DK174707B1 - Case-hardening of stainless steel article by gas including carbon and/or nitrogen, involves applying top layer including metal which is catalytic to decomposition of gas, on activated surface of article - Google Patents
Case-hardening of stainless steel article by gas including carbon and/or nitrogen, involves applying top layer including metal which is catalytic to decomposition of gas, on activated surface of article Download PDFInfo
- Publication number
- DK174707B1 DK174707B1 DK200201108A DKPA200201108A DK174707B1 DK 174707 B1 DK174707 B1 DK 174707B1 DK 200201108 A DK200201108 A DK 200201108A DK PA200201108 A DKPA200201108 A DK PA200201108A DK 174707 B1 DK174707 B1 DK 174707B1
- Authority
- DK
- Denmark
- Prior art keywords
- stainless steel
- gas
- article
- layer
- nitrogen
- Prior art date
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
l DK 174707 B1l DK 174707 B1
Opfindelsen angår en fremgangsmåde ifølge den indledende del af krav og et rustfrit stålemne ifølge krav 8.The invention relates to a method according to the preamble of claim and a stainless steel blank according to claim 8.
Termokemisk overfladebehandling af stål ved hjælp af carbon- eller nitrogenbærende 5 gaser er velkendte processer og kaldes indsætningshærdning, karburering (kulstofindsætning) eller nitrering. Karbonitreiing er en proces, hvor der anvendes en gas, som bærer både carbon og nitrogen. Disse processer anvendes traditionelt til at øge hårdheden og slidstyrken af emner af jem eller lavt-legeret stål. Stålartiklen udsættes for en carbon- og/eller nitrogenbærende gas ved en forhøjet temperatur i en periode, idet gas- 10 sen dekomponerer og carbon- og/eller nitrogenatomer diffunderer gennem ståloverfladen ind i stålmaterialet. Det yderste materiale tæt på overfladen omdannes til et lag med øget hårdhed, og tykkelsen af dette lag afhænger af behandlingstemperaturen og behandlingstiden.Thermochemical coating of steel using carbon or nitrogen-bearing gases is well-known processes and is called insert curing, carburizing (carbon insertion) or nitriding. Carbonite extraction is a process using a gas which carries both carbon and nitrogen. These processes are traditionally used to increase the hardness and wear resistance of iron or low-alloy steel items. The steel article is exposed to a carbon and / or nitrogen-bearing gas at an elevated temperature for a period of time, with the gas decomposing and carbon and / or nitrogen atoms diffusing through the steel surface into the steel material. The outermost material close to the surface is converted into a layer of increased hardness, and the thickness of this layer depends on the treatment temperature and the treatment time.
15 Rustfrit stål har gode korrosionsegenskaber, men er forholdsvis blødt og har dårlig slidstyrke, især over for adhæsivt slid. Der er derfor et behov for at øge overfladeegenska-beme af rustfrit stål. Gaskarburering, nitrering og karbonitrering af rustfrit stål indebærer visse vanskeligheder, idet passivlaget, der er årsagen til de gode korrosionsegenskaber, virker som et barrierelag, der forhindrer carbon- og/eller nitrogenatomer i at dif- 20 fundere gennem overfladen. De forhøjede behandlingstemperaturer fremmer også dannelsen af chromkarbider eller chromnitrider. Dannelsen af chromkarbider og/eller chromnitrider reducerer det frie indhold af chrom i materialet, hvorved korrosionsegen-skabeme svækkes.15 Stainless steel has good corrosion properties, but is relatively soft and has poor wear resistance, especially against adhesive wear. Therefore, there is a need to increase the stainless steel surface properties. Gas carburetor, nitration, and carbon titration of stainless steel poses certain difficulties, the passive layer being the cause of the good corrosion properties acting as a barrier layer preventing carbon and / or nitrogen atoms from diffusing through the surface. The elevated treatment temperatures also promote the formation of chromium carbides or chromium nitrides. The formation of chromium carbides and / or chromium nitrides reduces the free content of chromium in the material, thereby weakening the corrosion properties.
25 Der er foreslået adskillige metoder til indsætningshærdning af rustfrit stål, hvor disse ulemper minimeres eller reduceres.Several methods have been proposed for stainless steel insert hardening, where these drawbacks are minimized or reduced.
Det er kendt, at en forbehandling i en halogenholdig atmosfære tilvejebringer en effektiv aktivering af overfladen.It is known that a pretreatment in a halogen-containing atmosphere provides an effective activation of the surface.
30 2 DK 174707 B130 2 DK 174707 B1
Fra EP 0588458 kendes en fremgangsmåde, hvor fluor anvendes som en aktiv komponent i en gasforbehandling, idet den rustfri ståloverflades passivlag omdannes til et flu-orholdigt overfladelag, der er permeabelt for carbon- og nitrogenatomer.EP 0588458 discloses a method in which fluorine is used as an active component in a gas pretreatment, in which the passive layer of the stainless steel surface is converted into a fluorinated surface layer which is permeable to carbon and nitrogen atoms.
5 Plasmaassisteret termokemisk behandling og ionimplantering er også blevet foreslået. I dette tilfælde fjernes det rustfrie ståls passivlag ved katodeforstøvning, som er en integreret del af processen.5 Plasma-assisted thermochemical treatment and ion implantation have also been proposed. In this case, the passive layer of the stainless steel is removed by cathode sputtering, which is an integral part of the process.
Fra EP 0248431 Bl kendes en fremgangsmåde, hvor et emne af austenitisk rustfrit stål 10 belægges elektrolytisk med jern før gasnitrering. Nitrogenatomeme kan diffundere gennem jemlaget og ind i det austenitiske rustfrie stål. Efter gasnitreringen fjernes jemlaget, og en hærdet overflade er opnået. Ifølge dette patents eneste eksempel udføres processen ved 575°C i 2 timer. Ved denne temperatur dannes chromnitrider, hvorved korros ionsegenskabem e svækkes.From EP 0248431 B1 a method is known in which a blank of austenitic stainless steel 10 is electrolytically coated with iron before gas nitration. The nitrogen atoms can diffuse through the iron layer and into the austenitic stainless steel. After gas nitration, the iron layer is removed and a hardened surface is obtained. According to the sole example of this patent, the process is carried out at 575 ° C for 2 hours. At this temperature, chromium nitrides are formed, thereby weakening the corrosion properties.
1515
Fra EP 1095170 kendes en karbureringsproces, hvor et emne af rustfrit stål belægges elektrolytisk med et jemlag før karburering. Et passivlag undgås, og karbureringen kan udføres ved en forholdsvis lav temperatur uden dannelse af karbider.EP 1095170 discloses a carburizing process in which a stainless steel workpiece is electrolytically coated with a surface layer before carburizing. A passive layer is avoided and the carburization can be carried out at a relatively low temperature without the formation of carbides.
20 Fra NL 1003455 kendes en fremgangsmåde, hvor et emne af jem eller lavtlegeret stål belægges med et katalytisk lag af f.eks. nikkel før gasnitrering. Nikkel beskytter jernet mod at oxidere og tjener som en katalytisk overflade med henblik på dekomponeringen af NH3-gas. Processen kan udføres ved temperaturer under 400°C, og formålet er at opnå et porefrit jemnitridlag.From NL 1003455 there is known a method in which a piece of iron or low alloy steel is coated with a catalytic layer of e.g. nickel before gas nitration. Nickel protects the iron from oxidation and serves as a catalytic surface for the decomposition of NH3 gas. The process can be carried out at temperatures below 400 ° C and the purpose is to obtain a pore-free iron nitride layer.
2525
Formålet med opfindelsen er at anvise en ny og forbedret fremgangsmåde til indsætningshærdning af rustfrit stål. Formålet er ifølge opfindelsen opnået ved en fremgangsmåde ifølge den indledende del af krav 1, hvor toplaget er et metal, der er katalyserende for dekomponeringen af gassen, der bærer carbon- og/eller nitrogenatomeme, og er 30 et lag af nikkel, ruthenium, palladium eller kobolt. Metallaget beskytter den rustfrie 3 DK 174707 B1 ståloverflade mod oxidation og virker som en katalytisk overflade for dekomperingen af gassen.The object of the invention is to provide a new and improved method for inserting hardening stainless steel. The object of the invention is achieved by a method according to the preamble of claim 1, wherein the top layer is a metal catalyzing for the decomposition of the gas carrying the carbon and / or nitrogen atoms and is a layer of nickel, ruthenium, palladium. or cobalt. The metal layer protects the stainless steel surface against oxidation and acts as a catalytic surface for the decomposition of the gas.
Som følge heraf kan procestemperaturen holdes under den temperatur, hvor karbider 5 og/eller nitrider dannes, og processen kan fuldføres inden for en rimelig tid. Efter den termokemiske behandling kan det katalytiske metallag fjernes, så at den hærdede overflade af det rustfrie stål blotlægges og repassi verer.As a result, the process temperature can be kept below the temperature at which carbides 5 and / or nitrides are formed and the process can be completed within a reasonable time. After the thermochemical treatment, the catalytic metal layer can be removed to expose the hardened stainless steel surface and repass.
Når carbonatomer, nitrogenatomer eller begge diffimderer ind i rustfrit stål, dannes den 10 metastabile S-fase. S-fase kaldes også "udvidet austenit" og har carbon og/eller nitrogen i en fast opløsning ved en øvre stabil temperatur på omkring 450°C, når den er nitrogenstabiliseret, og omkring 510°C, når den er carbonstabiliseret. Processen ifølge opfindelsen kan således udføres ved temperaturer op til 450°C og 510°C for at opnå S-fase.When carbon atoms, nitrogen atoms or both diffuse into stainless steel, the 10 metastable S phase is formed. S phase is also called "extended austenite" and has carbon and / or nitrogen in a solid solution at an upper stable temperature of about 450 ° C when nitrogen stabilized and about 510 ° C when carbon stabilized. Thus, the process of the invention can be carried out at temperatures up to 450 ° C and 510 ° C to obtain S phase.
1515
Hidtil er S-fase i rustfrit stål næsten udelukkende blevet opnået ved plasmaassisterede processer eller processer baseret på ionimplantering. Forsøg har vist, at dannelsen af S-fase ved overfladen ikke har nogen negativ indflydelse på det rustfrie ståls korrosionsmodstand. Med nitrogenstabiliserede S-faser opnås en forbedring af korrosionsmod-20 standen.To date, stainless steel S phase has been achieved almost exclusively by plasma assisted or ion implantation processes. Tests have shown that the formation of S phase at the surface has no adverse effect on the corrosion resistance of the stainless steel. With nitrogen stabilized S phases, an improvement in the corrosion resistance is achieved.
Når rustfrit stål behandles med fremgangsmåden ifølge opfindelsen, forbedres hårdheden og slidstyrken væsentligt, uden at korrosionsegenskabeme påvirkes negativt. Ved at undgå jem i toplaget undgås det, at det rustfrie stålemne bliver kontamineret som 25 følge af, at jernatomer er diffunderet ind i det rustfrie stålemne, mens dette har været belagt med et j emlag. En sådan kontaminering ødelægger de korrosionsmæssige egenskaber.When stainless steel is treated with the method of the invention, the hardness and abrasion resistance are significantly improved without adversely affecting the corrosion properties. Avoiding iron in the top layer prevents the stainless steel blank from being contaminated as iron atoms are diffused into the stainless steel blank, while this has been coated with a iron coating. Such contamination destroys the corrosion properties.
Metallaget kan ifølge opfindelsen være et nikkellag. Nikkel er let at påføre og bidrager 30 særdeles godt til dekomponeringen af carbon- eller nitrogenindeholdende gasser. Nikkel er desuden let at fjerne, f.eks. ved ætsning efter den termokemiske behandling.According to the invention, the metal layer may be a nickel layer. Nickel is easy to apply and contributes 30 very well to the decomposition of carbon or nitrogen containing gases. Furthermore, nickel is easy to remove, e.g. by etching after the thermochemical treatment.
4 DK 174707 B14 DK 174707 B1
Ifølge en foretrukken udførelsesform overskrider den beregnede gennemsnitlige tykkelse af nikkellaget ikke 300 nanometer, fortrinsvis 200 nanometer. Et nikkellag af denne tykkelse er tilstrækkeligt til at forhindre oxidation og tillade carbon og/eller ni-5 trogen at diffundere gennem nikkellaget ind i det rustfrie stål til dannelse af et tilfredsstillende S-faselag.According to a preferred embodiment, the calculated average thickness of the nickel layer does not exceed 300 nanometers, preferably 200 nanometers. A nickel layer of this thickness is sufficient to prevent oxidation and to allow carbon and / or nitrogen to diffuse through the nickel layer into the stainless steel to form a satisfactory S phase layer.
Ifølge en yderligere udførelsesform for opfindelsen kan nikkellaget på overfladen af emnet af rustfrit stål belægges kemisk eller elektrolytisk, f.eks. i et Wood’s nikkelbad.According to a further embodiment of the invention, the nickel layer on the surface of the stainless steel blank can be coated chemically or electrolytically, e.g. in a Wood's nickel bath.
1010
Ifølge en foretrukken udførelsesform er emnet fremstillet af austenitisk rustfrit stål, f.eks. AISI304 eller AISI316.According to a preferred embodiment, the workpiece is made of austenitic stainless steel, e.g. AISI304 or AISI316.
Ifølge en anden udførelsesform for opfindelsen indeholder gassen carbon, f.eks. CO, og 15 procestemperaturen holdes under 510°C. Når der anvendes en temperatur tæt på, men ikke over 510°C og CO som gas, kan en tilstrækkelig tykkelse af S-faselaget opnås ved overfladen af et emne af rustfrit stål inden for en rimelig tid, f.eks. seks timer.According to another embodiment of the invention, the gas contains carbon, e.g. CO, and the 15 process temperature is kept below 510 ° C. When a temperature close to, but not above 510 ° C and CO is used as gas, a sufficient thickness of the S-phase layer can be obtained at the surface of a stainless steel blank within a reasonable time, e.g. six hours.
Ifølge en udførelsesform for opfindelsen anbringes det katalytiske metallag kun til dele 20 af det rustfrie stålemnes overflade. Dette kan være fordelagtigt, hvis det indsætningshærdede stålemne skal svejses sammen med andre emner, Da den indsætningshærdede overflade ikke er egnet til svejsning som følge af sensibilisering, kan de ikke-indsætningshærdede områder anvendes til dette formål.According to an embodiment of the invention, the catalytic metal layer is applied only to parts 20 of the surface of the stainless steel blank. This may be advantageous if the insert hardened steel blank is to be welded together with other workpieces, since the insert hardened surface is not suitable for welding due to sensitization, the non-insert hardened areas can be used for this purpose.
25 De følgende eksempler med tilhørende figurer forklarer opfindelsen.The following examples with accompanying figures explain the invention.
I de følgende eksempler blev skiveformede emner af rustfrit stål med en diameter på 2 cm og en tykkelse på 0,35 cm alle forbehandlet på følgende måde.In the following examples, stainless steel washers with a diameter of 2 cm and a thickness of 0.35 cm were all pretreated as follows.
30 Depassivering i en opløsning af 100 ml 15% w/w saltsyre + l ml 35% hydrogenperoxid i 15 sekunder.30 Depassivation in a solution of 100 ml of 15% w / w hydrochloric acid + 1 ml of 35% hydrogen peroxide for 15 seconds.
5 DK 174707 B15 DK 174707 B1
Elektrolytisk udfældning af et katalytisk nikkel lag, tykkelse < 200 nanometer (beregnet gennemsnit) i et Wood's nikkelbad, som er en sur halogenid-indeholdende elektrolyt.Electrolytic precipitation of a catalytic nickel layer, thickness <200 nanometers (calculated average) in a Wood's nickel bath, which is an acidic halide-containing electrolyte.
5 Indsætningshærdningen blev udført i en ovn, der blev gennemstrømmet med ren NH3 eller ren CO.The insertion curing was carried out in a furnace which was infused with pure NH3 or pure CO.
Eksempel 1 10 Nitrerjng i ren NH3-gas, austenitisk rustfrit stål AISI304Example 1 10 Nitrogen purification in pure NH3 gas, austenitic stainless steel AISI304
Austenitisk rustfrit stål AISI 304 blev nitreret i ren NH3-gas (maksimalt nitreringspo-tentiale) i 17 timer og 30 minutter ved 429°C. Opvarmning til nitreringstemperaturen blev udført i en hydrogenatmosfære (H2), hvorefter tilførslen af hydrogengas blev af-> brudt, og nitreringsgas blev tilført Afkøling til stuetemperatur blev udført i en argon-gas (Ar) på mindre end 10 minutter. Emnet blev analyseret ved hjælp af lysoptisk mikroskopi og røntgenmikroanalyse (electron probe micro-analysis) (ΕΡΜΑ). Det dannede lag var nitrogen-S-fase og havde en maksimal lagtykkelse på 9 μπι. Den maksimale koncentration af nitrogen i S-fasen var mere end 20 atom%. Analysen viste, at der ikke 20 blev udfældet nogen nitrider.Austenitic stainless steel AISI 304 was nitrated in pure NH3 gas (maximum nitriding potential) for 17 hours and 30 minutes at 429 ° C. Heating to the nitriding temperature was carried out in a hydrogen atmosphere (H2), after which the supply of hydrogen gas was interrupted and nitration gas was fed Cooling to room temperature was carried out in an argon gas (Ar) in less than 10 minutes. The subject was analyzed using light optical microscopy and X-ray microanalysis (probe). The layer formed was nitrogen S phase and had a maximum layer thickness of 9 μπι. The maximum concentration of nitrogen in the S phase was more than 20 atomic%. The analysis showed that no nitrides were precipitated.
Eksempel 2:Example 2:
Nitrering i ren NH3-gas, austenitisk rustfrit stål AISI 316, figur 1 og 2 25Nitration in pure NH3 gas, austenitic stainless steel AISI 316, Figures 1 and 2 25
Austenitisk rustfrit stål AISI 316 blev behandlet som beskrevet i eksempel 1, men ved en temperatur på 449eC i 20 timer. Emnet blev analyseret med lysoptisk mikroskopi (LOM), røntgendiffraktionsanalyse (XRD) og mikrohårdhedsmålinger. LOM-resulta-teme er vist i figur 1. Det dannede lag bestod af nitrogen-S-fase og havde en lagtykkel-30 se på 12 fim. Mikrohårdheden blev målt til mere end 1500 HV (belastning 100 g). Det 6 DK 174707 B1 ubehandlede rustfrie stål havde en hårdhed på mellem 200 og 300 HV. Ingen nitrider blev udfældet.Austenitic stainless steel AISI 316 was treated as described in Example 1, but at a temperature of 449 ° C for 20 hours. The subject was analyzed with light optical microscopy (LOM), X-ray diffraction analysis (XRD) and microhardness measurements. The LOM results are shown in Figure 1. The layer formed consisted of nitrogen S phase and had a layer thickness of 12 µm. Microhardness was measured to more than 1500 HV (load 100 g). The stainless steel 6 DK 174707 B1 had a hardness of between 200 and 300 HV. No nitrides were precipitated.
Et emne af austenitisk stål, der blev opvarmet i ammoniak til 480°C og holdt ved denne 5 temperatur i 21 timer, viste udvikling af chromnitrider ON (og ferrit) tæt på overfladen samt lokalt i S-faselaget (de mørke områder i figur 2). Dette resultat indikerer, at en høj temperatur på 480°C bør undgås for at opnå monofase-S-faselag.An austenitic steel blank heated in ammonia to 480 ° C and maintained at this temperature for 21 hours showed development of chromium nitrides ON (and ferrite) close to the surface as well as locally in the S phase layer (the dark areas of Figure 2 ). This result indicates that a high temperature of 480 ° C should be avoided to obtain monophase S phase layers.
Eksempel 3: 10Example 3: 10
Karburering i ren CO-gas, austenitisk rustfrit stål AISI316, figur 3Carbonation in pure CO gas, austenitic stainless steel AISI316, Figure 3
Austenitisk rustfrit stål AISI 316 blev karbureret i ren CO-gas i 6 timer ved 507°C for at danne carbon-S-fase. Opvarmningen blev udført i en hydrogenatmosfære (H2), indtil 15 karbureringstemperaturen var opnået, hvorefter tilførslen af hydrogen blev afbrudt og CO-gas blev tilført. Afkøling til stuetemperatur blev udført i argongas (Ar) på mindre end 10 minutter. Emnet blev analyseret ved hjælp af optisk mikroskopi, røntgendiffraktionsanalyse og mikrohårdhedsmålinger. LOM-resultateme er vist i figur 3. Det dannede lag var carbon-S-fase med en lagtykkelse på 20 μιη (se figur 3). Mikrohårdheden af 20 overfladen var mere end 1000 HV (belastning 100 g). Ingen karbider blev udfældet.Austenitic stainless steel AISI 316 was carburized in pure CO gas for 6 hours at 507 ° C to form carbon S phase. The heating was carried out in a hydrogen atmosphere (H2) until the carburizing temperature was reached, after which the supply of hydrogen was interrupted and CO gas supplied. Cooling to room temperature was performed in argon gas (Ar) in less than 10 minutes. The subject was analyzed by optical microscopy, X-ray diffraction analysis, and microhardness measurements. The LOM results are shown in Figure 3. The layer formed was carbon S phase with a layer thickness of 20 μιη (see Figure 3). The micro hardness of the 20 surface was more than 1000 HV (load 100 g). No carbides were precipitated.
Eksempel 4:Example 4:
Karburering + nitrering, austenitisk rustfrit stål AISI 316 25Carburization + nitration, austenitic stainless steel AISI 316 25
Austenitisk rustfrit stål AISI 316 blev karbureret som beskrevet i eksempel 3, men ved temperaturen 500°C i 4 timer. Herefter blev emnet nitreret som beskrevet i eksempel 1, men ved en temperatur på 440°C i 18 timer og 30 minutter. Der blev således anvendt to separate termokemiske processer, hvor der ved den ene blev indsat carbon og ved den 30 anden indsat nitrogen. Emnet blev analyseret ved hjælp af lysoptisk mikroskopianalyse og mikrohårdhedsmålinger. Det dannede lag var carbon-S-fase og nitrogen-S-fase.Austenitic stainless steel AISI 316 was carburized as described in Example 3 but at a temperature of 500 ° C for 4 hours. Then, the blank was nitrated as described in Example 1, but at a temperature of 440 ° C for 18 hours and 30 minutes. Thus, two separate thermochemical processes were used, with carbon being added to one and nitrogen to the other. The subject was analyzed by light optical microscopy analysis and microhardness measurements. The layer formed was carbon S phase and nitrogen S phase.
7 DK 174707 B17 DK 174707 B1
Lagtykkelsen var maksimalt 35 μηι. Det yderste lag var nitrogen-S-fase, og det inderste lag var carbon-S-fase. Mikrohårdheden var mere end 1500 HV. Hverken nitrider eller carbider blev udfældet.The layer thickness was a maximum of 35 μηι. The outermost layer was nitrogen S phase and the inner layer was carbon S phase. The micro hardness was more than 1500 HV. Neither nitrides nor carbides were precipitated.
5 Eksempel 5:Example 5:
Nitrering i ren NH3-gas, duplex rustfrit stål A1SI329, figur 4 og 5Nitration in pure NH3 gas, duplex stainless steel A1SI329, Figures 4 and 5
Prøveemner blev nitreret i 23 timer og 20 minutter ved 400°C. Metallurgiske undersø-10 gelser af de nitrerede emner involverede røntgendiffraktionsanalyse (XRD) og lysoptisk mikroskopianalyse (LOM). Det rustfrie stål AISI 329 er et duplexstål bestående af ferrit og austenit. Efter nitrering ved 400°C blev ferrit omdannet til austenit (og S-fase) i den indsætningshærdede zone. Et LOM-billede af emnet efter behandling ved 400°C er vist i figur 4; det tilsvarende XRD-diagram er vist i figur 5. Det fremgår tydeligt, at 15 S-fasen er udviklet langs overfladen af duplexståiet.Samples were nitrated for 23 hours and 20 minutes at 400 ° C. Metallurgical studies of the nitrated subjects involved X-ray diffraction analysis (XRD) and light optical microscopy analysis (LOM). The AISI 329 stainless steel is a duplex steel consisting of ferrite and austenite. After nitration at 400 ° C, ferrite was converted to austenite (and S phase) in the insert cured zone. A LOM image of the subject after treatment at 400 ° C is shown in Figure 4; the corresponding XRD diagram is shown in Figure 5. It is clear that the 15 S phase is developed along the surface of the duplex stage.
Eksempel 6:Example 6:
Nitrering i ren NH3-gas, austenitisk rustfrit stål AISI 316, figur 6 20Nitration in pure NH3 gas, austenitic stainless steel AISI 316, Figure 6 20
Emnet af AISI 316-stål blev behandlet ved 400°C, 425°C og 450°C i 23 timer og 20 minutter. Diffraktionsmønsteret vist i figur 6 viser klart, at S-fasen er den eneste fase, der dannes under nitreringen.The AISI 316 steel blank was treated at 400 ° C, 425 ° C and 450 ° C for 23 hours and 20 minutes. The diffraction pattern shown in Figure 6 clearly shows that the S phase is the only phase formed during the nitration.
25 Indsætningshærdningstemperaturen af de ovenfor nævnte eksempler er mellem 400°C og 507°C. Det er dog sandsynligt, at S-fasen også kan opnås ved lavere temperaturer, f.eks. 300°C eller 350°C ved høje nitrerings-/karbureringspotentialer inden for et rimeligt tidsrum.The insert cure temperature of the above examples is between 400 ° C and 507 ° C. However, it is likely that the S phase can also be obtained at lower temperatures, e.g. 300 ° C or 350 ° C at high nitration / carburizing potentials within a reasonable time.
30 Indledende forsøg har vist, at S-fasen også kan opnås med AISI 420, der er et martensi-tisk rustfrit stål, og AISI 17-4 PH, der er et martensitisk stål til udfældningshærdning.30 Initial experiments have shown that the S phase can also be obtained with AISI 420, a martensitic stainless steel, and AISI 17-4 PH, a martensitic steel for precipitation hardening.
8 DK 174707 B18 DK 174707 B1
Forsøg har fastslået, at nitreringsbehandlingeme, der er udført i en lille laboratorieovn, let kan overføres til en industriel ovn.Experiments have established that the nitration treatments carried out in a small laboratory oven can easily be transferred to an industrial oven.
5 I eksemplerne blev det katalytiske nikkellag elektrolytisk udfældet i et Wood's nikkelbad. Alternativt kan kemisk nikkelplettering, f.eks. kontaktplettering, anvendes.In the examples, the catalytic nickel layer was electrolytically precipitated in a Wood's nickel bath. Alternatively, chemical nickel plating, e.g. contact plating is used.
Andre metaller, f.eks. ruthenium, palladium og kobolt, der alle er katalytiske for de-komperingen af NH3-gas og CO-gas, kan også anvendes. Palladium og ruthenium kan 10 udfældes ved ionbytningsplettering.Other metals, e.g. ruthenium, palladium and cobalt, all of which are catalytic for the decomposition of NH3 gas and CO gas, can also be used. Palladium and ruthenium can be precipitated by ion exchange plating.
Fremgangsmåden ifølge opfindelsen er egnet til "in j/7«"-nitrering eller -karburering i et anlæg. Rustfrie stålrør og -tanke kan nikkelpletteres før installation. Efter installationen kan dele af systemet, der udsættes for slid, blive opvarmet og gennemstrømmet 15 med NH3 eller andre nitrogen- eller carbonindeholdende gasser.The process according to the invention is suitable for "n / 7" nitration or carburization in a plant. Stainless steel pipes and tanks can be nickel plated before installation. After installation, parts of the system subject to wear can be heated and flowed through NH 3 or other nitrogen or carbon containing gases.
En meget egnet fremgangsmåde til påføring af et lag af elektrolytisk nikkel på dele af en overflade er børsteplettering.A very suitable method for applying a layer of electrolytic nickel to parts of a surface is brush plating.
Claims (8)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK200201108A DK174707B1 (en) | 2002-07-16 | 2002-07-16 | Case-hardening of stainless steel article by gas including carbon and/or nitrogen, involves applying top layer including metal which is catalytic to decomposition of gas, on activated surface of article |
AU2003245864A AU2003245864A1 (en) | 2002-07-16 | 2003-07-15 | Case-hardening of stainless steel |
EP03737943A EP1521861B1 (en) | 2002-07-16 | 2003-07-15 | Case-hardening of stainless steel |
DK03737943T DK1521861T3 (en) | 2002-07-16 | 2003-07-15 | Stainless steel insert hardening |
DE60316294T DE60316294T2 (en) | 2002-07-16 | 2003-07-15 | APPLICATION HARDENING OF STAINLESS STEEL |
JP2005505056A JP2005533185A (en) | 2002-07-16 | 2003-07-15 | Stainless steel surface hardening |
AT03737943T ATE373115T1 (en) | 2002-07-16 | 2003-07-15 | CASE HARDENING OF STAINLESS STEEL |
PCT/DK2003/000497 WO2004007789A2 (en) | 2002-07-16 | 2003-07-15 | Case-hardening of stainless steel |
KR1020057000791A KR20050029214A (en) | 2002-07-16 | 2003-07-15 | Case-hardening of stainless steel |
ES03737943T ES2292983T3 (en) | 2002-07-16 | 2003-07-15 | CEMENTATION IN STAINLESS STEEL CASE. |
PT03737943T PT1521861E (en) | 2002-07-16 | 2003-07-15 | Case-hardening of stainless steel |
CA002492506A CA2492506C (en) | 2002-07-16 | 2003-07-15 | Case-hardening of stainless steel |
US10/521,612 US7431778B2 (en) | 2002-07-16 | 2003-07-15 | Case-hardening of stainless steel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK200201108A DK174707B1 (en) | 2002-07-16 | 2002-07-16 | Case-hardening of stainless steel article by gas including carbon and/or nitrogen, involves applying top layer including metal which is catalytic to decomposition of gas, on activated surface of article |
DK200201108 | 2002-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
DK174707B1 true DK174707B1 (en) | 2003-09-29 |
Family
ID=28051667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK200201108A DK174707B1 (en) | 2002-07-16 | 2002-07-16 | Case-hardening of stainless steel article by gas including carbon and/or nitrogen, involves applying top layer including metal which is catalytic to decomposition of gas, on activated surface of article |
Country Status (1)
Country | Link |
---|---|
DK (1) | DK174707B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2322687A1 (en) * | 2003-12-23 | 2011-05-18 | Rolls-Royce Corporation | Method for carburizing steel components |
-
2002
- 2002-07-16 DK DK200201108A patent/DK174707B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2322687A1 (en) * | 2003-12-23 | 2011-05-18 | Rolls-Royce Corporation | Method for carburizing steel components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2492506C (en) | Case-hardening of stainless steel | |
JP5826748B2 (en) | Method of activating ferrous or non-ferrous metal passive products prior to carburizing, nitriding and / or carbonitriding | |
CN107109615B (en) | Enhanced activation of self-passivating metals | |
RU2600789C2 (en) | Method for solution hardening of cold deformed workpiece of passive alloy and member solution hardened by method | |
DK2841617T3 (en) | Process for inserting a cold-deformed member of a passive alloy and a part which is insert-setting by the method | |
CN112236540A (en) | Chemical activation of self-passivating metals | |
EP1712658A1 (en) | Method for surface treatment of metal material | |
JP2015514874A5 (en) | ||
DK174707B1 (en) | Case-hardening of stainless steel article by gas including carbon and/or nitrogen, involves applying top layer including metal which is catalytic to decomposition of gas, on activated surface of article | |
KR20170100939A (en) | Case-hardening of stainless steel | |
Kumar et al. | Surface hardening of AISI 304, 316, 304L and 316L ss using cyanide free salt bath nitriding process | |
CN111809139A (en) | Low-temperature carbon nitrogen oxygen co-permeation treating agent for improving liquid metal corrosion resistance of stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |
Ref document number: DK |