2000-11-16
DK199900575A (en) 2000-10-28
EP1180233A1 (en) 2002-02-20

Similar Documents

Publication Publication Date Title
TWI541339B (en) Method of operation of process to produce syngas from carbonaceous material
DK2445999T3 (en) System for cleaning and heat recovery from hot gases
KR101402039B1 (en) Method of controlling an apparatus for generating electric power and apparatus for use in said method
EP2963107B1 (en) Process for refining a biomethane biogas stream and relative apparatus for the implementation thereof
TW201020020A (en) Method for scrubbing a flue gas of a metallurgical plant and flue gas scrubbing apparatus
JPH0734899A (en) Usage of coal-fired gasifier and combined cycle power generator
JPS58143129A (en) Combined gas and steam turbine process
DK174763B1 (en) Thermal gasification plant
KR20140118417A (en) The carbon capture and storage apparatus from waste using plasma pyrolysis device
CN86106146A (en) A kind of method that purifies the coal gas that in the two-stage producer gas generator, produces by the solid carbon thing
KR101609817B1 (en) Biomass syngas purification process under positive pressure for producing oil and system configuration thereof
SE454846B (en) SET AND DEVICE FOR CLEANING A POLLUTION AMOUNTED OF HOT GAS FLOW
CN101200288A (en) Low temperature process for regenerating spent sulfuric acid
SK22893A3 (en) Means for producing combustible gases from low grad solid fuel and method for using same
FI91290C (en) Method and apparatus for energy and chemical recovery in a sulfate pulp process
EP3237343B1 (en) Optimized process and installation for melting vitrifiable material in a flame-fired furnace
US4282449A (en) Coal gasifier supplying MHD-steam power plant
US4825638A (en) Method of and device for recovering heat energy of hot raw gas gererated a coal gasification arrangement of an electric energy generating plant
JP2000178567A (en) Composite coal gasification-power generation plant and purification apparatus for coal-gasified gas
KR100234226B1 (en) Method and device for heating a low-temperature distillation drum
FI56393C (en) SAETT ATT DRIVA EN ANLAEGGNING FOER VAOTKOLNING AV TORV
JP2009240888A (en) System for gasifying waste
JP2009024059A (en) Gas purification system and disposal method of wastewater in the same
SU1717642A1 (en) Converter gas recovery method
JPS6397833A (en) Gas turbine plant using gasified production gas of solid fuel as fuel

Legal Events

Date Code Title Description
PBP Patent lapsed

Ref document number: DK