DK172216B1 - Method of transferring the free heat from a hot, contaminated gas stream to a colder, clean gas stream - Google Patents

Method of transferring the free heat from a hot, contaminated gas stream to a colder, clean gas stream Download PDF

Info

Publication number
DK172216B1
DK172216B1 DK545789A DK545789A DK172216B1 DK 172216 B1 DK172216 B1 DK 172216B1 DK 545789 A DK545789 A DK 545789A DK 545789 A DK545789 A DK 545789A DK 172216 B1 DK172216 B1 DK 172216B1
Authority
DK
Denmark
Prior art keywords
gas
gas stream
transferring
heat
hot
Prior art date
Application number
DK545789A
Other languages
Danish (da)
Other versions
DK545789A (en
DK545789D0 (en
Inventor
Frank Dziobek
Original Assignee
Krupp Koppers Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers Gmbh filed Critical Krupp Koppers Gmbh
Publication of DK545789D0 publication Critical patent/DK545789D0/en
Publication of DK545789A publication Critical patent/DK545789A/en
Application granted granted Critical
Publication of DK172216B1 publication Critical patent/DK172216B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

i DK 172216 B1in DK 172216 B1

Opfindelsen angår en fremgangsmåde ved overføring af den frie varme fra en varm, forurenet rågas, som fremkommer ved forgasning af brændstoffer med oxy-genholdige gasser, til den kolde rengas, som skal til-5 føres gasturbinen i et GUD- (gas- og dampturbine-) kraftværk.BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a method of transferring the free heat from a hot, contaminated raw gas produced by gasification of fuels with oxygen-containing gases to the cold gas to be supplied to the gas turbine in a GUD (gas and steam turbine). -) power plant.

En sådan fremgangsmåde kendes fra EP-A-0 185 841.Such a method is known from EP-A-0 185 841.

Ved forgasningen af navnlig faste brændstoffer 10 drejer det sig om at overføre den ved forgasningen opstående, til den forurenede rågas bundne, frie varme til den kolde rensede rengas, når den rene gas skal foreligge på et af den videre anvendelse krævet højere temperaturniveau. Det tilstræbes derfor til optimering 15 af den samlede virkningsgrad at påtrykke mest mulig varme gennem denne spildvarmeudnyttelse af rågasfrem-bringelsen på den rene gas til den videre udnyttelse i gasturbinen.In the gasification of in particular solid fuels 10, it is a matter of transferring the free-heat, bound to the contaminated raw gas to the cold cleaned gas, which arises from the gasification, when the pure gas must be present at a higher temperature level required for further use. Therefore, it is sought to optimize the overall efficiency to apply as much heat as possible through this waste heat utilization of the raw gas generation on the clean gas for further use in the gas turbine.

Til forøgelse af massestrømmen til gasturbinen 20 bliver den rene gas iblandet nitrogen. På grund af faren for selvantændelse ved iblanding af oxygenholdigt 0 nitrogen, kan den rene gas kun opvarmes til 360 C i varmeveksleren. Deraf følger en høj udgangstemperatur for rågassen, medens der til opnåelsen af en høj ter-25 misk virkningsgrad i spildvarmeudnyttelsen på rågassi-den tilstræbes en lav udløbstemperatur.To increase the mass flow to the gas turbine 20, the pure gas is mixed with nitrogen. Due to the danger of self-ignition by adding oxygen-containing 0 nitrogen, the pure gas can only be heated to 360 ° C in the heat exchanger. Therefore, a high outlet temperature of the raw gas is followed, while a low outlet temperature is sought to achieve a high thermal efficiency in the waste heat utilization on the raw gas.

Ved en kendt udformning, en såkaldt "quenchlo-sen Konzeption", har rågassen og rengassen omtrent samme volumenstrøm og derfor bliver rågas/rengas-varme-30 veksleren ved tilstræbt lav rågasudløbstemperatur et bekosteligt element på grund af den store varmevekslingsflade.In a known embodiment, a so-called "quenchless Konzeption", the crude gas and the purge gas have about the same volume flow and therefore the crude gas / purge heat exchanger at a desired low crude gas outlet temperature becomes an expensive element due to the large heat exchange surface.

Rågas/rengas-varmeveksleren er i reglen koblet foran en bag forgasseren koblet spildvarmekedel, hvis 35 udløbstemperatur ved stor spildvarmeudnyttelse ligeledes må tilstræbes at være lav, hvorved også dette ele- DK 172216 Bl 2 ment som følge af dets store volumen ved lave udløbstemperaturer bliver bekosteligt.The raw gas / purge heat exchanger is usually coupled in front of a waste heat boiler coupled to the carburettor, whose outlet temperature under high waste heat utilization must also be aspirated to be low, thereby also costing it due to its large volume at low outlet temperatures. .

Heraf følger, at ved god udnyttelse af den frie varme i forgasningsrågassen forårsager spildvarmekedel· 5 og rågas/rengas-varmeveksler meget høje anlægsomkostninger .It follows that good utilization of the free heat in the gasification raw gas causes waste heat boiler · 5 and raw gas / pure gas heat exchanger very high construction costs.

Formålet med opfindelsen er derfor, at forbedre fremgangsmåden af den indledningsvist beskrevne art i den retning, at anlægsomkostningerne ved samme høje 10 termiske udnyttelsesgrad kan formindskes væsentligt.The object of the invention is therefore to improve the process of the type described initially in the direction that the construction costs of the same high thermal utilization rate can be substantially reduced.

Da varmeovergangsforholdene i det væsentlige er forudgivet fysisk, kan dette mål kun nås gennem ændring af gradienterne, dvs. temperaturforskellene mellem det varmeafgivende og det varmeoptagende medium.Since the heat transition conditions are essentially physically predicted, this goal can only be achieved by changing the gradients, ie. the temperature differences between the heat-emitting and the heat-absorbing medium.

15 Formålet opfyldes ved hjælp af det i krav 1 an givne .The object is fulfilled by the method of claim 1.

Til løsning af den nævnte opgave foreslås det ifølge opfindelsen, at der indsprøjtes vand i den koldere gasstrøm. Denne indsprøjtning kan ske i ét trin.In order to solve the said task, it is proposed according to the invention that water be injected into the colder gas stream. This injection can be done in one step.

20 Ifølge et yderligere kendetegn ved opfindelsen kan indsprøjtningen af vand dog også ske i flere trin. I alle fald må det naturligvis herved påses, at der ikke optræder nogen dugpunktsunderskridelser på rågassiden.However, according to a further feature of the invention, the injection of water can also take place in several steps. In any case, of course, it must be ensured that there are no dew point undercuts on the raw gas side.

Ved hjælp af indsprøjtningen af vand forøges 25 gradienten i varmeveksleren. Endvidere forøges den overførte varmestrøm gennem forøgelsen af den køligere gasmassestrøm efter vandindsprøjtningen.By means of the injection of water, the gradient in the heat exchanger is increased. Furthermore, the transferred heat flow is increased through the increase of the cooler gas mass flow after the water injection.

Ved forgasningsanlægget med tilknyttet GUD-kraftværk kan, som følge af den opfindelsesmæssige for-30 holdsregel, det efter forgasningen anbragte spildvarmeudnyttelsesanlæg mindskes.At the gasification plant with associated GUD power plant, due to the inventive precaution, the waste heat recovery plant located after the gasification can be reduced.

Den som regel efter spildvarmekedlens strålingsdel anbragte konvektionsdel bliver meget lille eller kan bortfalde. Efter strålingskedlen følger umiddelbart 35 rågas/rengas-varmeveksleren. Således bliver summen af de installerede varmeflader og dermed anlægsomkostningerne minimeret.The convection part located on the radiator part of the waste heat boiler usually becomes very small or may lapse. After the radiation boiler immediately follows the raw gas / purge heat exchanger. Thus, the sum of the installed heating surfaces and thus the construction costs are minimized.

DK 172216 B1 3DK 172216 B1 3

Det er endvidere fordelagtigt at rengassens udløbstemperatur kan påvirkes gennem regulering af den indsprøjtede vandmængde, og på denne måde kan indvirkningen af en tilsmudsning på rågassiden modvirkes ved 5 hjælp af påvirkningen på rengassens udløbstemperatur.It is further advantageous that the outlet temperature of the purge gas can be affected by regulating the amount of water injected, and in this way the effect of a soiling on the raw gas side can be counteracted by the influence on the outlet temperature of the purge gas.

Vand- eller vanddampindholdet i rengassen bevirker, ud over en stigning i varme- og massestrøm, som bidrager til ydelsesstigningen for den efterfølgende gasturbine, en gunstig indflydelse på NOx-emissionen i 10 gasturbinens brændkammer og dermed på NOx-indholdet i udstødsgassen, hvilket er et krav ud fra miljøteknisk synspunkt. Det ventes ligeledes, at rengastemperaturen i kraft af vanddampindholdet kan hæves til over den hidtil sædvanlige temperatur da selvantændelsestempera-15 turen bliver forskudt opad.The water or water vapor content in the purge gas, in addition to an increase in heat and mass flow which contributes to the increase in the output of the subsequent gas turbine, has a favorable effect on the NOx emission in the combustion chamber of the gas turbine and thus on the NOx content in the exhaust gas, which is a requirements from an environmental technical point of view. It is also expected that the cleaning temperature, due to the water vapor content, can be raised to above the usual temperature as the self-ignition temperature is shifted upwards.

Opfindelsen vil i det følgende blive forklaret nærmere ved hjælp af et udførelseseksempel med henvisning til den skematiske tegning, hvis eneste figur viser en udførelsesform for opfindelsen.The invention will now be explained in more detail by way of an embodiment with reference to the schematic drawing, the only figure of which shows an embodiment of the invention.

20 Rågassen løber i en mængdestrøm på 108.216The raw gas flows in a flow of 108,216

Nm^/h Qg ve(3 en temperatur på 700°C ind i rågas/ren- 0Nm 2 / h Qg ve (3 a temperature of 700 ° C into raw gas / pure 0

gas-varmeveksleren ved 1 og ud ved 2 ved 300 C. Ithe gas heat exchanger at 1 and out at 2 at 300 C. I

modstrøm strømmer den ligeså store rengasstrøm ved 3 ind med ca. 40°C i en dampopvarmet forvarmer, som den 0 25 forlader med 150 C, for ved 4 at løbe ind i det første trin af rågas/rengas-varmeveksleren. Opvarmet til 0 250 C tages rengassen ud og afkøles ved 5 med 7 t/h vand til 158°C. Ved 6 løber 116.922 Nm3/h blandet rengas/vanddamp ind i det andet trin og bliver opvarmet 30 til 250°C, udtages og afkøles ved 7 med 7,5 t/h vand til 170°C. Ved 8 løber 126.251 NmVh rengas og vanddamp ind i det 3. trin, som forlades med sluttemperatu-ren 360°C.countercurrent, the equally large clean gas stream at 3 flows in with approx. 40 ° C in a steam heated preheater, which it leaves 0 25 at 150 C, to run into the first stage of the raw gas / purge heat exchanger at 4. Heated to 0 250 C, the purge gas is removed and cooled at 5 with 7 t / h water to 158 ° C. At 6, 116,922 Nm3 / h of mixed gas / water vapor enters the second stage and is heated to 30 to 250 ° C, extracted and cooled at 7 with 7.5 t / h of water to 170 ° C. At 8, 126,251 NmVh of pure gas and water vapor run into the third stage, which is left with the final temperature 360 ° C.

Rågassen køles i det 3. trin til 486°C og i det 35 2. trin til 400eC. I alt overføres 14,54 Mio. kcal/h i modsætning til 7,4 Mio kcal/h ved et sammenligningstil-The crude gas is cooled to 486 ° C in the third stage and in the 2nd stage to 400 ° C. A total of 14.54 Mio. kcal / h as opposed to 7.4 Mio kcal / h in a comparison

Claims (2)

1. Fremgangsmåde ved overføring af den frie var-20 me fra en varm, forurenet rågas, som fremkommer ved forgasning af brændstoffer med oxygenholdige gasser, til den kolde rengas, som skal tilføres gasturbinen i et GUD-kraftværk, under anvendelse af en rågas/rengas-varmeveksler, kendetegnet ved, at der i 25 rengasstrømmen i et eller flere trin indsprøjtes vand, hvorved rengassen med henblik på vandindsprøjtning tages ud af varmeveksleren og efterfølgende ledes ind i den igen.A method of transferring the free heat from a hot, contaminated crude gas resulting from the gasification of fuels with oxygen-containing gases to the cold gas to be supplied to the gas turbine in a GUD power plant using a crude gas / purge gas heat exchanger, characterized in that water is injected into the purge gas stream in one or more steps, whereby the purge gas for water injection is taken out of the heat exchanger and subsequently fed into it again. 2. Fremgangsmåde ifølge krav l, kende-30 tegnet ved, at vandindsprøjtningen i rengasstrømmen sker, såsnart denne i varmeveksleren har opnået en temperatur på 250eC.Process according to claim 1, characterized in that the water injection into the purge gas stream is effected as soon as it has reached a temperature of 250 ° C in the heat exchanger.
DK545789A 1988-11-03 1989-11-02 Method of transferring the free heat from a hot, contaminated gas stream to a colder, clean gas stream DK172216B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3837265 1988-11-03
DE3837265A DE3837265A1 (en) 1988-11-03 1988-11-03 METHOD FOR TRANSFERRING THE FEELABLE HEAT FROM A HOT GAS FLOW TO A COOL GAS FLOW

Publications (3)

Publication Number Publication Date
DK545789D0 DK545789D0 (en) 1989-11-02
DK545789A DK545789A (en) 1990-05-04
DK172216B1 true DK172216B1 (en) 1998-01-05

Family

ID=6366362

Family Applications (1)

Application Number Title Priority Date Filing Date
DK545789A DK172216B1 (en) 1988-11-03 1989-11-02 Method of transferring the free heat from a hot, contaminated gas stream to a colder, clean gas stream

Country Status (5)

Country Link
EP (1) EP0366928B1 (en)
DD (1) DD286025A5 (en)
DE (2) DE3837265A1 (en)
DK (1) DK172216B1 (en)
ES (1) ES2031672T3 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH516735A (en) * 1970-06-10 1971-12-15 Alsthom Cgee Device for producing mechanical energy by expanding a compressed gas
FR2401319A1 (en) * 1977-08-26 1979-03-23 Snecma Aircraft jet engine heat exchanger - includes water injection system to reduce temp. of inlet gases to safe level during take=off
EP0051493A3 (en) * 1980-11-05 1982-12-01 Mitsubishi Gas Chemical Company, Inc. Heat exchanging system for an open internal combustion cycle
ZA85528B (en) * 1984-02-01 1986-12-30 Fluor Corp Process for producing power
DE3446715A1 (en) * 1984-12-21 1986-06-26 Krupp Koppers GmbH, 4300 Essen METHOD FOR COOLING PARTIAL OXIDATION GAS CONTAINING DUST-BASED IMPURITIES, INTENDED FOR USE IN A COMBINED GAS STEAM TURBINE POWER PLANT
US4702074A (en) * 1985-07-30 1987-10-27 Michael Munk Internal combustion engine system with fog injection and heat exchange

Also Published As

Publication number Publication date
DE3837265A1 (en) 1990-05-10
DD286025A5 (en) 1991-01-10
DK545789A (en) 1990-05-04
DE58901173D1 (en) 1992-05-21
EP0366928A1 (en) 1990-05-09
EP0366928B1 (en) 1992-04-15
ES2031672T3 (en) 1992-12-16
DK545789D0 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
JP3941840B2 (en) Fuel preheating system for gas turbine engine
KR100323398B1 (en) Combined Cycle Power Unit
US20070017207A1 (en) Combined Cycle Power Plant
DK157102B (en) METHOD AND APPARATUS FOR HEATING OF WASTE GASES AFTER A WETTING OF WASTE DESIRATMENT
KR20100055381A (en) Method of and power plant for generating power by oxyfuel combustion
EP0642611A1 (en) A process for recovering energy from a combustible gas
JP2011523997A (en) Method and apparatus for generating power by oxyfuel combustion
CN102770709A (en) Method for generating power from exhaust heat and system for generating power from exhaust heat
AU682172B2 (en) New power process
CN102606237A (en) Open forward and inverse cycle coupling triple supply system of electricity, heat and cold based on combustion gas turbine
KR20050107843A (en) Waste heat collection apparatus of heat producer
JP2003161164A (en) Combined-cycle power generation plant
US8268023B2 (en) Water gas shift reactor system for integrated gasification combined cycle power generation systems
DK172216B1 (en) Method of transferring the free heat from a hot, contaminated gas stream to a colder, clean gas stream
CZ2007340A3 (en) Method of producing electricity by solid fuel-burning gas turbine as well as from exhaust heat and apparatus for making the same
WO1993024703A1 (en) A process for recovering energy from a combustible gas
JPH06212910A (en) Electric power generating plant
CN209671079U (en) The gaseous fuel heating system of Combined cycle gas-steam turbine
EP0639254B1 (en) Method in small-power plant use
SE534727C2 (en) Procedure at a power plant and power plant
JP2001115855A (en) Gas turbine system
JP3807702B2 (en) Gasification combined power generation facility
JP2004308949A (en) Waste heat recovery system
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPS63285230A (en) Coal gasifying type composite power plant

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed