DK170196B1 - Method and coupling to reduce the harmonic distortion of a capacitive transducer - Google Patents

Method and coupling to reduce the harmonic distortion of a capacitive transducer Download PDF

Info

Publication number
DK170196B1
DK170196B1 DK041593A DK41593A DK170196B1 DK 170196 B1 DK170196 B1 DK 170196B1 DK 041593 A DK041593 A DK 041593A DK 41593 A DK41593 A DK 41593A DK 170196 B1 DK170196 B1 DK 170196B1
Authority
DK
Denmark
Prior art keywords
capacity
preamplifier
transducer
negative
microphone
Prior art date
Application number
DK041593A
Other languages
Danish (da)
Other versions
DK41593D0 (en
DK41593A (en
Inventor
Erling Frederiksen
Original Assignee
Brueel & Kjaer As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brueel & Kjaer As filed Critical Brueel & Kjaer As
Priority to DK041593A priority Critical patent/DK170196B1/en
Publication of DK41593D0 publication Critical patent/DK41593D0/en
Priority to JP6521571A priority patent/JPH08509327A/en
Priority to AU65346/94A priority patent/AU6534694A/en
Priority to PCT/DK1994/000142 priority patent/WO1994023547A1/en
Priority to EP94913038A priority patent/EP0694246A1/en
Publication of DK41593A publication Critical patent/DK41593A/en
Application granted granted Critical
Publication of DK170196B1 publication Critical patent/DK170196B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • H04R3/06Circuits for transducers, loudspeakers or microphones for correcting frequency response of electrostatic transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

DK 170196 B1DK 170196 B1

Opfindelsen angår en fremgangsmåde til at reducere den harmoniske forvrængning af en kapacitiv transducer, eksempelvis en kondensatormikrofon, hvis kapacitet ændres i afhængighed af et på kondensatormikrofonens elektrode (membranen) virkende lyd-5 tryk, og som hidrører fra uønskede kapaciteter i transduceren, ved hjælp af en negativ kapacitet, der forbindes til transduceren. Opfindelsen angår også en kobling til udøvelse af fremgangsmåden .The invention relates to a method for reducing the harmonic distortion of a capacitive transducer, for example a capacitor microphone, the capacity of which is changed depending on a sound pressure acting on the capacitor microphone (the membrane) and arising from unwanted capacities in the transducer, by means of a negative capacity connected to the transducer. The invention also relates to a coupling for carrying out the method.

Kondensatormikrofoner har en meget høj gengivelseskvalitet og 10 anvendes derfor i næsten alle professionelle systemer. De anvendes også i vid udstrækning i konsumapparater og i personlige hjælpemidler, såsom båndoptagere og eventuelt også tunghøreapparater .Condenser microphones have a very high reproduction quality and 10 are therefore used in almost all professional systems. They are also widely used in consumer devices and personal aids, such as tape recorders and possibly also hearing aids.

Den gode gengivelseskvalitet har særlig stor betydning i måle-15 systemer og andre professionelle systemer, hvor der tilstræbes store støj- og forvrængningsfri dynamikområder.The good quality of reproduction is of particular importance in measuring-15 systems and other professional systems, where large noise- and distortion-free dynamics are sought.

Dynamikområdet begrænses ved lave lydniveauer af mikrofonens egenstøj og af egenstøjen i en efter mikrofonen anbragt forforstærker .The dynamic range is limited by low noise levels of the microphone's own noise and of the noise in a preamp positioned after the microphone.

20 Ved høje lydniveauer sættes grænsen i praksis af en med signalniveauet jævnt tiltagende ulineær forvrængning, der skyldes mikrofonen selv, eller af en med signalniveauet brat indtrædende klipning af mikrofonsignalet i den efterfølgende forforstærker.In practice, at high noise levels, the limit is set by a linearly increasing non-linear distortion caused by the microphone itself, or by a sharp cut-off of the microphone signal in the subsequent preamplifier.

25 Det er kendt, at en elektrisk kapacitet i parallel med mikrofonens egenkapacitet forøger mikrofonens forvrængning, jf. f.eks. Briiel & Kjær Technical Review nr. 4, 1979, side 18.25 It is known that an electrical capacity in parallel with the microphone's own capacity increases the distortion of the microphone, cf. Briiel & Kjær Technical Review No. 4, 1979, page 18.

Da kondensatormikrofoner i praksis har meget høje elektriske impedanser sammenlignet med de efterfølgende forbindelseskab-30 ler og forstærkere, er det i almindelighed nødvendigt at anbringe en forforstærker tæt ved mikrofonen. Forforstærkeren 2 DK 170196 B1 tjener til at tilvejebringe den nødvendige impedanstilpasning og har typisk en spændings forstærkning på lidt under 1. Forforstærkeren er optimeret til at drive lange kabler og har en så høj indgangsimpedans, at mikrofonen kun belastes meget v 5 lidt. Indgangsimpedansen er typisk mellem 10 og 50 x 10^ Ω, og indgangskapaciteten er typisk mellem 0,3 og 1 pF. Denne lave i.In practice, since capacitor microphones have very high electrical impedances compared to the subsequent connecting cables and amplifiers, it is generally necessary to place a preamplifier close to the microphone. The preamplifier 2 DK 170196 B1 serves to provide the necessary impedance matching and typically has a voltage gain of just under 1. The preamplifier is optimized to operate long cables and has such a high input impedance that the microphone is only loaded very v 5 slightly. The input impedance is typically between 10 and 50 x 10 6 Ω, and the input capacity is typically between 0.3 and 1 pF. This low in.

indgangskapacitet kan f.eks. tilvejebringes ved hjælp af en forforstærker i form af en felteffekttransistor, der er koblet som sourcefølger.input capacity can e.g. provided by a preamplifier in the form of a field power transistor coupled as a source sequencer.

10 En elektrisk skærm omkring forforstærkerens indgangsterminal kan eventuelt forbindes til forforstærkerens udgang, idet signalspændingen på denne da vil være i fase med indgangsspændingen og kun vil være lidt mindre end denne. Derved mindskes den resulterende indgangskapacitet i forstærkeren, idet en større 15 strøm i kapaciteten imellem indgangsterminalen og stel da erstattes af en mindre strøm i kapaciteten mellem indgangstermi-nalen og den nævnte skærm.An electrical shield around the preamplifier's input terminal can optionally be connected to the preamplifier's output, since the signal voltage on it will then be in phase with the input voltage and will be only slightly less than this. Thereby, the resulting input capacity of the amplifier is reduced as a larger current in the capacity between the input terminal and frame is then replaced by a smaller current in the capacity between the input terminal and said screen.

Moderne forforstærkere udøver således kun en meget lille belastning på mikrofonerne.Modern preamps thus only exert a very small load on the microphones.

20 Målemikrofoner er cylindriske og karakteriseres ofte ved deres udvendige diameter. De mest almindelige størrelser er 1", 1/2", 1/4" og 1/8" med kapaciteter på henholdsvis 60 pF, 20 pF, 6,5 pF og 3,5 pF. En del af kapaciteten udgøres af den aktive signalgenererende kapacitet imellem membranen og bagelek-25 troden, medens en anden del, der er passiv, hidrører fra bagelektrodens montering i mikrofonhuset og fra mikrofonkapslens udgangsterminaler.20 Measurement microphones are cylindrical and are often characterized by their outside diameter. The most common sizes are 1 ", 1/2", 1/4 "and 1/8" with capacities of 60 pF, 20 pF, 6.5 pF and 3.5 pF respectively. Part of the capacity is constituted by the active signal-generating capacity between the diaphragm and the rear electrode, while another passive part derives from the mounting of the rear electrode in the microphone housing and from the output terminals of the microphone capsule.

Den passive del Cs af kapaciteten - se fig. 2 - er næsten den * samme for alle mikrofonstørrelser nemlig 2-3 pF. Forholdet mel-30 lem den passive og den aktive kapacitet er typisk 4% for de største mikronfontyper og 200% for de mindste.The passive part Cs of the capacity - see fig. 2 - is almost the same for all microphone sizes namely 2-3 pF. The ratio between the passive and the active capacities is typically 4% for the largest microphone types and 200% for the smallest.

Fra tysk fremlæggelsesskrift nr. 2.928.203 er det kendt, at 3 DK 170196 B1 den passive del af kapaciteten kan give anledning til harmonisk forvrængning. Dette problem er søgt afhjulpet ved hjælp af to lige store seriekoblede kapaciteter, hvor den ene er positiv, og den anden er negativ, der er koblet i serie med mi-5 krofonen. En ulempe ved denne kobling er, at mikrofonen belastes uforholdsmæssigt meget, hvilket forøger eventuelle forvrængninger .From German Patent Specification No. 2,928,203, it is known that 3 DK 170196 B1 the passive part of the capacity can give rise to harmonic distortion. This problem has been solved by means of two equal series-coupled capacities, one positive and the other negative connected in series with the microphone. A disadvantage of this coupling is that the microphone is disproportionately loaded, which increases any distortions.

Formålet med opfindelsen er at anvise en fremgangsmåde til at reducere den harmoniske forvrængning af en kapacitiv transdu-10 cer, ved at optimere belastningen af denne.The object of the invention is to provide a method of reducing the harmonic distortion of a capacitive transducer by optimizing the load thereof.

En fremgangsmåde af den indledningsvis nævnte art er ifølge opfindelsen ejendommelig ved, at den negative kapacitet kobles i parallel med transduceren og dimensioneres således, at den i hovedsagen svarer til summen af de uønskede kapaciteter. Der-15 ved optimeres belastningen ved at ophæve virkningen af mikrofonens spredningskapacitet, og derigennem reduceres den harmoniske forvrængning til et minimum.According to the invention, a method of the kind mentioned initially is characterized in that the negative capacity is coupled in parallel with the transducer and is dimensioned so as to substantially correspond to the sum of the undesired capacities. Thereby, the load is optimized by eliminating the effect of the spreading capacity of the microphone, thereby reducing the harmonic distortion to a minimum.

Opfindelsen angår også en kobling til udøvelse af fremgangsmåden ifølge opfindelsen til at reducere den harmoniske for-20 vrængning af en kapacitiv transducer, eksempelvis en kondensatormikrofon, hvis kapacitet ændres i afhængighed af et på kondensatormikrofonens elektrode (membranen) virkende lydtryk, og som hidrører fra uønskede kapaciteter i transduceren, hvilken transducer er forbundet med en negativ kapacitet. Koblingen er 25 ifølge opfindelsen ejendommelig ved, at den negative kapacitet er koblet i parallel med transduceren og i hovedsagen svarer til summen af de uønskede kapaciteter. Derved opnås en kapacitiv transducer, der har en mindre forvrængning end hidtil kendt. 1 I tilfælde af at den kapacitive transducer er sluttet til en forforstærker, kan ifølge opfindelsen den negative kapacitet være tilvejebragt ved, at forforstærkeren er udstyret med en kapacitiv positiv tilbagekobling, der bevirker, at forforstær- 4 DK 170196 B1 keren får en negativ indgangskapacitet. Derved udnyttes den for hånden værende forforstærker, og der kræves i hovedsagen kun en enkelt yderligere komponent til etablering af den negative kapacitet. Den negative indgangskapacitet af forforstær- > 5 keren er fortrinsvis på 2-3 pF.The invention also relates to a coupling for practicing the method according to the invention for reducing the harmonic distortion of a capacitive transducer, for example a capacitor microphone whose capacity is changed depending on a sound pressure acting on the capacitor microphone (the membrane) and which results from undesired capacitors in the transducer, which transducer is associated with a negative capacity. The coupling is characterized according to the invention in that the negative capacity is coupled in parallel with the transducer and corresponds essentially to the sum of the undesired capacities. This results in a capacitive transducer having a smaller distortion than previously known. In case the capacitive transducer is connected to a preamplifier, according to the invention the negative capacity may be provided by the preamplifier being provided with a capacitive positive feedback which causes the preamplifier to have a negative input capacity. Thereby, the handheld preamplifier is utilized, and in the main case only one additional component is required to establish the negative capacity. The negative input capacity of the preamplifier> 5 is preferably 2-3 pF.

Endelig kan ifølge opfindelsen den negative indgangskapacitet af forforstærkeren være variabel. Indgangskapaciteten kan da indstilles, indtil forvrængningen (klirfaktoren) antager et minimum.Finally, according to the invention, the negative input capacity of the preamplifier may be variable. The input capacity can then be set until the distortion (claw factor) assumes a minimum.

10 Opfindelsen skal nærmere forklares i det følgende under henvisning til tegningen, hvor fig. 1 viser en kapacitiv transducer med en kobling ifølge opfindelsen, og fig. 2 en illustration af kondensatormikrofonens ufuldkommen-15 heder.The invention will be explained in more detail below with reference to the drawing, in which 1 shows a capacitive transducer with a coupling according to the invention, and FIG. 2 is an illustration of the imperfections of the capacitor microphone.

Den i fig. 1 viste kapacitive transducer kan f.eks. udgøres af en mikrofon 1, såsom en kondensatormikrofon, der tilføres en ladning f .eks. fra en jævnspændingskilde V1aHri gennem en modstand R. For en kondensator med to parallelle plader og en 20 konstant ladning gælder, at hvis pladerne fjernes fra hinanden, så stiger spændingen proportionalt med afstanden imellem pladerne, og hvis afstanden mindskes, så falder spændingen proportionalt hermed, hvilket er almindeligt kendt og gælder isoleret for en kondensator uden randeffekter og uden belast-25 ning. Denne proportionalitet er det ideelle for en kondensatormikrofon. Imidlertid forstyrres idealbilledet dels af uundgåelige spredningskapaciteter, dels af at membranen ikke bevæ- * ges lige meget over hele fladen - se fig. 2. Dette er ækvivalent med, at den mest udsvingende del , dvs. den midterste del 30 belastes af den mindst udsvingende del, dvs. randdelen, som er en passiv parallelkapacitet Cg, hvilket medfører, at der ikke er proportionalitet imellem udsving (lydtryk) og spænding, 5 DK 170196 B1 svarende til at der opstår forvrængning. Idealforholdet svarer til, at Q = ck . vThe FIG. 1, e.g. is made up of a microphone 1, such as a capacitor microphone, to which a charge e.g. from a DC voltage source V1aHri through a resistor R. For a capacitor with two parallel plates and a constant charge, if the plates are removed from each other, the voltage increases proportionally with the distance between the plates and if the distance decreases, then the voltage decreases proportionally. which is generally known and applies in isolation to a capacitor without edge effects and without load. This proportionality is ideal for a condenser microphone. However, the ideal image is disturbed partly by unavoidable scattering capabilities and partly by the fact that the membrane does not move evenly over the entire surface - see fig. 2. This is equivalent to the most fluctuating part, viz. the middle portion 30 is loaded by the least oscillating portion, i. the edge portion, which is a passive parallel capacity Cg, which means that there is no proportionality between fluctuations (sound pressure) and voltage, which causes distortion. The ideal ratio corresponds to Q = ck. v

c* - Ic * - I

hvor 5 Q er ladningen på kondensatoren, (¾. er kapaciteten af kondensatoren, d er afstanden imellem kondensatorpladerne, og k er en konstant.where 5 Q is the charge on the capacitor, (¾. is the capacity of the capacitor, d is the distance between the capacitor plates, and k is a constant.

Dette er ifølge opfindelsen afhjulpet ved, at der i parallel med mikrofonen er koblet en negativ kapacitet. Denne negative 10 kapacitet tjener til at eliminere virkningen af uønskede kapaciteter og svarer i hovedsagen til summen af disse. Den negative kapacitet kan tilvejebringes ved hjælp af en efterfølgende forforstærker 2, der tjener til at tilvejebringe den nødvendige impedanstilpasning til efterfølgende forbindelses-15 kabler. Forforstærkeren 2 er koblet således, at den får en negativ indgangskapacitet Den negative indgangskapacitet cind tilvejebringes ved hjælp af en positiv kapacitiv tilbagekobling, eksempelvis ved, at der mellem udgangen af forforstærkeren 2 og den positive indgangsterminal anbringes en 20 kapacitet C-j_.This is remedied according to the invention by the fact that in parallel with the microphone a negative capacity is coupled. This negative capacity serves to eliminate the effect of unwanted capacity and corresponds essentially to the sum of these. The negative capacity can be provided by a subsequent preamplifier 2 which serves to provide the necessary impedance matching for subsequent connecting cables. The preamplifier 2 is coupled so as to have a negative input capacity The negative input capacitance is provided by a positive capacitive feedback, for example by placing a capacity C-j_ between the output of the preamplifier 2 and the positive input terminal.

Den negative indgangskapacitet bliver derved Cj_ncj = - (A- 1) , hvor A er forstærkningen inden tilbagekoblingen gennem kapaciteten C-|_ tilvejebringes, og er den kapacitet, der anbringes imellem indgangen, hvortil kondensatormikrofonen 1 25 forbindes, og udgangen, der er i fase dermed. Kapaciteten kan eventuelt gøres variabel, således at der kan opnås en optimal værdi i afhængighed af, hvilken mikrofon koblingen DK 170196 B1 6 anvendes på. Summen af den passive parallelkapacitet og indgangskapaciteten må ikke blive negativ, idet kredsløbet ellers kan gå i sving. I almindelighed skal den positive kapacitive tilbagekobling være så stor, at forforstærkeren får en negativ 5 indgangskapacitet Cdnd på nogle få pP, fortrinsvis 2-3 pF.The negative input capacity thereby becomes Cj_ncj = - (A-1), where A is the gain before providing feedback through the capacity C-, and is the capacity placed between the input to which the capacitor microphone 1 is connected and the output that is in the phase thus. Optionally, the capacity can be made variable so that an optimal value can be obtained depending on which microphone coupler DK 170196 B1 6 is used on. The sum of the passive parallel capacitance and the input capacitance must not be negative, otherwise the circuit may turn. In general, the positive capacitive feedback must be so large that the preamplifier receives a negative 5 input capacity Cdnd of a few pP, preferably 2-3 pF.

c- C-^ kan f.eks. have en værdi på 25 pF, hvis forholdet mellem R·^ og R2 er 10. R2 kan f.eks. være på 5 ΚΩ, medens R-j_ kan være på 50 kQ. Cind bliver da -25 pF (1 + 5/50 -1) = -2,5 pF.c- C- ^ can e.g. have a value of 25 pF if the ratio of R R to R₂ is 10. be at 5 ΚΩ, while R-j_ can be at 50 kQ. Cind then becomes -25 pF (1 + 5/50 -1) = -2.5 pF.

C-l indstilles f.eks. ved, at der til mikrofonen 1 tilføres et 10 rent sinusformet lydsignal på f.eks. 1000 Hz. Man måler da klirfaktoren eller forvrængningen og indstiller C-^, indtil klirfaktoren eller forvrængningen antager et minimum. Med en typisk kondensatormikrofon skulle klirfaktoren derved kunne reduceres med ca. 10-20 dB. Forbedringen afhænger imidlertid 15 af kondensatormikrofonens størrelse.C-1 is set e.g. in that a pure sinusoidal audio signal of e.g. 1000 Hz. The claw factor or distortion is then measured and C- ^ adjusted until the claw factor or distortion assumes a minimum. With a typical condenser microphone, the clutch factor should thereby be reduced by approx. 10-20 dB. However, the improvement depends on the size of the condenser microphone.

For at fastlægge DC-niveauet på forforstærkeren 2's indgang og isolere denne fra en eventuel polarisationsspænding V-Ladn, er der foran forforstærkeren 2 anbragt et kompleks bestående af en kapacitet C2 og en modstand R3. Kapaciteten C2 er anbragt i 20 selve strømvejen fra mikrofonen 1 til forforstærkeren 2, medens modstanden R3 er indskudt imellem kapacitetens forbindelsespunkt til forforstærkeren 2 og stel. Derved fastlægges DC-niveauet på indgangen til stel, C2 er f.eks. 100 gange så stor som Cj^.. Modstanden R3 skal være meget stor, idet den sammen 25 med fastlægger den nedre grænsefrekvens.In order to determine the DC level of the input of the preamplifier 2 and isolate it from any polarization voltage V-Ladn, a complex consisting of a capacitance C2 and a resistor R3 is arranged in front of the preamplifier 2. The capacitance C2 is located in the current path itself from the microphone 1 to the preamplifier 2, while the resistor R3 is interposed between the capacitance connection point to the preamplifier 2 and frame. This determines the DC level at the entrance to the frame. Resistance R3 must be very large as it together with determines the lower limit frequency.

Princippet vil kunne anvendes i forbindelse med tryk- og tryk-gradientmikrofoner. Det vil imidlertid også kunne anvendes i forbindelse med elektretmikrofoner. v *The principle will be applicable in connection with pressure and pressure gradient microphones. However, it can also be used in conjunction with electret microphones. v *

Claims (8)

1. Fremgangsmåde til at reducere den harmoniske forvrængning af en kapacitiv transducer (1) , eksempelvis en kondensatormi- 5 krofon, hvis kapacitet ændres i afhængighed af et på kondensatormikrofonens elektrode (membranen) virkende lydtryk, og som hidrører fra uønskede kapaciteter (Cg) i transduceren (1) ved hjælp af en negativ kapacitet, der forbindes til transduceren (1), kendetegnet ved, at den negative kapacitet 10 (Cj_nd,) kobles i parallel med transduceren (1) og dimensioneres således, at den i hovedsagen svarer til summen af de uønskede kapaciteter (Cg).A method of reducing the harmonic distortion of a capacitive transducer (1), for example, a capacitor microphone, the capacity of which changes depending on a sound pressure acting on the capacitor microphone (diaphragm) and resulting from unwanted capacities (Cg). the transducer (1) by means of a negative capacity connected to the transducer (1), characterized in that the negative capacity 10 (Cj_nd,) is coupled in parallel with the transducer (1) and dimensioned so that it corresponds essentially to the sum of the unwanted capacities (Cg). 2. Fremgangsmåde ifølge krav 1, hvor der til den kapacitive transducer (1) er sluttet en forforstærker, kendeteg- 15 net ved, at den negative kapacitet tilvejebringes ved, at forforstærkeren (2) udstyres med en kapacitiv tilbagekobling, der bevirker, at forforstærkeren (2) får en negativ indgangskapacitet (Cj_n(j) .Method according to claim 1, wherein a pre-amplifier is connected to the capacitive transducer (1), characterized in that the negative capacity is provided by providing the preamplifier (2) with a capacitive feedback which causes the preamplifier. (2) gets a negative input capacity (Cj_n (j). 3. Fremgangsmåde ifølge krav 2, kendetegnet ved, 20 at den kapacitive tilbagekobling er en positiv tilbagekobling.Method according to claim 2, characterized in that the capacitive feedback is a positive feedback. 4. Fremgangsmåde ifølge krav 2 eller 3, kendetegnet ved, at forforstærkerkoblingen dimensioneres til en negativ indgangskapacitet (C^ncj) på 2-3 pF.Method according to claim 2 or 3, characterized in that the preamplifier coupling is dimensioned to a negative input capacity (C Cncj) of 2-3 pF. 5. Kobling til udøvelse af fremgangsmåden ifølge krav 1-4 til 25 at reducere den harmoniske forvrængning af en kapacitiv transducer (1), eksempelvis en kondensatormikrofon, hvis kapacitet ændres i afhængighed af et på kondensatormikrofonens elektrode (membranen) virkende lydtryk, og som hidrører fra uønskede kapaciteter (Cs) i transduceren (1), hvilken transducer er for- 30 bundet med en negativ kapacitet (C^n(j) , kendetegnet ved, at den negative kapacitet (Cj_ncj) er koblet i parallel med transduceren og i hovedsagen svarer til summen af de uønskede 8 DK 170196 B1 kapaciteter (Cg).Coupling for carrying out the method according to claims 1-4 to 25 to reduce the harmonic distortion of a capacitive transducer (1), for example a capacitor microphone, the capacity of which changes depending on a sound pressure acting on the capacitor microphone (diaphragm) and resulting from from unwanted capacities (Cs) in the transducer (1), which transducer is connected to a negative capacity (C Cn (j)), characterized in that the negative capacity (Cj_n₂c) is coupled in parallel with the transducer and in the main corresponds to the sum of the unwanted 8 DK 170196 B1 capacities (Cg). 6. Kobling ifølge krav 5, hvortil der er sluttet en forforstærker (2), kendetegnet ved, at den negative kapa- 11 citet er tilvejebragt ved, at forforstærkeren (2) er udstyret 5 med en kapacitiv positiv tilbagekobling, der bevirker, at for- *- forstærkeren (2) får en negativ indgangskapacitet (Cj_ncj) .Coupling according to claim 5, to which a preamplifier (2) is connected, characterized in that the negative capacity is provided by the preamplifier (2) being equipped 5 with a capacitive positive feedback which causes for - * - amplifier (2) gets a negative input capacity (Cj_ncj). 7. Kobling ifølge krav 5 eller 6, kendetegnet ved, at den negative indgangskapacitet (C^ncj) af forforstærkeren (2) er på 2-3 pF.Coupling according to claim 5 or 6, characterized in that the negative input capacity (C 1 ncj) of the preamplifier (2) is 2-3 pF. 7 DK 170196 B17 DK 170196 B1 8. Kobling ifølge krav 5 eller 6, kendetegnet ved, at den negative indgangskapacitet (C-j_ncj) af forforstærkeren (2) er variabel. % *Coupling according to claim 5 or 6, characterized in that the negative input capacity (C-j_ncj) of the preamplifier (2) is variable. % *
DK041593A 1993-04-07 1993-04-07 Method and coupling to reduce the harmonic distortion of a capacitive transducer DK170196B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK041593A DK170196B1 (en) 1993-04-07 1993-04-07 Method and coupling to reduce the harmonic distortion of a capacitive transducer
JP6521571A JPH08509327A (en) 1993-04-07 1994-04-06 Method and circuit configuration for reducing harmonic distortion of a capacitive transducer
AU65346/94A AU6534694A (en) 1993-04-07 1994-04-06 A method and a coupling for reducing the harmonic distortion of a capacitive transducer
PCT/DK1994/000142 WO1994023547A1 (en) 1993-04-07 1994-04-06 A method and a coupling for reducing the harmonic distortion of a capacitive transducer
EP94913038A EP0694246A1 (en) 1993-04-07 1994-04-06 A method and a coupling for reducing the harmonic distortion of a capacitive transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK41593 1993-04-07
DK041593A DK170196B1 (en) 1993-04-07 1993-04-07 Method and coupling to reduce the harmonic distortion of a capacitive transducer

Publications (3)

Publication Number Publication Date
DK41593D0 DK41593D0 (en) 1993-04-07
DK41593A DK41593A (en) 1994-10-08
DK170196B1 true DK170196B1 (en) 1995-06-06

Family

ID=8093260

Family Applications (1)

Application Number Title Priority Date Filing Date
DK041593A DK170196B1 (en) 1993-04-07 1993-04-07 Method and coupling to reduce the harmonic distortion of a capacitive transducer

Country Status (5)

Country Link
EP (1) EP0694246A1 (en)
JP (1) JPH08509327A (en)
AU (1) AU6534694A (en)
DK (1) DK170196B1 (en)
WO (1) WO1994023547A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233581A (en) * 1994-12-28 1996-09-13 Yoshiro Tomikawa Driving device for electrostatic converting means
JPH08307199A (en) * 1995-01-11 1996-11-22 Yoshiro Tomikawa Capacitive component reduction circuit for electrostatic conversion means and driver and detector for electrostatic conversion means
JP4057212B2 (en) * 2000-02-15 2008-03-05 三菱電機株式会社 Microphone device
AU2002237204A1 (en) 2001-03-09 2002-09-24 Techtronic A/S An electret condensor microphone preamplifier that is insensitive to leakage currents at the input
WO2003023418A2 (en) 2001-09-06 2003-03-20 Sumitomo Metal Industries, Ltd., Potential fixing device and potential fixing method
TWI221196B (en) * 2001-09-06 2004-09-21 Tokyo Electron Ltd Impedance measuring circuit, its method, and electrostatic capacitance measuring circuit
EP2317645B1 (en) 2009-10-16 2013-04-10 Nxp B.V. Capacitive sensor
US10153740B2 (en) 2016-07-11 2018-12-11 Knowles Electronics, Llc Split signal differential MEMS microphone
EP3855129B1 (en) 2017-03-22 2023-10-25 Knowles Electronics, LLC Interface circuit for a capacitive sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116366A (en) * 1959-08-18 1963-12-31 Arnold L Seligson Capacitive source signal generators
GB2003364B (en) * 1977-08-24 1982-03-03 Post Office Electroacoustic transducer for a microphone
IT1112691B (en) * 1978-07-12 1986-01-20 Sits Soc It Telecom Siemens CONDENSER MICROPHONE

Also Published As

Publication number Publication date
AU6534694A (en) 1994-10-24
DK41593D0 (en) 1993-04-07
DK41593A (en) 1994-10-08
JPH08509327A (en) 1996-10-01
EP0694246A1 (en) 1996-01-31
WO1994023547A1 (en) 1994-10-13

Similar Documents

Publication Publication Date Title
DK170196B1 (en) Method and coupling to reduce the harmonic distortion of a capacitive transducer
US8059837B2 (en) Audio processing method and system
US10080082B2 (en) Microphone system having high acoustical overload point
WO1996010291A1 (en) Low noise amplifier for microphone
US12088258B2 (en) Preamplifying circuit
US8588433B2 (en) Electret microphone circuit
US8428917B2 (en) Signal processing device and signal processing method
US6023194A (en) Amplifier with reduced input capacitance
US4521741A (en) Impedance transformer circuit
US2226238A (en) Coupling circuit
JP3148348B2 (en) Pre-attenuator for displacement proportional transducer
US2822430A (en) Transistor amplifier circuit
KR101843424B1 (en) Multi-way speaker system for adjusting exactly balance between high frequency audio signal and low frequency audio signal
US9432776B2 (en) Condenser microphone
US1951416A (en) Electrical amplifying system
US20110204972A1 (en) Amplifying circuit
US2968695A (en) System for monitoring and controlling the motion of a sound source
US3422225A (en) Low noise circuit arrangement for capacitive transducer
US2167011A (en) Receiving circuit
JP2009164747A (en) Microphone device, telephone set, voice signal processing device, and voice signal processing method
US2993090A (en) Electrostatic speaker circuit
US9467110B1 (en) Electronic system of a hybrid amplifier
US3566291A (en) Filter circuit
CN220273846U (en) Differential microphone circuit, microphone device and image pickup apparatus
US2212850A (en) Installation for reducing nonlinear distortion in amplifyng systems

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed