DK174548B1 - Moment compensator for the reduction of hull swinging in a ship, along with a procedure and an internal combustion engine for this - Google Patents
Moment compensator for the reduction of hull swinging in a ship, along with a procedure and an internal combustion engine for this Download PDFInfo
- Publication number
- DK174548B1 DK174548B1 DK199300945A DK94593A DK174548B1 DK 174548 B1 DK174548 B1 DK 174548B1 DK 199300945 A DK199300945 A DK 199300945A DK 94593 A DK94593 A DK 94593A DK 174548 B1 DK174548 B1 DK 174548B1
- Authority
- DK
- Denmark
- Prior art keywords
- torque
- hull
- compensator
- order
- vertical
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/30—Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
- B63H21/302—Mounting of propulsion plant or unit, e.g. for anti-vibration purposes with active vibration damping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/12—Use of propulsion power plant or units on vessels the vessels being motor-driven
- B63H21/14—Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/22—Compensation of inertia forces
- F16F15/26—Compensation of inertia forces of crankshaft systems using solid masses, other than the ordinary pistons, moving with the system, i.e. masses connected through a kinematic mechanism or gear system
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
i DK 174548 B1in DK 174548 B1
Opfindelsen angår momentkompensator til raindskning af skrogsvingninger i et skib med et langstrakt skrog med et lodret langsgående centerplan og med en stor totakts langsomtgående fremdrivningsmotor, hvis roteren-5 de og frem- og tilbagegående masser kan fremkalde et 1. ordens ydre moment, som indvirker på skroget og kan sætte dette i svingninger, hvor momentkompensatoren for mindskning af det 1. ordens ydre moment er monteret på skroget ved dettes langsgående lodrette centerplan i 10 væsentlig afstand fra motoren, og hvor kompensatoren har en svingmasse, som af et drev kan roteres synkront med og i en forudbestemt fase i forhold til motorens 1. ordens ydre moment.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to torque compensator for reducing hull oscillations in a ship with an elongated hull with a vertical longitudinal center plane and with a large two-stroke slow propulsion engine, the rotary and reciprocating masses being able to produce a first-order external torque which affects the hull and can set this in oscillations where the torque compensator for reducing the first-order external torque is mounted on the hull at its longitudinal vertical center plane at a substantial distance from the engine, and where the compensator has a pivot mass which can be rotated synchronously by a drive. and in a predetermined phase relative to the outer order of the engine.
Skibets skrog med den deri monterede motor danner 15 et masse-elastisk system, hvor skroget har forskellige svingningsformer med tilhørende egenfrekvenser. De roterende og frem- og tilbagegående masser i motoren fremkalder indre kræfter i motoren samt ydre kræfter og momenter, som påvirker skroget. De ydre kræfter og 20 momenter kan ved hjælp af Fourier-analyse beskrives som en sum af sinusfunktioner med forskellige amplituder, fasevinkler og perioder. Da masserne i motoren roterer og bevæges frem og tilbage med en frekvens svarende til motorens omdrejningstal, svarer frekvenserne for de 25 Fourieropdelte sinusfunktioner til hele multipla af motorens øjeblikkelige omdrejningstal. Sinusfunktionen, også kaldet den harmoniske komponent, med en frekvens svarende til motorens omdrejningsfrekvens kaldes for 1. ordens komponenten, mens komponenten med en frekvens 30 svarende til det dobbelte af motorens frekvens kaldes for 2. ordens komponenten osv. De ydre momenter kan således opdeles i komponenter benævnt 1. ordens momentet, 2. ordens momentet osv.The hull of the ship with the engine mounted therein forms a mass-elastic system in which the hull has various oscillatory shapes with associated eigenfrequencies. The rotating and reciprocating masses in the engine produce internal forces in the engine as well as external forces and torques that affect the hull. The external forces and 20 moments can be described by means of Fourier analysis as a sum of sine functions with different amplitudes, phase angles and periods. As the masses of the motor rotate and move back and forth at a frequency corresponding to the engine rpm, the frequencies of the 25 Fourier divided sine functions correspond to the full multiples of the engine's current rpm. The sine function, also called the harmonic component, with a frequency corresponding to the engine's rotational frequency is called the 1st order component, while the component with a frequency 30 twice the motor frequency is called the 2nd order component, etc. The external moments can thus be divided into components called 1st order momentum, 2nd order momentum etc.
Skrogets svingningsform med laveste egenfrekvens 35 har to knudepunkter, den næstlaveste egenfrekvens tre 2 DK 174548 B1 knudepunkter osv. Disse svingningsformer benævnes ofte 2-knudepunkts-svingningsformen, 3-knudepunkts-sving- ningsformen osv. Som følge af skibsskrogets langstrakte facon og den normalt symmetriske opbygning omkring 5 skrogets lodrette, langsgående centerplan vil der sædvanligvis kun forekomme betydende globale skrogsvingninger i vandret og lodret retning, dvs. svingninger, som udbøjer skroget i det vandrette plan og i det lodrette plan. De ydre momenter fra motoren roterer med 10 motorens omdrejningstal, men da de kun frembringer vandrette og lodrette skrogsvingninger, er det sædvanligt at opløse de ydre kræfter og momenter fra motoren i vandrette og lodrette komposanter og undersøge, hvorledes disse indvirker på de vandrette og lodrette 15 skrogsvingninger.The hull shape of the lowest eigenfrequency 35 has two nodes, the second lowest eigenfrequency three 2 nodes, etc. These oscillation shapes are often referred to as the 2-node oscillation shape, the 3-node oscillation shape, etc. structure around the vertical, longitudinal center plane of the hull, usually only significant global hull swings occur in the horizontal and vertical directions, ie. oscillations which extend the hull in the horizontal plane and in the vertical plane. The external torque of the motor rotates at 10 rpm, but since it produces only horizontal and vertical hull oscillations, it is usual to dissolve the external forces and torque of the motor into horizontal and vertical components and investigate how these affect the horizontal and vertical 15 hull vibrations.
Hvis frekvensen for en af de ydre kræfter eller momenters komposanter falder sammen med egenfrekvensen for en af skrogets svingningsformer fremkommer en såkaldt resonanssvingning, hvor de ydre kræfter eller 20 momenter kan aflevere stor energi til den pågældende skrogsvingning, som derved kan blive kraftigere end acceptabelt.If the frequency of one of the external forces or the components of the coincides with the frequency of one of the modes of oscillation of the hull, a so-called resonance oscillation occurs, where the external forces or 20 moments can supply a great deal of energy to the hull oscillation in question, which can thereby be more powerful than acceptable.
I artiklen "Vekselvirkning mellem skrog og motor" fra det norske tidsskrift "Skipsteknikk", nr. 1, 1963 25 er beskrevet, hvorledes frie kræfter og momenter fra motoren kan fremkalde skrogsvingninger, og at skrogsvingningerne kan fjernes ved at ændre frekvensforholdene for enten motor eller skib eller ved at montere en kompensator med en roterende svingvægt på skroget på 30 et sted, hvor skrogsvingningerne har stor amplitude.The article "Interaction between hull and motor" from the Norwegian journal "Skipsteknikk", no. 1, 1963 25 describes how free forces and torques from the motor can induce hull vibrations and that the hull vibrations can be removed by changing the frequency conditions for either engine or ship or by mounting a compensator with a rotating swing weight on the hull of 30 at a place where the hull swings have high amplitude.
Som nævnt ovenfor angår opfindelsen de svingninger, som fremkaldes af motorens 1. ordens ydre moment. For 4-cylindrede motorer er det kendt, at det 1. ordens ydre moment kan udvise resonans med skrogets 2- eller 3-35 knudepunkts-svingningsform. Der er her normalt tale om, 3 DK 174548 B1 at det lodrette ydre moment kan fremkalde lodrette svingninger i skroget, og det er kendt at afhjælpe dette problem ved at montere to sæt af ekstra kontravægte således på motorens krumtapaksel, at størrelsen af det 5 lodrette 1. ordens ydre moment mindskes, mens det ' vandrette 1. ordens ydre moment øges. I de sjældne tilfælde, hvor det 1. ordens ydre moment både fremkalder lodrette og vandrette svingninger i skroget er der i den kendte teknik anvendt en separat momentkompensator i 10 form af to kontraroterende masser anbragt henholdsvis på et til krumtapakslen fastgjort kædehjul, som gennem en kæde driver motorens styreaksel, og på et til stramning af kæden tjenende mellemhjul monteret på enden af motoren. Disse to masser er anbragt således i forhold 15 til hinanden, at den ved kædehjulenes rotation frembragte centrifugalkraft i masserne frembringer en resulterende vandret kompenserende kraft, der varierer i størrelse og retning i løbet af en motoromdrejning.As mentioned above, the invention relates to the oscillations caused by the outer torque of the first order motor. For 4-cylinder engines, it is known that the first-order external torque can resonate with the hull's 2- or 3-35-node pivotal shape. In this case, the vertical outer torque can normally cause vertical oscillations in the hull, and it is known to remedy this problem by mounting two sets of additional counterweights such that on the engine crankshaft, the size of the 5 vertical The first order's external torque decreases while the '1st order's outer torque increases. In the rare cases where the first-order outer torque produces both vertical and horizontal oscillations in the hull, in the prior art a separate torque compensator in the form of two counter-rotating masses is applied, respectively, to a sprocket fixed to the crankshaft, which through a chain drives the engine's steering shaft, and on a chain tensioner serving wheel mounted on the end of the engine. These two masses are arranged in relation to each other such that the centrifugal force produced by the sprockets in the masses produces a resultant horizontal compensating force which varies in size and direction during a motor rotation.
De kendte kontravægte og den separate kompensator 20 monteret på kædehjulene er beskrevet mere detaljeret i dansk patentansøgning nr. 223/83.The known counterweights and the separate compensator 20 mounted on the sprockets are described in more detail in Danish Patent Application No. 223/83.
Anvendelsen af den separate kompensator i form af vægte monteret på kædehjulene indebærer flere ulemper.The use of the separate compensator in the form of weights mounted on the sprockets involves several disadvantages.
For det første kan der med disse vægte kun opnås en 25 forholdsvis begrænset mindskning af det 1. ordens ydre moment, dels fordi masserne må være forholdsvis små, dels fordi de er beliggende ved enden af motoren, hvilket begrænser afstanden mellem den kompenserende vandrette kraft og det nærmeste knudepunkt for skrogets 30 vandrette svingning, og for det andet kan der tænkes motorer, som ikke har en kædehjulstrukket styreaksel.First, with these weights, only a relatively limited reduction of the first-order external torque can be achieved, partly because the masses must be relatively small, and partly because they are located at the end of the motor, which limits the distance between the compensating horizontal force and the the closest junction for the horizontal pivot of the hull 30, and secondly, engines which do not have a sprocket-guided steering shaft can be conceived.
I sidstnævnte tilfælde vil det være meget bekosteligt at anbringe separate kædehjul på motoren udelukkende med den hensigt at mindske det 1. ordens ydre moment.In the latter case, it will be very costly to place separate sprockets on the engine solely for the purpose of reducing the 1st order external torque.
4 DK 174548 B14 DK 174548 B1
Der kendes en række forskellige kompensatorer til mindskning af motorens 2. ordens ydre moment. Nogle af disse kompensatorer er separate enheder til montering i eksempelvis skibets styremaskinrum, hvilket i forhold 5 til svingvægte monteret på motoren øger afstanden mellem kompensatoren og knudepunktet i den aktuelle svingningsform. Den større afstand gør det muligt at frembringe et større kompenserende moment for en bestemt kompenserende kraft. Disse kendte 2. ordens momentkompensa-10 torer frembringer alle en varierende lodret kraft og er opbygget af to svingvægte, som er kontraroterende om en vandret akse. De kendte 2. ordens momentkompensatorer er forholdsvis kompliceret udformet og lider af den ulempe, at de er vanskelige at igangsætte og synkroni-15 sere med motorens omdrejningstal. For at frembringe tilstrækkelig stor kompenserende kraft må de kontraro-tende svingvægte have anseelig masse, og der skal derfor anvendes store momenter for at løfte vægtene op under igangsætningen. For at løse dette problem er der 20 udviklet adskillige metoder til at sætte masserne i svingninger med stadig større udsving, indtil masserne kan drejes en hel omgang rundt og langsomt sættes op i omdrejningshastighed og synkroniseres med motoren. Dette kræver komplicerede og kostbare styresystemer, og alt 25 i alt er de kendte 2. ordens momentkompensatorer så kostbare, at de kun anvendes, når det er absolut påkrævet.A number of different compensators are known for reducing the second-order external torque of the engine. Some of these compensators are separate units for mounting in, for example, the ship's steering gear compartment, which in relation to 5 of the weights mounted on the engine increases the distance between the compensator and the node in the current oscillation form. The greater distance allows a greater compensating torque to be produced for a particular compensating force. These known second-order torque compensators all produce a varying vertical force and are made up of two pivot weights which are counter-rotating about a horizontal axis. The known second-order torque compensators are relatively complicated in design and suffer from the disadvantage of being difficult to start and synchronize with the engine speed. In order to produce a sufficiently large compensating force, the counter-rotating swing weights must have a considerable mass, and therefore great moments must be used to lift the weights during start-up. To solve this problem, several methods have been developed to put the masses into oscillations with ever-greater fluctuations until the masses can be rotated a full lap and slowly set up at speed and synchronized with the engine. This requires complicated and costly control systems, and a total of 25 in the known second-order torque compensators are so expensive that they are used only when absolutely necessary.
Da centrifugalkraften på en roterende masse afhænger af kvadratet på omdrejningshastigheden skal den 30 roterende masse i en 1. ordens momentkompensator være fire gange så stor som massen i en 2. ordens kompensator for at frembringe den samme kompenserende kraft.Since the centrifugal force of a rotating mass depends on the square of the rotational speed, the 30 rotating mass of a 1st order torque compensator must be four times the mass of a 2nd order compensator to produce the same compensating force.
En momentkompensator af den indledningsvis nævnte art er kendt fra dansk patent 149 479, hvor en kombi-35 neret 1. og 2. ordens momentkompensator drives med en 5 DK 174548 B1 hydraulikmotor, som tilføres hydraulikvæske fra en pumpe monteret på forbrændingsmotoren. Placeringen af moment-kompensatoren i væsentlig afstand fra motoren giver den fordel, at et ønsket kompenserende moment kan frem-5 bringes af en forholdsvis lille svingmasse, fordi den ? kompenserende kraft virker i større afstand fra det nærmeste knudepunkt for den aktuelle skrogsvingningsform. Svingmasserne i denne kompensator drejes om vandrette aksler, og hydraulikmotoren udtager stor 10 effekt fra forbrændingsmotoren under igangsætningen. Som følge af de lange hydraulikforbindelser mellem pumpen og motoren har det vist sig vanskeligt at opnå tilstrækkelig præcis styring af momentkompensatoren, og drivsystemet er desuden meget kostbart, idet både pumpe 15 og motor skal dimensioneres til det store startmoment.A torque compensator of the kind mentioned above is known from Danish patent 149 479, in which a combined 1st and 2nd order torque compensator is driven by a hydraulic fluid supplied to a hydraulic fluid from a pump mounted on the internal combustion engine. The position of the torque compensator at a considerable distance from the motor gives the advantage that a desired compensating torque can be produced by a relatively small pivot mass because it is? compensating force acts at a greater distance from the nearest node of the current hull vibration shape. The pivot masses in this compensator are rotated about horizontal shafts and the hydraulic motor takes out a large 10 power from the internal combustion engine during commissioning. Due to the long hydraulic connections between the pump and the motor, it has proved difficult to obtain sufficiently precise control of the torque compensator, and the drive system is also very expensive, since both pump 15 and motor must be dimensioned for the high starting torque.
Opfindelsen har til formål at anvise en enkelt udformet og effektivt virkende kompensator til mindsk-ning af en langsomtgående forbrændingsmotors vandrette 1. ordens ydre moment.The invention has for its object to provide a single designed and effective actuator for reducing the horizontal first-order external torque of a slow-moving internal combustion engine.
20 Med henblik herpå er momentkompensatoren ifølge opfindelsen ejendommelig ved, at kompensatoren har en hovedsagelig lodret, drejeligt lejret aksel, som bærer en excentrisk fikseret svingmasse, der roterer i et hovedsageligt vandret plan.To this end, the torque compensator according to the invention is characterized in that the compensator has a substantially vertical, pivotally mounted shaft which carries an eccentrically fixed pivot mass rotating in a substantially horizontal plane.
25 Da svingmassen er monteret på en aksel, som er drejelig om en hovedsagelig lodret akse, er de tidligere kendte problemer med igangsætning af momentkompensatoren helt undgået, idet tyngdepåvirkningen på svingmassen virker i det væsentlige vinkelret på svingmassens 30 rotationsplan. Igangsætningen kan således foretages stort set uden hensyntagen til tyngdepåvirkningen, så svingmassen på enkel vis kan accellereres op til synkronisering med motorens omdrejningstal uden nogen indledende frem- og tilbagegående svingebevægelse. Dette 35 giver en væsentlig forenkling af momentkompensatorens 6 DK 174548 B1 styresystem og gør det endvidere muligt at anvende en fordelagtigt lille drivmotor, fx en elektrisk motor.Since the pivot mass is mounted on a shaft which is rotatable about a substantially vertical axis, the prior art problems of starting the torque compensator are completely avoided since the gravity of the pivot mass acts substantially perpendicular to the rotation plane of the pivot mass 30. The start-up can thus be carried out largely without regard to the influence of gravity, so that the pivot mass can be simply accelerated up to synchronization with the engine speed without any initial reciprocating pivotal movement. This 35 substantially simplifies the control system of the torque compensator 6 DK 174548 B1 and furthermore makes it possible to use an advantageously small drive motor, for example an electric motor.
Momentkompensatoren er også væsentlig enklere som følge af, at det kun er nødvendigt at anvende en enkelt 5 svingmasse i stedet for de fra 2. ordens momentkompensa-torer kendte to kontraroterende masser. Anvendelsen af kun én svingmasse betyder ganske vist, at der i tillæg til den ønskede varierende vandrette kraft i skibets tværretning også fremkommer en varierende vandret kraft 10 i skibets længderetning, men da momentkompensatoren er monteret på skroget ved dettes langsgående, lodrette centerplan fremkalder denne i skibets længderetning pulserende kompensatorkraft ikke nogle betydende momenter, som kan fremkalde svingninger i skroget. Fasen 15 for det kompenserende moment kan justeres efter behov ved indstilling af fasen for kompensatorbevægelsen i forhold til fasen for det 1. ordens ydre moment. Dette indebærer den fordel, at det kompenserende moment kan finindstilles efter skibets ibrugtagning for derved at 20 kompensere for de i praksis uundgåelige unøjagtigheder i de teoretisk udførte svingningsberegninger.The torque compensator is also considerably simpler because it is only necessary to use a single 5 pivot mass instead of the two counter-rotating masses known from the second-order torque compensators. The use of only one pivot mass does mean that, in addition to the desired varying horizontal force in the transverse direction of the ship, a varying horizontal force 10 in the longitudinal direction of the ship also arises, but since the torque compensator is mounted on the hull at its longitudinal, vertical center plane it provokes it in the ship's longitudinal pulsating compensatory force does not have any significant moments which can induce oscillations in the hull. The compensating torque phase 15 can be adjusted as needed by adjusting the compensator motion phase relative to the first-order external torque phase. This has the advantage that the compensating torque can be fine-tuned after the commissioning of the ship, thereby compensating for the practically unavoidable inaccuracies in the theoretically performed oscillation calculations.
Hvis kompensatoren af praktiske grunde må monteres med væsentlig lodret adskillelse fra skrogets bøjnings-neutralakse, kan den af kompensatoren frembragte 25 pulserende kraft i skibets længderetning hindres i at give lodrette bøjningsmomenter ved, at den 1. ordens momentkompensator i en foretrukken udførelsesform er beliggende i afstanden L i lodret retning fra skrogets bøjningsneutralakse og i afstanden R i vandret retning 30 fra knudepunktet for den aktuelle svingningsform for skrogets lodrette svingninger, og at kompensatorens i det væsentlige lodrette aksel danner en vinkel på tg a - L/R med lodret. Den langsgående kraft vil således passere gennem eller i kort afstand forbi knudepunktet, 35 så der ikke opstår bøjningsmomenter. Den lodrette 7 DK 174548 B1 akse kan hensigtsmæssigt være lejret i et øvre og et nedre rulningsleje, hvor det øvre leje kan optage større belastninger end det nedre leje. De dimensionerende lejebelastninger er i det væsentlige bestemt af centri-5 fugalkraftens træk i svingmassen, når denne roterer, men : da svingmassen er excentrisk fikseret på akslen, vil tyngdepåvirkningen på svingmassen påføre akslen et bøjningsmoment, som mindsker lejebelastningen på det nedre leje.If, for practical reasons, the compensator must be mounted with substantial vertical separation from the bend neutral axis of the hull, the pulsating force produced by the compensator in the longitudinal direction of the ship may be prevented from providing vertical bending moments by the distance of the first order torque compensator in a preferred embodiment. L in the vertical direction from the bend neutral axis of the hull and in the distance R in the horizontal direction 30 from the junction of the actual oscillation shape of the vertical oscillations of the hull, and that the substantially vertical axis of the compensator forms an angle of tg a - L / R with vertical. Thus, the longitudinal force will pass through or at a short distance past the node so that bending moments do not occur. The vertical axis may conveniently be housed in an upper and a lower rolling bearing where the upper bearing can absorb greater loads than the lower bearing. The dimensioning bearing loads are essentially determined by the centrifugal force's drag in the pivot mass as it rotates, but: since the pivot mass is eccentrically fixed to the shaft, the gravitational force on the pivot mass will impose a bending moment which reduces the bearing load on the lower bearing.
10 I en foretrukken udførelsesform er 1. ordens momentkompensatoren sammenbygget med en 2. ordens momentkompensator omfattende to svingmasser, der er excentrisk fikseret på mindst én vandret forløbende aksel, der er således kraftoverførende forbundet i 15 udvekslingsforholdet 2:1 med den lodrette aksel, at de to kompensatorer kan drives af en fælles motor. Denne udførelsesform er fordelagtig, når der i tillæg til en 1. ordens momentkompensator skal anvendes en 2. ordens momentkompensator til at hindre uønskede lodrette 20 svingninger i skrogsvingningsformer, der eksempelvis har 3, 4 eller 5 knudepunkter. Sammenbygningen af de to kompensatorer til en enhed sparer plads og giver mulighed for at drive begge kompensatorerne med en enkelt motor. Da kompensatorerne drives i et fast 25 udvekslingsforhold, er der også kun behov for et enkelt styresystem. Hvis der alligevel skal anvendes en 2. ordens momentkompensator er det således muligt uden større ekstraomkostninger at mindske eller fjerne de vandrette 1. ordens ydre momenter, 30 Det foretrækkes, at den fælles drivmotor er en AC- servomotor, som er tilkoblet den vandrette aksel via et to-trins omskifteligt planetgear, og at AC-servomotorens omdrejningshastighed er styret af et positions- og omdrejningshastighedssignal fra forbrændingsmotoren. AC-35 servomotoren er velegnet til præcis styring af kompensa- 8 DK 174548 B1 torernes omdrejningstal og fase i afhængighed af taktsignaler modtaget fra forbrændingsmotoren. Det totrins planetgear gør det muligt at anvende et første udvekslingsforhold mellem motoren og kompensatorakslen 5 under igangsætningen, så servomotoren her yder et så stort drejningsmoment, at en pendlende igangsætningsbevægelse undgås. Når svingmasserne i den 2. ordens momentkompensator er trukket op til deres øverste stilling, kan planetgearet skiftes over til det andet 10 udvekslingsforhold, som anvendes ved accelleration og normal drift af kompensatorerne. Styresystemet til denne kompensator er dermed meget enkelt, idet der ved igangsætningen blot skal foretages en omskiftning af planetgearet.In a preferred embodiment, the first-order torque compensator is combined with a second-order torque compensator comprising two pivot masses, which are eccentrically fixed to at least one horizontally extending shaft, so connected in power ratio in the 2: 1 ratio to the vertical shaft that they two compensators can be driven by a common motor. This embodiment is advantageous when, in addition to a 1st order torque compensator, a 2nd order torque compensator must be used to prevent unwanted vertical 20 oscillations in hull oscillation shapes having, for example, 3, 4 or 5 nodes. The combination of the two compensators into one unit saves space and allows to operate both compensators with a single motor. Since the compensators are operated in a fixed 25 ratio, only a single control system is needed. Thus, if a second-order torque compensator is to be used, it is possible, without much extra cost, to reduce or remove the horizontal 1st-order external torques, 30 It is preferred that the common drive motor is an AC servo motor connected to the horizontal shaft via a two-speed interchangeable planetary gear, and that the rotational speed of the AC servomotor is controlled by a position and rotation speed signal from the internal combustion engine. The AC-35 servomotor is suitable for precise control of the rpm and phase of the compensators 8 phase 17 174848 B1 depending on the rate signals received from the internal combustion engine. The two-stage planetary gear allows a first gear ratio to be used between the motor and the compensator shaft 5 during start-up, so that the servomotor here provides such torque as to avoid a commuting start-up movement. When the oscillating masses of the second-order torque compensator are pulled up to their upper position, the planetary gear can be switched to the second 10 ratio, which is used in acceleration and normal operation of the compensators. The control system for this compensator is thus very simple, since only the planetary gear unit must be switched at startup.
15 Akslerne for 1. og 2. ordens momentkompensatorerne kan hensigtsmæssigt være indbyrdes forbundne via en bøjningselastisk, torsionsstiv kobling, som hindrer akseludbøjninger fra 1. ordens momentkompensatoren i at overføres til 2. ordens momentkompensatorens aksel.The shafts of the 1st and 2nd order torque compensators may conveniently be interconnected via a bending elastic, torsional rigid coupling which prevents shaft deflections of the 1st order torque compensator from being transmitted to the 2nd order torque compensator shaft.
20 Koblingen gør det også muligt at justere 1. ordens momentkompensatorens fasestilling uafhængigt af 2. ordens momentkompensatoren.The clutch also allows you to adjust the phase position of the 1st order torque compensator independently of the 2nd order torque compensator.
De kendte 1. ordens momentkompensatorer har udelukkende fundet anvendelse på 4-cylindrede rækkemo-25 torer. En forbrændingsmotor med en 1. ordens momentkompensator ifølge opfindelsen kan udformes mere frit med hensyn til de tilladelige vandrette 1. ordens momenter, hvilket er en særlig fordel ved motorer med cylindrene arrangeret i to rækker i V-facon. Kompensa-30 toren kan her anvendes til motorer med større cylinderantal, såsom 6,8 eller 10-cylindrede motorer. Når en sådan V-motor ifølge opfindelsen tilknyttes en momentkompensator er der på konstruktiv enkel vis kompenseret for de større 1. ordens ydre momenter, som forekommer 35 i en V-motor.The known first-order torque compensators have only been applied to 4-cylinder row motors. An internal combustion engine with a first order torque compensator according to the invention can be designed more freely with respect to the permissible horizontal first order torques, which is a particular advantage of engines with the cylinders arranged in two rows in V-shape. Here, the compensator can be used for engines with larger cylinder numbers, such as 6.8 or 10-cylinder engines. When such a V-motor according to the invention is connected to a torque compensator, it is constructively simple to compensate for the larger first-order external torques which occur in a V-motor.
9 DK 174548 B19 DK 174548 B1
Opfindelsen angår også en fremgangsmåde til mindskning af det 1. ordens ydre moment fra en stor langsomtgående forbrændingsmotor til fremdrivning af et skib med et langstrakt skrog med et lodret langsgående 5 centerplan, hvor skroget kan sættes i svingninger af motorens 1. ordens ydre moment, der er fremkaldt af roterende og frem- og tilbagegående masser i motoren, og hvor den maksimale lodrette komposant af det 1. ordens ydre moment nedbringes til passende størrelse ved 10 hjælp af svingmasser på motordele, der roterer med samme frekvens som krumtapakslen, hvorved størrelsen af den maksimale vandrette komposant samtidig øges. Ifølge opfindelsen er fremgangsmåden ejendommelig ved, at der med en momentkompensator frembringes en kraft, der 5 roteres i et vandret plan med samme frekvens som krumtapakslens drejebevægelse, og som er således placeret i afstand fra motoren, at det af kraften frembragte roterende moment mindsker eller fjerner den vandrette komposant af motorens 1. ordens ydre moment.The invention also relates to a method for reducing the first-order external torque from a large slow-moving internal combustion engine to propel a ship with an elongated hull with a vertical longitudinal 5 center plane, where the hull can be inserted into oscillations of the first-order external torque which is caused by rotating and reciprocating masses in the engine, where the maximum vertical component of the 1st order outer torque is reduced to appropriate size by means of pivot masses on engine parts rotating at the same frequency as the crankshaft, thereby increasing the size of the maximum horizontal component at the same time increases. According to the invention, the method is characterized in that by means of a torque compensator, a force is produced which is rotated in a horizontal plane at the same frequency as the crankshaft rotational movement and which is so spaced from the motor that the rotational torque produced by the force decreases or removes the horizontal component of the first-order external torque of the engine.
10 Selv om den fra motoren adskilte momentkompensator hovedsagelig kun mindsker den vandrette komposant af motorens 1. ordens ydre moment, reduceres det ydre moments lodrette komposant også, så hele 1. ordens momentet hindres i at fremkalde generende svingninger 15 i skroget.Although the torque compensator separated from the motor mainly only reduces the horizontal component of the first-order external torque, the vertical component of the external torque is also reduced, so that the entire first-order torque is prevented from causing annoying oscillations 15 in the hull.
Et eksempel på en udførelsesform for opfindelsen beskrives herefter nærmere med henvisning til den skematiske tegning, hvor fig. 1 og 2 illustrerer et skibsskrog med en 20 forbrændingsmotor og en momentkompensator ifølge opfindelsen, set hhv. ovenfra og fra siden, fig. 3 et lodret snit gennem momentkompensatoren i fig. 1.An example of an embodiment of the invention will now be described in more detail with reference to the schematic drawing, in which fig. 1 and 2 illustrate a ship hull with a 20 internal combustion engine and a torque compensator according to the invention, seen respectively. FIG. 3 is a vertical section through the torque compensator of FIG. First
I fig. 1 ses et skibsskrog 1 med en forbrændings-25 motor 2 og en momentkompensator 3 til mindskning af 10 DK 174548 B1 det 1. ordens ydre moment. Motorens 1. ordens ydre moment er betegnet M1H. Dette moment kan ved bestemte omdrejningstal fremkalde resonanssvingninger for skrogets 2- eller 3-knudepunkts-svingningsform. De to 5 knudepunkter for skrogsvingningen er markeret ved 4, og kurven 5 anskueligør i forstørret skala skrogets udbøj ningsf orm i det vandrette plan, når der ikke anvendes en 1. ordens momentkompensator.In FIG. 1 shows a ship hull 1 with a combustion engine 2 and a torque compensator 3 for reducing the external order of the 1st order. The engine's 1st order outer torque is designated M1H. This torque can produce resonant oscillations for certain 2 or 3-node oscillation shapes at certain rpm. The two 5 nodes of the hull oscillation are marked at 4, and the curve 5 shows on an enlarged scale the deflection shape of the hull in the horizontal plane when a 1st order torque compensator is not used.
Momentkompensatoren 3 frembringer en i det 10 vandrette plan roterende kraft, hvis tværgående kraft-komposant er benævnt F1C. Når resonanssvingningen optræder ved motoromdrejningstal ved eller lavere end motorens MCR-punkt (Maximum Continuous Rating) kan der være behov for mindskning af det 1. ordens ydre moment, 15 navnlig hvis resonansen optræder nær et kontinuert driftspunkt for motoren.The torque compensator 3 produces a rotary force rotating in the horizontal plane whose transverse force component is designated F1C. When the resonance oscillation occurs at engine rpm at or below the motor's Maximum Continuous Rating (MCR) point, the 1st order external torque may be required, especially if the resonance occurs near a continuous operating point of the motor.
Kompensatoren 3 er anbragt i væsentlig afstand fra motoren, fortrinsvis i styremaskinrummet, så der mellem kompensatoren og det nærmeste knudepunkt 4 er så 20 stor afstand R, at en forholdsvis begrænset kraft F1C kan frembringe et moment af samme størrelse som M1H, men af modsat retning. Da dørken i styremaskinrummet ofte ligger i lille lodret afstand fra skrogets bøjnings-neutralakse, kan de langsgående pulserende kræfter fra 25 kompensatoren 3 ikke fremkalde væsentlige lodrette svingninger i skroget 1. Som alternativ til placering af kompensatoren i styremaskinrummet, kan kompensatoren placeres i et lastrum omtrent midt mellem de to knudepunkter 4, men dette vil normalt kræve opbygning af en 30 understøttende platform nær skrogets centerplan og nær bøjningsneutralaksen, hvilket vil fordyre installationen af kompensatoren.The compensator 3 is located at a considerable distance from the motor, preferably in the control room compartment, so that between the compensator and the nearest node 4 there is such a large distance R that a relatively limited force F1C can produce a torque of the same magnitude as M1H, but in the opposite direction. . Since the floor in the control room compartment is often at a small vertical distance from the bending neutral axis of the hull, the longitudinal pulsating forces of the compensator 3 cannot produce significant vertical oscillations in the hull 1. As an alternative to placing the compensator in the control room compartment, the compensator can be placed in a cargo space approximately midway between the two nodes 4, but this will usually require the construction of a supporting platform near the center plane of the hull and near the bend neutral axis, which will distort the installation of the compensator.
Hvis kompensatoren som vist i fig. 2 er placeret i afstanden L over skrogets bøjningsneutralakse A, 35 kan kompensatoren stilles i en sådan vinkel α i 11 DK 174548 B1 forhold til lodret, at den langsgående kraft F1C danner en tilsvarende vinkel a med bøjningsneutralak-sen, hvorved kraften passerer gennem knudepunktet 4 uden at give anledning til et lodret bøjningsmoment.If the compensator as shown in FIG. 2 is located at the distance L above the bend neutral axis A of the hull, 35 the compensator can be set at such an angle α in relation to the vertical that the longitudinal force F1C forms a corresponding angle a with the bend neutral axis, whereby the force passes through the node 4. without giving rise to a vertical bending moment.
5 Vinklen α kan bestemmes ud fra ligningen tg a « L/R.5 The angle α can be determined from the equation tg a «L / R.
I fig. 3 ses kompensatoren 3, som både kompenserer for 1. og 2. ordens momenter. 1. ordens momentkompensa-toren har en svingmasse 6, der kan være i ét stykke eller som vist i to stykker 6a, 6b. Svingmassen 6 er 10 excentrisk fikseret på en lodretstående aksel 7, der gennem et øvre og et nedre rulningsleje hhv. 8 og 9 er lejret i kompensatorhusets øvre og nedre endedæksel hhv.In FIG. 3, the compensator 3 is seen, which both compensates for the first and second order moments. The first-order torque compensator has a pivot mass 6 which may be one-piece or as shown in two pieces 6a, 6b. The pivot mass 6 is eccentrically fixed to a vertical shaft 7 which through an upper and a lower rolling bearing respectively. 8 and 9 are mounted in the upper and lower end cover of the compensator housing, respectively.
10 og 11. De to endedæksler holdes indbyrdes adskilt af en cylindrisk ydervæg 12, og det nedre endedæksel 11 15 er ved hjælp af ikke viste bolte fikseret til et ikke vist fundament i skibsskroget 1.10 and 11. The two end covers are held apart by a cylindrical outer wall 12 and the lower end cover 11 15 is fixed by means of bolts not shown to a foundation (not shown) in the ship hull 1.
For at begrænse udbøjningen af akslen 7 har den stor diameter i det akselafsnit, som ligger mellem lejerne 8 og 9. Over lejet 8 fortsætter akslen i et 20 afsnit 13 med reduceret diameter op til en bøjningselastisk og torsionsstiv kobling 14 med to endedele 15, 16, der er indbyrdes forbundne gennem to elastiske skiver 17, 18 og et rørformet mellemstykke 19.In order to limit the bending of the shaft 7, it has a large diameter in the shaft section which lies between the bearings 8 and 9. Above the bearing 8, the shaft continues in a reduced diameter section 20 up to a bending elastic and torsional rigid coupling 14 with two end portions 15, 16 which are interconnected through two resilient washers 17, 18 and a tubular spacer 19.
Endedelene 15 og 16 kan fikseres til de tilhørende 25 elastiske skiver 17 og 18 i forskellige drejestil-linger, hvilket giver mulighed for indstilling af akslen 7TS drejestilling i forhold til en med den øvre endedel 16 fast forbundet akseltap 20, som bærer et spidshjul 21, der drives af en motor 22. Ved indstilling af 30 endedelen 15's drejestilling i forhold til akseltappen 20 kan fasen for svingmassen 67s bevægelse justeres i forhold til fasen for motorens 1. ordens ydre moment.The end portions 15 and 16 can be fixed to the associated 25 resilient washers 17 and 18 in various pivot positions, allowing the shaft position 7TS to be adjusted relative to a shaft pin 20, which is connected to the upper end portion 16, which carries a pointed wheel 21. driven by a motor 22. By adjusting the pivot position of the end portion 15 relative to the shaft 20, the phase of the pivot mass 67 can be adjusted relative to the phase of the outer order of the motor.
En 2. ordens momentkompensator 23 er monteret ovenpå endedækslet 10. Denne kompensator har to 35 svingmasser 24a, 24b, der på i og for sig kendt måde 12 DK 174548 B1 er excentrisk fikseret på hver sin vandrette aksel 25a, 25b, der er lejret i et tilhørende hus hhv. 26a og 26b.A second-order torque compensator 23 is mounted on top of the end cover 10. This compensator has two pivot masses 24a, 24b which are eccentrically fixed on each of the horizontal shafts 25a, 25b, which are mounted in their respective known axes. an associated house respectively. 26a and 26b.
En konsol 27 bærer et gearhus 28, som optager spidshjulet 21 i indgreb med to spidshjul 29a, 29b 5 monteret på hver sin aksel 25a, 25b.A bracket 27 carries a gear housing 28 which engages the sprocket 21 in engagement with two sprocket wheels 29a, 29b 5 mounted on each shaft 25a, 25b.
Motoren 22 står gennem et planetgear 30 i drivende forbindelse med akslen 25b og via de tre spidshjul i forbindelse med akslerne 7 og 25a. Spidshjulet 21 har dobbelt så mange tænder som 10 spidshjulene 29a, 29b, så akslerne 25 og akslen 7 er forbundet i udvekslingsforholdet 2:1. Det ses, at spidshjulsforbindelsen medfører, at motoren 22 driver akslerne 25a og 25b rundt i modsatte omløbsretninger.The motor 22 stands through a planetary gear 30 in driving communication with the shaft 25b and via the three sprockets in connection with the shafts 7 and 25a. The sprocket 21 has twice as many teeth as the sprocket 29a, 29b, so that the shafts 25 and shaft 7 are connected in the ratio 2: 1. It is seen that the sprocket connection causes the motor 22 to drive the shafts 25a and 25b in opposite directions of rotation.
Drivmotoren 22 er en såkaldt AC-servomotor af 15 standardtype, eksempelvis af fabrikatet Siemens og med typebetegnelsen 1 FT 5AC servomotor eller af typen 1PH 5/1PH6 AC-servomotor. Disse motorer er velegnede til drift af momentkompensatoren, idet de kan levere fuldt drejningsmoraent ved 0 omdr/min, og fordi de kan styres 20 ved hjælp af et simpelt taktsignal. Taktsignalet kan leveres fra forbrændingsmotorens regulator eller fra en med krumtapakslen forbunden omdrejningstalsføler, eksempelvis en såkaldt "optical incremental encoder" med nulpulsgiver.The drive motor 22 is a so-called standard 15 AC type servo motor, for example manufactured by Siemens and with the type designation 1 FT 5AC servo motor or of the type 1PH 5 / 1PH6 AC servo motor. These motors are suitable for operation of the torque compensator in that they can provide full torque at 0 rpm and because they can be controlled 20 by a simple clock signal. The clock signal can be supplied from the combustion engine regulator or from a crankshaft speed sensor, for example a so-called "optical incremental encoder" with zero encoder.
25 Planetgearet 30 kan være af to-trins udførelse, eksempelvis med udvekslingsforholdet 1:5 og 1:20 mellem den drevne og den drivende aksel. Et sådant planetgear er en standardkomponent, der eksempelvis kan leveres af firmaet alpha-Getriebebau GmbH, Igersheim, Tyskland.The planetary gear 30 may be of two-stage design, for example having the ratio of 1: 5 to 1:20 between the driven and the driving shaft. Such a planetary gear is a standard component that can be supplied, for example, by the company alpha-Getriebebau GmbH, Igersheim, Germany.
30 Når momentkompensatoren skal igangsættes, stilles planetgearet først til at give stort udvekslingsforhold, eksempelvis 1:20, så drivmotoren 22 kan udøve stort moment på akslerne 25a, b under disses første halve omdrejning, hvor svingmasserne 24a, 24b trækkes op mod 35 tyngdepåvirkningen. I løbet af den fortsatte drejning 13 DK 174548 B1 af svingmasserne om akslerne 25a, b skifter planetgearet om til det lavere udvekslingsforhold, eksempelvis 1:5, hvorefter motoren 22 accellererer de to momentkompen-satorer op til den ønskede omdrejningshastighed i 5 synkronisering med taktsignalet fra forbrændingsmotoren.When the torque compensator is to be started, the planetary gear is first set to give a high gear ratio, for example 1:20, so that the drive motor 22 can exert large torque on the shafts 25a, b during their first half rotation, with the pivot masses 24a, 24b being pulled up against the weight of 35. During the continued rotation 13 of the pivot masses about the shafts 25a, b the planetary gear changes to the lower gear ratio, for example 1: 5, after which the motor 22 accelerates the two torque compensators up to the desired speed of rotation in synchronization with the clock signal from combustion engine.
Svingmasserne 24a, b i 2. ordens momentkompensa-toren påvirkes i deres tyngdepunkter 31 af en centrifugalkraft F2C/2, og masserne er'således kontraroterende, at de to kræfters vandrette komposanter modvirker 10 hinanden, så der fremkommer en pulserende lodret kraft med maksimalværdien F2C. Denne kraft frembringer et lodret moment, som modvirker forbrændingsmotorens 2. ordens ydre moment.The pivot masses 24a, b of the second-order torque compensator are affected in their centers of gravity 31 by a centrifugal force F2C / 2, and the masses are so counter-rotating that the horizontal components of the two forces counteract each other to produce a pulsating vertical force with the maximum value F2C. This force produces a vertical torque which counteracts the internal torque of the 2nd order of the internal combustion engine.
Svingmassen 6 il. ordens momentkompensatoren 15 påvirkes ved rotation om akslen 7 af en vandret centrifugalkraft F1C, som angriber i svingmassens tyngdepunkt 32. Derudover påvirkes svingmassen af en tyngdekraft F som mindsker belastningen på det nedre rulningsleje 9.The swing mass 6 il. the torque compensator 15 is affected by rotation about the shaft 7 by a horizontal centrifugal force F1C which engages in the center of gravity of gravity 32. In addition, the pivot mass is affected by a gravity F which reduces the load on the lower rolling bearing 9.
20 Hvis der kun skal anvendes en 1. ordens moment- kompensator, kan drivmotoren 22 med et tilhørende enkelt-trins planetgear monteres direkte ovenpå akselafsnittet 13.20 If only a first-order torque compensator is to be used, the drive motor 22 with an associated single-stage planetary gear can be mounted directly on top of the shaft section 13.
2. ordens momentkompensatoren kan også udformes med 25 en enkelt svingmasse anbragt på den ene side af akseltappen 20. Dette forenkler kompensatoren, men giver samtidig anledning til en pulserende vandret kraft.The second-order torque compensator can also be designed with a single pivot mass disposed on one side of the shaft pin 20. This simplifies the compensator, but at the same time gives rise to a pulsating horizontal force.
’ Denne løsning er kun anvendelig, hvis den vandrette kraft ikke giver anledning til generende skrogsving-30 ninger.This solution is only applicable if the horizontal force does not give rise to annoying hull oscillations.
Fra ovennævnte danske patentansøgning er det kendt at mindske størrelsen af den lodrette komposant af det 1. ordens ydre moment ved på passende måde at anbringe svingmasser på motordele, der roterer med samme frekvens 35 som krumtapakslen. I den kendte teknik har dette kun 14 DK 174548 B1 været anvendt i de tilfælde, hvor den vandrette kompo-sant af det 1. ordens ydre moment ikke kunne fremkalde generende skrogsvingninger. Med den ovenfor beskrevne 1. ordens momentkompensator kan den forøgede vandrette 5 komposant mindskes eller fjernes helt ved hjælp af kraften F1C, og fremgangsmåden ifølge opfindelsen kan derfor også anvendes i de tilfælde, hvor den vandrette komposant af det 1. ordens ydre moment kan sætte skroget i svingninger.From the above-mentioned Danish patent application it is known to reduce the size of the vertical component of the first order outer torque by appropriately applying pivot masses to motor parts rotating at the same frequency 35 as the crankshaft. In the prior art, this has only been used in cases where the horizontal component of the 1st order outer torque could not induce bothersome hull oscillations. With the first-order torque compensator described above, the increased horizontal component can be reduced or removed completely by the force F1C, and the method according to the invention can therefore also be used in cases where the horizontal component of the first-order external torque can set the hull in oscillations.
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK199300945A DK174548B1 (en) | 1993-08-19 | 1993-08-19 | Moment compensator for the reduction of hull swinging in a ship, along with a procedure and an internal combustion engine for this |
KR1019940020354A KR100310082B1 (en) | 1993-08-19 | 1994-08-18 | A moment compensator for reduction of hull vibrations in a ship, a large two-stroke low-speed internal combustion engine having such a moment compensator, and a method of reducing the frist order external moment from such an engine |
JP06195268A JP3105400B2 (en) | 1993-08-19 | 1994-08-19 | Moment compensator for reducing vibration of ship hull and moment compensation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK94593 | 1993-08-19 | ||
DK199300945A DK174548B1 (en) | 1993-08-19 | 1993-08-19 | Moment compensator for the reduction of hull swinging in a ship, along with a procedure and an internal combustion engine for this |
Publications (3)
Publication Number | Publication Date |
---|---|
DK94593D0 DK94593D0 (en) | 1993-08-19 |
DK94593A DK94593A (en) | 1994-05-20 |
DK174548B1 true DK174548B1 (en) | 2003-05-26 |
Family
ID=8099275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK199300945A DK174548B1 (en) | 1993-08-19 | 1993-08-19 | Moment compensator for the reduction of hull swinging in a ship, along with a procedure and an internal combustion engine for this |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3105400B2 (en) |
KR (1) | KR100310082B1 (en) |
DK (1) | DK174548B1 (en) |
-
1993
- 1993-08-19 DK DK199300945A patent/DK174548B1/en not_active IP Right Cessation
-
1994
- 1994-08-18 KR KR1019940020354A patent/KR100310082B1/en not_active IP Right Cessation
- 1994-08-19 JP JP06195268A patent/JP3105400B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0781688A (en) | 1995-03-28 |
JP3105400B2 (en) | 2000-10-30 |
DK94593D0 (en) | 1993-08-19 |
DK94593A (en) | 1994-05-20 |
KR950005694A (en) | 1995-03-20 |
KR100310082B1 (en) | 2001-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100347778B1 (en) | Vibration-compensating apparatus | |
RU2423195C1 (en) | Drive system for roll mill, particularly, pilger cold rolling mill | |
KR101089557B1 (en) | Vibration exciter for vibration compensation | |
JP2010099656A (en) | Device for generating circular vibration or directional vibration having continuously adjustable vibration amplitude and/or exciting force | |
KR101105209B1 (en) | Vertical vibration exciter for vibration compensation | |
RU2712467C1 (en) | Method and control system for controlling propulsive unit vibrations | |
DK174548B1 (en) | Moment compensator for the reduction of hull swinging in a ship, along with a procedure and an internal combustion engine for this | |
JP2790990B2 (en) | Rotary shaker and control method of rotary shaker | |
AU2011214017B2 (en) | Counter rotating mass system configured to be applied to an inline-four internal combustion engine to balance the vibrations produced by said engine, and inline-four engine comprising said system | |
KR100323278B1 (en) | Dual Exhaust Device | |
JPS63101539A (en) | Balance shaft driving device for engine | |
KR20030086924A (en) | Compensation apparatus | |
DK149479B (en) | APPARATUS FOR COMPENSATION OF FREE MILL POWER POWER IN A COMBUSTION ENGINE WHICH SERVES AS A PROJECTING MACHINE IN A SHIP | |
JP2607377B2 (en) | Exciter for structural test | |
DK174028B1 (en) | Apparatus for compensating free torques developed by inertial forces in a piston propulsion engine in a ship | |
DK174205B1 (en) | Swing compensator for an internal combustion engine as well as methods for starting them | |
KR20110129445A (en) | Arrangement for and method of attenuating the vibration of a piston engine and a piston engine | |
JP4748932B2 (en) | Engine equipment | |
KR102317658B1 (en) | Vibration compensation device for ships with an optional open body housing for easy installation and internal repair | |
JP6278247B2 (en) | 4 cycle engine | |
KR20180044215A (en) | Dynamic imbalanced force generator and an actuator comprising such a generator | |
JPH09296445A (en) | Supporting method of eccentric weight for vibrator and support structure thereof | |
JPH0763239A (en) | Active vibration damping device using unbalance excitating device | |
JP3295272B2 (en) | Moment compensator | |
JPS60201137A (en) | Rotative-vibration-type vibration eliminator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A0 | Application filed | ||
PBP | Patent lapsed |
Country of ref document: DK |