DK169749B1 - A DNA fragment which encodes a Pasteurella multocida toxin, or an immunogenic subsequence or analogue thereof, an expression vector which comprises the DNA fragment, a process for preparing a Pasteurella multocida toxin, and the use of a Pasteurella multocida toxin sequence or toxin sequence analogue for producing a vaccine - Google Patents

A DNA fragment which encodes a Pasteurella multocida toxin, or an immunogenic subsequence or analogue thereof, an expression vector which comprises the DNA fragment, a process for preparing a Pasteurella multocida toxin, and the use of a Pasteurella multocida toxin sequence or toxin sequence analogue for producing a vaccine Download PDF

Info

Publication number
DK169749B1
DK169749B1 DK230890A DK230890A DK169749B1 DK 169749 B1 DK169749 B1 DK 169749B1 DK 230890 A DK230890 A DK 230890A DK 230890 A DK230890 A DK 230890A DK 169749 B1 DK169749 B1 DK 169749B1
Authority
DK
Denmark
Prior art keywords
toxin
sequence
pmt
dna fragment
analog
Prior art date
Application number
DK230890A
Other languages
Danish (da)
Other versions
DK230890A (en
DK230890D0 (en
Inventor
Niels Taekker Foged
Svend Petersen
Original Assignee
Intervet Int Bv
Statens Veterinaere Serumlabor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DK199588A external-priority patent/DK199588D0/en
Application filed by Intervet Int Bv, Statens Veterinaere Serumlabor filed Critical Intervet Int Bv
Priority to DK230890A priority Critical patent/DK169749B1/en
Publication of DK230890A publication Critical patent/DK230890A/en
Publication of DK230890D0 publication Critical patent/DK230890D0/en
Application granted granted Critical
Publication of DK169749B1 publication Critical patent/DK169749B1/en

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

DK 169749 B1DK 169749 B1

Den foreliggende opfindelse angår et DNA-fragment, der omfatter en nukleotidsekvens, der koder for et Pasteurella multocida-toxin, der er nyttigt til fremstilling af toxi-net, fremgangsmåder til fremstilling og isolering af et L.The present invention relates to a DNA fragment comprising a nucleotide sequence encoding a Pasteurella multocida toxin useful for the production of toxin, methods for producing and isolating an L.

5 multocida-toxin og anvendelse af et P. multocida-toxin til fremstilling af en vaccine til immunisering af dyr mod sygdomme forårsaget af mikroorganismer, der producerer et osteolytisk toxin.5 multocida toxin and the use of a P. multocida toxin to prepare a vaccine for immunizing animals against diseases caused by microorganisms producing an osteolytic toxin.

Atrofisk rhinitis er en sygdom, som i høj grad indvirker på 10 grisetrynens knoglestruktur. Det ætiologiske agens, som for nuværende anses for at være årsagen til væksthæmmende progressiv atrofisk rhinitis, er toxinogene (toxin-produceren-de) stammer af P. multocida, som koloniserer svins næsehule (Pedersen og Barfod, 1981, (ref. 1), Rutter og Rojas, 1982, 15 (ref. 2), Elling og Pedersen, 1985, (ref. 3), Pedersen et al., 1988 (ref. 4). Det er blevet vist, at næseslimhinden lettere koloniseres af P. multocida, når modstandskraften over for infektion er nedsat, som det fx er tilfældet, når grisene samtidig er inficeret med Bordetella bronchisepti-20 ca, eller når næseslimhinden eksponeres for et mildt kemisk irriterende stof (jf. Pedersen og Elling, 1984, (ref. 5)).Atrophic rhinitis is a disease that greatly affects the bone structure of the piglet. The etiologic agent currently considered to be the cause of growth-inhibiting progressive atrophic rhinitis is toxinogenic (toxin-producing) strains of P. multocida that colonize pig's nasal cavity (Pedersen and Barfod, 1981, (ref. 1)). Rutter and Rojas, 1982, 15 (ref. 2), Elling and Pedersen, 1985, (ref. 3), Pedersen et al., 1988 (ref. 4) It has been shown that the nasal mucosa is more easily colonized by P. multocida , when the resistance to infection is reduced, as is the case, for example, when the pigs are simultaneously infected with Bordetella bronchiseptia, or when the nasal mucosa is exposed to a mild chemical irritant (cf. Pedersen and Elling, 1984, (ref. 5 )).

De patologiske manifestationer af P. multocida-infektioner kan tilskrives et toxin, der produceres af denne bakterie. Toxinet, som har en tilsyneladende molekylvægt på 143 kD og 25 en aktuel molekylvægt på 146,5 kD inducerer knogleresorption (osteolyse) af næsemuslingebenene og andre knoglestrukturer i næsehulen ved stimulering af osteoklast aktivitet i svinemuslingeben og forårsager nedsat osteoblasisk knogledannelse.The pathological manifestations of P. multocida infections can be attributed to a toxin produced by this bacterium. The toxin, which has an apparent molecular weight of 143 kD and a current molecular weight of 146.5 kD, induces bone resorption (osteolysis) of the nasal bones and other bone structures in the nasal cavity by stimulating osteoclast activity in the pig mucosal bone and causing decreased osteoblastic bone formation.

30 Sygdommen er af afgørende økonomisk betydning for svinepro-ducenter over hele verden, da den ud over de ovennævnte patologiske virkninger på næseknogler (og undertiden ansigtsknogler) forårsager en langsommere væksthastighed hos inficerede grise og som følge deraf højere produktionsomkost-35 ninger. Der har derfor været gjort forsøg på at reducere DK 169749 Bl 2 udbredelsen og betydningen af P. multocida-infektionen, fx ved produktion af SPF (specifik patogenfrie) svin via kejsersnit eller ved antibiotisk behandling af inficerede dyr eller profylaktisk vaccination.30 The disease is of vital economic importance to pig producers worldwide as it, in addition to the aforementioned pathological effects on nasal bones (and sometimes facial bones), causes a slower rate of growth in infected pigs and consequently higher production costs. Therefore, attempts have been made to reduce the prevalence and significance of P. multocida infection, for example, in the production of SPF (specific pathogen-free) pigs via cesarean section or by antibiotic treatment of infected animals or prophylactic vaccination.

5 Kendte vacciner til immunisering af dyr, først og fremmest svin, mod sygdomme, der tilskrives P. multocida-infektion, især atrofisk rhinitis, omfatter dræbte P. multocida-celler eventuelt kombineret med dræbte Bordetella bronchiseptica-celler (jf. EP 85 469) og/eller en inaktiveret (sædvanlig-10 vis ved varmebehandling eller tilsætning af formaldehyd) toxinholdig ekstrakt af toxinogene P. multocida. Vacciner af den sidstnævnte type er kommercielt tilgængelige fra Nordisk Droge & Kemikalie A/S, København, Danmark, under varemærket Atrinord®, såvel som fra Intervet International 15 BV, Boxmeer, Holland, linder varemærket Nobi-vacART®.5 Known vaccines for immunizing animals, primarily pigs, against diseases attributed to P. multocida infection, especially atrophic rhinitis, include killed P. multocida cells possibly combined with killed Bordetella bronchiseptica cells (cf. EP 85 469) and / or an inactivated (usually by heat treatment or addition of formaldehyde) toxin-containing extract of toxinogenic P. multocida. Vaccines of the latter type are commercially available from Nordisk Droge & Kemikalie A / S, Copenhagen, Denmark, under the trademark Atrinord®, as well as from Intervet International 15 BV, Boxmeer, The Netherlands, the trademark Nobi-vacART®.

Nærværende opfindere antager, at en forbedret immunogen effekt i forhold til de kendte vaccinepræparater kan opnås ved anvendelse af et oprenset og passende modificeret to-xinpræparation til vaccinationsformål enten med henblik på 20 at erstatte de konventionelle vacciner eller som en bestanddel heraf.The present inventors assume that an improved immunogenic effect over the known vaccine preparations can be obtained by using a purified and suitably modified toxin preparation for vaccination purposes either to replace the conventional vaccines or as a component thereof.

Oprensningen af P. multocida-toxin er tidligere blevet beskrevet. Således beskriver Foged et al., 1987, (ref. 6) oprensningen af toxinet ved hjælp af kromatografi og polya-25 crylamidgelelektroforese. Det oprensede toxin anvendes alene til undersøgelse af dets toxiske og patologiske virkninger. Kamp et al., 1987, (ref. 7) beskriver ligeledes oprensning af P. multocida-toxinet med henblik på kliniske undersøgelser. De foreslår, at det oprensede toxin kan an-30 vendes som et antigen til fremstilling af specifikke antistoffer, der er nyttige til serologiske undersøgelser. Na-kai et al., 1984, (ref. 8) beskriver en metode til oprensning af P. multocida-toxinet ved hjælp af kromatografi og polyacrylamidgelelektroforese. De beskriver endvidere frem-35 stilling af polyklonale antistoffer rettet mod det oprense- 3 DK 169749 B1 de toxin, som de anvender til bestemmelse af det oprensede toxins renhed. Det foreslås, at antistofferne ydermere kan anvendes til undersøgelse af toxinets rolle i atrofisk rhinitis.The purification of P. multocida toxin has been described previously. Thus, Foged et al., 1987, (ref. 6) describe the purification of the toxin by chromatography and polyacrylamide gel electrophoresis. The purified toxin is used alone to study its toxic and pathological effects. Kamp et al., 1987 (ref. 7) also disclose purification of the P. multocida toxin for clinical studies. They suggest that the purified toxin may be used as an antigen to produce specific antibodies useful for serological studies. Na-kai et al., 1984 (ref. 8) describe a method of purifying the P. multocida toxin by chromatography and polyacrylamide gel electrophoresis. They further describe the preparation of polyclonal antibodies directed against the purified toxin which they use to determine the purity of the purified toxin. It is suggested that the antibodies may further be used to investigate the role of the toxin in atrophic rhinitis.

5 Ingen af disse publikationer foreslår anvendelsen af et oprenset toxin som en komponent i en vaccine til immunisering af dyr mod Pasteurella-infektion, og dette anses for at udgøre et nyt koncept.5 None of these publications suggest the use of a purified toxin as a component of a vaccine for immunizing animals against Pasteurella infection, and this is considered a new concept.

I overensstemmelse hermed angår den foreliggende opfindelse 10 i ét aspekt et DNA-fragment, som koder for et Pasteurella multocida-toxin, eller en subsekvens eller analog deraf, som koder for en immunogen subsekvens eller analog af toxinet, hvilket toxin, subsekvens eller analog deraf er nyttig til fremstilling af en vaccine til immunisering af 15 et dyr, herunder et menneske, mod sygdomme forårsaget af mikroorganismer, der producerer et osteolytisk toxin, idet vaccinen omfatter en immunogent effektiv mængde af et rekombinant, immunogent, detoxificeret P.multocida-toxin eller en rekombinant, immunogen, detoxificeret P.multocida-20 toxinanalog sammen med en immunologisk acceptabel bærer eller et immunologisk acceptabelt vehikel.Accordingly, in one aspect, the present invention relates to a DNA fragment encoding a Pasteurella multocida toxin, or a sub sequence or analog thereof, which encodes an immunogenic sub sequence or analog of the toxin, which toxin, sub sequence or analog thereof. is useful in the preparation of a vaccine for immunizing an animal, including a human, against diseases caused by microorganisms producing an osteolytic toxin, the vaccine comprising an immunogenically effective amount of a recombinant, immunogenic, detoxified P.multocida toxin or a recombinant, immunogenic, detoxified P.multocida toxin analog together with an immunologically acceptable carrier or immunologically acceptable vehicle.

Til fremstilling af de kendte vacciner dyrkes en toxinogen Pasteurella-stamme, og toxinet isoleres fra dyrkningsmediet eller fra en bakterieekstrakt efterfulgt af detoxifikation 25 ved fx termisk eller kemisk behandling. I sammenligning med denne fremgangsmåde har fremstilling af toxinet eller to-xinanalogen ved rekombinant-DNA-metoder en række fordele: det er muligt at fremstille toxinet eller toxinanalogen ved dyrkning af en non-patogen organisme, toxinet eller toxin-30 analogen kan produceres i højere mængder end de, der produceres af vildtype P. multocida-stammer, fx under anvendelse af en stærk promotor med henblik på at inducere et højt ekspressionsniveau af toxingenet eller under anvendelse af en højkopitalsvektor til kloning af toxingenet, og det er 35 muligt at producere toxinet eller toxinanalogen i en deto- 4 DK 169749 B1 xificeret form, fx ved at underkaste det gen, der koder for toxinet, behandling med et mutagen eller ved at deletere en del af nukleotidsekvensen, der koder for toxinet eller to-xinanalogen, substituere én eller flere nukleotider i se-5 kvensen, etc. Det rekombinante toxin eller den rekombinante toxinanalog kan anvendes i en i det væsentlige ren form i vaccinen ifølge opfindelsen, men kan tillige anvendes som en rå eller delvis oprenset præparation.To prepare the known vaccines, a toxinogenic Pasteurella strain is grown and the toxin is isolated from the culture medium or from a bacterial extract followed by detoxification 25 by, for example, thermal or chemical treatment. Compared to this method, preparation of the toxin or toxin analog by recombinant DNA methods has a number of advantages: it is possible to prepare the toxin or toxin analog by growing a non-pathogenic organism, the toxin or toxin analog can be produced in higher quantities than those produced by wild-type P. multocida strains, for example, using a strong promoter to induce a high level of expression of the toxin gene or using a high-capital vector for cloning the toxin gene, and it is possible to produce the toxin or the toxin analogue in a detoxified form, for example, by subjecting the gene encoding the toxin to a mutagen or deleting a portion of the nucleotide sequence encoding the toxin or toxin analog, substituting one or more multiple nucleotides in the sequence, etc. The recombinant toxin or recombinant toxin analog can be used in a substantially pure form in the vaccine if according to the invention, but can also be used as a raw or partially purified preparation.

I nærværende sammenhæng angiver udtrykket "i det væsentlige 10 ren", at vaccinen er i det væsentlige fri for andre immuno-gent aktive komponenter, hvis tilstedeværelse kunne give anledning til uønskede immunreaktioner i de dyr, der immuniseres med vaccinen, og, hvad der er det væsentligste, at ingen andre komponenter af de mikroorganismer, der produce-15 rer toxinet eller toxinanalogen såsom cellerester eller cellulære proteiner bortset fra toxinet eller toxinanalogen selv eller et protein eller polypeptid, hvortil toxinet eller toxinanalogen er fusioneret (vide nedenfor), er til stede i vaccinepræparationen. En høj renhed af det detoxi-20 ficerede toxin eller den detoxificerede toxinanalog anses for at resultere i en høj antitoxinrespons i forbindelse med immunisering med vaccinen ifølge opfindelsen, hvorfor en lavere dosis af toxinet eller toxinanalogen kan være påkrævet til immuniseringsformål i forhold til den dosis, der 25 anvendes i rå eller delvis oprensede vaccinepræparationer.In the present context, the term "substantially pure" indicates that the vaccine is substantially free of other immunogenically active components, the presence of which could give rise to undesirable immune reactions in the animals immunized with the vaccine and what is essentially, no other components of the microorganisms producing the toxin or toxin analog such as cellular residues or cellular proteins other than the toxin or toxin analog itself or a protein or polypeptide to which the toxin or toxin analog is fused are present (vide below) in the vaccine preparation. A high purity of the detoxified toxin or detoxified toxin analogue is considered to result in a high antitoxin response in connection with immunization with the vaccine of the invention, therefore a lower dose of the toxin or toxin analogue may be required for immunization purposes relative to that dose. 25 are used in crude or partially purified vaccine preparations.

Et i det væsentlige rent toxin eller en i det væsentlige ren toxinanalog har den yderligere fordel, at den nøjagtige koncentration deraf i en given vaccinepræparation er kendt, således at en eksakt dosis kan administreres til det pågæl-30 dende dyr.An essentially pure toxin or a substantially pure toxin analogue has the additional advantage that the exact concentration thereof in a given vaccine preparation is known, so that an exact dose can be administered to the animal in question.

Mikroorganismen, der producerer et osteolytisk toxin (dvs. et toxin, som er direkte eller indirekte involveret i knogleresorption) , hvorimod vaccinen giver immunitet, er fortrinsvis P. multocida. Andre mikroorganismer, som har vist 35 osteolytiske virkninger eller regulering af specifikke markører for knoglemetabolisme, er fx Actinomyces viscosus og 5 DK 169749 B1The microorganism producing an osteolytic toxin (i.e., a toxin directly or indirectly involved in bone resorption), whereas the vaccine confers immunity, is preferably P. multocida. Other microorganisms that have shown 35 osteolytic effects or regulation of specific bone metabolism markers are, for example, Actinomyces viscosus and 5 DK 169749 B1.

Bordetella pertussis (Trummel et al., 1979, (ref. 9) og Price (ref. 10)).Bordetella pertussis (Trummel et al., 1979, (ref. 9) and Price (ref. 10)).

Som følge af P. multocida-toxinets toxiske aktivitet er det ikke muligt at anvende det native toxin som en vaccine 5 ifølge opfindelsen. Det skal tværtimod være til stede i en detoxificeret form. Udtrykket "detoxificeret" betyder i denne sammenhæng, at den toxiske aktivitet er blevet fjernet fra i det mindste et tilstrækkeligt antal, men ikke nødvendigvis alle, toxinmolekyler, der findes i vaccinepræ-10 parationen, således at vaccinen, når den administreres til et dyr, der skal immuniseres, ikke vil give anledning til nogen uønskede virkninger i de pågældende dyr, idet den stadig fremkalder en tilfredsstillende immunrespons.Due to the toxic activity of the P. multocida toxin, it is not possible to use the native toxin as a vaccine 5 of the invention. On the contrary, it must be present in a detoxified form. The term "detoxified" in this context means that the toxic activity has been removed from at least a sufficient number, but not necessarily all, of toxin molecules contained in the vaccine preparation, so that when administered to an animal, to be immunized will not give rise to any undesirable effects in the animals concerned, as it still elicits a satisfactory immune response.

Detoxifikationen af P. multocida-toxinet eller -toxinanalo-15 gen kan udføres på en række forskellige måder. Det er således muligt at underkaste toxinet eller toxinanalogen en termisk behandling, idet toxinet vides at være varmelabilt og at blive inaktiveret (dvs. detoxificeret) ved 70°C. Endvidere kan toxinet eller toxinanalogen underkastes behand-20 ling med et kemikalie såsom formaldehyd, glutaraldehyd eller et egnet proteolytisk enzym, fx trypsin. Detoxifika-tion kan ligeledes tilvejebringes ved mutagenisering af det gen, der koder for P. multocida-toxinet eller -toxinanalogen, fx ved hjælp af ultraviolet bestråling, ionise-25 rende bestråling eller et kemisk mutagen såsom mitomycin C, 5-bromuracil, methylmethansulfonat, nitrogensennep eller en nitrofuran. Endvidere kan toxinet detoxificeres ved substituering, deletion, addition eller insertion af én eller flere aminosyrer i toxinet eller toxinanalogen eller ved 30 substituering, addition, deletion eller insertion af ét eller flere basepar i nukleotidsekvenser, der koder for toxinet eller toxinanalogen, eller ved en kombination af disse metoder.The detoxification of the P. multocida toxin or toxin analog can be carried out in a variety of ways. Thus, it is possible to subject the toxin or toxin analogue to a thermal treatment, the toxin being known to be heat-labile and to be inactivated (i.e., detoxified) at 70 ° C. Furthermore, the toxin or toxin analog may be subjected to treatment with a chemical such as formaldehyde, glutaraldehyde or a suitable proteolytic enzyme, e.g., trypsin. Detoxification can also be accomplished by mutagenizing the gene encoding the P. multocida toxin or toxin analogue, for example by ultraviolet radiation, ionizing radiation or a chemical mutagen such as mitomycin C, 5-bromuracil, methyl methanesulfonate nitrogen mustard or a nitrofuran. Furthermore, the toxin can be detoxified by substitution, deletion, addition or insertion of one or more amino acids into the toxin or toxin analogue, or by substitution, addition, deletion or insertion of one or more base pairs in nucleotide sequences encoding the toxin or toxin analog, or by a combination. of these methods.

I modsætning til detoxifikation ved termisk eller kemisk 35 behandling frembyder den genetiske fremgangsmåde den åben- 6 DK 169749 B1 lyse fordel, at den resulterer i en ensartet population af ligeligt detoxificerede molekyler.In contrast to detoxification by thermal or chemical treatment, the genetic method offers the obvious advantage that it results in a uniform population of equally detoxified molecules.

Det skal bemærkes, at udtrykkene "substituering, deletion, addition eller insertion" skal defineres i forhold til to-5 xinproteinet i sin fulde længde. "Substituering" skal således opfattes som udskiftning af én eller flere aminosyrer eller nukleotider i den totale aminosyre- eller nukleotid-sekvens med én eller flere andre, "addition" skal opfattes som addition af én eller flere aminosyrer eller nukleotider 10 i den ene eller den anden ende af den totale aminosyre-eller nukleotidsekvens, "insertion" skal opfattes som introduktion af én eller flere aminosyrer eller nukleotider i den totale aminosyre- eller nukleotidsekvens, og "deletion" angiver, at én eller flere aminosyrer eller nukleoti-15 der er blevet deleteret fra den totale aminosyre- eller nukleotidsekvens enten i den ene eller den anden ende af sekvensen eller på et hvilket som helst egnet punkt inden for denne. Det er klart, at detoxifikation af toxinet eller toxinanalogen også kan fremkaldes ved en kombination af to 20 eller flere af disse fremgangsmåder.It should be noted that the terms "substitution, deletion, addition or insertion" must be defined in relation to the full-length two-xin protein. Thus, "substitution" should be construed as replacing one or more amino acids or nucleotides in the total amino acid or nucleotide sequence with one or more others, "addition" being construed as the addition of one or more amino acids or nucleotides 10 in one or the other. other end of the total amino acid or nucleotide sequence, "insertion" should be construed as introducing one or more amino acids or nucleotides into the total amino acid or nucleotide sequence, and "deletion" indicates that one or more amino acids or nucleotides have been deleted from the total amino acid or nucleotide sequence either at one or the other end of the sequence or at any suitable point within it. It will be appreciated that detoxification of the toxin or toxin analog can also be induced by a combination of two or more of these methods.

Udtrykket "toxinanalog" betegner i nærværende sammenhæng et protein eller polypeptid af en lignende aminosyresammensæt-ning eller -sekvens som P. multocida-toxinet. idet variationer, som ikke har en negativ virkning på analogens immuno-25 genicitet, er indbefattet.The term "toxin analog" as used herein refers to a protein or polypeptide of a similar amino acid composition or sequence to the P. multocida toxin. including variations which do not adversely affect the immunogenicity of the analogue.

Det analoge polypeptid eller protein kan stamme fra en mikroorganisme tilhørende en anden art end P. multocida eller kan delvis eller fuldstændig være af syntetisk oprindelse.The analog polypeptide or protein may be derived from a microorganism belonging to a species other than P. multocida or may be partially or completely synthetic in origin.

Det analoge polypeptid eller protein kan ligeledes være ét, 30 som omfatter i det mindste én epitop, der er reaktiv med anti-P. multocida-toxinantistoffer påvist i prøver fra individer med atrofisk rhinitis, og/eller som giver anledning til dannelse af antistoffer, der er reaktive med det native P. multocida-toxin. Udtrykket dækker endvidere over en 7 DK 169749 B1 hvilken som helst immunogen subsekvens, funktionel ækvivalent eller derivat af toxinet.The analog polypeptide or protein may also be one comprising at least one epitope reactive with anti-β. multocida toxin antibodies detected in samples from individuals with atrophic rhinitis and / or giving rise to antibodies reactive with the native P. multocida toxin. The term further encompasses any immunogenic sub sequence, functional equivalent or derivative of the toxin.

Udtrykket "immunogen subsekvens" angiver en sekvens af toxinet i sin fulde længde, som oprindeligt er produceret i 5 en trunkeret form i forhold til toxinproteinet af fuld længde, eller som efter produktion af proteinet i fuld længde dannes fx ved proteolytisk spaltning deraf eller ved ekspression af en nukleotidsekvens, der er kortere end den totale nukleotidsekvens, der koder for P. multocida-toxin.The term "immunogenic sub-sequence" denotes a full-length toxin sequence originally produced in a truncated form relative to the full-length toxin protein, or which, after production of the full-length protein, is formed, for example, by proteolytic cleavage thereof or by expression. of a nucleotide sequence shorter than the total nucleotide sequence encoding P. multocida toxin.

10 Den mindste subsekvens er en sådan, som i det mindste omfatter én relevant epitop af toxinet, dvs. en epitop, som giver anledning til en relevant immunrespons i et dyr, der er immuniseret med vaccinen ifølge opfindelsen.The smallest sub-sequence is one which comprises at least one relevant epitope of the toxin, i.e. an epitope that gives rise to a relevant immune response in an animal immunized with the vaccine of the invention.

Udtrykket "funktionel ækvivalent" dækker over alle immuno-15 gent aktive substanser, som er i stand til at fremkalde en immunrespons i dyr, hvortil en vaccine indeholdende ækvivalenten er blevet administreret, som svarer til den immunrespons, der fremkaldes af det detoxificerede P. multocida-toxin, idet den er i stand til at fremkalde immunitet mod 20 sygdomme forårsaget af mikroorganismer, der producerer et osteolytisk toxin. Den funktionelle ækvivalent kan være afledt af en mikroorganisme hørende til en anden art end P. multocida eller kan delvis eller fuldstændig være af syntetisk oprindelse. Det er klart, at lighederne mellem P. mul-25 tocida-toxinet og den funktionelle ækvivalent snarere er kvalitative end kvantitative, idet de snarere angår den funktionelle ækvivalents natur end dens aktivitetsniveau.The term "functional equivalent" covers all immunogenically active substances capable of eliciting an immune response in animals to which a vaccine containing the equivalent has been administered corresponding to the immune response elicited by the detoxified P. multocida -toxin, being capable of inducing immunity to 20 diseases caused by microorganisms producing an osteolytic toxin. The functional equivalent may be derived from a microorganism belonging to a species other than P. multocida or may be partially or completely synthetic in origin. It is clear that the similarities between the P. mul-25 tocida toxin and the functional equivalent are rather qualitative than quantitative in that they relate to the nature of the functional equivalent rather than its activity level.

Udtrykket "derivat" betegner i denne sammenhæng en modifikation af toxinet såsom en modifikation frembragt ved sub-30 stituering, insertion, addition eller deletion af én eller flere aminosyrer eller nukleotider eller en kombination af disser metoder som defineret ovenfor eller ved fusion med et andet polypeptid.The term "derivative" in this context means a modification of the toxin such as a modification produced by the substitution, insertion, addition or deletion of one or more amino acids or nucleotides or a combination of these methods as defined above or by fusion with another polypeptide. .

8 DK 169749 B1 I et yderligere aspekt angår den foreliggende opfindelse et DNA-fragment, der omfatter en nukleotidsekvens, der koder for et P. multocida-toxin eller en P. multocida-toxinanalocr som defineret ovenfor. DNA-fragmentet kan fx anvendes i en 5 fremgangsmåde til fremstilling af toxinet eller toxinanalo-gen ved hjælp af rekombinant-DNA-metoder eller som et diagnostisk middel (dvs. en DNA-probe) .In a further aspect, the present invention relates to a DNA fragment comprising a nucleotide sequence encoding a P. multocida toxin or a P. multocida toxin analog as defined above. For example, the DNA fragment may be used in a method of producing the toxin or toxin analog by recombinant DNA methods or as a diagnostic agent (i.e., a DNA probe).

Det toxin, der produceres af P. multocida (i det følgende lejlighedsvis forkortet til PMT), som, hvad der er bemærket 10 ovenfor, i almindelighed anses for at være den agens, der fremkalder porcin atrofisk rhinitis, er i den foreliggende litteratur angivet med forskellige betegnelser: "dermone-krotisk toxin", "osteolytisk toxin", "muslingebenatrofito-xin" og "varmelabilt exotoxin", men det fremgår, at disse 15 betegnelser dækker over det samme toxin, da aminosyresam-mensætningen, det isoelektriske punkt og de biologiske aktiviteter for de forskelligt betegnede toxiner udviser basale lighedspunkter, selv om mindre variationer i egenskaber for toxiner isoleret fra forskellige stammer af 20 multocida synes at eksistere. Den estimerede aminosyresam-mensætning for PMT (som deduceret fra DNA-sekvensen) er som vist i det følgende:The toxin produced by P. multocida (hereafter occasionally abbreviated to PMT), which, as noted above, is generally considered to be the agent that induces porcine atrophic rhinitis, is set forth in the present literature with various terms: "dermone-crotchic toxin", "osteolytic toxin", "clam bone atrophy-xin" and "heat-labile exotoxin", but it appears that these 15 terms cover the same toxin since the amino acid composition, the isoelectric point and the biological activities for the variously named toxins exhibit basic similarities, although minor variations in the properties of toxins isolated from different strains of 20 multocids appear to exist. The estimated amino acid composition of PMT (as deduced from the DNA sequence) is as shown below:

Ala påvises 76 gange = 5,91%Ala is detected 76 times = 5.91%

Cys påvises 8 gange = 0,62% 25 Asp påvises 71 gange = 5,53%Cys detected 8 times = 0.62% Asp detected 71 times = 5.53%

Glu påvises 100 gange = 7,78%Glu is detected 100 times = 7.78%

Phe påvises 69 gange = 5,37%Phe is detected 69 times = 5.37%

Gly påvises 71 gange = 5,53%Gly is detected 71 times = 5.53%

His påvises 19 gange = 1,48% 30 Ile påvises 92 gange = 7,16%His is detected 19 times = 1.48% 30 Ile is detected 92 times = 7.16%

Lys påvises 70 gange = 5,45%Light detected 70 times = 5.45%

Leu påvises 127 gange = 9,88%Leu is detected 127 times = 9.88%

Met påvises 36 gange = 2,80%The met is detected 36 times = 2.80%

Asn påvises 73 gange = 5,68% 35 Pro påvises 62 gange = 4,82%Asn is detected 73 times = 5.68% 35 Pro is detected 62 times = 4.82%

Gin påvises 56 gange = 4,36% 9 DK 169749 B1Gin is detected 56 times = 4.36% 9 DK 169749 B1

Arg påvises 58 gange = 4,51% -Arg is detected 58 times = 4.51% -

Ser påvises 97 gange = 7,55%Looks detected 97 times = 7.55%

Thr påvises 66 gange = 5,14%Thr is detected 66 times = 5.14%

Val påvises 63 gange = 4,90% 5 Trp påvises 18 gange = 1,40%Selection detected 63 times = 4.90% 5 Trp detected 18 times = 1.40%

Tyr påvises 53 gange = 4,12%Taurus detected 53 times = 4.12%

Det totale antal aminosyreenheder er 1285, og det totale toxin har en molekylvægt på 146,5 kD.The total number of amino acid units is 1285 and the total toxin has a molecular weight of 146.5 kD.

Det rekombinante toxin eller den rekombinante toxinanalog 10 ifølge opfindelsen, der kan anvendes i en vaccine, kan mere specifikt være et toxin eller en toxinanalog, der kodes af en DNA-sekvens i det væsentlige som vist i figur 10 (a)-(j) eller en subsekvens deraf, der koder for en immunogen sub-sekvens af toxinet eller toxinanalogen. Det skal bemærkes, 15 at aminosyresekvensen, der er afledt fra DNA-sekvensen, ligeledes er vist i figur 10 (a)-(j) over DNA-sekvensen. En egnet analog kan være én, der har en DNA-sekvens, som afviger fra det native toxins DNA-sekvens i ét eller flere basepar, og som kan være afledt ved substituering af én 20 eller flere nukleotider i toxin-DNA-sekvensen, hvilket enten giver anledning til dannelse af den samme aminosyre-sekvens, men hvor nukleotidsubstitutionerne gør sekvensen konform med kodonanvendelsen i den mikroorganisme, hvori sekvensen er indsat, eller som resulterer i en noget afvi-25 gende aminosyresekvens, som imidlertid funktionelt er lig med det native toxins aminosyresekvens.More specifically, the recombinant toxin or recombinant toxin analogue 10 of the invention which can be used in a vaccine may be a toxin or toxin analog encoded by a DNA sequence substantially as shown in Figure 10 (a) - (j) or a sub-sequence thereof encoding an immunogenic sub-sequence of the toxin or toxin analog. It should be noted that the amino acid sequence derived from the DNA sequence is also shown in Figures 10 (a) - (j) above the DNA sequence. A suitable analog may be one having a DNA sequence which differs from the native toxin's DNA sequence in one or more base pairs and which may be derived by substituting one or more nucleotides in the toxin DNA sequence, which either give rise to the same amino acid sequence, but where the nucleotide substitutions make the sequence conform to the codon use in the microorganism in which the sequence is inserted, or which results in a somewhat divergent amino acid sequence, however functionally similar to the native toxin amino acid sequence.

Ud over toxinet eller toxinanalogen som defineret ovenfor omfatter en vaccine fremstillet ifølge opfindelsen ligeledes en immunologisk acceptabel bærer eller et immunolo-30 gisk acceptabelt vehikel. Dette vehikel kan være et hvilken som helst vehikel, der sædvanligvis anvendes i fremstillingen af vacciner, fx et fortyndingsmiddel såsom isotonisk saltvand, suspensionsmidler, etc. Vaccinen kan fremstilles ved blanding af en immunogent effektiv mængde af toxinet 35 eller toxinanalogen med vehiklet i en mængde, der resul- 10 DK 169749 B1 terer i den ønskede koncentration af toxinet eller toxin-analogen i vaccinepræparationen. Uanset at mængden af toxin eller toxinanalog pr. enhedsdosis af vaccinen vil være forskellig afhængig af alderen af de dyr, der skal immuni-5 seres, (fx afhængig af hvorvidt søer eller smågrise skal immuniseres mod P. multocida) administrationsvejen og -måden, og immunogeniciteten af det pågældende toxin, der findes i vaccinen, anses en egnet mængde af toxin eller toxinanalog at ligge inden for området 0,1-500 pr. dosis 10 af vaccinen.In addition to the toxin or toxin analog as defined above, a vaccine prepared according to the invention also comprises an immunologically acceptable carrier or an immunologically acceptable vehicle. This vehicle may be any vehicle commonly used in the preparation of vaccines, e.g., a diluent such as isotonic saline, suspending agents, etc. The vaccine may be prepared by admixing an immunogenically effective amount of the toxin 35 or the toxin analogue with the vehicle in an amount, resulting in the desired concentration of the toxin or toxin analog in the vaccine preparation. Regardless of the amount of toxin or toxin analogue per the unit dose of the vaccine will be different depending on the age of the animals to be immunized (e.g. depending on whether sows or piglets are to be immunized against P. multocida) the route and method of administration, and the immunogenicity of the toxin in question. the vaccine, a suitable amount of toxin or toxin analogue is considered to be in the range 0.1-500 per dose 10 of the vaccine.

Vaccinen kan endvidere omfatte en adjuvans med henblik på at forøge vaccinepræparationens immunogenicitet. Adjuvansen kan udvælges blandt Freund7s komplette eller inkomplette adjuvans, aluminiumhydroxid, Bordetella pertussis, et sa-15 ponin, et muramyldipeptid, et iscom (immunstimulerende kom-plex; jf. fx EP 109 942) og en olie såsom en vegetabilsk olie, fx jordnøddeolie, eller en mineralsk olie, fx silico-neolie.The vaccine may further comprise an adjuvant to increase the immunogenicity of the vaccine preparation. The adjuvant can be selected from Freund7's complete or incomplete adjuvant, aluminum hydroxide, Bordetella pertussis, a saponin, a muramyl dipeptide, an iscom (immunostimulating complex; cf. EP 109 942) and an oil such as a vegetable oil, e.g. or a mineral oil, e.g., silico-neo oil.

Det kan i nogle tilfælde være fordelagtigt at koble toxinet 20 eller toxinanalogen til en bærer, især en makromolekylær bærer. Bæreren er sædvanligvis en polymer, hvortil toxinet bindes ved hydrofob non-kovalent interaktion såsom en plastic, fx polystyren, eller en polymer, hvortil toxinet bindes kovalent såsom et polysaccharid, eller et polypeptid, 25 fx bovint serumalbumin, ægalbumin eller keyhole-limpet-hæ-mocyanin. Bæreren er fortrinsvis non-toxisk eller non-al-lergen. Toxinet eller toxinanalogen kan kobles multivalent til den makromolekylære bærer, da dette resulterer i en forøget immunogenicitet af vaccinepræparationen. Det anta-30 ges ligeledes, at toxinet eller toxinanalogen kan præsenteres i multivalent form ved polymerisering af toxinet eller af toxinanalogen med sig selv.In some cases it may be advantageous to couple the toxin 20 or toxin analog to a carrier, especially a macromolecular carrier. The carrier is usually a polymer to which the toxin binds by hydrophobic non-covalent interaction such as a plastic, e.g., polystyrene, or a polymer to which the toxin covalently binds, such as a polysaccharide, or a polypeptide, e.g., bovine serum albumin, egg albumin, or keyhole limpet. -mocyanin. The carrier is preferably non-toxic or non-allergenic. The toxin or toxin analog can be multivalent coupled to the macromolecular carrier, as this results in an increased immunogenicity of the vaccine preparation. It is also believed that the toxin or toxin analog can be presented in multivalent form by polymerizing the toxin or the toxin analog by itself.

I en særlig udførelsesform af vaccinen ifølge den foreliggende opfindelse fusioneres toxinet eller toxinanalogen 35 som defineret ovenfor til et andet polypeptid. Metoder til 11 DK 169749 B1 fremstilling af fusionerede polypeptider er kendte fra fx Casadaban og Cohen, 1980, (ref. 30). Alternativt kan fusionen tilvejebringes ved fusion af den nukleotidsekvens, der koder for toxinet, til en nukleotidsekvens, der koder for 5 et andet polypeptid, således at den fusionerede nukleotidsekvens, når den indsættes i en hensigtsmæssig vektor, udtrykkes som et fusionspolypeptid ved transformation af vektoren til en egnet mikroorganisme og dyrkning af mikroorganismen under betingelser, der er gunstige for ekspression 10 af den fusionerede sekvens. Polypeptidet, hvortil toxinet er fusioneret, kan fx være et bærerpolypeptid som angivet ovenfor, lysozym eller et andet immunogent peptid såsom et Ty-protein fra Saccharomvces cerevisiae. protein A fra Staphylococcus aureus. Hepatitis B-core-antigen, etc.In a particular embodiment of the vaccine of the present invention, the toxin or toxin analog 35 as defined above is fused to another polypeptide. Methods for the preparation of fused polypeptides are known from, for example, Casadaban and Cohen, 1980, (ref. 30). Alternatively, the fusion may be provided by fusion of the nucleotide sequence encoding the toxin to a nucleotide sequence encoding another polypeptide such that the fused nucleotide sequence, when inserted into a suitable vector, is expressed as a fusion polypeptide by transforming the vector a suitable microorganism and cultivation of the microorganism under conditions favorable to expression of the fused sequence. For example, the polypeptide to which the toxin is fused may be a carrier polypeptide as indicated above, lysozyme or another immunogenic peptide such as a Ty protein from Saccharomyces cerevisiae. protein A from Staphylococcus aureus. Hepatitis B core antigen, etc.

15 Det antages ligeledes, at vaccinen kan være i form at en tablet, pille eller kapsel egnet til oral administration, da der foreligger tegn på, at immunogener kan absorberes gennem tarmvæggen og stimulere B-lymfocytter, som derefter migrerer til lokale epithelregioner, hvor de transformeres 20 til immungiobulin-producerende plasmaceller. En oral vaccine skal være forsynet med en enterisk coating med henblik på at beskytte toxinet eller toxinanalogen mod substanser i mavesaften, som kunne være ødelæggende for toxinet eller toxinanalogen, såsom pepsin. Den enteriske coating kan ud-25 vælges blandt shellak, celluloseacetatestere såsom cellu-loseacetatphthalat, hydroxypropylmethylcelluloseestere såsom hydroxypropylmethylcellulosephthalat, polyvinylace-tatestere såsom polyvinylacetatphthalat og polymerer af methacrylsyre og (meth)acrylsyreestere. Nyligt udviklede 3 0 fremgangsmåder til indkapslinger baseret på mikrokugler med en diameter på ca. 5-15 μπι er af særlig interesse, da sådanne partikler indeholdende en immunogen substans efter administration selektivt vil blive ført til Peyers's pletter og dermed fremkalde immunitet på slimhindeoverflader.It is also believed that the vaccine may be in the form of a tablet, pill or capsule suitable for oral administration, as there is evidence that immunogens can be absorbed through the intestinal wall and stimulate B lymphocytes, which then migrate to local epithelial regions where transformed into immunogiobulin-producing plasma cells. An oral vaccine must be provided with an enteric coating to protect the toxin or toxin analogue from substances in the gastric juice which could be harmful to the toxin or toxin analogue such as pepsin. The enteric coating may be selected from shellac, cellulose acetate esters such as cellulose acetate phthalate, hydroxypropyl methyl cellulose esters such as hydroxypropyl methyl cellulose phthalate, polyvinyl acetate esters such as polyvinyl acetate phthalate and polymers of methacrylic acid and methane. Recently developed methods for enclosures based on microspheres having a diameter of approx. 5-15 μπι is of particular interest, since such particles containing an immunogenic substance after administration will selectively be carried to Peyers's spots, thereby eliciting immunity on mucosal surfaces.

35 Stimulering af en immunrespons på luftvejsslimhindeoverflader kan ligeledes fremkaldes ved intranasale immuniseringer. (Mestecky, 1987, (ref. 12)).35 Stimulation of an immune response to respiratory mucosal surfaces can also be elicited by intranasal immunizations. (Mestecky, 1987, (ref. 12)).

DK 169749 Bl 12 DNA-fragmentet ifølge opfindelsen, der omfatter den xiukleo-tidsekvens, der koder for toxinet eller toxinanalogen, kan afledes fra komplementært cDNA vundet ved fremstilling af et cDNA-bibliotek på grundlag af mRNA fra en toxinproduce-5 rende P. multocida-stamme ved hjælp af standardfremgangsmåder. Nukleotidsekvensen kan alternativt og fortrinsvis hidrøre fra et P. multocida-qenom ved screening for genom-sekvenser, der hybridiserer til en DNA-probe fremstillet på grundlag af den hele eller delvise aminosyresekvens for 10 toxinet i overensstemmelse med anerkendte fremgangsmåder eller ved etablering af et toxingenbibliotek og screening for toxinproducerende kloner ved hjælp af et toxinspecifikt antistof (vedrørende en mere detaljeret beskrivelse af denne fremgangsmåde se eksempel 4) . For så vidt angår PMT er 15 det ikke muligt at fremstille en DNA-probe på grundlag af dets N-terminale aminosyresekvens, da PMT er blokeret i den N-terminale ende og derfor ikke nedbrydes ved fremgangsmåder til sekventering af aminosyrer.The DNA fragment of the invention comprising the xiucleotide sequence encoding the toxin or toxin analog can be derived from complementary cDNA obtained by preparing a cDNA library based on mRNA from a toxin-producing P. multocida strain using standard procedures. Alternatively, and preferably, the nucleotide sequence may be derived from a P. multocida genome by screening for genome sequences that hybridize to a DNA probe based on the whole or partial amino acid sequence of the toxin in accordance with recognized methods or by establishing a toxin library. and screening for toxin-producing clones by a toxin-specific antibody (for a more detailed description of this method, see Example 4). As far as PMT is concerned, it is not possible to prepare a DNA probe on the basis of its N-terminal amino acid sequence, since PMT is blocked at the N-terminal end and is therefore not degraded by methods for sequencing amino acids.

En anden rutine-screeningsmetode, som har vist sig vanske-20 ligt anvendelig i tilfælde af PMT, er screening for toxinproducerende kloner ved hjælp af et anti-PMT-serum. Ved anvendelse af serum fra en kanin, der gentagne gange var immuniseret med PMT, fandt nærværende opfindere ved hjælp af colony blot-metoden 5 E. coli-kloner i det genbibliotek, 25 der er beskrevet i eksempel 5. Yderligere undersøgelser af de nævnte 5 kloner viste imidlertid, at ingen af disse producerede PMT. Disse resultater viser vigtigheden af at udføre screeningen med anti-PMT-monoklonale antistoffer som beskrevet i eksempel 5.Another routine screening method that has proved difficult to use in the case of PMT is screening for toxin-producing clones using an anti-PMT serum. Using serum from a rabbit repeatedly immunized with PMT, the present inventors, using the colony blot method, found 5 E. coli clones in the gene library described in Example 5. Further studies on the aforementioned 5 however, clones showed that none of these produced PMT. These results demonstrate the importance of conducting the screening with anti-PMT monoclonal antibodies as described in Example 5.

30 Nukleotidsekvensen kan ligeledes hidrøre fra en bakterio-fag, der er infektiøs for P. multocida, dvs. en fag, som er blevet overført fra en bakteriestamme, der oprindeligt indeholdt sekvensen, til en anden stamme, som oprindeligt ikke indeholdt sekvensen, ved hjælp af bakteriofagtransfek-35 tion. Tilsvarende kan nukleotidsekvensen hidrøre fra et 13 DK 169749 B1 plasmid eller et andet genetisk element overført fra en stamme til en anden ved hjælp af konjugation, transformation eller lignende.The nucleotide sequence may also be derived from a bacteriophage that is infectious to P. multocida, ie. a phage that has been transferred from a bacterial strain that initially contained the sequence to another strain that did not initially contain the sequence by bacteriophage transfection. Similarly, the nucleotide sequence may be derived from a plasmid or other genetic element transferred from one strain to another by conjugation, transformation or the like.

Nukleotidsekvensen, der koder for toxinet, kan endvidere 5 være en syntetisk sekvens, dvs. en sekvens fremstillet i overensstemmelse med standardfremgangsmåder, fx som beskrevet i Matthes et al., 1984, (ref. 13). Endelig kan nukleotidsekvensen være en sammensat genom- og syntetisk sekvens eller en sammensat cDNA- og syntetisk sekvens frem-10 stillet ved ligering af DNA-fragmenter af genom-, cDNA-eller syntetisk oprindelse (afhængig af hvad der er hensigtsmæssigt) , hvilke DNA-fragmenter hver indeholder en del af den nukleotidsekvens, der koder for toxinet, i overensstemmelse med anerkendte fremgangsmåder.Furthermore, the nucleotide sequence encoding the toxin may be a synthetic sequence, i.e. a sequence prepared according to standard procedures, for example, as described in Matthes et al., 1984, (ref. 13). Finally, the nucleotide sequence may be a composite genome and synthetic sequence or a composite cDNA and synthetic sequence prepared by ligating DNA fragments of genome, cDNA or synthetic origin (as appropriate), which DNA fragments each contain a portion of the nucleotide sequence encoding the toxin according to recognized methods.

15 Ifølge den i det foranstående givne forklaring kan DNA- fragmentet være et fragment, som er modificeret ved substituering, addition, insertion eller deletion af én eller flere nukleotider i sekvensen med det formål at tilvejebringe en sekvens, som, når den udtrykkes, resulterer i 20 produktionen af et detoxificeret toxin eller en detoxifi-ceret toxinanalog.According to the foregoing explanation, the DNA fragment may be a fragment modified by substitution, addition, insertion or deletion of one or more nucleotides in the sequence for the purpose of providing a sequence which, when expressed, results in 20 production of a detoxified toxin or a detoxified toxin analog.

Den foreliggende opfindelse angår især et DNA-fragment, som omfatter en nukleotidsekvens i det væsentlige som vist i figur 10 (a)-(j) eller en modifikation deraf som angivet 25 ovenfor. Sekvensen, der koder for toxinet i sin fulde længde, starter i den i figuren viste sekvens' position 219 (eller 213), medens sekvensens ende er ved position 4073.In particular, the present invention relates to a DNA fragment comprising a nucleotide sequence substantially as shown in Figures 10 (a) - (j) or a modification thereof as set forth above. The sequence encoding the full-length toxin starts at the sequence shown in Figure 219 (or 213), while the end of the sequence is at position 4073.

Den i figur 10 (a)-(j) viste DNA-sekvens er blevet fastslået ved hjælp af velkendte metoder som beskrevet i ek-30 sempel 7 nedenfor.The DNA sequence shown in Figures 10 (a) - (j) has been determined by well known methods as described in Example 7 below.

DNA-fragmentet ifølge opfindelsen kan yderligere omfatte en nukleotidsekvens, der koder for et andet polypeptid, fusioneret med nukleotidsekvensen, der koder for toxinet eller toxinanalogen, med det formål at producere et fusioneret 14 DK 169749 B1 polypeptid som forklaret i det ovenstående. Et yderligere formål med fremstilling af et fusioneret polypeptid kan være at gøre oprensningen af toxinet lettere. I dette tilfælde kan den fusionerede sekvens indsættes i en hensigts-5 mæssig vektor, som transformeres til en egnet værtsmikroorganisme, som dyrkes linder betingelser, der sikrer ekspression af den fusionerede sekvens, hvorefter det fusionerede polypeptid udvindes fra kulturen ved at underkaste det fusionerede polypeptid affinitetskromatografi, der involverer 10 et antistof eller en hvilken som helst anden ligand, der reagerer med det andet polypeptid. Efter oprensning kan det andet polypeptid derefter fjernes, fx ved en egnet prote-olytisk spaltning efterfulgt af adskillelse af de to poly-peptider.The DNA fragment of the invention may further comprise a nucleotide sequence encoding a second polypeptide fused to the nucleotide sequence encoding the toxin or toxin analog for the purpose of producing a fused polypeptide as explained above. A further object of producing a fused polypeptide may be to facilitate the purification of the toxin. In this case, the fused sequence may be inserted into a suitable vector which is transformed into a suitable host microorganism which is cultured to relieve conditions which ensure expression of the fused sequence, after which the fused polypeptide is recovered from the culture by subjecting the fused polypeptide affinity chromatography. , which involves an antibody or any other ligand that reacts with the second polypeptide. After purification, the second polypeptide can then be removed, for example, by a suitable proteolytic cleavage followed by separation of the two polypeptides.

15 I et yderligere aspekt angår den foreliggende opfindelse en ekspressionsvektor, som er i stand til at replicere i en værtsmikroorganisme, og som indeholder et DNA-fragment som beskrevet i det ovenstående. Vektoren kan enten være en vektor, som er i stand til autonom replikation såsom et 20 plasmid, eller en vektor, som repliceres sammen med værtskromosomet såsom en bakteriofag. Specifikke eksempler på ekspressionsvektorer ifølge opfindelsen er plasmiderne pSPE A-R, som er beskrevet i eksempel 9 nedenfor og vist i figur 13.In a further aspect, the present invention relates to an expression vector capable of replicating in a host microorganism and containing a DNA fragment as described above. The vector can be either a vector capable of autonomous replication such as a plasmid, or a vector that is replicated with the host chromosome such as a bacteriophage. Specific examples of expression vectors of the invention are the plasmids pSPE A-R described in Example 9 below and shown in Figure 13.

25 I endnu et yderligere aspekt angår den foreliggende opfindelse en mikroorganisme, som er i stand til at udtrykke et DNA-fragment som defineret ovenfor, og som indeholder en vektor som beskrevet ovenfor. Mikroorganismen er fortrinsvis en bakterie, især en gram-negativ bakterie såsom EL.In yet another aspect, the present invention relates to a microorganism capable of expressing a DNA fragment as defined above and containing a vector as described above. The microorganism is preferably a bacterium, especially a gram-negative bacterium such as EL.

30 coli.30 coli.

Opfindelsen angår også en fremgangsmåde til fremstilling af et immunogent detoxificeret P. multocida-toxin eller en immunogen detoxificeret P. multocida-toxinanaloq. idet fremgangsmåden omfatter 15 DK 169749 B1 a) isolering af en nukleotidsekvens, der koder for P. multocida-toxinet eller -toxinanalogen, b) indsættelse af denne sekvens, eventuelt i en passende modificeret form, der resulterer i ekspression af det 5 detoxificerede toxin eller den detoxificerede toxinanalog eller en subsekvens, der koder for en immunogen subsekvens af toxinet eller toxinanalogen, i en ekspressionsvektor, c) transformation af en egnet værtsmikroorganisme med den i trin b) fremstillede vektor, 10 d) dyrkning af mikroorganismen fremstillet i trin c) under betingelser, der er egnede til ekspression af toxinet eller toxinanalogen, e) høstning af toxinet eller toxinanalogen fra kulturen, og f) eventuelt udsættelse af toxinet for post-translationelle 15 modifikationer for at frembringe det detoxificerede toxin eller den detoxificerede toxinanalog.The invention also relates to a method for preparing an immunogenic detoxified P. multocida toxin or an immunogenic detoxified P. multocida toxin analog. the method comprising: a) isolating a nucleotide sequence encoding the P. multocida toxin or toxin analog; b) inserting this sequence, optionally into a suitably modified form, resulting in expression of the detoxified toxin; or the detoxified toxin analog or a sub-sequence encoding an immunogenic sub-sequence of the toxin or toxin analogue in an expression vector; c) transforming a suitable host microorganism with the vector prepared in step b); d) growing the microorganism prepared in step c) during conditions suitable for expression of the toxin or toxin analogue; e) harvesting the toxin or toxin analogue from the culture; and f) optionally subjecting the toxin to post-translational modifications to produce the detoxified toxin or detoxified toxin analog.

I trin a) ifølge metoden kan nukleotidsekvensen fx isoleres ved etablering af et P. multocida-genbibliotek og screening for toxinpositive kloner i overensstemmelse med aner-20 kendte fremgangsmåder som angivet i det ovenstående og som beskrevet i detaljer i nedenstående eksempel 4.For example, in step a) of the method, the nucleotide sequence can be isolated by establishing a P. multocida gene library and screening for toxin positive clones according to recognized methods as set forth above and as described in detail in Example 4 below.

I trin b) ifølge metoden kan de eventuelt udførte modifikationer af sekvensen udføres før eller efter, at sekvensen er blevet indsat i vektoren. Modifikationen kan omfatte 25 substituering, addition, insertion eller deletion af én eller flere nukleotider i sekvensen eller en kombination deraf som forklaret ovenfor.In step b) according to the method, any modifications made to the sequence may be performed before or after the sequence has been inserted into the vector. The modification may include substitution, addition, insertion or deletion of one or more nucleotides in the sequence or a combination thereof as explained above.

Transformationen i trin c) ifølge metoden kan udføres ved hjælp af standardfremgangsmåder såsom fremgangsmåder be-30 skrevet i Maniatis et al., (ref. 14).The transformation in step c) according to the method can be carried out by standard procedures such as methods described in Maniatis et al. (Ref. 14).

16 DK 169749 B116 DK 169749 B1

Dyrkningen af værtsmikroorganismen i trin d) ifølge metoden kan udføres i et dyrkningsmedium, der anvendes konventionelt til fermenteringsformål, fx Luria Broth-medium, og under pH-, temperatur- og beluftningsbetingelser, etc, der 5 er egnede til den pågældende type af mikroorganismer fx som beskrevet i Maniatis et al., (ref. 14).The cultivation of the host microorganism in step d) according to the method can be carried out in a culture medium used conventionally for fermentation purposes, e.g. Luria Broth medium, and under pH, temperature and aeration conditions, etc. suitable for the particular type of microorganisms e.g. as described in Maniatis et al., (ref. 14).

I trin d) ifølge metoden kan høstning af toxinet eller toxinanalogen udføres ved hjælp af velkendte fremgangsmåder såsom ved præcipitation, gelfiltrering, ionbytning eller 10 HPLC-omvendt fasekromatografi eller immunoaffinitetskroma-tografi.In step d) according to the method, harvesting of the toxin or toxin analog can be carried out by well known methods such as by precipitation, gel filtration, ion exchange or HPLC reverse phase chromatography or immunoaffinity chromatography.

Såfremt nukleotidsekvensen, der koder for toxinet eller toxinanalogen, ikke er modificeret i trin b) ifølge metoden for at opnå ekspression af det detoxificerede toxin eller 15 den detoxificerede toxinanalog, underkastes toxinet eller toxinanalogen post-translationelle modifikationer i trin f) ifølge metoden, fx termisk behandling, behandling med et kemikalie såsom formaldehyd, glutaraldehyd eller et egnet proteolytisk enzym, fx trypsin, eller substituering, addi-20 tion, insertion eller deletion af én eller flere aminosyrer i toxinet eller toxinanalogen.If the nucleotide sequence encoding the toxin or toxin analogue is not modified in step b) according to the method of obtaining expression of the detoxified toxin or the detoxified toxin analogue, the toxin or toxin analogue is subjected to post-translational modifications in step f), e.g. treatment, treatment with a chemical such as formaldehyde, glutaraldehyde or a suitable proteolytic enzyme, for example trypsin, or substitution, addition, insertion or deletion of one or more amino acids in the toxin or toxin analog.

Den foreliggende opfindelse angår også anvendelse af et rekombinant detoxificeret immunogent P. multocida-toxin eller en rekombinant detoxificeret immunogen P. multocida-25 toxinanalog til fremstilling af en vaccine til immunisering af et dyr, herunder et menneske, mod sygdomme forårsaget af mikroorganismer, der producerer et osteolytisk toxin. Toxinet eller toxinanalogen, der anvendes til immunisering, kan være et toxin eller en toxinanalog, der kodes for af DNA-30 sekvensen vist i figur 10 (a)-(j), eller en modifikation deraf som forklaret i det ovenstående.The present invention also relates to the use of a recombinant detoxified immunogenic P. multocida toxin or a recombinant detoxified immunogenic P. multocida toxin analogue for the preparation of a vaccine for immunizing an animal, including a human, against diseases caused by microorganisms producing an osteolytic toxin. The toxin or toxin analog used for immunization may be a toxin or toxin analog encoded by the DNA sequence shown in Figures 10 (a) - (j), or a modification thereof as explained above.

Den foreliggende opfindelse beskrives yderligere i det følgende idet der henvises til figurerne, hvor 17 DK 169749 B1 figur 1 er en graf, der viser titrering af PMT i en kvantitativ sandwich-ELISA. Absorbansen ved 492 nm målt i denne ELISA er afsat mod PMT-koncentrationen. Den mindste detek-terbare koncentration af PMT er ca. 1 ng/ml svarende til 5 ca. 50 pg eller 0,35 fmol.The present invention is further described in the following with reference to the figures, wherein Figure 1 is a graph showing titration of PMT in a quantitative sandwich ELISA. The absorbance at 492 nm measured in this ELISA is plotted against the PMT concentration. The smallest detectable concentration of PMT is approx. 1 ng / ml corresponding to 5 approx. 50 pg or 0.35 fmol.

Figur 2 viser en SDS-PAGE af fraktioner fra den i eksempel 3 beskrevne affinitetskromatografi. Bane A: kultursuperna-tanten påsat søjlen, bane O: effluenten fra søjlen, bane E. det eluerede oprensede PMT og bane M: molekylvægtmarkørpro-10 teiner.Figure 2 shows an SDS-PAGE of fractions from the affinity chromatography described in Example 3. Lane A: the culture supernatant applied to the column, Lane O: the effluent from the column, Lane E. The eluted purified PMT and Lane M: molecular weight marker proteins.

Figur 3 er en Western blot, der viser de i screeningsproceduren påviste 5 positive rekombinante E. coli-kloners PMT-produktion. Bane 1: SPE 301; banerne 2 og 3: SPE 308; bane 4: SPE 315; banerne 5 og 6: SPE 312; bane 7: SPE 311; 15 bane 8: oprenset PMT.Figure 3 is a Western blot showing the PMT production of 5 positive recombinant E. coli clones detected in the screening procedure. Lane 1: SPE 301; lanes 2 and 3: SPE 308; lane 4: SPE 315; lanes 5 and 6: SPE 312; lane 7: SPE 311; Lane 8: Purified PMT.

Figur 4 er et restriktionsenzymsspaltningskort for plasmi-det pSPE 308 med en længde på 21,5 kb (kilobasepar). Det skraverede felt angiver P. multocida-DNA, det tæt skraverede felt angiver pint -genet, og det lodret skraverede felt 20 betegner plasmidet pUN121-DNA.Figure 4 is a restriction enzyme cleavage map for plasmid pSPE 308 with a length of 21.5 kb (kilobase pairs). The shaded field denotes P. multocida DNA, the densely shaded field indicates the pint gene, and the vertically shaded field 20 denotes the plasmid pUN121 DNA.

Figur 5 er et restiktionsenzymsspaltningskort for plasmidet pSPE 312 med en længde på 13,8 kb. Det skraverede felt betegner P. multocida-DNA. det tæt skraverede felt angiver pint-genet, og det lodret skraverede felt angiver plasmidet 25 pUN121-DNA.Figure 5 is a restriction enzyme cleavage map for plasmid pSPE 312 with a length of 13.8 kb. The shaded field denotes P. multocida DNA. the densely shaded field indicates the pint gene and the vertically shaded field indicates the plasmid 25 pUN121 DNA.

Figur 6 er et restriktionsenzymsspaltningskort for plasmi-der konstrueret ved enzymatisk spaltning af plasmidet pSPE 308. Det skraverede felt angiver P. multocida-DNA. det tæt skraverede felt angiver pmt-genet, og det lodret skraverede 30 felt angiver plasmidet pON121-DNA.Figure 6 is a restriction enzyme cleavage map for plasmids constructed by enzymatic cleavage of plasmid pSPE 308. The shaded field indicates P. multocida DNA. the densely shaded field denotes the pmt gene and the vertically shaded 30 denotes the plasmid pON121 DNA.

Figur 7 er et restriktionsenzymsspaltningskort for plasmi-der konstrueret ved enzymatisk spaltning af plasmidet pSPEFigure 7 is a restriction enzyme cleavage map for plasmids constructed by enzymatic cleavage of the plasmid pSPE

18 DK 169749 B1 312. Det skraverede felt angiver P. multocida-DNA. det lodret skraverede felt angiver plasmidet pUN121-DNA, og det tæt skraverede felt angiver omt-genet.18 DK 169749 B1 312. The shaded field indicates P. multocida DNA. the vertically shaded field indicates the plasmid pUN121 DNA and the densely shaded field indicates the um gene.

Figur 8 er et Western blot, der viser PMT-produktion af 5 derivater af plasmideme pSPE 308 og pSPE 312. Bane 1: oprenset PMT; bane 2: pSPE 350; bane 3: pSPE 349; bane 4: pSPE 341; bane 5: pSPE 345; bane 6: pSPE 312; banerne 7 og 8: oprenset PMT. Plasmid pSPE 349 er identisk med plasmid pSPE 347 vist i figur 7.Figure 8 is a Western blot showing PMT production of 5 derivatives of plasmids pSPE 308 and pSPE 312. Lane 1: purified PMT; lane 2: pSPE 350; lane 3: pSPE 349; lane 4: pSPE 341; lane 5: pSPE 345; lane 6: pSPE 312; lanes 7 and 8: purified PMT. Plasmid pSPE 349 is identical to plasmid pSPE 347 shown in Figure 7.

10 Figur 9 er et restriktionsenzymsspaltningskort for pmt- genet. Det tæt skraverede felt angiver jomt-genet, det lodret skraverede felt angiver en sandsynlig promotor, og det skraverede felt angiver en sandsynlig terminator.Figure 9 is a restriction enzyme cleavage map for the pmt gene. The tightly shaded field indicates the jomt gene, the vertically shaded field indicates a likely promoter, and the shaded field indicates a likely terminator.

Figur 10 (a)-(j) viser DNA-sekvensen for pmt-genregionen og 15 aminosyresekvensen udledt fra DNA-sekvensen. Aminosyrerne er identificeret med enkeltbogstavskoder i overensstemmelse med konventionelle regler. Det har vist sig, at aminosyresekvensen starter ved position 213 eller 219.Figures 10 (a) - (j) show the DNA sequence of the pmt gene region and the amino acid sequence deduced from the DNA sequence. The amino acids are identified by single-letter codes in accordance with conventional rules. It has been found that the amino acid sequence starts at position 213 or 219.

Figur 11 er et restriktionsenzymsspaltningskort for plas-20 midet pSPE 525 med en længde på 7,7 kb. Det skraverede felt angiver P. multocida-DNA. det tæt skraverede felt angiver pmt-genet, og det lodret skraverede felt angiver pUN121-DNA.Figure 11 is a restriction enzyme cleavage map for plasmid pSPE 525 with a length of 7.7 kb. The shaded field indicates P. multocida DNA. the densely shaded field indicates the pmt gene and the vertically shaded field indicates pUN121 DNA.

Figur 12 er et restriktionsenzymsspaltningskort for eks-25 pressionsvektoren pSPE 481 med en længde på 8,25 kb. Det skraverede felt (til højre) angiver P. multocida-DNA. det tæt skraverede felt angiver pmt-genet. det skraverede felt (til venstre) angiver APL-DNA, det krydsskraverede felt angiver amp-genet. og det lodret skraverede felt angiver 30 replikationsorigin.Figure 12 is a restriction enzyme cleavage map for the expression vector pSPE 481 with a length of 8.25 kb. The shaded field (right) indicates P. multocida DNA. the tightly shaded field indicates the pmt gene. the shaded field (left) indicates the APL DNA, the shaded field indicates the amp gene. and the vertically shaded field indicates 30 origin of replication.

Figur 13 er et restriktionsenzymsspaltningskort for den toxA-kodende region. Udstrækningen af den kodende region på 19 DK 169749 B1 hvert plasmidderivat (pSPE A-R) er angivet (A-R) med bjælker. Skraverede bjælker: kodende region i korrekt læseramme; åbne bjælker: kodende region, som ikke er i ramme med 5'-delen af den kodende region.Figure 13 is a restriction enzyme cleavage map for the toxA coding region. The extent of the coding region of each plasmid derivative (pSPE A-R) is indicated (A-R) with beams. Shaded beams: coding region in correct reading frame; open beams: coding region that does not align with the 5 'portion of the coding region.

5 Figur 14 er en Western blot, der viser genkendelse med et muse-anti-PMT-antiserum af PMT-derivater produceret af plasmiderne pSPE A-L. Banerne 7, 13, 14 og 15: forskellige stammer indeholdende hele pmt-genet; bane 1: derivat A; bane 2: derivat I; bane 3: derivat B; bane 4: derivat J; 10 bane 5: derivat L; banerne 6 og 9: derivat E; bane 8: derivat C; bane 10: derivat G; bane 11: derivat H; bane 12: derivat D. Den omtrentligt størrelse (i kilodalton) af fremtrædende fuld-længde-derivater og nedbrydningsprodukter er angivet.Figure 14 is a Western blot showing recognition with a mouse anti-PMT antiserum of PMT derivatives produced by the plasmids pSPE A-L. Lanes 7, 13, 14 and 15: various strains containing the entire pmt gene; lane 1: derivative A; lane 2: derivative I; lane 3: derivative B; lane 4: derivative J; Lane 5: derivative L; lanes 6 and 9: derivative E; lane 8: derivative C; lane 10: derivative G; lane 11: derivative H; lane 12: derivative D. The approximate size (in kilodaltons) of prominent full-length derivatives and degradation products is indicated.

15 Figur 15 er en graf, der viser fordelingen af relative ab-sorbanser (A/A0) ved PMT-ELISA af ekstrakter af non-cytopa-tiske (skraverede bjælker) og cytopatiske (udfyldte bjælker) kliniske isolater af P. multocida fortyndet 1:1 i PBS-T-BSA.Figure 15 is a graph showing the distribution of relative absorbances (A / A0) by PMT-ELISA of extracts of non-cytopathic (shaded beams) and cytopathic (filled beams) clinical isolates of P. multocida diluted 1 : 1 in PBS-T-BSA.

20 Figur 16 er en graf, der viser middeltal + SD for relative absorbanser (A/A0) for fortyndinger af ekstrakter af cytopatiske (udfyldte firkanter) og non-cytopatiske (åbne firkanter) kliniske isolater af P. multocida.Figure 16 is a graph showing mean + SD of relative absorbances (A / A0) for dilutions of extracts of cytopathic (filled squares) and non-cytopathic (open squares) clinical isolates of P. multocida.

Figur 17 er en graf, der viser forekomsten af anti-PMT-an- 25 tistoffer i serumprøver fra anti-PMT-antistofnegative, inficerede og vaccinerede grise påvist ved kompetitiv ELISA. Grafen viser 50% blokerende titerværdier ved en absorbans på 492 nm.Figure 17 is a graph showing the presence of anti-PMT antibodies in serum samples from anti-PMT antibody negative, infected and vaccinated pigs detected by competitive ELISA. The graph shows 50% blocking titer values at an absorbance of 492 nm.

.... negativ 30 ---- inficeret _ vaccineret 20 DK 169749 B1.... negative 30 ---- infected _ vaccinated 20 DK 169749 B1

Figur 18 viser kolonihybridisering af - P. multocida-isola-ter, idet der er testet 17 toxinpositive og 18 toxinnegati-ve stammer bestemt ved ELISA og EBL-celleundersøgelser for tilstedeværelsen af pint-genet.Figure 18 shows colony hybridization of - P. multocida isolates, testing 17 toxin positive and 18 toxin negative strains determined by ELISA and EBL cell assays for the presence of the pint gene.

\ 5 Figur 19 viser måling af toxiske aktiviteter i cellefrie sonikater af rekombinante E. coli-kloner. E.coli-stamme MT102 med pUN121 viste ingen cytopatisk effekt på EBL-cel-ler i fortyndingen 1:25 i PBS (a). Sonikater af E. coli SPE 312 (b) og toxinogenet P. multocida (NCTC 12178) (c) 10 fortyndet 1:3125 viste signifikante og identiske virkninger (80 X forstørrelse).Figure 5 shows the measurement of toxic activities in cell-free sonicates of recombinant E. coli clones. E. coli strain MT102 with pUN121 showed no cytopathic effect on EBL cells at the 1:25 dilution in PBS (a). Sonics of E. coli SPE 312 (b) and the toxinogen P. multocida (NCTC 12178) (c) 10 diluted 1: 3125 showed significant and identical effects (80 X magnification).

Figur 20 viser P. multocida-DNA'et. der flankerer pmt-genet (sort felt). Udstrækningen af insertionerne af plasmiderne pSPE 308, pSPE 312, pSPE 344, pLOA03 og pLOB03 er angivet.Figure 20 shows the P. multocida DNA. flanking the pmt gene (black field). The extent of insertions of plasmids pSPE 308, pSPE 312, pSPE 344, pLOA03 and pLOB03 is indicated.

15 Der er vist DNA indeholdt i de til blotting anvendte prober (skråtskraveret felt) og de fragmenter, der indeholder de to homologe sekvenser (lodret skraveret felt) .15 DNA is shown in the probes used for blotting (oblique field) and the fragments containing the two homologous sequences (vertically shaded field).

Figur 21 viser et Southern blot af restriktionsenzymf ordøjet P. multocida-DNA. Probe: 2,4 kb Βσΐ 11 -EcoRI - fragment 20 af pLOB03. Banerne 10*-14* er en korttidseksponering af banerne 10-14.Figure 21 shows a Southern blot of restriction enzyme-modified P. multocida DNA. Probe: 2.4 kb Βσΐ 11 -EcoRI - fragment 20 of pLOB03. Lanes 10 * -14 * is a short-term exposure of lanes 10-14.

Banerne 1-4: toxinogene P. multocida 45/87. Banerne 5-9: non-toxinogene P. multocida MH81P8. Bane 10: pSPE 308.Lanes 1-4: toxinogenic P. multocida 45/87. Lanes 5-9: non-toxinogenic P. multocida MH81P8. Lane 10: pSPE 308.

Bane 11: pLOA03. Bane 12: pLOA02. Bane 13: pSPE 312. bane 25 14: pLOB03.Lane 11: pLOA03. Lane 12: pLOA02. Lane 13: pSPE 312. Lane 25 14: pLOB03.

Anvendte restriktionsenzymer: HindiII: banerne 1, 5, 10, 11, 12 og 13.Restriction enzymes used: HindiII: lanes 1, 5, 10, 11, 12 and 13.

EcoRI: banerne 2, 6 og 14. Bglll: banerne 3 og 7. PvuII: banerne 4 og 8.EcoRI: lanes 2, 6 and 14. Bglll: lanes 3 and 7. PvuII: lanes 4 and 8.

30 PstI: bane 9.30 PstI: lane 9.

21 DK 169749 B121 DK 169749 B1

Figur 22 viser et dot blot af 24 forskellige P. multocida-bakteriofag-genomer. Probe: pLOA03. Proben hybridiserer ikke med B2 og C5. A7: pSPE 308; B7: pSPE 312, C7: pLOA03 og D7: pLOB03 er positive kontroller.Figure 22 shows a dot of 24 different P. multocida bacteriophage genomes. Probe: pLOA03. The probe does not hybridize with B2 and C5. A7: pSPE 308; B7: pSPE 312, C7: pLOA03 and D7: pLOB03 are positive controls.

5 EKSEMPEL 1EXAMPLE 1

Fremstilling af monoklonale antistoffer mod P. multocida-toxinPreparation of monoclonal antibodies against P. multocida toxin

Immunisering P. multocida-toxin (PMT) blev oprenset som beskrevet af 10 Foged et al. (ref. 6), dvs. ved 50% (NH4)2S04-præcipitering af en cellefri ekstrakt af den toxinogene type D-stamme af P. multocida ssp. multocida 45/78 (referencerne 3 og 22) efterfulgt af DEAD-Sephacel®-kromatografi og præparativ polyacrylamidgelelektroforese (PAGE) på en måde, der er 15 kendt per se.Immunization P. multocida toxin (PMT) was purified as described by Foged et al. (ref. 6), i.e. by 50% (NH 4) 2 SO 4 precipitation of a cell-free extract of the toxinogenic type D strain of P. multocida ssp. multocida 45/78 (references 3 and 22) followed by DEAD-Sephacel® chromatography and preparative polyacrylamide gel electrophoresis (PAGE) in a way that is known 15 per se.

En suspension af (NH4)2S04-præcipitatet fremstillet som beskrevet ovenfor og indeholdende ca. 25 μg/ml PMT blev detoxificeret ved inkubering med 0,37% formaldehyd ved 37°C i 1 time. Balb/c-hunmus (8-12 uger gamle) blev immuniseret 20 subkutant på dag 0 og dag 14 med 300 μΐ af en l:l-fortyn-ding af den rå præparation af detoxificeret P. multocida -toxin og Freund's inkomplette adjuvans (dag 0) eller PBS (dag 14). På dag 30 og 45 blev 1 μ$ nativt PMT i 200 μΐ PBS injiceret subkutant, og på dag 60 blev musene "boostet" in-25 travenøst med 0,5 μg PMT i 100 μΐ PBS. 3 dage efter boo- ster-injektionen blev musene aflivet og deres milte fjernet med henblik på fusion.A suspension of the (NH 4) 2 SO 4 precipitate prepared as described above and containing ca. 25 μg / ml PMT was detoxified by incubation with 0.37% formaldehyde at 37 ° C for 1 hour. Female Balb / c mice (8-12 weeks old) were immunized 20 subcutaneously on day 0 and day 14 with 300 μΐ of a 1: 1 dilution of the crude preparation of detoxified P. multocida toxin and Freund's incomplete adjuvant ( day 0) or PBS (day 14). On days 30 and 45, 1 μ $ native PMT in 200 μΐ PBS was injected subcutaneously, and on day 60, mice were "boosted" in-25 travenously with 0.5 μg PMT in 100 μΐ PBS. Three days after the booster injection, the mice were sacrificed and their spleens removed for fusion.

22 DK 169749 B122 DK 169749 B1

Fremstilling af hvbridomcellelinier oa monoklonale antistoffer I overensstemmelse med fremgangsmåder beskrevet af Fazetas et al. (ref. 23) og Gebeyechu et al. (ref. 20) blev milt-5 cellerne og P3-X63-Ag8.653 myelomceller fusioneret under anvendelse af 50% PEG 4000 GK (Merck), og de resulterende hybridomceller blev dyrket selektivt i hypoxanthin/aminop-terin/thymin (HAT) -tilsat RPMI 1640-medium indeholdende 15% føtalt kalveserum (FCS) og 4% human endothelial celle-10 supernatant (Costar, Holland).Preparation of hybridoma cell lines and monoclonal antibodies In accordance with methods described by Fazetas et al. (ref. 23) and Gebeyechu et al. (ref. 20), the spleen cells and P3-X63-Ag8,653 myeloma cells were fused using 50% PEG 4000 GK (Merck) and the resulting hybridoma cells were selectively grown in hypoxanthine / aminopterin / thymine (HAT) -added RPMI 1640 medium containing 15% fetal calf serum (FCS) and 4% human endothelial cell-10 supernatant (Costar, The Netherlands).

Hybridomcellelinier blev selekteret ved analyse af deres respektive monoklonale antistoffer ved ELISA og immunblot ting.Hybridoma cell lines were selected by analysis of their respective monoclonal antibodies by ELISA and immunoblotting.

ELISA til påvisning oa titrering af monoklonale antistoffer 15 Mikrotiterplader (96-brønde Immuno Plate II, Nunc, Danmark) blev coatet med 50 /il/brønd af en 0,75 /ig/ml opløsning af oprenset PMT i PBS ved 4°C i 16 timer og ved 20°C i 1 time. Brøndene blev tømt og blokeret med 200 μΐ PBS-T-BSA (PBS indeholdende 0,05% (volumen/volumen) Tween®20 og 1% (vægt/-20 volumen) bovint serumalbumin) pr. brønd ved 20°C i 1 time, derefter vasket 3 gange med PBS-T. 50 /il/brønd hybridomkul-tursupernatant lodes reagere ved 20°C i 1 time, og pladerne blev vasket som beskrevet ovenfor. Anti-PMT-antistofaktiviteten blev målt kolorimetrisk efter inkubering ved 20°C i 1 25 time med 50 /il/brønd fåre-anti-muse-immunglobulin konjugeret med peberrodsperoxidase (Amersham International, GB) fortyndet 1:1500 i PBS-T-BSA og (efter 3 yderligere PBS-T-vaskninger som ovenfor) med 50 μΐ af en o-phenylendiamin (OPD)-H202-substratopløsning. Reaktionen blev standset med 30 150 /il 2M H2SO4 efter 5 minutter, og absorbansen blev be stemt i et Kontron SLT-210-fotometer (SLT Lab-instr.,ELISA for Detection and Titration of Monoclonal Antibodies 15 Microtiter plates (96-well Immuno Plate II, Nunc, Denmark) were coated with 50 µl / well of a 0.75 µg / ml solution of purified PMT in PBS at 4 ° C. 16 hours and at 20 ° C for 1 hour. The wells were emptied and blocked with 200 μΐ PBS-T-BSA (PBS containing 0.05% (v / v) Tween® 20 and 1% (w / v 20 bovine serum albumin) per ml). well at 20 ° C for 1 hour, then washed 3 times with PBS-T. 50 µl / well hybrid culture supernatant was allowed to react at 20 ° C for 1 hour and the plates washed as described above. Anti-PMT antibody activity was measured colorimetrically after incubation at 20 ° C for 1 h with 50 µl / well sheep anti-mouse immunoglobulin conjugated with horseradish peroxidase (Amersham International, GB) diluted 1: 1500 in PBS-T-BSA and (after 3 additional PBS-T washes as above) with 50 μΐ of an o-phenylenediamine (OPD) -H 2 O 2 substrate solution. The reaction was quenched with 150 µl 2M H2SO4 after 5 minutes and the absorbance was determined in a Kontron SLT-210 photometer (SLT Lab instrument,

Zurich, Schweiz) ved 492 nm (ref. 620 nm).Zurich, Switzerland) at 492 nm (ref. 620 nm).

23 DK 169749 B123 DK 169749 B1

Middelabsorbansen ved titreringskurvens mætningsniveau (Asat) °9' middelkoncentrationen af de monoklonale antistoffer, der resulterede i 50% af Asat (C50%) blev bestemt ved hjælp af ELISA som beskrevet ovenfor med den undtagel-5 se, at der blev anvendt fortyndingsrækker af protein A-oprenset monoklonalt antistof (MAb) i PBS-T-BSA. Samtlige resultater er baseret på i det mindste dobbeltbestemmelser.The mean absorbance at the saturation level (Asat) ° 9 'mean concentration of the monoclonal antibodies that resulted in 50% of Asat (C50%) was determined by ELISA as described above with the exception that protein dilution series were used. A-purified monoclonal antibody (MAb) in PBS-T-BSA. All results are based on at least double determinations.

Immun-blottinqImmuno-blotting

Med henblik på at bestemme specificiteten af de monoklonale 10 antistoffer blev proteinerne i en rå cellefri ekstrakt af P. multocida 45/78 adskilt ved hjælp af SDS-PAGE forud for overføring til en nitrocellulosemembran og immunologisk påvisning. Polyacrylamidgeler (total acrylamid: 10%, relativ bis-acrylamid: 3%) og en elektroforesebuffer blev frem-15 stillet i henhold til Laemmli (ref. 24). Elektroforese blev udført vertikalt ved 10° C ved en konstant spænding på 60 V i 16 timer eller 250 V i 4 timer. Proteinbånd på gelerne blev enten visualiseret ved sølvfarvning med en de-tektionsgrænse på mindre end 1 ng protein pr. bånd (8) 20 eller overført til en nitrocellulosemembran (0,45 μτη) under anvendelse af en halvtør elektroblotter (Ancos, Ølstykke, Danmark (9)). Proteinerne på nitrocellulosemembranen blev enten påvist ved hjælp af en kolloid guld/sølvforstærk-ningsfarvemetode (detektionsgrænse: ca. 0,5 ng protein pr.In order to determine the specificity of the monoclonal antibodies, the proteins in a crude cell-free extract of P. multocida 45/78 were separated by SDS-PAGE prior to transfer to a nitrocellulose membrane and immunological detection. Polyacrylamide gels (total acrylamide: 10%, relative bis-acrylamide: 3%) and an electrophoresis buffer were prepared according to Laemmli (ref. 24). Electrophoresis was performed vertically at 10 ° C at a constant voltage of 60 V for 16 hours or 250 V for 4 hours. Protein bands on the gels were either visualized by silver staining with a detection limit of less than 1 ng protein per day. band (8) 20 or transferred to a nitrocellulose membrane (0.45 μτη) using a semi-dry electroblotter (Ancos, Ølstykke, Denmark (9)). The proteins on the nitrocellulose membrane were either detected by a colloidal gold / silver enhancement dye method (detection limit: about 0.5 ng protein per

25 bånd) (ref. 25) eller immunologisk ved hjælp af en modifikation af den metode, der tidligere er beskrevet af Bjerrum et al. (ref. 26). En positiv reaktion i immun-blotting blev registreret som + eller (+), når der blev observeret en intens (eller svag) farvning af PMT-båndet, men ikke af noget 30 andet proteinbånd. Farvning af andre bånd eller ingen reaktion blev registreret som -.25 bands) (ref. 25) or immunologically by a modification of the method previously described by Bjerrum et al. (ref. 26). A positive response in immune blotting was recorded as + or (+) when intense (or weak) staining of the PMT band was observed, but not by any other protein band. Staining of other bands or no reaction was recorded as -.

PMT's molekylvægt blev bestemt ved sammenligning med kendte markører: ægalbumin (43,0 kD), BSA (66,3 kD) , phosphorylase B (97,4 kD), Ø-galactosidase (116,2 kD), RNA-polymerase β 35 (150,6 kD) og β' (155,2 kD) og myosin (ca. 200 kD).The molecular weight of PMT was determined by comparison with known markers: egg albumin (43.0 kD), BSA (66.3 kD), phosphorylase B (97.4 kD), β-galactosidase (116.2 kD), RNA polymerase β 35 (150.6 kD) and β '(155.2 kD) and myosin (about 200 kD).

24 DK 169749 B1 ELISA til påvisning af epitopspecificitet24 DK 169749 B1 ELISA for detecting epitope specificity

Bestemmelse af tilsyneladende epitopspecificitet for anti-PMT-monoklonale antistoffer blev udført ved en kompetitiv ELISA svarende til en fremgangsmåde beskrevet af Anderson 5 et al. (ref. 27). Mikrotiterplader blev coatet med PMT og blokeret som beskrevet ovenfor. 50 μΐ af det konkurrerende MAb fortyndet til 10 jttg/ml i PBS-T-BSA blev tilsat og inkuberet i 1 time ved 20°C. Der blev tilsat 25 μΐ biotiny-leret monoklonalt antistof uden aspiration af brøndene, og 10. blandingen blev inkuberet i 20 minutter ved 20°C. Efter vaskninger tilsattes 50 μΐ af en 1:2500-fortynding af pe-berrodsperoxidase-konjugeret avidin (Kem-En-Tec, Danmark), og pladerne blev inkuberet i 45 minutter ved 20°C. Substratet, reaktionstiden og bestemmelse af absorbans var 15 som beskrevet ovenfor.Determination of apparent epitope specificity for anti-PMT monoclonal antibodies was performed by a competitive ELISA similar to a method described by Anderson 5 et al. (ref. 27). Microtiter plates were coated with PMT and blocked as described above. 50 μΐ of the competing MAb diluted to 10 µg / ml in PBS-T-BSA was added and incubated for 1 hour at 20 ° C. 25 μΐ of biotinylated monoclonal antibody was added without aspiration of the wells, and 10. the mixture was incubated for 20 minutes at 20 ° C. After washing, 50 μΐ of a 1: 2500 dilution of horseradish peroxidase-conjugated avidin (Kem-En-Tec, Denmark) was added and the plates were incubated for 45 minutes at 20 ° C. The substrate, reaction time and absorbance were 15 as described above.

Det biotinylerede MAb blev anvendt ved en brugs fortynding, der resulterede i ca. 75% af absorbansen ved titreringskurvens mætningsniveau. Kurven blev opnået under anvendelse af et fortyndingsmiddel i stedet for det konkurrerende MAb 20 og fortyndingsrækker af det biotinylerede MAb. Graden af et kompetitivt MAb's blokering blev beregnet ud fra formlen (1-A/A0) x 100%, hvor A er middelabsorbansen for 3 brønde med det konkurrerende MAb, og A0 er middelabsorbansen for 8 brønde indeholdende fortyndingsmiddel i stedet for det kon-25 kurrerende MAb.The biotinylated MAb was used at a use dilution resulting in approx. 75% of the absorbance at the saturation level of the titration curve. The curve was obtained using a diluent instead of the competing MAb 20 and dilution rows of the biotinylated MAb. The degree of blocking of a competitive MAb was calculated from the formula (1-A / A0) x 100%, where A is the mean absorbance of 3 wells with the competing MAb and A0 is the mean absorbance of 8 wells containing diluent instead of the conc. competing MAb.

Data for 10 repræsentative monoklonale antistoffer, alle tilhørende IgG^-underklassen, ud af 92 ELISA-positive su-pernatanter er vist i tabellerne 1 og 2.Data for 10 representative monoclonal antibodies, all belonging to the IgG ^ subclass, out of 92 ELISA positive supernatants are shown in Tables 1 and 2.

25 DK 169749 B1 TABEL 1DK 169749 B1 TABLE 1

Karakterisering af 10 repræsentative MAb'erCharacterization of 10 representative MAbs

Hybridan- Repræsentativt Agat C50% Irmiun-blotting gruppe nr. MAb 5 - 1 P3F51 1,2 110 + 2 P3F64 0,4 250 + 3 P3F37 0,7 30 (+) 4 P4F58 0,7 110 + 10 5 P3F22 0,6 35 + 6 P4F46 1,3 55 + 7 P4E38 1,9 40 + 8 P4f55 1,3 33 + 9 P3F50 1,8 315 + 15 10 P3F53 0,9 300 (+) a) angiver middelabsorbansen ved 492 nm ved rnætningsniveau i ELISA.-titreringen.Hybridan Representative Agate C50% Irmiun Blotting Group No. MAb 5 - 1 P3F51 1.2 110 + 2 P3F64 0.4 250 + 3 P3F37 0.7 30 (+) 4 P4F58 0.7 110 + 10 5 P3F22 0, 6 35 + 6 P4F46 1.3 55 + 7 P4E38 1.9 40 + 8 P4f55 1.3 33 + 9 P3F50 1.8 315 + 15 10 P3F53 0.9 300 (+) (a) indicates the mean absorbance at 492 nm at grid level in the ELISA. titration.

26 DK 169749 B1 TABEL 226 DK 169749 B1 TABLE 2

Graden af 10 repræsentative MAb'ers blokering i den kompetitive ELISA.Degree of 10 representative MAbs blocking in the competitive ELISA.

Konkurrerende Biotinyleret detéktor-MAb (% reduktion af Aq3·) MAb (hybri- ------------------------------------------------ 5 domgruppe nr. 123456789 10 P3E51 (1) 92 b P3F64 (2) 95 44 P3F37 (3) 63 95 78 10 P4F58 (4) 91 96 73 P3E22 (5) 71 88 P4F46C (6) 92 90 93 16 P4F38C (7) 93 92 95 27 P4F55C (8) 92 92 95 15 15 P3F50 (9) 16 24 13 84 91 P3F53 (10) 56 83Competitive Biotinylated Detector MAb (% reduction of Aq3 ·) MAb (Hybrid) ---------------------------------- -------------- 5 Judgment Group No. 123456789 10 P3E51 (1) 92 b P3F64 (2) 95 44 P3F37 (3) 63 95 78 10 P4F58 (4) 91 96 73 P3E22 (5 ) 71 88 P4F46C (6) 92 90 93 16 P4F38C (7) 93 92 95 27 P4F55C (8) 92 92 95 15 15 P3F50 (9) 16 24 13 84 91 P3F53 (10) 56 83

Aq 1,43 0,19 0,53 0,80 0,64 0,64 0,85 1,01 0,26 0,52 a) Aq angiver middelabsorbansen med fortyndingsmiddel i stedet for 20 konkurrerende MAb.Aq 1.43 0.19 0.53 0.80 0.64 0.64 0.85 1.01 0.26 0.52 a) Aq indicates the mean absorbance with diluent instead of 20 competing MAb.

b) Ingen blokering (mellem 12% forøgelse og 9% reduktion af Aq) c) De nært beslægtede hybridcmgrupper 6, 7 og 8 blev differentieret ved hjælp af en to-sidet kompetitiv ELISA under anvendelse af et "catching" MAb (netoden er ikke beskrevet). Resultaterne viste, 25 at gruppen 6 var beslægtet med grupperne 3 og 4, gruppe 7 var ikke beslægtet med nogen anden gruppe, og gruppe· 8 var beslægtet med gruppe 1.b) No blocking (between 12% increase and 9% reduction of Aq) c) The closely related hybrid groups 6, 7 and 8 were differentiated by a two-sided competitive ELISA using a catching MAb (net is not described). The results showed that group 6 was related to groups 3 and 4, group 7 was not related to any other group, and group · 8 was related to group 1.

De selekterede hybridomcellelinier blev derefter klonet, indtil de var stabile. De resulterende kloner blev derefter 30 dyrket i "cell factories" (Nunc, Danmark) ved 37°C i RPMI 1640-medium suppleret med 10% FCS og injiceret i en mængde på ca. 5 x 106 celler/mus i Balb/c-mus, hvilket efter en 27 DK 169749 B1 vis inkuberingstid fører til dannelse‘af en tumor i peritoneum i musen, der frigiver store mængder antistof i sin bughulevæske (ca. 5-10 ml indeholdende 5-25 mg/ml).The selected hybridoma cell lines were then cloned until stable. The resulting clones were then grown in "cell factories" (Nunc, Denmark) at 37 ° C in RPMI 1640 medium supplemented with 10% FCS and injected in an amount of approx. 5 x 10 6 cells / mice in Balb / c mice, which after a certain incubation time leads to the formation of a tumor in the mouse peritoneum, which releases large amounts of antibody into its abdominal fluid (about 5-10 ml containing 5-25 mg / ml).

Hybridomcellekultursupernatanterne blev passeret gennem en 5 protein A-agarosesøjle (Kem-En-Tec, Danmark). Bundne antistoffer blev elueret med 0,05M eddikesyre, pH 4,0, eller 0,03M citronsyre, pH 3,0, og straks neutraliseret med en egnet buffer. Oprensede antistoffer blev biotinyleret som beskrevet af Guesdon et al., 1979, (ref. 28).The hybridoma cell culture supernatants were passed through a 5 protein A agarose column (Kem-En-Tec, Denmark). Bound antibodies were eluted with 0.05M acetic acid, pH 4.0, or 0.03M citric acid, pH 3.0, and immediately neutralized with a suitable buffer. Purified antibodies were biotinylated as described by Guesdon et al., 1979, (ref. 28).

10 To hybridomcellelinier, P3F37 og P3F51, der som vist i tabel 1 producerer MAb, blev deponeret den 3. december 198710 Two hybridoma cell lines, P3F37 and P3F51, which, as shown in Table 1, produce MAb, were deposited on December 3, 1987

1 the European Collection of Animal Cell Cultures, Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, GB, under deponeringsnumrene ECACC1 the European Collection of Animal Cell Cultures, Center for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, GB, under the landfill numbers ECACC

15 87120301 og ECACC 87120302.15 87120301 and ECACC 87120302.

EKSEMPEL 2EXAMPLE 2

Kvantificering af PMTQuantification of PMT

Kvantificering af PMT blev udført ved hjælp af en sandwich-ELISA-fremgangsmåde. Sandwich-ELISA'en blev indledt ved en 20 coatning af alle brønde i en mikrotiterplade (96 brønde Immuno Plate II, Nunc, Danmark) med 50 μΐ indeholdende 2 jtig/ml af det monoklonale anti-PMT-antistof, P3F51 (fremstillet i eksempel 1) i 0,05M carbonatbuffer, pH 9,6, i 16 timer ved 4°C og 1 time ved 20°C. Hver brønd blev inkuberet 25 il time med 200 μΐ phosphat-bufret saltvand indeholdende 0,05% Tween 20 og 1% bovint serumalbumin (PBS-T-BSA) . Pladerne kunne opbevares i mindst 6 måneder før tilførsel af 20 /xl/brønd PBS-sorbitol og forsegling med klæbende tape. Analysen blev indledt med to PBS-T-vaskninger efterfulgt af 30 inkubering af 50 μ 1 /brønd opløsninger med formodet indhold af PMT. Opløsningerne blev fortyndet på en hensigtsmæssig måde i PBS-T-BSA og inkuberet i 1 time ved 20°C. Efter 3 28 DK 169749 B1 PBS-T-vaskninger blev hver brønd inkuberet med 50 μΐ af 0/5 /tg/ml af det biotinkonjugerede monoklonale antistof, P3F37, i 1 time ved 20“C efterfulgt af yderligere 3 PBS-T-vaskninger og inkubering med 50 μ 1/brønd af en 1:2500 for-5 tynding af peberrodsperoxidase-konjugeret avidin (Kem-En-Tec, Danmark) i 45 minutter ved 20°C. Sluttelig blev der tilsat 50 /il/brønd af en o-phenylendiamin/H202-opløsning. Reaktionen blev standset med 2M H2SC>4 efter 5 minutter, og absorbansen blev bestemt i et Kontron SLT-210-fotometer 10 (SLT Lab-instr., Zurich, Schweiz) ved 492 nm (ref. 620 nm).Quantification of PMT was performed by a sandwich ELISA method. The sandwich ELISA was initiated by a 20 coating of all wells in a microtiter plate (96 well Immuno Plate II, Nunc, Denmark) at 50 μΐ containing 2 µg / ml of the P3F51 monoclonal anti-PMT antibody (prepared in Example 1). 1) in 0.05M carbonate buffer, pH 9.6, for 16 hours at 4 ° C and 1 hour at 20 ° C. Each well was incubated for 25 µl with 200 μΐ of phosphate buffered saline containing 0.05% Tween 20 and 1% bovine serum albumin (PBS-T-BSA). The plates could be stored for at least 6 months prior to application of 20 µl / well of PBS sorbitol and sealing with adhesive tape. The assay was initiated with two PBS-T washes followed by 30 incubation of 50 μL / well solutions of suspected PMT content. The solutions were appropriately diluted in PBS-T-BSA and incubated for 1 hour at 20 ° C. After 3 28 DK 169749 B1 PBS-T washes, each well was incubated with 50 μΐ of 0/5 / tg / ml of the biotin-conjugated monoclonal antibody, P3F37, for 1 hour at 20 ° C followed by an additional 3 PBS-T washes. and incubation with 50 µl / well of a 1: 2500 pre-thinning of horseradish peroxidase-conjugated avidin (Kem-En-Tec, Denmark) for 45 minutes at 20 ° C. Finally, 50 µl / well of an o-phenylenediamine / H 2 O 2 solution was added. The reaction was quenched with 2M H2SC> 4 after 5 minutes and the absorbance was determined in a Kontron SLT-210 photometer 10 (SLT Lab Instr., Zurich, Switzerland) at 492 nm (ref. 620 nm).

Kalibrering blev udført med en PMT-præparation kvantificeret ved hjælp af aminosyreanalyse (ref. 6), og samtlige kvantitative data er gennemsnit af i det mindste dobbeltbestemmelser.Calibration was performed with a PMT preparation quantified by amino acid analysis (ref. 6), and all quantitative data are averages of at least duplicate determinations.

15 Under anvendelse, af en sandwich-ELISA med MAb P3F51 som "catching" antistof og biotinyleret MAb P3F37 som detek-tionsantistof var det muligt at detektere mindre end 50 pg PMT i en 50 μΐ prøve. PMT ved en koncentration på 1 ng/ml resulterede i en A492 på ca. 0,1 svarende til mere end 8 20 gange baggrundsabsorbansen (jf. figur 1).In use, of a sandwich ELISA with MAb P3F51 as "catching" antibody and biotinylated MAb P3F37 as detection antibody, it was possible to detect less than 50 µg PMT in a 50 µΐ sample. PMT at a concentration of 1 ng / ml resulted in an A492 of approx. 0.1 corresponding to more than 8 20 times the background absorbance (cf. figure 1).

EKSEMPEL 3EXAMPLE 3

Affinitetsoprensning af PMTAffinity purification of PMT

Ca. 100 mg protein A-oprenset MAb P3F51 fremstillet som beskrevet i eksempel 1 blev koblet til 40 ml divinylsulfon-25 agarose (Mini-Leak, Kem-En-Tec, Danmark) som beskrevet af producenten og påsat en søjle (2,5 x 10 cm). Supernatanten vundet ved dyrkning af den toxinogene type D-stamme P. mul-tocida 45/78 blev centrifugeret (12000 x g i 30 minutter ved 4°C) , filtreret (Gelman, 0,45 μία) , blandet med 1/10 vo-30 lumen af 1M Tris-HCl, pH 7,7, og NaCl blev tilsat til 0,5M, før den blev påsat affinitetssøjlen. Gentagne vaskninger før eluering af søjlen blev udført med en 0,1M Tris-HCl- 29 DK 169749 B1 buffer indeholdende første gang 1% Triton® X-100, derefter 1,5M NaCl og sluttelig 0,1M NaCl. Alle vaskebuffere indeholdt 0,1% natriumazid og havde en pH-værdi på 7,8. PMT blev elueret med 0,1M glycin-HCl, pH 2,8, og straks neutra-5 liseret med 1M K2HPO4, pH 9,0.Ca. 100 mg of protein A purified MAb P3F51 prepared as described in Example 1 was coupled to 40 ml of divinylsulfone agarose (Mini-Leak, Kem-En-Tec, Denmark) as described by the manufacturer and loaded on a column (2.5 x 10 cm). The supernatant obtained by growing the toxinogenic type D strain P. mul-tocida 45/78 was centrifuged (12000 xg for 30 minutes at 4 ° C), filtered (Gelman, 0.45 μία), mixed with 1/10 vo-30 lumen of 1M Tris-HCl, pH 7.7, and NaCl was added to 0.5M before being applied to the affinity column. Repeated washes prior to elution of the column were performed with a 0.1M Tris-HCl buffer containing first 1% Triton® X-100, then 1.5M NaCl and finally 0.1M NaCl. All wash buffers contained 0.1% sodium azide and had a pH of 7.8. PMT was eluted with 0.1M glycine HCl, pH 2.8, and immediately neutralized with 1M K2HPO4, pH 9.0.

Forekomsten af PMT i kultursupernatanterne påsat affini-tetssøjlen viste sig ved det ca. 143 kD proteinbånd, som blev påvist ved SDS-PAGE (figur 2). Proteinfarvningsmønsteret i det materiale, der passerer gennem søjlen (dvs.The presence of PMT in the culture supernatants attached to the affinity column was shown by the ca. 143 kD protein bands detected by SDS-PAGE (Figure 2). The protein staining pattern in the material passing through the column (i.e.

10 effluenten) var identisk med det, der påvistes med materiale før påsætning med undtagelse af 143 kD proteinet, som blev tilbageholdt på søjlen. Derfor er det ca. 143 kD proteinbånd den eneste farvning, der iagttages, når proteinsammensætningen af det eluerede materiale visualiseres ved 15 hjælp af SDS-PAGE (figur 2).10 effluent) was identical to that detected with material prior to loading with the exception of the 143 kD protein retained on the column. Therefore, it is approx. 143 kD protein bands are the only staining observed when the protein composition of the eluted material is visualized by SDS-PAGE (Figure 2).

Ca. 2,67 mg ud af de 3,41 mg PMT påsat søjlen blev elueret i et slutvolumen på 8 ml, hvilket resulterede i et udbytte på 78% ved affinitetskromatografi (tabel 3). Stort set alle af de resterende 22% af påsat PMT blev elueret i fraktioner 20 med PMT-koncentrationer under 50 /zg/ml.Ca. 2.67 mg of the 3.41 mg of PMT loaded on the column was eluted in a final volume of 8 ml, resulting in a 78% yield by affinity chromatography (Table 3). Virtually all of the remaining 22% of applied PMT were eluted in fractions 20 with PMT concentrations below 50 µg / ml.

Den specifikke renhed (^g PMT/mg protein) var 284 gange højere i det eluerede materiale end i kultursupematanten (tabel 3).The specific purity (µg PMT / mg protein) was 284 times higher in the eluted material than in the culture supernatant (Table 3).

Den gennemsnitlige minimale dermonekrotiske dosis af affi-25 nitetsoprenset PMT i marsvin efter intradermal injektion og den gennemsnitlige MCD af PMT i embryonale bovine lungeceller (EBL) i den standardiserede EBL-celletest (ref. 29) var henholdsvis ca. 35 ng og 30 pg. LD50 for PMT i Balb/c-mus var 20-40 ng (svarende til ca. 1,5 ^g/kg) og 100 ng 30 (svarende til 0,5 /xg/kg) i Wistar-rotter, idet det blev administreret intraperitonealt i en enkelt dosis.The mean minimum dermonecrotic dose of affinity-purified PMT in guinea pigs after intradermal injection and the mean MCD of PMT in embryonic bovine lung cells (EBL) in the standardized EBL cell test (ref. 29) were respectively. 35 ng and 30 pg. LD50 for PMT in Balb / c mice was 20-40 ng (corresponding to about 1.5 µg / kg) and 100 ng 30 (corresponding to 0.5 µg / kg) in Wistar rats, administered intraperitoneally in a single dose.

30 DK 169749 B1 IRRET i 330 DK 169749 B1 IRRET i 3

Oprensning af ΕΜΓ ved affinitetskromatografiPurification of ΕΜΓ by affinity chromatography

Vol. Protein ΗΜΓ Oprensnings- Genvinding af (ml) (mg) (mg) faktor ΕΜΓ, % 5 - Påsat kultursu-pematant fra P. multocida 45/78 13200 970 3,41 1 100 10 Effluent fra affinitetssøjle 13200 970 <0,01 N.D.a <0,35Vol. Protein ΗΜΓ Purification Recovery of (ml) (mg) (mg) factor ΕΜΓ,% 5 - Applied culture supernatant from P. multocida 45/78 13200 970 3.41 1 100 10 Effluent from affinity column 13200 970 <0.01 NDa <0.35

Elueret materiale 8 N.D. 2,67 284b 78 15 - a) N.D. ikke bestemt b) Estimeret ud fra den forudsætning, at ΕΜΓ i det eluerede materiale er rent.Eluted material 8 N.D. 2.67 284b 78 15 - (a) N.D. not determined b) Estimated on the assumption that ΕΜΓ in the eluted material is pure.

EKSEMPEL 4 20 Etablering af et P. multocida-aenbibliotek i Escherichia coliExample 4 Establishment of a P. multocida monkey library in Escherichia coli

Donorstamme P. multocida-stamme 45/78. Stammen producerer et dermone-krotisk toxin som beskrevet af Foged et al. (ref. 6).Donor strain P. multocida strain 45/78. The strain produces a dermone-crotal toxin as described by Foged et al. (ref. 6).

31 DK 169749 B131 DK 169749 B1

Recipientstammerecipient strain

Escherichia coli K-12-stamme MT102. Genotype: thi. araD139. (araleu)A7697. lacAX74. galU. rpsL. hsdR. Stammen blev konstrueret (af Mogens Trier Hansen, Novo Industri A/S, 5 Danmark) på følgende måde: MC1000Escherichia coli K-12 strain MT102. Genotype: thi. araD139. (Araleu) A7697. lacAX74. galU. rpsL. hsdR. The trunk was constructed (by Mogens Trier Hansen, Novo Industri A / S, 5 Denmark) as follows: MC1000

Pl-transduktion, donor: Sol386P1 transduction, donor: Sol386

Selektion for tetracyclin- / 10 resistens; screening for deo- ψ MT85 ,Pl-transduktion, donor: ν' #804 15 Selektion for deo+ / screening for tetracyclin følsomhed og r^ Λ, MT102Tetracycline / 10 resistance selection; screening for deo- ψ MT85, P1 transduction, donor: ν '# 804 15 Selection for deo + / screening for tetracycline sensitivity and r ^ Λ, MT102

Escherichia coli-stammefortegnelse (samtlige stammer er K-20 12-stammer)Escherichia coli strain inventory (all strains are K-20 12 strains)

SIAMME GENOTYPE REFERENCESIAMME GENOTYPE REFERENCE

TCTiT ih!R KILDETCTiT ih! R SOURCE

MdOOO araD139, Δ (ara-Leu) 7697, AlacX74, galU, a) galK, rpsL.MdOOO araD139, Δ (ara-Leu) 7697, AlacX74, galU, a) galK, rpsL.

25 Søl386 leu. Δ(deoO-deoC), TnlO-6 (91% co-transdu- b) cerbar med deo ΜΓ85 araD139, Δ (ara-leu) 7697, AlacX74, galU, c) galK, rpsL, TnlO-6, Δ (deoO-deoC) #804 met, supF, r-, m+, A(gal-lac) d) 32 DK 169749 B1 b) fra Bente Mygind, Laboratoriet for Biologisk Kara. B, Københavns Universitet, Danmark.25 Silver 386 leu. Δ (deoO-deoC), TnlO-6 (91% co-transducer) detectable with deo ΜΓ85 araD139, Δ (ara-leu) 7697, AlacX74, galU, c) galK, rpsL, TnlO-6, Δ (deoO -deoC) # 804 met, supF, r-, m +, A (gal-lac) d) 32 B 161649 B1 b) from Bente Mygind, Laboratory of Biological Kara. B, University of Copenhagen, Denmark.

c) konstrueret af Mogens Trier Hansen som vist ovenfor, a) Casadaban og Cohen, 1980, (ref. 30).c) constructed by Mogens Trier Hansen as shown above, a) Casadaban and Cohen, 1980, (ref. 30).

5 d) røood, 1966, (ref. 31).5 d) roodood, 1966, (ref. 31).

Medier P. multocida blev dyrket i Tryptic Soy Broth fremskaffet fra DIFCO. E. coli blev dyrket i LB-medium (ref. 27) .Media P. multocida was grown in Tryptic Soy Broth obtained from DIFCO. E. coli was grown in LB medium (ref. 27).

Restriktionsenzymer og T4-DNA-ligase fremskaffet fra New 10 England Biolabs og anvendt ifølge producentens anbefalinger.Restriction enzymes and T4 DNA ligase obtained from New 10 England Biolabs and used according to the manufacturer's recommendations.

DNA-ekstraktionDNA extraction

Med henblik på at isolere kromosomalt DNA fra P. multocida-stamme 45/78 blev celler fra en 250 ml stationær kultur 15 dyrket natten over resuspenderet i 10 ml 50 mM Tris-HCl, pH 8,0, 100 mM EDTA, og inkuberet med 25 mg lysozym i 20 minutter ved 37°C. 2 ml 10% (vægt/volumen) SDS blev sat til blandingen, som blev blandet og sat på is i 10 minutter.In order to isolate chromosomal DNA from P. multocida strain 45/78, cells from a 250 ml stationary culture were grown overnight resuspended in 10 ml of 50 mM Tris-HCl, pH 8.0, 100 mM EDTA, and incubated with 25 mg of lysozyme for 20 minutes at 37 ° C. 2 ml of 10% (w / v) SDS was added to the mixture, which was mixed and put on ice for 10 minutes.

Til opløsningen blev der derefter sat 15 ml phenol mættet 20 ned TE-buffer (10 mM Tris-HCl, pH 8,0, 1 mM EDTA), hvorefter den blev opvarmet til 65°C, blandet forsigtigt og afkølet på is. Efter centrifugering i 30 minutter ved 4000 x g blev den vandige fase ekstraheret med ether og ethanol-præcipiteret, og pelleten blev resuspenderet i TE-25 buffer. DNA'et blev yderligere oprenset ved fremstilling af bånd i en CsCl-densitetsgradient (ref. 27). Efter oprensning blev DNA'et resuspenderet i 1 ml TE-buffer.To the solution was then added 15 ml of phenol saturated 20 down TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA), then heated to 65 ° C, mixed gently and cooled on ice. After centrifugation for 30 minutes at 4000 x g, the aqueous phase was extracted with ether and ethanol precipitated and the pellet resuspended in TE-25 buffer. The DNA was further purified by producing bands in a CsCl density gradient (ref. 27). After purification, the DNA was resuspended in 1 ml of TE buffer.

33 DK 169749 B133 DK 169749 B1

Fremstilling af klonbare DNA-fragmenter 9-22 kilobasepar- (kb) DNA-fragmenter med 5' GATC-udhængende ender blev fremstillet på følgende måde. Kromosomalt DNA fremstillet som beskrevet ovenfor blev delvis nedbrudt ved 5 inkubering med restriktionsendonukleasen Sau3A. Ved bestemte intervaller efter påbegyndelsen af inkuberingen blev fraktioner af inkubationsblandingen standset med 1/20-volumen 0,25M EDTA. En prøve af hver fraktion blev kørt i en 1% agarosegel i TAE-buffer som beskrevet i (ref. 27), og 10 en fraktion indeholdende 4-22 kb-fragmenter blev identificeret . Denne fraktion blev yderligere fraktioneret i en 8 ml sucrosegradient (40-10%) ved påføring af DNA'et i et lag på toppen af gradienten forud for ultracentrifugering ved 41000 omdrejninger pr. minut i 7,5 timer. 0,5 ml sub-15 fraktioner blev ekstraheret, fortyndet med 1 volumen TE-buffer, ethanol-præcipiteret og resuspenderet i TE-buffer.Preparation of cloned DNA fragments 9-22 kilobase pairs (kb) DNA fragments with 5 'GATC-dependent ends were prepared as follows. Chromosomal DNA prepared as described above was partially digested by incubation with the restriction endonuclease Sau3A. At certain intervals after the incubation commenced, fractions of the incubation mixture were stopped with 1/20-volume 0.25M EDTA. A sample of each fraction was run in a 1% agarose gel in TAE buffer as described in (ref. 27), and a fraction containing 4-22 kb fragments was identified. This fraction was further fractionated in an 8 ml sucrose gradient (40-10%) by applying the DNA to a layer at the top of the gradient prior to ultracentrifugation at 41,000 rpm. minute for 7.5 hours. 0.5 ml of sub-15 fractions were extracted, diluted with 1 volume TE buffer, ethanol precipitated and resuspended in TE buffer.

To af disse indeholdende henholdsvis 9-16 og 15-22 kb-fragmenter blev anvendt i de følgende kloningstrin.Two of these containing 9-16 and 15-22 kb fragments, respectively, were used in the following cloning steps.

Kloningsfremgangsmåde 20 9-16 kb- og 15-22 kb-DNA-fragmenter med 5'GATC-overhængende ender blev ligeret med Bell-behandlet pUN121 (referencerne 27 og 19) ved hjælp af T4-DNA-ligase. Insertion af DNA i det unikke Bell-sted i denne vektor fører til inaktivering af cl-genet, der koder for lambda cl-repressoren, som ef-25 terfølgende ikke er i stand til at undertrykke transskription fra plasmid-λ-PL-promotoren ind i tetracyclinresi-stensgenet. De resulterende plasmider blev transformeret til kompetente E. coli MT102-celler som beskrevet i (ref.Cloning Method 20 9-16 kb and 15-22 kb DNA fragments with 5'GATC overhanging ends were ligated to Bell-treated pUN121 (references 27 and 19) by T4 DNA ligase. Insertion of DNA into the unique Bell site of this vector leads to inactivation of the cl gene encoding the lambda cl repressor, which is subsequently unable to suppress transcription from the plasmid λ-PL promoter in the tetracycline resistance gene. The resulting plasmids were transformed into competent E. coli MT102 cells as described in (ref.

27). Positiv selektion for kloner med plasmidinsertioner 30 opnås ved tilsætning af tetracyclin til mediet (10 μg/ml) . Under anvendelse af standardtransformationsteknikker (ref.27). Positive selection for clones with plasmid insertions 30 is obtained by adding tetracycline to the medium (10 μg / ml). Using standard transformation techniques (ref.

27) blev der opnået 3332 tetracyclinresistente rekombinante E.coli-kloner svarende til, at 100% af disse indeholdt in-sertioner, hvorfor de udgjorde et P. multocida-stamme 45/78 35 genbibliotek i E. coli. Kolonier af E. coli-klonerne blev 34 DK 169749 B1 dyrket på LB-plader indeholdende 10 μg/ral tetracyclin. Et skrab af disse kolonier blev opbevaret ved -80°C i en 20% glycerolopløsning.27) 3332 tetracycline-resistant recombinant E. coli clones were obtained, corresponding to 100% of them containing insertions, thus constituting a P. multocida strain 45/78 gene library in E. coli. Colonies of the E. coli clones were grown on LB plates containing 10 μg / ral tetracycline. A scrap of these colonies was stored at -80 ° C in a 20% glycerol solution.

EKSEMPEL 5 5 Identifikation af P. multocida-toxinproducerende E. coli-klonerExample 5 Identification of P. multocida toxin-producing E. coli clones

ScreeninqsprocedureScreeninqsprocedure

Genbiblioteket blev screenet under anvendelse af colony blot-fremgangsmåden til overførsel af kolonier til nitro-10 cellulose (ref. 14).The gene library was screened using the colony blot method for transferring colonies to nitrocellulose (ref. 14).

PMT-producerende kloner blev derefter detekteret ved inku-bering af nitrocelllulosefiltrene på følgende måde: A) 15 minutter i 50 mM Tris, pH 9,6, 150 mM NaCl, 0,05% Tween 20 (vaskebuffer) og 2 ^g/ml DNasel, B) 2 x 10 minutter i va-15 skebuffer uden DNasel, C) 30 minutter i vaskebuffer og 3% gelatine og opvarmning, D) 2 x 10 minutter i vaskebuffer med 1% Triton X-100; E) 60 minutter i en 10-folds fortynding i vaskebuffer af en tidligere beskrevet hybridomsuper-natant P3F51, F) 3 x 5 minutter i vaskebuffer, G) 60 minut-20 ter i vaskebuffer med hele peberrodsperoxidasekonjugerede anti-muse-Ig-antistoffer fra Amersham (NA.931) fortyndet 1:1000, H) 3 x 5 minutter i vaskebuffer, I) 1 minut i 10 mM Na2HP04, 10 mM citronsyre, pH 5,0 (C/P-buffer) og J) ca. 5 minutter i en farveopløsning blandet umiddelbart før anven-25 delse bestående af 80 mg dioctylnatriumsulfosuccinat (DONS), 24 mg 3,3',5,5'-tetrarnethylbenzidin, 10 ml ethanol, 30 ml C/P-buffer og 20 μΐ H202. Enzymreaktionen blev stoppet ved inkubering i 100 mg DONS i 12,5 ml ethanol og 37,5 ml H20.PMT-producing clones were then detected by incubating the nitrocellulose filters as follows: A) 15 minutes in 50 mM Tris, pH 9.6, 150 mM NaCl, 0.05% Tween 20 (wash buffer) and 2 µg / ml DNasel, B) 2 x 10 minutes in wash buffer without DNasel, C) 30 minutes in wash buffer and 3% gelatin and heating, D) 2 x 10 minutes in wash buffer with 1% Triton X-100; E) 60 minutes in a 10-fold dilution in wash buffer of a previously described hybridoma supernatant P3F51, F) 3 x 5 minutes in wash buffer, G) 60 minutes in wash buffer with whole horseradish peroxidase conjugated anti-mouse Ig antibodies from Amersham (NA.931) diluted 1: 1000, H) 3 x 5 minutes in wash buffer, I) 1 minute in 10 mM Na 2 HPO 4, 10 mM citric acid, pH 5.0 (C / P buffer) and J) approx. 5 minutes in a color solution mixed immediately before use consisting of 80 mg of dioctyl sodium sulfosuccinate (DONS), 24 mg of 3.3 ', 5,5'-tetrarnethylbenzidine, 10 ml of ethanol, 30 ml of C / P buffer and 20 μΐ H2 O2 . The enzyme reaction was stopped by incubating in 100 mg of DONS in 12.5 ml of ethanol and 37.5 ml of H 2 O.

30 Følgende kloner viste sig at være positive ved denne fremgangsmåde: SPE 301, 308, 311, 312 og 315.The following clones were found to be positive in this approach: SPE 301, 308, 311, 312 and 315.

35 DK 169749 B1DK 169749 B1

Western blotWestern blot

De positive kloner vundet ved screeningsproceduren blev yderligere analyseret under anvendelse af Western blot-teknikken (ref. 32).The positive clones obtained by the screening procedure were further analyzed using the Western blot technique (ref. 32).

5 I Western blot-proceduren blev l ml af kulturer dyrket natten over pelleteret (6000 x g i 5 minutter) og resuspen-deret i 0,5M Tris-HCl, pH 6,8, 3% SDS, 15% glycerol, 5% mercaptoethanol og bromphenolblåt. Prøverne blev kogt i 5 minutter, før de blev overført til en gel. Proteiner blev 10 adskilt ved hjælp af natriumdodecylsulfatpolyacrylamid-gelelektroforese (SDS-PAGE) (11), idet den adskillende gel bestod af 7% (vægt/volumen) acrylamid (acrylamid/bisacryl-amidforhold på 40:1) i 0,4M Tris, pH 6,8, 0,1% SDS, 0,05% glycerol.In the Western blot procedure, 1 ml of cultures were grown overnight pelleted (6000 xg for 5 minutes) and resuspended in 0.5M Tris-HCl, pH 6.8, 3% SDS, 15% glycerol, 5% mercaptoethanol and bromophenol. The samples were boiled for 5 minutes before being transferred to a gel. Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (11), the separating gel consisting of 7% (w / v) acrylamide (acrylamide / bisacrylamide ratio of 40: 1) in 0.4M Tris, pH 6.8, 0.1% SDS, 0.05% glycerol.

15 Efterfølgende overførsel til nitrocellulosefiltre blev udført i en halvtør elektroblotter som beskrevet af Kyhse-Andersen (25). Yderligere håndtering af filtrene blev udført som beskrevet ovenfor under screeningsproceduren.Subsequent transfer to nitrocellulose filters was performed in a semi-dry electroblotter as described by Kyhse-Andersen (25). Further handling of the filters was performed as described above during the screening procedure.

Resultaterne fremgår af figur 3, som viser et Western blot 20 af de 5 positive kloner.The results are shown in Figure 3, which shows a Western just 20 of the 5 positive clones.

Transformant-stammerne SPE 308 (banerne 2 og 3) og SPE 312 (banerne 5 og 6), der henholdsvis indeholder plasmiderne pSPE 308 og pSPE 312, fandtes at være PMT-producerende, hvorimod SPE 301, SPE 315 og SPE 311 fandtes ikke at pro-25 ducere PMT. Oprenset PMT (bane 8) blev anvendt som kontrol.Transformant strains SPE 308 (lanes 2 and 3) and SPE 312 (lanes 5 and 6) containing plasmids pSPE 308 and pSPE 312, respectively, were found to be PMT producing, whereas SPE 301, SPE 315 and SPE 311 were not found to produce 25 PMT. Purified PMT (lane 8) was used as a control.

Det rekombinante toxin produceret af SPE 308 og SPE 312 udviser de samme egenskaber som det native protein med hensyn til genkendelse i den kompetitive ELISA som beskrevet i eksempel 1; størrelsen og den toxiske aktivitet i EBL-30 testen (ref. 29) er uændrede.The recombinant toxin produced by SPE 308 and SPE 312 exhibits the same properties as the native protein for recognition in the competitive ELISA as described in Example 1; the size and toxic activity of the EBL-30 test (ref. 29) are unchanged.

EKSEMPEL 6 36 DK 169749 B1EXAMPLE 6 36 DK 169749 B1

Restriktionskortlægning og lokalisering af pmt -genetRestriction mapping and localization of the pmt gene

Plasmideme pSPE 308 og pSPE 312 blev analyseret for genkendelsessekvenser for restriktionsenzymer (restriktions-5 steder), idet der blev testet for restriktionssteder for de fleste af de kendte enzymer, der har en 6 basepar- (bp) genkendelsessekvens. Resultaterne er vist i figur 4 (pSPE 308) og figur 5 (pSPE 312). Det fremgår af figurerne, at de to plasmider indeholder en ca. 6 kb-overhængende ende (fra 10 position 11000 til 17000 i pSPE 308). pmt-genet er derfor lokaliseret inden for dette område.Plasmids pSPE 308 and pSPE 312 were analyzed for restriction enzyme recognition sites (restriction sites), testing for restriction sites for most of the known enzymes having a 6 base pair (bp) recognition sequence. The results are shown in Figure 4 (pSPE 308) and Figure 5 (pSPE 312). It can be seen from the figures that the two plasmids contain a ca. 6 kb overhanging end (from 10 position 11000 to 17000 in pSPE 308). The pmt gene is therefore located in this area.

Ved konstruktion af endepunktdeletioner i de overhængende områder i pSPE 308 og pSPE 312 blev pSPE 308-derivateme pSPE 336, pSPE 341, pSPE 344 og pSPE 350 såvel som pSPE 15 312-derivaterne pSPE 338, pSPE 343, pSPE 345, pSPE 347/349 og pSPE 525 konstrueret. Udstrækningerne af de resulterende plasmiderne er vist i figurerne 6 og 7.In constructing endpoint deletions in the imminent regions of pSPE 308 and pSPE 312, the pSPE 308 derivatives pSPE 336, pSPE 341, pSPE 344 and pSPE 350 as well as pSPE 15 312 derivatives pSPE 338, pSPE 343, pSPE 345, pSPE 347/349 and pSPE 525 constructed. The extents of the resulting plasmids are shown in Figures 6 and 7.

Disse plasmider blev transformeret til E. coli-stammen MT102 og analyseret for produktion af PMT ved hjælp af 20 Western blotting som beskrevet ovenfor.These plasmids were transformed into E. coli strain MT102 and analyzed for production of PMT by 20 Western blotting as described above.

I dette Western blot blev et enkelt protein med en tilsyneladende molekylvægt på 125000 dalton påvist. Dette blot er vist i figur 8. Plasmidet pSPE 349, der koder for dette protein, er deleteret fra en region til højre for EcoRl-25 stedet i position 8200 i pSPE 312 (jf. figurerne 5 og 7). Plasmidet pSPE 349's genprodukt angiver derfor pmt-genets position og orientering (vist som skraveret felt i figur 5). Den kodende region begynder ca. 3,3 kb opstrøms for EcoRl-stedet i position 8200 i pSPE 312, dvs. omkring Clal-30 stedet i position 4900. Eftersom den totale kodende region anslås at være ca. 3,9 kb, slutter det strukturelle gen omtrent i position 8800 på kortet vist i figur 5.In this Western blot, a single protein with an apparent molecular weight of 125,000 daltons was detected. This is merely shown in Figure 8. The plasmid pSPE 349 encoding this protein is deleted from a region to the right of the EcoRl-25 site at position 8200 in pSPE 312 (cf. Figures 5 and 7). Therefore, the gene product of plasmid pSPE 349 indicates the position and orientation of the pmt gene (shown as the shaded field in Figure 5). The coding region begins approx. 3.3 kb upstream of the EcoRl site at position 8200 in pSPE 312, i.e. around the Clal-30 site at position 4900. Since the total coding region is estimated to be approx. 3.9 kb, the structural gene ends approximately at position 8800 on the map shown in Figure 5.

EKSEMPEL 7 37 DK 169749 B1EXAMPLE 7 37 DK 169749 B1

Sekventering af prat-genetSequencing of the talk gene

Nukleotidsekvensen indeholdende prat-genet som lokaliseret i eksempel 4 blev bestemt under anvendelse af den af Sanger 5 et al. (ref. 33) beskrevne metode. Sekvensen for 4381 konsekutive bp blev bestemt. Regionens DNA-sekvens er vist i figur 10 (a)-(j), hvori den udledte aminosyresekvens er angivet oven for DNA-sekvensen begyndende i position 219. Methioninkodonen i position 219-221 foretrækkes som start-10 kodon fremfor methioninkodonen i position 213-218 som følge af dens perfekte afstand til det formodede ribosombindings-sted i position 201-210. Regionen indeholdende pmt-genet blev underkastet en mere detaljeret restriktionskortlægning ved en computersøgning for samtlige restriktionssteder for 15 restriktionsenzymer med 6 bp-genkendelsessekvenser.The nucleotide sequence containing the prat gene as located in Example 4 was determined using that of Sanger 5 et al. (ref. 33) described method. The sequence of 4381 consecutive bp was determined. The region's DNA sequence is shown in Figures 10 (a) - (j), wherein the deduced amino acid sequence is indicated above the DNA sequence starting at position 219. The methionine codon at position 219-221 is preferred as the starting codon rather than the methionine codon at position 213. -218 due to its perfect distance to the putative ribosome binding site at position 201-210. The region containing the pmt gene was subjected to more detailed restriction mapping by a computer search for all restriction sites for 15 restriction enzymes with 6 bp recognition sequences.

Resultaterne er angivet i figur 9, som viser en høj grad af konformitet med det tidligere konstruerede restriktionskort .The results are given in Figure 9, which shows a high degree of compliance with the previously constructed restriction board.

EKSEMPEL 8 20 Ekspression af P. multocida-toxin i E. coli Mængden af PMT produceret i forskellige rekombinante E. coli-kloner blev bestemt ved måling af inkorporering af S-35-mærket methionin under anvendelse af den følgende fremgangsmåde. Celler blev dyrket i AB minimal-medium (ref.EXAMPLE 8 Expression of P. multocida toxin in E. coli The amount of PMT produced in various recombinant E. coli clones was determined by measuring the incorporation of S-35-labeled methionine using the following procedure. Cells were grown in AB minimal medium (ref.

25 21) suppleret med 0,2% glucose, 1 /jg/ml thiamin og 50 /ig/ml leucin ved 37°C. Ved en optisk densitet (OD45Q) på 0,6 blev 1 /ul af en 1 mCi/ml S-35-methioninopløsning (fremskaffet fra Amersham, SJ. 1015) tilsat en 1 ml prøve af kulturen ved 37°C. 3 minutter senere blev 50 μΐ af 10 mg/ml umærket 30 methionin tilsat som en "chase", og efter yderligere 3 minutter blev prøven lagt på is. Prøver blev pelleteret 38 DK 169749 B1 (6000 x g i 5 minutter) og resuspenderet i påsætningsbuffer (0,5M Tris-HCl, pH 6,8, 3% SDS, 15% glycerol, 5% mercapto-ethanol, bromphenolblåt). Efterfølgende blev proteiner adskilt i SDS-PAGE som beskrevet i eksempel 5. Ydermere blev 5 gelen tørret og Tinderkastet autoradiografi natten over på en KODAK XAR- 5 - røntgenf i Im. Relative mængder af PMT blev bestemt ved scanning af røntgenfilmen under anvendelse af β- og β'-underenhederne af E. coli-RNA-nolymerase som en reference.21) supplemented with 0.2% glucose, 1 µg / ml thiamine and 50 µg / ml leucine at 37 ° C. At an optical density (OD 45Q) of 0.6, 1 / µl of a 1 mCi / ml S-35 methionine solution (obtained from Amersham, SJ. 1015) was added to a 1 ml sample of the culture at 37 ° C. Three minutes later, 50 μΐ of 10 mg / ml of unlabeled 30 methionine was added as a "chase" and after another 3 minutes the sample was put on ice. Samples were pelleted (6000 x g for 5 minutes) and resuspended in loading buffer (0.5M Tris-HCl, pH 6.8, 3% SDS, 15% glycerol, 5% mercaptoethanol, bromophenol blue). Subsequently, proteins were separated into SDS-PAGE as described in Example 5. In addition, the 5 gel was dried and thinned autoradiography overnight on a KODAK XAR-5 X-ray im. Relative amounts of PMT were determined by scanning the X-ray film using the β and β 'subunits of E. coli RNA polymerase as a reference.

10 Rekombinante kloner testet på denne måde var MT102-stammer indeholdende henholdsvis plasmidet pSPE 312, pSPE 525 (vist i figur 11) og pSPE 481 (vist i figur 12). Plasmidet pSPE 481 omfatter 7 kb-PstI-fragmentet af pSPE 525 ligeret til et 1,3 kb-PstI-fragment af plasmidet pPL 195, der indehol-15 der en del af ampicillinresistensgenet og lambda-PL-promo-toren og operatorregionen. pPL 195 blev konstrueret ved insertion af pUC8 EcoRI-Hindlll-polylinker (ref. 33) i en EcoRI og HindiII skåret PLc28-vektor (ref. 34). Det resulterende plasmid pSPE 481 indeholder lambda-PL-promotoren, 20 der transskriberer ind i pint-genet.10 Recombinant clones tested in this way were MT102 strains containing the plasmid pSPE 312, pSPE 525 (shown in Figure 11) and pSPE 481 (shown in Figure 12, respectively). Plasmid pSPE 481 comprises the 7 kb PstI fragment of pSPE 525 ligated to a 1.3 kb PstI fragment of plasmid pPL 195 containing a portion of the ampicillin resistance gene and the lambda PL promoter and operator region. pPL 195 was constructed by inserting pUC8 EcoRI-HindIII polylinker (ref. 33) into an EcoRI and HindiII cut PLc28 vector (ref. 34). The resulting plasmid pSPE 481 contains the lambda PL promoter, which transcribes into the pint gene.

DK 169749 B1 UMBEL 4 33 Målte ΕΜΓ-mængder i rekorrfoinante E.coli-kloner SPE 312 SPE 525 SPE 481DK 169749 B1 UMBEL 4 33 Measured ΕΜΓ amounts in recombinant E.coli clones SPE 312 SPE 525 SPE 481

Mblékyler/celle <500 3000-4000 12000-15000 5 Data anvendt i beregningerne ovenfor β β' ΕΜΓMblecyls / cell <500 3000-4000 12000-15000 5 Data used in the calculations above β β 'ΕΜΓ

Mfethioninindhold (%) 2,76 2,56 2,80 (23) (24)Mfethionine content (%) 2.76 2.56 2.80 (23) (24)

Størrelse (kD) 150 155 146,5 10 (23) (24)Size (kD) 150 155 146.5 10 (23) (24)

Molékyler/celle 4500 4500 (ved 2,5-3 generationer/time) (25) (25)Molecules / cell 4500 4500 (at 2.5-3 generations / hour) (25) (25)

Endvidere blev indholdet af PMT i SPE 481 målt under an-15 vendelse af den følgende fremgangsmåde. En 100 ml kultur med en optisk densitet (OD450) på 5 blev pelleteret (6000 x g i 5 minutter) og resuspenderet i 10 ml 50 mM Tris-HCl pH 7,0. Supernatanten, som ikke indeholdt PMT, blev bortkastet, og de høstede celler blev åbnet ved hjælp 20 af sonikering. PMT blev derefter yderligere oprenset på en anionbyttersøjle som beskrevet i ref. 6. Den oprensede PMT blev derefter underkastet en kvantitativ ELISA som beskrevet i eksempel 2, hvorved der blev fundet en estimeret mængde på 2-5 mg PMT pr. ml kulturvæske.Furthermore, the content of PMT in SPE 481 was measured using the following procedure. A 100 ml culture with an optical density (OD450) of 5 was pelleted (6000 x g for 5 minutes) and resuspended in 10 ml of 50 mM Tris-HCl pH 7.0. The supernatant, which did not contain PMT, was discarded and the harvested cells were opened by sonication. The PMT was then further purified on an anion exchange column as described in ref. 6. The purified PMT was then subjected to a quantitative ELISA as described in Example 2, whereby an estimated amount of 2-5 mg PMT per ml was found. ml of culture fluid.

25 Escherichia coli K-12-stammen MT102 indeholdende plasmidet pSPE 481 blev deponeret den 21. marts 1988 i overensstemmelse med Budapest Konventionen i Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH under stammebetegnel- 40 DK 169749 B1 sen Escherichia coli K-12 SPE 481. Deponeringsnummeret er DSM 4488.25 Escherichia coli K-12 strain MT102 containing the plasmid pSPE 481 was deposited on March 21, 1988 in accordance with the Budapest Convention of the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH under strain designation 40 DK 169749 B1 late Escherichia coli K-12 SPE 481. is DSM 4488.

EKSEMPEL 9EXAMPLE 9

Produktion og karakterisering af toxinderivater 5 Følgende derivater af toxin-kodende plasmider blev konstrueret med det formål at fremstille trunkerede, dvs. detoxi-ficerede, toxiner, som er potentielt nyttige til immunogene formål. Konstruktionerne blev fremstillet på basis af de i eksemplerne 6 og 7 beskrevne restriktionskortlægninger. De 10 hypotetiske toxinafledte proteiner produceret ud fra plas-miderne pSPE A til pSPE Q, proteinerne A-R, er vist i figur 13. Samtlige derivater blev udtrykt optimalt fra de respektive plasmider i stamme SG 21059, stillet til rådighed af Susan Gottesmann. Den kendte genotype for denne stamme er 15 Aqal lon!46::ATnlQ Alac.Production and Characterization of Toxin Derivatives 5 The following derivatives of toxin-coding plasmids were constructed for the purpose of producing truncated, i.e. detoxified, toxins which are potentially useful for immunogenic purposes. The constructs were prepared on the basis of the restriction mapping described in Examples 6 and 7. The 10 hypothetical toxin-derived proteins produced from plasmids pSPE A to pSPE Q, proteins A-R, are shown in Figure 13. All derivatives were optimally expressed from the respective plasmids in strain SG 21059 provided by Susan Gottesmann. The known genotype for this strain is 15 Aqal lon! 46 :: ATnlQ Alac.

1) pSPE A. Plasmidet blev konstrueret ved at skære pSPE 481 med restriktionsenzymet Stul forud for ligering. Denne deletion fremkalder et læserammeskift. Imidlertid kunne der som beskrevet nedenfor påvises et PMT-derivat i såvel 20 Western blotting som i EBL-toxicitetstesten. Dette kunne skyldes en ringe grad af fejlagtig rammeskift i translationsprocessen. Se figur 13.1) pSPE A. The plasmid was constructed by cutting pSPE 481 with the restriction enzyme Chair prior to ligation. This deletion induces a reading frame shift. However, as described below, a PMT derivative could be detected in both Western blotting and in the EBL toxicity test. This could be due to a slight degree of incorrect frame change in the translation process. See Figure 13.

2) pSPE B. Plasmidet blev konstrueret ved at skære pSPE 481 med restriktionsenzymet Xbal forud for ligering. Plasmidet 25 koder for et hypotetisk PMT-derivat på ca. 108 kD, idet derivatet mangler aminosyrerne 169-468 i PMT. Se figur 13.2) pSPE B. The plasmid was constructed by cutting pSPE 481 with the restriction enzyme XbaI prior to ligation. Plasmid 25 encodes a hypothetical PMT derivative of ca. 108 kD, the derivative lacking amino acids 169-468 in PMT. See Figure 13.

3) pSPE C. Plasmidet blev konstrueret ved at skære pSPE 481 med restriktionsenzymet Ndel forud for ligering. Denne deletion fremkalder et læserammeskift. Der kunne imidlertid 30 som beskrevet nedenfor detekteres et PMT-derivat i små mængder. Dette kunne skyldes fejlagtigt rammeskift i translationsprocessen. Se figur 13.3) pSPE C. The plasmid was constructed by cutting pSPE 481 with the restriction enzyme Ndel prior to ligation. This deletion induces a reading frame shift. However, as described below, a PMT derivative could be detected in small amounts. This could be due to erroneous frame shifts in the translation process. See Figure 13.

41 DK 169749 B1 4) pSPE D. Plasmidet blev konstrueret' ved at skære pSPE 481 med restriktionsenzymerne Ndel og SnaBI og efterfølgende at gøre de resulterende ender stumpe under anvendelse af T4-polymerase (fremskaffet fra New England Biolabs) som be-5 skrevet af producenten forud for ligering. Denne deletion forårsager et læserammeskift. Der kunne imidlertid som beskrevet nedenfor påvises et PMT-derivat i små mængder.4) pSPE D. The plasmid was constructed by cutting pSPE 481 with the restriction enzymes Ndel and SnaBI and subsequently blunting the resulting ends using T4 polymerase (obtained from New England Biolabs) as described by the manufacturer prior to ligation. This deletion causes a reading frame shift. However, as described below, a PMT derivative could be detected in small amounts.

Dette kunne skyldes fejlagtigt rammeskift i translationsprocessen. Se figur 13.This could be due to erroneous frame shifts in the translation process. See Figure 13.

10 5) pSPE E. Plasmidet blev konstrueret ved at skære pSPE 481 med restriktionsenzymet HindiII forud for ligering. Plasmidet koder for et hypotetisk PMT-derivat på ca. 53 kD, denne deletion fremkalder et læserammeskift. Se figur 13.5) pSPE E. The plasmid was constructed by cutting pSPE 481 with the restriction enzyme HindiII prior to ligation. The plasmid encodes a hypothetical PMT derivative of ca. 53 kD, this deletion induces a reading frame shift. See Figure 13.

6) pSPE F. Plasmidet blev konstrueret ved at skære pSPE 312 15 med restriktionsenzymet Hindlll forud for -ligering. Ligesom pSPE E koder dette plasmid for et hypotetisk PMT-derivat på ca. 53 kD. Se figur 13.6) pSPE F. The plasmid was constructed by cutting pSPE 312 with the restriction enzyme HindIII prior to ligation. Like pSPE E, this plasmid encodes a hypothetical PMT derivative of ca. 53 kD. See Figure 13.

7) pSPE G. Plasmidet blev konstrueret ved at skære pSPE 481 med restriktionsenzymerne SnaBI og Xhol og efterfølgende at 20 gøre de resulterende ender stumpe som ovenfor forud for li-gering. Plasmidet koder for et hypotetisk PMT-derivat på ca. 135 kD, idet derivatet mangler aminosyrerne 507-568 i PMT. Se figur 13.7) pSPE G. The plasmid was constructed by cutting pSPE 481 with the restriction enzymes SnaBI and XhoI and subsequently blunting the resulting ends as above prior to alloying. The plasmid encodes a hypothetical PMT derivative of ca. 135 kD, with the derivative lacking amino acids 507-568 in PMT. See Figure 13.

8) pSPE H. Plasmidet blev konstrueret ved at skære pSPE 481 25 med restriktionsenzymerne SnaBI og Spel og efterfølgende at gøre de resulterende ender stumpe som ovenfor forud for li-gering. Plasmidet koder for et hypotetisk PMT-derivat på ca. 88 kD, idet derivatet mangler aminosyrerne 569-1058 i PMT. Se figur 13.8) pSPE H. The plasmid was constructed by cutting pSPE 481 with the restriction enzymes SnaBI and Spel and subsequently blunting the resulting ends as above prior to ligation. The plasmid encodes a hypothetical PMT derivative of ca. 88 kD, the derivative lacking amino acids 569-1058 in PMT. See Figure 13.

30 9) pSPE I. Plasmidet blev konstrueret ved at skære pSPE 481 med restriktionsenzymet Nsil forud for ligering. Plasmidet koder for et hypotetisk PMT-derivat på ca. 79 kD, idet derivatet mangler aminosyrerne 634-1204 i PMT. Se figur 13.9) pSPE I. The plasmid was constructed by cutting pSPE 481 with the restriction enzyme Nsil prior to ligation. The plasmid encodes a hypothetical PMT derivative of ca. 79 kD, with the derivative lacking amino acids 634-1204 in PMT. See Figure 13.

42 DK 169749 B1 10) pSPE J. Plasmidet blev konstrueret ved at skære pSPE 312 med restriktionsenzymet Nsil forud for ligering. Plasmidet koder for et hypotetisk PMT-derivat på ca. 70 kD. Se figur 13.42) The plasmid was constructed by cutting pSPE 312 with the restriction enzyme Nsil prior to ligation. The plasmid encodes a hypothetical PMT derivative of ca. 70 kD. See Figure 13.

5 11) pSPE K. Plasmidet blev konstrueret ved at skære pSPE11) pSPE K. The plasmid was constructed by cutting pSPE

481 med restriktionsenzymet Spel og gøre de resulterende ender stumpe som ovenfor forud for ligering. Plasmidet koder for et hypotetisk PMT-derivat på ca. 117 kD. Se figur 13.481 with the restriction enzyme Spel and blunt the resulting ends as above prior to ligation. The plasmid encodes a hypothetical PMT derivative of ca. 117 kD. See Figure 13.

10 12) pSPE L. Plasmidet blev konstrueret ved at skære pSPE12) pSPE L. The plasmid was constructed by cutting pSPE

312 med restriktionsenzymet EcoRI forud for ligering. Plasmidet koder for et hypotetisk PMT-derivat på ca. 124 kD. Se figur 13.312 with the restriction enzyme EcoRI prior to ligation. The plasmid encodes a hypothetical PMT derivative of ca. 124 kD. See Figure 13.

13) pSPE O. Plasmidet blev konstrueret ved delvis at skære 15 non-methyleret pSPE 481 med restriktionsenzymet Bell forud for ligering. Plasmidet koder for et hypotetisk PMT-derivat på 133 kD, idet derivatet mangler aminosyreme 30-150 i PMT. Se figur 13.13) pSPE O. The plasmid was constructed by partially cutting 15 non-methylated pSPE 481 with the restriction enzyme Bell prior to ligation. The plasmid encodes a hypothetical 133 kD PMT derivative, missing the amino acids 30-150 in PMT. See Figure 13.

14) pSPE p. Plasmidet blev konstrueret ved at skære pSPE14) pSPE p. The plasmid was constructed by cutting pSPE

20 481 med restriktionsenzymet Spel, med efterfølgende be handling med exonukleasen Bal31, skæring med EcoRI og sluttelig behandling med DNA-polymerase I Klenow-fragment under tilstedeværelse af samtlige 4 deoxyribonukleotider forud for ligering. Plasmidet koder for et hypotetisk PMT-derivat 25 på ca. 136 kD, idet derivatet mangler aminosyrerne 1043-1130 i PMT. Se figur 13.20 481 with the restriction enzyme Spel, with subsequent treatment with the exonuclease Bal31, cutting with EcoRI and final treatment with DNA polymerase I Klenow fragment in the presence of all 4 deoxyribonucleotides prior to ligation. The plasmid encodes a hypothetical PMT derivative 25 of ca. 136 kD, the derivative missing amino acids 1043-1130 in PMT. See Figure 13.

15) pSPE Q. Plasmidet blev konstrueret fra et derivat af pSPE 481, pSPE 680. pSPE 680 blev konstrueret ved at skære pSPE 481 med restriktionsenzymerne BamHI og Clal og be- 30 handling med DNA-polymerase I Klenow-fragment under tilstedeværelse af samtlige 4 deoxynukleotider forud for ligering. pSPE Q blev efterfølgende konstrueret ved at skære pSPE 680 med EcoRV forud for ligering. Plasmidet koder for 43 DK 169749 B1 et hypotetisk PMT-derivat på 127 kD, idet derivatet mangler aminosyrerne 175-246 i PMT.15) pSPE Q. The plasmid was constructed from a derivative of pSPE 481, pSPE 680. pSPE 680 was constructed by cutting pSPE 481 with the restriction enzymes BamHI and Clal and treating with DNA polymerase I Klenow fragment in the presence of all 4 deoxynucleotides prior to ligation. pSPE Q was subsequently constructed by cutting pSPE 680 with EcoRV prior to ligation. The plasmid encodes a hypothetical PMT derivative of 127 kD for the derivative, lacking amino acids 175-246 in PMT.

16) pSPE R. Plasmidet blev konstrueret ved at skære pSPE 481 med restriktionsenzymerne Spel og EcoRI og gøre de re-5 suiterende ender stumpe som beskrevet ovenfor forud for ligering. Det resulterende plasmid koder for et hypotetisk PMT-derivat på ca. 117 kD. Se figur 13.16) pSPE R. The plasmid was constructed by cutting pSPE 481 with the restriction enzymes Spel and EcoRI and blunting the reducing ends as described above prior to ligation. The resulting plasmid encodes a hypothetical PMT derivative of ca. 117 kD. See Figure 13.

Udvalgte derivaters reaktivitet med et panel af monoklonale anti-PMT-antistoffer blev undersøgt ved hjælp af sandwich-10 ELISA7er baseret på detektion med non-kompetitive kombinationspar af monoklonale antistoffer. Ved hjælp af denne metode blev for hvert derivat bestemt en antigen-kode (Ag-kode), dvs. et udtryk, der angiver epitop-differencen for derivatet i forhold til PMT.Reactivity of selected derivatives with a panel of anti-PMT monoclonal antibodies was investigated by sandwich ELISA7s based on detection with non-competitive combination pairs of monoclonal antibodies. By this method, for each derivative, an antigen code (Ag code), i.e. an expression indicating the epitope difference for the derivative relative to PMT.

15 Den mindste dosis med cytopatisk effekt (MCD) på 120 μΐ af 1,5 x 105 embryonale bovine lungeceller blev målt for nogle affinitetsoprensede PMT-derivater.15 The smallest cytopathic dose (MCD) dose of 120 μΐ of 1.5 x 10 5 embryonic bovine lung cells was measured for some affinity-purified PMT derivatives.

Resultaterne af de to forsøg er vist i den følgende tabel (tabel 5).The results of the two experiments are shown in the following table (Table 5).

20 TABEL 5TABLE 5

Derivat L 0 P B* C* G*Derivative L 0 P B * C * G *

Ag-kode ΕΜΓ-α ΊΜΐ-β ΊΜΓ-β ΕΜΓ-γ ΡΜΓ-γ ΕΜΓ MCD (ng) 250 30000 5 n.d. n.d. n.d.Ag code ΕΜΓ-α ΊΜΐ-β ΊΜΓ-β ΕΜΓ-γ ΡΜΓ-γ ΕΜΓ MCD (ng) 250 30000 5 n.d. n.d. n.d.

25 * ikke affinitetsoprensede (sonikater) n.d.: ikke udført25 * not affinity purified (sonicates) n.d .: not performed

Antigen-koden "PMT" angiver, at derivatet reagerer indifferent i forhold til PMT ved sandwich-ELISA, dvs. samtlige epitoper karakteriseret ved hjælp af panelet af monoklonale 30 antistoffer, som er til stede på PMT, kan detekteres på de- 44 DK 169749 B1 rivatet. Ag-koden "PMT-x", hvor x er a, β eller 7, angiver, at de monoklonale antistoffer, der reagerer med epitop x på PMT, ikke reagerer med derivatet. Resultaterne af disse forsøg viser, at epitop a mangler på derivat L, β mangler 5 på 0 og P, og 7 mangler på B og C.The antigen code "PMT" indicates that the derivative reacts inert to the PMT by sandwich ELISA, ie. all epitopes characterized by the panel of monoclonal antibodies present on PMT can be detected on the derivative. The Ag code "PMT-x", where x is α, β or 7, indicates that the monoclonal antibodies that react with epitope x on PMT do not react with the derivative. The results of these experiments show that epitope α lacks derivative L, β lacks 5 of 0 and P, and 7 lacks B and C.

MCD for PMT er ca. 0,01-0,03 ng, og det er derfor klart, at de ovennævnte derivater L og 0 er praktisk taget non-cyto-patiske i sammenligning med PMT, hvorimod P udviser nogen tilbageværende cytopatisk aktivitet.The MCD for PMT is approx. 0.01-0.03 ng, and it is therefore clear that the aforementioned derivatives L and 0 are practically non-cytopathic in comparison to PMT, whereas P exhibits some residual cytopathic activity.

10 Der blev fremstillet et Western blot under anvendelse af et muse-anti-PMT-antiserum fremstillet som beskrevet i eksempel 1 og under anvendelse af helt peberrodsperoxidase-ka-nin-anti-muse Ig-antistof (fremskaffet fra Amersham) som det sekundære antistof. Stammer indeholdende plasmiderne 15 pSPE A, B, C, D, E, G, Η, I og L viste sig at reagere med anti-PMT-antiserum (jf. figur 14).A Western blot was prepared using a mouse anti-PMT antiserum prepared as described in Example 1 and using whole horseradish peroxidase rabbit anti-mouse Ig antibody (obtained from Amersham) as the secondary antibody. . Strains containing the plasmids 15 pSPE A, B, C, D, E, G, Η, I and L were found to react with anti-PMT antiserum (see Figure 14).

Museforsøg med henblik oå belysning af O-derivatets immunogene effektMouse experiments to elucidate the immunogenic effect of the O derivative

Formål 20 At undersøge PMT's immunogene effekt efter deletion i den N-terminale ende (O-derivat).Objective 20 To investigate the immunogenic effect of PMT after deletion at the N-terminal end (O derivative).

FremgangsmådeCourse of action

Til forsøgene anvendtes Balb/c-mus. Kønsmodne hunmus blev immuniseret subkutant 2 gange med 14 dages interval med 25 0,3 ml O-derivat (2,5-5 /tg/ml) i 20% Alhydrogel (jf. ek sempel 12) i PBS + 0,1% nul-museserum.Balb / c mice were used for the experiments. Mature female mice were immunized subcutaneously 2 times at 14 day intervals with 0.3 ml of O-derivative (2.5-5 / µg / ml) in 20% Alhydrogel (cf. Example 12) in PBS + 0.1% zero. -museserum.

Samtidig med den første vaccination blev hunmusene parret. Derfor fandt den anden vaccination sted ca. 1 uge før forventet fødsel.At the time of the first vaccination, the female mice were mated. Therefore, the second vaccination took place approx. 1 week before expected birth.

45 DK 169749 B1 1) Ca. 10 dage gamle blev museungerne delt i 2 grupper. Halvdelen blev dryppet intranasalt med PMT (ialt 60 ng PMT), den anden halvdel blev injiceret intraperitone-alt (i.p.) med PMT i forskellige koncentrationer. An- 5 tallet af døde dyr blev registreret.45 DK 169749 B1 1) Approx. At 10 days old, the mouse cubs were divided into 2 groups. Half were dosed intranasally with PMT (total 60 ng PMT), the other half injected intraperitone-total (i.p.) with PMT at various concentrations. The number of dead animals was recorded.

2) Samtlige voksne hunmus blev tappet efter aflivning af de overlevende museunger. Blodprøverne blev analyseret ved ELISA som beskrevet i eksempel 13 for tilstedeværelse af antistoffer mod PMT. Umiddelbart efter udtag- 10 ning af blodprøver blev musene injiceret i.p. med for skellige koncentrationer af PMT. Antallet af døde dyr blev registreret.2) All adult female mice were tapped after killing of the surviving mouse pups. The blood samples were analyzed by ELISA as described in Example 13 for the presence of antibodies against PMT. Immediately after taking blood samples, the mice were injected i.p. with different concentrations of PMT. The number of dead animals was recorded.

Skematisk forsøgsplanSchematic experimental plan

Forsøgsuge, nr.Experimental Week, no.

15 - 3 - 31 Balb/c-hunmus blev parret og efterfølgende immuniseret med O-derivat - 2 - 20 - 1 - 31 Balb/c-hunrnus blev immuniseret anden gang med O-derivat 0-31 hunmus fødte 122 museunger 25 1 - museungerne blev delt i gruppe I (61), som blev behandlet intranasalt med PMT; grippe II (61), scm blev behandlet i.p. med ΕΜΓ 2 - overlevende museunger blev aflivet 30 Balb/c-hunrnus blev tappet15 - 3 - 31 Balb / c female mice were mated and subsequently immunized with O-derivative - 2 - 20 - 1 - 31 Balb / c female mice were immunized a second time with O-derivative 0-31 female mice gave birth to 122 mouse cubs 25 1 - the mouse cubs were divided into group I (61), which was treated intranasally with PMT; grip II (61), scm was treated i.p. with ΕΜΓ 2 - surviving mouse cubs killed 30 Balb / c female noses were dropped

Balb/c-hunmus blev injiceret i.p. med ΕΜΓ 3 - antal overlevende Balb/c-hunmus blev registreret, og dyrene blev aflivet 35Female Balb / c mice were injected i.p. with ΕΜΓ 3 - the number of surviving Balb / c female mice was recorded and the animals were killed 35

Forseg afsluttetSeal completed

Resultaterne er vist i tabellerne 6 og 7.The results are shown in Tables 6 and 7.

LD75 i ikke-beskyttede museunger var ca. 20 ng PMT injice-40 ret i.p.LD75 in unprotected mouse cubs was approx. 20 ng of PMT injected 40 ret i.p.

46 DK 169749 B1 LD50 i ikke-beskyttede voksne mus var ca. 70 ng PMT injiceret i.p.In non-protected adult mice, the LD50 was approx. 70 ng of PMT injected i.p.

Konklusionconclusion

Det kan konkluderes, at mus født af mødre vaccineret med 0-5 derivat-vaccine i de beskrevne doser kan overleve i.p. injektion af mindst 25 x LD50 PMT. Beskyttelsen opnås via antistoffer overført med colostrum fra moder til afkom.It can be concluded that mice born of mothers vaccinated with 0-5 derivative vaccine at the doses described can survive i.p. injection of at least 25 x LD50 PMT. Protection is achieved via antibodies transferred with colostrum from mother to offspring.

Det kan ydermere konkluderes, at O-derivat-vaccinerede dyr udvikler antistoffer mod PMT, selv om nogen variation iagt-10 tages. Musene kan overleve i.p.-injektion af mindst 50 x LD50 PMT.Furthermore, it can be concluded that O-derivative-vaccinated animals develop antibodies to PMT, although some variation is observed. The mice can survive i.p. injection of at least 50 x LD50 PMT.

Mus vaccineret med O-derivat kan således overføre en betydelig beskyttelse mod PMT til afkommet via colostrum.Thus, mice vaccinated with O-derivative can transfer significant protection against PMT to the offspring via colostrum.

Musene selv udvikler antistoffer mod PMT og er beskyttede 15 mod endog høje koncentrationer af PMT.The mice themselves develop antibodies to PMT and are protected against even high concentrations of PMT.

47 DK 169749 B147 DK 169749 B1

tPtP

c o O ^ "Sf O \ \ vd s* mc o O ^ "Sf O \ \ vd s * m

pHpH

tPtP

c O 'ί' O \ o ro ooc O 'ί' O \ o ro oo

CC

S' O COS 'O CO

S o \ \S o \ \

CO O H CMCO O H CM

OISLAND

> _> _

cr> Scr> S

CO C 9 Pn £3 CT*CO C 9 Pn £ 3 CT *

g o 'i* fe Cg o 'i * fe C

o \ < „ “ i? H CN O ^ ° ^ n LO CO 'tf c-| CO ~ l" g 0) g « H tn S g1o \ <"" i? H CN O ^ ° ^ n LO CO 'tf c- | CO ~ l "g 0) g« H tn S g1

•r C tr> M• r C tr> M

0 CD C H Φ ft H ^ _ d fe H O \ ^ β _0 CD C H Φ ft H ^ _ d fe H O \ ^ β _

Eli {ti O O JS (0 r- 1 A co g ^ o \ ° £ g 3 S °Eli {ti O O JS (0 r- 1 A co g ^ o \ ° £ g 3 S °

w g & gj |Jw g & gj | J

co S g * C ^ ^ fe O ° \ _ O &1co S g * C ^^ fe O ° \ _ O & 1

μ] Λ ft) LD I-H fj (DCµ] Λ ft) LD I-H fj (DC

fe CO Ό γί Km^oSSfe CO Ό γί Km ^ oSS

g g g1 «, g § £ S < \ s § s g f ,, s h ° ° ig g g1 «, g § £ S <\ s § s g f ,, s h ° ° i

ω S tn B h Bω S tn B h B

g c +„ « I »g c + "" I "

B § ° 1 gg. IB § ° 1 gg. IN

C CN iH Eh ^ ^C CN iH Eh ^^

S Φ r* <DS Φ r * <D

H u fe o \ u O Η Η Η H W 5° ^ u cd e g ε ·π > H ·£ . "7 ^ c o 3, a. ι ί ·.H u fe o \ u O Η Η Η H W 5 ° ^ u cd e g ε · π> H · £. "7 ^ c o 3, a. Ι ί ·.

fe O O * S ^ n H fe <0 m in m a W Cn a »> *> ^ · wc · O <N -Η CO 0\\*1"1fe O O * S ^ n H fe <0 m in m a W Cn a »> *> ^ · wc · O <N -Η CO 0 \\ * 1" 1

<; H ro o o H<; H ro o o H

g (C «5 M +J +| S u c g co ~ O CO ^ « w +* \ S' , \ ^ H o'ior-vo'.oo cn C+ m P ^ VD es o OH c 5* 2 .....* - g o\ g I^CcdoHHHH eso Ό 5g (C «5 M + J + | S ucg co ~ O CO ^« w + * \ S ', \ ^ H o'ior-vo'.oo cn C + m P ^ VD es o OH c 5 * 2. .... * - go \ g I ^ CcdoHHHH eso Ό 5

•s "S• s "S

Ό Ό Φ H S' d Γ0 "© <0S Ό Φ H S 'd Γ0 "© <0

in +* co -Pin + * co -P

ViHCSroC tø h cs co CViHCSroC tø h cs co C

o < o < fe + fe + 48 DK 169749 B1 EKSEMPEL 10EXAMPLE 10

Differentiering mellem PMT+- og PMT"-stammer ved PMT-ELISADifferentiation between PMT + and PMT strains by PMT-ELISA

615 kliniske isolater og 7 reference-stammer af P. multoci-da blev undersøgt. De kliniske isolater blev opnået fra 5 næsesvaberprøver (603 isolater) og lunger (12 isolater) af svin fra 156 danske besætninger og blev identificeret på grundlag af følgende kriterier: syreproduktion ud fra glucose, saccharose, mannitol, sorbitol og ikke ud fra maltose, arabinose, dulcitol og inositol; og produktion af in-10 dol, ornithindecarboxylase, katalase, oxidase og ikke ure-ase.615 clinical isolates and 7 reference strains of P. multoci-da were examined. The clinical isolates were obtained from 5 nasal swab samples (603 isolates) and lungs (12 isolates) of pigs from 156 Danish herds and were identified on the basis of the following criteria: acid production from glucose, sucrose, mannitol, sorbitol and not from maltose, arabinose , dulcitol and inositol; and production of indole, ornithine decarboxylase, catalase, oxidase and non-ureic acid.

Ekstrakter til toxinanalyser blev fremstillet ved høstning af kulturer dyrket på blodagar (9 cm Petri-skål) natten over (37°C) i 2 ml sterilt vand ved hjælp af en spatel.Extracts for toxin assays were prepared by harvesting cultures grown on blood agar (9 cm Petri dish) overnight (37 ° C) in 2 ml of sterile water using a spatula.

15 Suspensionerne lodes henstå til ekstraktion ved 37°C i ca.The suspensions were allowed to extract at 37 ° C for approx.

18 timer. Én del af ekstrakten blev undersøgt direkte ved hjælp af PMT-ELISA som beskrevet i eksempel 2. Alle absor-banser (A) blev udtrykt som procentdele af den absorbans, der blev vist ved en positiv kontrol (Ag) . Kontrollen var 20 en 1:1-fortynding af en til hver test frisk fremstillet ekstrakt af den toxinogene type D-reference-stamme P. mul-tocida ssp. multocida 45/78.18 hours. One portion of the extract was examined directly by PMT-ELISA as described in Example 2. All absorbances (A) were expressed as percentages of the absorbance shown by a positive control (Ag). The control was a 1: 1 dilution of a freshly prepared extract of the toxinogenic type D reference strain P. mul-tocida ssp. Multocida 45/78 for each test.

En anden del blev centrifugeret (30 minutter ved 1500 x g), supematanten sterilfiltreret og efterfølgende undersøgt i 25 EBL-celletesten som tidligere beskrevet (referencerne 22 og 29) .Another part was centrifuged (30 min at 1500 x g), the supernatant filtered sterile and subsequently examined in the 25 EBL cell assay as previously described (references 22 and 29).

De 615 kliniske isolater blev karakteriseret som toxinogene (250) eller non-toxinogene (365) ved EBL-celletesten og fandtes at være af kapseltype A (119 toxinogene og 92 non-30 toxinogene isolater) eller D (131 toxinogene og 273 non-toxinogene isolater).The 615 clinical isolates were characterized as toxinogenic (250) or non-toxinogenic (365) by the EBL cell test and found to be capsule type A (119 toxinogenic and 92 non-toxinogenic isolates) or D (131 toxinogenic and 273 non-toxinogenic isolates).

49 DK 169749 B149 DK 169749 B1

Der blev fundet fuld overensstemmelse -mellem EBL-cellete-sten og PMT-ELISA'en for de 615 kliniske isolater og de 7 reference-stammer (tabel 8).Full agreement was found between the EBL cell assay and the PMT-ELISA for the 615 clinical isolates and the 7 reference strains (Table 8).

TABEL 8TABLE 8

5 EBL-celletest EMT-ELISA5 EBL cell test EMT-ELISA

a) b) 250 kliniske isolater af P. multocida sso. multocida + + 10 365 kliniske isolater af P. multocida sso. multocida Type-stamme (CCUG 17977) P. multocida sso. septica Type-stamme (NCTC 10204) 15 P. multocida sso. cralicida Type-stamme (NCTC 10322) P. multocida ssd. multocida. type A -a) b) 250 clinical isolates of P. multocida sso. multocida + + 10 365 clinical isolates of P. multocida sso. multocida Type strain (CCUG 17977) P. multocida sso. septica Type strain (NCTC 10204) 15 P. multocida sso. cralicida Type strain (NCTC 10322) P. multocida ssd. multocida. type A -

Reference-stairme (ATGC 12945) P. multocida sso. multocida. type A - 20 Reference-stamme (NCIC 12177) P. multocida ssd. multocida. type A + +Reference stairme (ATGC 12945) P. multocida sso. multocida. type A - 20 Reference strain (NCIC 12177) P. multocida ssd. multocida. type A ++

Reference-stamme (ATCC 7707) P. multocida ssd. multocida. type D -Reference strain (ATCC 7707) P. multocida ssd. multocida. type D -

Reference-stamme (NCTC 12178) 25 P. multocida ssp. multocida. type D + + a) Samtlige EBL-positive (+) bakterieekstrakter havde EBL-titervændi-er over 103 (median 104, variation 103-106) i EBL-celletesten, EBL-negative (-) ekstrakter var non-cytcpatiske.Reference strain (NCTC 12178) 25 multocida ssp. Multocida. type D ++ a) All EBL positive (+) bacterial extracts had EBL titers above 103 (median 104, range 103-106) in the EBL cell assay, EBL negative (-) extracts were non-cytopathic.

30 b) Alle 1:1-fortyndede ELISA-positive .(+) bakterieekstrakter havde relative absorbanser over 39% (middel ± SD: 94% ± 13%) i EMT-ELISA, hvorimod alle ELISA-negative (-) ekstrakter havde relative absorbanser under 9% (2,1% ± 1,9%).B) All 1: 1 diluted ELISA positive (+) bacterial extracts had relative absorbances above 39% (mean ± SD: 94% ± 13%) in EMT-ELISA, whereas all ELISA negative (-) extracts had relative absorbances below 9% (2.1% ± 1.9%).

50 DK 169749 B150 DK 169749 B1

De cytopatiske og non-cytopatiske ekstrakter af de 615 kliniske isolater blev inddelt i to klart adskillelige grupper ved hjælp af PMT-ELISA (figur 15). Eftersom middel ± SD for absorbanseme (A) opnået ud fra 1:1-fortyndede ekstrakter 5 af de 250 toxinogene isolater var 1,72 ± 0,48, ville visuelle aflæsninger i stedet for fotometriske målinger af ELISA-resultater være tilfredsstillende med hensyn til differentiering af ekstrakter af P. multocida. Middel-PMT-kon-centration ± SD i ekstrakterne af de toxinogene isolater 10 af P. multocida blev bestemt til at være 2,8 ± 1,9 μg/ml, og da detektionsgrænsen for PMT-ELISA er ca. 50 pg (1 ng/ml) PMT (jf. eksempel 2), kan fortyndinger af ekstrakterne (figur 16) og ekstrakter med lave PMT-koncentra-tioner måles hensigtsmæssigt ved hjælp af PMT-ELISA. De 15 væsentligste fordele ved PMT-ELISA'en sammenlignet med eksisterende metoder er uafhængigheden af celledyrkning eller laboratoriedyrfaciliteter, det forhold, at en enkelt laborant er i stand til at håndtere adskillige hundrede prøver pr. dag og muligheden for at opnå kvantitative ob-20 jektive resultater på grundlag af bakterieekstrakter på 4 timer.The cytopathic and non-cytopathic extracts of the 615 clinical isolates were divided into two clearly separable groups by PMT-ELISA (Figure 15). Since the mean ± SD of the absorbances (A) obtained from 1: 1 diluted extracts 5 of the 250 toxinogenic isolates was 1.72 ± 0.48, visual readings instead of photometric measurements of ELISA results would be satisfactory with respect to differentiation of extracts of P. multocida. Mean PMT concentration ± SD in the extracts of the toxinogenic isolates 10 of P. multocida was determined to be 2.8 ± 1.9 μg / ml, and since the detection limit of PMT-ELISA is approx. 50 µg (1 ng / ml) of PMT (cf. Example 2), dilutions of the extracts (Figure 16) and extracts with low PMT concentrations can be appropriately measured by PMT-ELISA. The 15 major advantages of the PMT-ELISA compared to existing methods are the independence of cell culture or laboratory animal facilities, the fact that a single laboratory is capable of handling several hundred samples per cell. per day and the possibility of obtaining quantitative objective results based on bacterial extracts of 4 hours.

EKSEMPEL 11EXAMPLE 11

Neutralisering af PMT med monoklonale anti-PMT-antistofferNeutralization of PMT with monoclonal anti-PMT antibodies

Prøver (30 μΐ) af enten PMT i PBS eller PMT i en rå celle-25 fri ekstrakt af P. multocida 45/78 (ref. 6) indeholdende PMT i mængder på op til 12 ng og 1 μ g oprenset MAb (P3F51) blev inkuberet i 15 minutter ved 20°C før tilsætning til embryonale bovine lungeceller (EBL) (120 μΐ, 1,5 x 105 cel-ler/ml) som beskrevet for den originale EBL-celletest (ref.Samples (30 μΐ) of either PMT in PBS or PMT in a crude cell-25 free extract of P. multocida 45/78 (ref. 6) containing PMT in amounts up to 12 ng and 1 μg of purified MAb (P3F51) were incubated for 15 min at 20 ° C before addition to embryonic bovine lung cells (EBL) (120 μΐ, 1.5 x 10 5 cells / ml) as described for the original EBL cell test (ref.

30 29). Den mindste cytopatiske dosis (MCD) for PMT blev be stemt, når der ikke var Mab til stede i prøven. Neutrali-sationstiterværdien blev registreret som det antal MCD'er, som kunne neutraliseres af 1 /ag MAb.29). The smallest cytopathic dose (MCD) for PMT was determined when no Mab was present in the sample. The neutralization titer value was recorded as the number of MCDs that could be neutralized by 1 / ag MAb.

51 DK 169749 B151 DK 169749 B1

Resultaterne fremgår af nedenstående tabel 9.The results are shown in Table 9 below.

TABEL 9TABLE 9

Hybridan- Repræsentativt Neutralisering i gruppe nr. MAb EBL-celletest (x MCD)a 5 - 1 P3F51 130 2 P3F64 70 3 P3E37 <2 4 P4F58 30 10 5 P3F22 40 6 P4F46 100 7 P4F38 35 8 P4F55 40 9 P3F50 400 15 10 P3F53 55 a) Neutralisering af EMTs cytqpatiske effekt blev målt son antal mindste cytqpatiske doser (MCD) neutraliseret af 1 μg MAb. EMTs MCD er ca. 30 pg.Hybridan Representative Neutralization in Group No. MAb EBL Cell Test (x MCD) a 5 - 1 P3F51 130 2 P3F64 70 3 P3E37 <2 4 P4F58 30 10 5 P3F22 40 6 P4F46 100 7 P4F38 35 8 P4F55 40 9 P3F50 400 15 10 P3F53 55 (a) Neutralization of the cytopathic effect of EMT was measured as the number of minimum cytopathic doses (MCD) was neutralized by 1 μg MAb. EMT's MCD is approx. 30 pg.

20 Som angivet i tabel 9 resulterede tilsætning af 1 pg MAb til PMT 15 minutter før tilsætning til EBL-cellerne i en 30-400 ganges forøgelse af MCD for 9 ud af de 10 repræsentative MAb'er, hvorimod MAb P3F37 havde en meget lav neutraliserende effekt over for PMT. Neutralisering af PMT's 25 cytopatiske effekt blev ligeledes opnået, når en rå celle-fri ekstrakt af P. multocida 45/78 blev anvendt i stedet for ren PMT.As indicated in Table 9, addition of 1 µg MAb to PMT 15 minutes prior to addition to the EBL cells resulted in a 30-400 fold increase in MCD for 9 of the 10 representative MAbs, whereas MAb P3F37 had a very low neutralizing effect. effect on PMT. Neutralization of PMT's cytopathic effect was also achieved when a crude cell-free extract of P. multocida 45/78 was used in place of pure PMT.

Prøver (200 μΐ) indeholdende PMT i varierende mængder på op til 2,56 pg og oprenset MAb (P3F51) i mængder på mellem 30 0,15 og 15 μg blev inkuberet i 15 minutter ved 20°C og in jiceret intraperitonealt (i.p.) i Balb/c-hunmus (6 uger gamle, 15-20 g). Mus, der døde inden for en uge fra PMT-infektionstidspunktet, blev registreret, og den letale 52 DK 169749 B1 dosis af PMT og de monoklonale antistoffers neutraliserende effekt blev målt. Ved tilsætning af 1,5 eller 15 /zg P3F51, øgedes den letale dosis af PMT henholdsvis 4 og 32 gange, hvorimod 0,15 μg af det monoklonale antistof ikke havde 5 nogen neutraliserende effekt.Samples (200 μΐ) containing PMT in varying amounts of up to 2.56 pg and purified MAb (P3F51) in amounts of between 0.15 and 15 μg were incubated for 15 min at 20 ° C and injected intraperitoneally (ip) in female Balb / c mice (6 weeks old, 15-20 g). Mice that died within one week from the time of PMT infection were recorded and the lethal dose of PMT and the neutralizing effect of the monoclonal antibodies were measured. By the addition of 1.5 or 15 µg P3F51, the lethal dose of PMT was increased 4 and 32-fold, respectively, whereas 0.15 µg of the monoclonal antibody had no neutralizing effect.

Med henblik på at undersøge monoklonale anti-PMT-antistof-fers in vivo neutraliserende egenskaber injiceredes en 200 μΐ opløsning indeholdende 15 /zg oprenset monoklonalt antistof (P3F51) (i.p.) i Balb/c-hunmus (6 uger gamle, 15- 10 20 g) 2 dage før i.p.-administration af en 200 μΐ opløsning indeholdende PMT i varierende mængder på op til 2,56 /zg enten i ren form eller som en rå cellefri ekstrakt af P. multocida 45/78 (ref. 6). Den neutraliserende virkning blev målt som beskrevet ovenfor.To investigate monoclonal anti-PMT antibody versus in vivo neutralizing properties, a 200 μΐ solution containing 15 µg of purified monoclonal antibody (P3F51) (ip) was injected into female Balb / c mice (6 weeks old, 15-10 g) 2 days before ip administration of a 200 μΐ solution containing PMT in varying amounts of up to 2.56 µg either in pure form or as a crude cell-free extract of P. multocida 45/78 (ref. 6). The neutralizing effect was measured as described above.

15 Den letale dosis af PMT øgedes ca. 32 gange, når mus var passivt immuniseret med 15 μg P3F51 2 dage før disponering for PMT eller en rå cellefri ekstrakt af P. multocida 45/78.15 The lethal dose of PMT increased approx. 32 times when mice were passively immunized with 15 μg of P3F51 2 days prior to disposal for PMT or a crude cell-free extract of P. multocida 45/78.

EKSEMPEL 12 20 Vaccination med oprenset PMT eller O-derivat 15 ml PMT oprenset som beskrevet i eksempel 3 i 45 ml PMS blev dialyseret mod 0,35% formaldehyd i PBS, pH 7,3-7,9, i 36 timer ved 4°C, hvorefter 1 g/1 lysin-HCl blev tilsat dialysevæsken, og efter 18 timer blev dialysen fortsat med 25 gentagne udskiftninger af PBS. Det således fremstillede detoxificerede PMT blev analyseret for manglende (eller tilstrækkeligt reduceret) toxisk aktivitet i museletali-tetstesten, og cytopatitesten på EBL-celler som beskrevet ovenfor såvel som en dermonekrotisk test i marsvin som 30 beskrevet af Foged et al. (1).EXAMPLE 12 Vaccination with Purified PMT or O-Derivative 15 ml of PMT purified as described in Example 3 in 45 ml of PMS was dialyzed against 0.35% formaldehyde in PBS, pH 7.3-7.9, for 36 hours at 4 ° C, after which 1 g / l lysine-HCl was added to the dialysis liquid and after 18 hours the dialysis was continued with 25 repeated replacements of PBS. The detoxified PMT thus prepared was assayed for lack of (or sufficiently reduced) toxic activity in the mouse athlete test, and the cytopathy test on EBL cells as described above as well as a guinea pig dermonecrotic test as described by Foged et al. (1).

53 DK 169749 B1 10 mg biologisk inaktivt (detoxificeret) PMT i 40 ml PBS blev derefter koblet til 10 ml aluminiumhydroxidgel fremskaffet fra Superfos, Danmark, under handelsnavnet Alhydro-gel som rekommanderet af producenten og fortyndet i 20% 5 aluminiumhydroxid i PBS til en slutkoncentration på ca.53 DK 169749 B1 10 mg of biologically inactive (detoxified) PMT in 40 ml of PBS was then coupled to 10 ml of aluminum hydroxide gel obtained from Superfos, Denmark, under the trade name Alhydro-gel as recommended by the manufacturer and diluted in 20% aluminum hydroxide in PBS to a final concentration. of approx.

5 /zg/ml eller 125 /xg/ml detoxificeret PMT.5 µg / ml or 125 µg / ml detoxified PMT.

Drægtige gylter blev immuniseret subkutant 4-6 uger og 2-3 uger før faring med en dosis på 3 ml af det detoxificerede PMT-vaccinepræparat som fremstillet ovenfor. Efter faring 10 blev smågrisene inokuleret intranasalt med Bordetella bron-chiseptica og P. multocida som beskrevet i ref. 1, og den beskyttende effekt af immunisering af søerne blev bestemt ved registrering af den daglige tilvækst før slagtning af svinene (ved ca. 90 kg levende vægt) og bestemmelse af 15 osteopatologiske tilstande i svinenes tryner ved slagtning. Svin fra immuniserede søer blev sammenlignet med svin fra ikke-immuniserede søer, og immuniseringens beskyttende effekt er vist i tabel 10.Pregnant gilts were immunized subcutaneously 4-6 weeks and 2-3 weeks before delivery at a dose of 3 ml of the detoxified PMT vaccine preparation as prepared above. After farrowing 10, the piglets were inoculated intranasally with Bordetella bronchiseptica and P. multocida as described in ref. 1, and the protective effect of immunization of the sows was determined by recording the daily growth before slaughter of the pigs (at approximately 90 kg live weight) and determination of 15 osteopathological conditions in the pigs' slaughter at slaughter. Pigs from immunized sows were compared to pigs from non-immunized sows and the protective effect of immunization is shown in Table 10.

TABEL 10 20 Antal dyr Gennemsnitlige Antal dyr med (kold) daglige til- alvorlig mos- vækst efter lingebensatrofi fravanning (%) 25 Svin fra ikke-immuni- 61 (8) 781 g 49 (80,3%) serede søerTABLE 10 20 Number of animals Average Number of animals with (cold) daily severe moss growth after lingual bone atrophy (%) 25 Pigs from non-immune 61 (8) 781 g 49 (80.3%) sera

Svin fra immuniserede 174 (20) 848 g 20 (11,5%) 30 søer 54 DK 169749 B1 I et igangværende forsøg immuniseredes gylter med 50 /jg/do-sis affinitets-oprenset O-derivat fra sonikater af en E. coli-klon indeholdende pSPE 0 som beskrevet i eksempel 9. Udover kobling til Alhydrogel blev der ikke gennemført 5 nogen modifikationer af O. Præliminære resultater af vaccinationsforsøget tyder på, at: a) serum- og colostrumtiterværdier over for nativt PMT er sammenlignelige for gylter vaccineret med O-derivat og formaldehydbehandlet PMT, 10 b) de specifikke antistoffer overføres lige godt i begge vaccinegrupper til smågrise gennem colostrum, c) de kliniske symptomer på atrofisk rhinitis forebygges lige godt i afkommet fra gylter vaccineret med O- (0-smågrise) og formaldehydbehandlet PMT (P-smågrise), og 15 at denne beskyttelse synes at være tæt på 100%, når der sammenlignes med smågrise født af ikke-vaccinerede gylter (kontrolgrise), d) toxinogene P. multocida anvendt til den eksperimentelle infektion kan reisoleres signifikant hyppigere fra 20 kontrolgrise end fra 0- eller P-smågrise ved 5 ugers alderen.Pigs from immunized 174 (20) 848 g 20 (11.5%) 30 sows 54 In a current experiment, gilts were immunized with 50 µg / dois affinity purified O derivative from sonicates of an E. coli. Clone containing pSPE 0 as described in Example 9. In addition to coupling to Alhydrogel, no modifications were made to O. Preliminary results of the vaccination trial indicate that: a) serum and colostrum titre values against native PMT are comparable for gilts vaccinated with 0 b) the specific antibodies are equally well transmitted in both vaccine groups to piglets through colostrum; c) the clinical symptoms of atrophic rhinitis are equally well prevented in the offspring of gilts vaccinated with O- (0-piglets) and formaldehyde-treated PMT. (P piglets) and 15 that this protection appears to be close to 100% when compared to piglets born of unvaccinated gilts (control pigs); (d) toxinogenic P. multocida used for the e. cervical infection can be resolved significantly more frequently from 20 control pigs than from 0 or P piglets at 5 weeks of age.

EKSEMPEL 13 Påvisning af anti-PMT-antistofferExample 13 Detection of anti-PMT antibodies

Ved i det væsentlige at gå frem som beskrevet i eksempel 2, 25 dog med inkubation af det coatende monoklonale anti-PMT-antistof med en forblandet præparation af serum og en konstant mængde PMT, er det muligt at påvise anti-PMT-antistoffer i serum af fx svin inficeret med P. multocida eller af dyr vaccineret med en vaccine ifølge opfindelsen. Blan- 30 dingen, der blev fremstillet med henblik på koncentrerede 55 DK 169749 B1 eller fortyndede serumprøver, blev inkuberet i 30 minutter ved 37°C før inkubering i 15 minutter i mikrotiterpladen. Tilstedeværelse af anti-PMT-antistoffer i serumprøven blev påvist ved en reduktion i absorbans målt i det væsentlige 5 som beskrevet i eksempel 1 (afsnittet benævnt "ELISA til påvisning af epitopspecificitet"). Resultaterne er vist i figur 17, der viser de 50% blokerende titerværdier for serum fra et anti-PMT-antistof-negativt svin (<2), et svin inficeret med en toxinproducerende P. multocida-stamme (ca.By proceeding essentially as described in Example 2, however, by incubating the coating monoclonal anti-PMT antibody with a premixed serum preparation and a constant amount of PMT, it is possible to detect serum anti-PMT antibodies. of, for example, pigs infected with P. multocida or of animals vaccinated with a vaccine according to the invention. The mixture prepared for concentrated or diluted serum samples was incubated for 30 minutes at 37 ° C before incubation for 15 minutes in the microtiter plate. Presence of anti-PMT antibodies in the serum sample was detected by a reduction in absorbance measured essentially 5 as described in Example 1 (the section entitled "ELISA for Epitope Specificity Detection"). The results are shown in Figure 17, showing the 50% blocking titre values for serum from an anti-PMT antibody negative pig (<2), a pig infected with a toxin-producing P. multocida strain (ca.

10 14) og en gylt vaccineret med vaccinen beskrevet i eksempel 12 (ca. 250).14) and a gilts vaccinated with the vaccine described in Example 12 (about 250).

EKSEMPEL 14 Påvisning af PMT ved hjælp af colony blot og immun-blottingExample 14 Detection of PMT by colony blot and immunoblotting

Forekomsten af PMT i prøver kan påvises ved hjælp af en 15 colony blot-metode (ref. 14) som beskrevet i eksempel 5 (afsnittet benævnt "Screeningsprocedure").The presence of PMT in samples can be detected by a 15 colony blot method (ref. 14) as described in Example 5 (the section called "Screening Procedure").

Tilsvarende kan tilstedeværelsen af PMT i prøver påvises ved at adskille proteiner i prøverne elektroforetisk ved hjælp af SDS-PAGE (som beskrevet i eksempel 1) og elektro-20 foretisk overførsel af disse til en nitrocellulosemembran, hvor PMT, hvis det er til stede, kan visualiseres ved hjælp af immun-blotting som beskrevet i eksempel 1 (i afsnittet benævnt "Immun-blotting"). Den elektroforetiske lokalisering af det farvede proteinbånd angiver ligeledes den til-25 syneladende molekylvægt for PMT (ca. 143 kD) .Similarly, the presence of PMT in samples can be detected by separating proteins in the samples electrophoretically by SDS-PAGE (as described in Example 1) and electrophoretically transferring them to a nitrocellulose membrane where PMT, if present, can is visualized by immuno-blotting as described in Example 1 (in the section referred to as "Immun-blotting"). The electrophoretic localization of the stained protein band also indicates the apparent molecular weight of PMT (about 143 kD).

56 DK 169749 B1 EKSEMPEL 15EXAMPLE 15

Genetisk distinktion mellem PMT+- og PMT--isolater af P. multocida bestemt ved kolonihybridisering P. multocida-isolater (17 toxinpositive og 18 toxinnegative 5 stammer som bestemt ved ELISA- og EBL-tests som beskrevet ovenfor) blev inokuleret på Tryptic Soy Broth Agar-plader (fremskaffet fra DIFCO). Efter inkubering natten over ved 37°C blev der fremstillet et replikat på et nitrocellulose-membranfilter (Schleicher & Schull BA 85). Dette replikat 10 blev placeret (med oversiden opad) oven på 4 på hinanden følgende Whatman 3MM-filtre vædet i henholdsvis 10% SDS, denatureringsbuffer (0,5M NaOH, 1,5M NaCl), neutraliseringsbuffer (0,5M Tris-HCl, pH 8,0, 1,5M NaCl) og 2 x SSPE (360 mM NaCl, 20 mM NaH2P04, 2 mM EDTA, pH 7,4). Inkubering 15 blev udført i 5 minutter på hvert filter ved stuetemperatur. Efterfølgende blev nitrocellulosefilteret tørret, og DNA blev fikseret til filteret ved "bagning" ved 80°C i 2 timer. Præhybridisering og hybridiseringer blev udført i 6 x SSC (0,1M NaCl, 0,015M natriumcitrat, pH 7), 0,5% SDS 20 og 5 x Denhardt-opløsning i henholdsvis 2 timer og natten over ved 65°C. Proben var et radioaktivt mærket Xbal-fragment fra position 1623 til 4376 i den i figur 10 (a)-(j) viste sekvens fremstillet ved nick-translationsmetoden (ref. 22). Efter hybridisering blev filteret vasket ved 25 25°C i 2 x SSC, 0,5% SDS i 2 x 15 minutter og i 0,2 x SSC, 0,5% SDS i 2 x 1 time ved 65°C og autoradiograferet natten over.Genetic distinction between PMT + and PMT isolates of P. multocida determined by colony hybridization P. multocida isolates (17 toxin positive and 18 toxin negative 5 strains as determined by ELISA and EBL tests as described above) were inoculated on Tryptic Soy Broth Agar plates (obtained from DIFCO). After overnight incubation at 37 ° C, a replicate was prepared on a nitrocellulose membrane filter (Schleicher & Schull BA 85). This replicate 10 was placed (face up) on top of 4 consecutive Whatman 3MM filters wetted in 10% SDS, denaturing buffer (0.5M NaOH, 1.5M NaCl, respectively), neutralization buffer (0.5M Tris-HCl, pH 8.0, 1.5M NaCl) and 2 x SSPE (360 mM NaCl, 20 mM NaH2 PO4, 2 mM EDTA, pH 7.4). Incubation 15 was performed for 5 minutes on each filter at room temperature. Subsequently, the nitrocellulose filter was dried and DNA was fixed to the filter by "baking" at 80 ° C for 2 hours. Prehybridization and hybridizations were performed in 6 x SSC (0.1M NaCl, 0.015M sodium citrate, pH 7), 0.5% SDS 20 and 5 x Denhardt solution for 2 hours and overnight at 65 ° C, respectively. The probe was a radiolabelled XbaI fragment from positions 1623 to 4376 in the sequence shown in Figures 10 (a) - (j) prepared by the nick translation method (ref. 22). After hybridization, the filter was washed at 25 ° C in 2 x SSC, 0.5% SDS for 2 x 15 minutes and in 0.2 x SSC, 0.5% SDS for 2 x 1 hour at 65 ° C and autoradiographed overnight. over.

Resultaterne fremgår af figur 18, som viser, at kolonier i positionerne 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 19, 22, 30 34, 36, 37, 39, 45 og 50 var PMT+, og kolonier i positionerne 7, 23, 24, 26, 28, 30, 32, 42, 44, 47, 48, 53, 56, 58, 63, 66, 73 og 75 var PMT“. Disse resultater er i overensstemmelse med ELISA- og EBL-bestemmeIserne. Følgelig kan non-toxinogene P. multocida-stammers manglende evne til 57 DK 169749 B1 toxinproduktion tilskrives en mangel på det PMT-kodende pmt-cren.The results are shown in Figure 18 which shows that colonies in positions 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 19, 22, 30 34, 36, 37, 39, 45 and 50 were PMT +, and colonies at positions 7, 23, 24, 26, 28, 30, 32, 42, 44, 47, 48, 53, 56, 58, 63, 66, 73 and 75 were PMT ”. These results are in accordance with ELISA and EBL provisions. Accordingly, the inability of non-toxinogenic P. multocida strains for toxin production can be attributed to a lack of the PMT coding pmt cren.

EKSEMPEL 16EXAMPLE 16

Oprensning af rPMT og sammenligning af rPMT med PMTPurification of rPMT and comparison of rPMT with PMT

5 I toxinoprensningsproceduren blev celler høstet fra en l 1 stationær kultur af SPE 312 dyrket natten over resuspende-ret i 10 ml H20 og sonikeret adskillige gange i 0,5 minutter ved 0°C under anvendelse af en Branson sonifier 250 (Branson, Conn., U.S.A.). Sonikatet blev fortyndet til 10 50 ml i 0,1M Tris-HCl, pH 7,8, indeholdende 0,5M NaCl før påsætning til affinitetssøjlen, som var fremstillet ved immobilisering af anti-PMT-MAb P3F51 som beskrevet i eksempel 3. Efter gentagne vaskninger af affinitetssøjlen blev rPMT elueret med 0,1M glycin-HCl, pH 2,8, som t idlige-15 re beskrevet vedrørende affinitetsoprensning af PMT fra ekstrakter af toxinogent P. multocida. Samtlige fraktioner blev straks neutraliseret med 1M κ2ΗΡ04.In the toxin purification procedure, cells harvested from a 11 liter stationary culture of SPE 312 were grown overnight resuspended in 10 ml H 2 O and sonicated several times for 0.5 min at 0 ° C using a Branson sonifier 250 (Branson, Conn. , USA). The sonicate was diluted to 50 ml in 0.1M Tris-HCl, pH 7.8 containing 0.5M NaCl prior to application to the affinity column prepared by immobilization of anti-PMT-MAb P3F51 as described in Example 3. After repeated washings of the affinity column, rPMT was eluted with 0.1M glycine HCl, pH 2.8, as previously described regarding affinity purification of PMT from extracts of toxinogenic P. multocida. All fractions were immediately neutralized with 1M κ2ΗΡ04.

Et fortyndet bakteriesonikat af SPE 312 indeholdende ca.A diluted bacterial sonicate of SPE 312 containing ca.

82 μ$ rPMT som bestemt ved den kvantitative ELISA beskrevet 20 i eksempel 2 blev påsat en 1 ml affinitetssøjle, hvortil der var koblet ca. 5 mg anti-PMT-MAb P3F51. Der kunne ikke påvises rPMT i effluenten fra søjlen. Efter eluering blev der vundet ca. 75 μg rPMT i de to hovedfraktioner på hver 1,4 ml. Dette svarer til en genvindelse af 91% af den på-25 satte rPMT.82 µ $ rPMT as determined by the quantitative ELISA described in Example 2 was applied to a 1 ml affinity column to which ca. 5 mg anti-PMT-MAb P3F51. No rPMT could be detected in the effluent from the column. After elution, approx. 75 µg rPMT in the two main fractions of 1.4 ml each. This corresponds to a recovery of 91% of the applied rPMT.

PMT-assavsPMT Assays

Kvantificering af rPMT blev udført som beskrevet for PMT (eksempel 2) under anvendelse af "capture" anti-PMT MAb P3F51 og den biotinylerede detektor MAb P3F37 i PMT-ELISA, 30 en sandwich-ELISA baseret på den samme teknik som forklaret nedenfor vedrørende undersøgelse af epitoper på rPMT og 58 DK 169749 B1 PMT. Kvantificering ved hjælp af PMT-ELISA blev sammenlignet med resultater opnået i et modificeret Coomassie brilliant blue-farvebindingsmikroassay tidligere anvendt til bestemmelser af proteinkoncentrationer og PMT's farvebin-5 dende egenskaber i sammenligning med bovint serumalbumin (BSA) .Quantification of rPMT was performed as described for PMT (Example 2) using "capture" anti-PMT MAb P3F51 and the biotinylated detector MAb P3F37 in PMT-ELISA, a sandwich ELISA based on the same technique as explained below for study of epitopes on rPMT and 58 DK 169749 B1 PMT. Quantification by PMT-ELISA was compared to results obtained in a modified Coomassie brilliant blue staining microassay previously used for protein concentration determinations and PMT's staining properties compared to bovine serum albumin (BSA).

Sammenligning af epitoper på rPMT og PMT blev udført ved hjælp af sandwich-ELISA7er baseret på 10 anti-PMT Måb'er (eksempel 1) oprenset fra hybridomsupernatanter på protein 10 A-agarosesøjler. Disse MAb'er har vist sig at reagere med forskellige epitoper på PMT. Sandwich-ELISA7erne blev udført som beskrevet i eksempel 2. Der blev udført dobbelt-bestemmelser for begge antigener i samtlige 100 kombinationer af de 10 "catching" MAb'er og de samme biotinylerede 15 detekterende MAb'er. Kombinationspar af MAb'er, der resulterede i absorbanser tinder 0,3, blev anset for at være kompetitive. For non-kompetitive kombinationspar blev resultaterne beskrevet som gennemsnittet af dobbeltbestemmelser af absorbans målt for rPMT i forhold til gennem-20 snittet af dobbeltbestemmelser af absorbans for PMT.Comparison of epitopes on rPMT and PMT was performed by sandwich ELISA7s based on 10 anti-PMT Mabs (Example 1) purified from hybridoma supernatants on protein 10 A agarose columns. These MAbs have been shown to respond with different epitopes to PMT. The sandwich ELISA7s were performed as described in Example 2. Double assays were performed for both antigens in all 100 combinations of the 10 "catching" MAbs and the same biotinylated 15 detecting MAbs. Combination pairs of MAbs resulting in absorbances peak 0.3 were considered to be competitive. For non-competitive combination pairs, the results were described as the mean of double determinations of absorbance measured for rPMT relative to the average of double determinations of absorbance for PMT.

rPMT7s og PMT7s dermonekrotiske og letale effekter blev bestemt ved injektion af 200 /*1 af fortyndinger af de tidligere ELISA-kvantificerede prøver henholdsvis intradermalt i marsvin og intraperitonealt i Balb/c-mus. Prøver, der re-25 suiterede i en hudlæsion på 10 mm eller mere 48 timer efter intradermal injektion blev vurderet som dermonekrotiske, og prøver, der resulterede i død på mindre end 5 døgn efter intraperitoneal injektion, blev vurderet som letale. Alle resultater var baseret på i det mindste dobbeltbestemmel-30 ser.The dermonecrotic and lethal effects of rPMT7 and PMT7 were determined by injecting 200 µl of dilutions of the previous ELISA-quantified samples intradermally in guinea pigs and intraperitoneally in Balb / c mice, respectively. Samples resected in a skin lesion of 10 mm or more 48 hours after intradermal injection were assessed as dermonecrotic and specimens resulting in death of less than 5 days after intraperitoneal injection were assessed as lethal. All results were based on at least double determinations.

Affinitetsoprenset rPMT og PMT havde meget ens reaktionsmønstre i den strukturelle ELISA-test baseret på 100 kombinationspar af 10 forskellige anti-PMT MAb'er og 100 ng/ml affinitetsoprenset antigen. For PMT resulterede 25 par i en 35 absorbansværdi (A492) under 0,3, hvilket blev anset for at 59 DK 169749 B1 angive konkurrence. De samme 25 par udviste kompetitive reaktioner, når antigenet var 100 ng/ml rPMT. De øvrige 75 non-kompetitive kombinationspar resulterede i over 0,3, både når der anvendtes PMT og rPMT. Det samlede 5 gennemsnit ± SD af de 75 beregnede værdier for de relative absorbanser for rPMT sammenlignet med PMT var 112% ± 8%.Affinity-purified rPMT and PMT had very similar reaction patterns in the structural ELISA test based on 100 combination pairs of 10 different anti-PMT MAbs and 100 ng / ml affinity-purified antigen. For PMT, 25 pairs resulted in a 35 absorbance value (A492) below 0.3, which was considered to indicate competition. The same 25 pairs showed competitive reactions when the antigen was 100 ng / ml rPMT. The other 75 non-competitive combination pairs resulted in over 0.3, both when using PMT and rPMT. The total 5 mean ± SD of the 75 calculated values for the relative absorbances of rPMT compared to PMT was 112% ± 8%.

Der blev kun fundet mindre afvigelser fra det samlede gennemsnit vedrørende gennemsnitsværdierne for de 10 "catching" MAb'er og de 10 biotinylerede detektor-MAb'er.Only minor deviations from the overall mean were found for the mean values of the 10 catching MAbs and the 10 biotinylated detector MAbs.

10 PMT og rPMT reagerede meget ens, når de blev testet for cytopatisk effekt på EBL-celler, for dermonekrotisk aktivitet i marsvin og for letalitet i mus, og deres evne til at binde Coomassie brilliant blue var den samme og ca. 2,5 gange svagere end BSA's farvebindende evne (tabel 11).10 PMT and rPMT reacted very similarly when tested for cytopathic effect on EBL cells, for guinea pig dermecrotic activity and for lethality in mice, and their ability to bind Coomassie brilliant blue was the same and ca. 2.5 times weaker than the color-binding ability of BSA (Table 11).

15 TABEL 11TABLE 11

Cytopatiske, deimonekrotiske, letale og farvebindende virkningerCytopathic, deimonecrotic, lethal and color-binding effects

af ΕΜΓ og rPMTof ΕΜΓ and rPMT

Prøve mindste mindste mindste farve- cytqpatiske dermonekro- letale binding 20 dosis (pg) tiske dosis dosis (ng) (%)a (ng) EMT 20-40 15-45 25-50 40-45 rEMT 20-40 35 30 35-45 25 --- a Koncentrationen af BSA i forhold til koncentrationen af prøve, der resulterer i sarrme farvedannelse i Goomassie brilliant blue-farvébindingsmikroassay.Sample smallest smallest smallest color cytopathic dermonecrotal binding 20 dose (pg) tical dose dose (ng) (%) a (ng) EMT 20-40 15-45 25-50 40-45 rEMT 20-40 35 30 35- 45 25 --- a The concentration of BSA relative to the concentration of sample resulting in severe color formation in Goomassie brilliant blue color binding microassay.

DK 169749 60 EKSEMPEL 17EXAMPLE 17

Undersøgelse af E. coli- og P. multocida-sonikater for cytopatisk aktivitet.Investigation of E. coli and P. multocida sonicates for cytopathic activity.

Sonikater af E. coli SPE 312 og P. multocida 45/78 frem-5 stillet som beskrevet i eksempel 16 blev undersøgt for cytopatisk effekt i celletesten ved embryonale bovine lungeceller (EBL) (ref. 29) . En 5-folds fortyndingsrække blev fremstillet for hvert sonikat, og 30 μΐ af hver prøve blev tilsat 1,8 x 10^ EBL-celler i 120 μΐ kulturmedium, og 10 blandingen blev inkuberet i 3 døgn ved 37“ C før fiksering og farvning. Prøver, der resulterede i monolag af EBL-celler, der morfologisk kunne skelnes fra epithellignende hvirvlende mønstre i negativ kontrolkultur, blev vurderet som cytopatisk. De cytopatiske effekter af affinitetsop-15 renset rPMT og PMT i EBL-celletesten blev bestemt på samme måde. Den mindste cytopatiske dosis (MCD) for prøverne blev beregnet som den mindste mængde rPMT eller PMT, bestemt ved den kvantitative PMT-ELISA, der fremkalder en cytopatisk effekt.Sonics of E. coli SPE 312 and P. multocida 45/78 prepared as described in Example 16 were examined for cytopathic effect in the cell test of embryonic bovine lung cells (EBL) (ref. 29). A 5-fold dilution series was prepared for each sonicate and 30 μΐ of each sample was added 1.8 x 10 ^ EBL cells in 120 μΐ culture medium, and the mixture was incubated for 3 days at 37 ° C before fixation and staining. Samples that resulted in monolayers of EBL cells that were morphologically distinguishable from epithelial-like swirling patterns in negative control culture were assessed as cytopathic. The cytopathic effects of affinity-purified rPMT and PMT in the EBL cell assay were similarly determined. The smallest cytopathic dose (MCD) for the samples was calculated as the smallest amount of rPMT or PMT, as determined by the quantitative PMT-ELISA eliciting a cytopathic effect.

20 Neutralisering af den cytopatiske effekt af E. coli SPE20 Neutralization of the cytopathic effect of E. coli SPE

313-sonikat ved anti-PMT-MAb'er blev sammenlignet med neutralisering af rent PMT: Prøver (30 μΐ) indeholdende ca. 1 μ g MAb og varierende mængder sonikat eller PMT blev inkuberet i 15 minutter ved 20°C før tilsætning til EBL-celler.313 sonicate by anti-PMT-MAbs was compared with neutralizing pure PMT: Samples (30 μΐ) containing ca. 1 μg MAb and varying amounts of sonicate or PMT were incubated for 15 min at 20 ° C before addition to EBL cells.

25 Resultaterne blev registreret som antal MCD'er neutraliseret af hver MAb og som forhold mellem antal neutraliserede MCD'er af sonikatet og af rent PMT for hvert MAb.The results were recorded as the number of MCDs neutralized by each MAb and as the ratio of the number of neutralized MCDs of the sonicate and of pure PMT for each MAb.

Sonikater af SPE 308 og SPE 312 viste sig at fremkalde morfologiske ændringer i embryonale bovine lungeceller 30 (EBL), som var identiske med de forandringer, der fremkaldes af toxinogene stammer af P. multocida (figur 19 (data for SPE 308 ikke vist)). Som påvist for rent PMT kunne den cytopatiske effekt af E. coli SPE 312-sonikatet 61 DK 169749 B1 neutraliseres ved inkubering med anti-PMT-MAb'er. Mellem 5 og 125 gange sonikatets MCD kunne neutraliseres ved hjælp af forskellige anti-PMT-MAb'er, og mellem 3 og 125 gange MCD for det rene PMT blev neutraliseret. Det samlede gen-5 nemsnit ± SD af de 10 beregnede værdier af det relative antal neutraliserede MCD'er for E. coli SPE 312-sonikat sammenlignet med PMT var 95% ± 32%. Et PMT-urelateret MAb anvendt som kontrol neutraliserede ikke effekterne af de to cytopatiske præparationer.Sonics of SPE 308 and SPE 312 were found to induce morphological changes in embryonic bovine lung cells 30 (EBL), which were identical to those induced by toxinogenic strains of P. multocida (Figure 19 (data for SPE 308 not shown)) . As demonstrated for pure PMT, the cytopathic effect of the E. coli SPE 312 sonicate 61 DK 169749 B1 could be neutralized by incubation with anti-PMT MAbs. Between 5 and 125 times the sonic MCD could be neutralized by various anti-PMT MAbs, and between 3 and 125 times the pure PMT MCD was neutralized. The overall gene-5 mean ± SD of the 10 calculated values of the relative number of neutralized MCDs for E. coli SPE 312 sonicate compared to PMT was 95% ± 32%. A PMT unrelated MAb used as a control did not neutralize the effects of the two cytopathic preparations.

10 EKSEMPEL 18EXAMPLE 18

Analyse af beskaffenheden af DNA, der flankerer pmt-genetAnalysis of the nature of DNA flanking the pmt gene

Med henblik på at undersøge beskaffenheden af det DNA, der flankerer pmt-crenet i P. multocida 45/78 udførtes "chromosome walking" som beskrevet i ref. 37. Under anvendelse af 15 en kolonihybridiseringsprocedure blev plasmider indeholdende P. multocida-DNA isoleret fra P. multocida-aenbibliote-ket beskrevet i eksempel 4.In order to investigate the nature of the DNA flanking the pmt cren in P. multocida 45/78, "chromosome walking" as described in ref. 37. Using a colony hybridization procedure, plasmids containing P. multocida DNA were isolated from the P. multocida aene library described in Example 4.

Proberprobes

Plasmidet pLOL03 blev konstrueret ved at subklone et 0,8 kb 20 Accl-HindiII-DNA-fragment af pSPE 344 (figur 20) i vektoren pGEM-blue (Promega, Wi, USA). Plasmidet pLOR02 blev ligeledes konstrueret ved subkloning af 2,4 kb EcoRI-Bglll-fragmentet fra pSPE 312 (figur 20) i vektoren pGEM-blue. E. coli K12-stammen DH5alpha (BRL, Md, USA) blev anvendt som 25 værtsstamme for pLOL03 og pLOR02. pLOL03 og pLOR02 i line-ariserede former blev anvendt til generering af RNA-prober af P- multocida-DNA7et indeholdt i disse plasmider. RNA-proberne blev radioaktivt mærket under anvendelse af Ribo-probe System II-fremgangsmåden (Promega, Wi, USA) og an-30 vendt i kolonihybridiseringer og Southern blots beskrevet nedenfor.Plasmid pLOL03 was constructed by subcloning a 0.8 kb 20 Accl-HindiII DNA fragment of pSPE 344 (Figure 20) into the vector pGEM-blue (Promega, Wi, USA). Plasmid pLORO2 was also constructed by subcloning the 2.4 kb EcoRI-BglII fragment from pSPE 312 (Figure 20) into the vector pGEM-blue. The E. coli K12 strain DH5alpha (BRL, Md, USA) was used as the host strain for pLOL03 and pLOR02. pLOLO3 and pLORO2 in linearized forms were used to generate RNA probes of the β-multocida DNA7 contained in these plasmids. The RNA probes were radiolabeled using the Ribo-probe System II method (Promega, Wi, USA) and used in colony hybridizations and Southern blots described below.

62 DK 169749 B162 DK 169749 B1

Kolonihvbridiserinq P. multocida-genbiblioteket blev spredt i egnet fortynding på adskillige LB-plader indeholdende 10 μg/ml tetracyclin og inkuberet natten over ved 37°C. Replikater af pladerne 5 blev udført på nitrocellulosemembranfiltre, og cellerne blev lyseret, og DNA'et fikseret til filtrene som beskrevet i eksempel 15.The colony hybridization P. multocida gene library was dispersed in appropriate dilution on several LB plates containing 10 μg / ml tetracycline and incubated overnight at 37 ° C. Replicates of plates 5 were performed on nitrocellulose membrane filters and the cells were lysed and the DNA fixed to the filters as described in Example 15.

Præhybridisering og hybridisering blev udført ved 65°C i 50% formamid, 6 x SSC (0,15 NaCl, 0,015M tri-natriumcitrat, 10 pH 7,0), 0,1% SDS, 5 x Denhardt-opløsning og 200 μg/ml denatureret laksesperma-DNA i henholdsvis mindst 2 timer og natten over. Efter hybridisering blev filtrene vasket 2 gange ved stuetemperatur i 1 x SSC, 0,1% SDS, og 2 gange ved 65°C i 0,1 x SSC, 0,1% SDS. Efter vask lodes filtrene 15 autoradiografere natten over.Prehybridization and hybridization were performed at 65 ° C in 50% formamide, 6 x SSC (0.15 NaCl, 0.015M tri-sodium citrate, 10 pH 7.0), 0.1% SDS, 5 x Denhardt solution and 200 µg / ml denatured salmon sperm DNA for at least 2 hours and overnight, respectively. After hybridization, the filters were washed 2 times at room temperature in 1 x SSC, 0.1% SDS, and 2 times at 65 ° C in 0.1 x SSC, 0.1% SDS. After washing, the filters were allowed to autoradiograph overnight.

Denne fremgangsmåde resulterede i isoleringen af et antal kloner indeholdende P. multocida-DNA. der flankerer inser-tionerne i pSPE 308 eller pSPE 312. Disse kloner blev yderligere analyseret under anvendelse af Southern blot-teknik 20 (ref. 17). Southern blots viste, at følgende plasmider blev genkendt af RNA-proben, der kodes for af pLOL03: pLOAOl, pLOA02 og pLOA03. Tilsvarende blev plasmideme pLOBOl, pLOB02 og pLOB03 genkendt af RNA-proben, der kodes for af pLOR02.This method resulted in the isolation of a number of clones containing P. multocida DNA. flanking the insertions in pSPE 308 or pSPE 312. These clones were further analyzed using Southern blot technique 20 (ref. 17). Southern blots showed that the following plasmids were recognized by the RNA probe encoded by pLOL03: pLOAO1, pLOA02 and pLOA03. Similarly, plasmids pLOBO1, pLOB02 and pLOB03 were recognized by the RNA probe encoded by pLORO2.

25 pLOA03 (ca. 14,2 kb) og pLOB03 (ca. 12,7 kb) indeholdt de største insertioner. Deres restriktionskort og en Southern blot-analyse viser, at pLOA03 og pSPE 308 indeholder overlappende DNA på ca. 4,0 kb, og at pLOB03 og pSPE 312 indeholder overlappende DNA på ca. 1,7 kb som vist i figur 20.25 pLOA03 (about 14.2 kb) and pLOB03 (about 12.7 kb) contained the largest insertions. Their restriction map and Southern blot analysis show that pLOA03 and pSPE 308 contain overlapping DNA of ca. 4.0 kb, and that pLOB03 and pSPE 312 contain overlapping DNA of ca. 1.7 kb as shown in Figure 20.

30 Et Southern blot blev fremstillet under anvendelse af DNA ekstraheret som beskrevet i eksempel 4 (en Kl-gradient (0,875 g/ml) blev anvendt i stedet for CsCl2-gradient) fra den toxinogene P. multocida 45/78 og fra en non-toxinogen 63 DK 169749 B1 P. multocida-stamme MH81P8, type D (ref. 36) og plasmiderne pLOA03, pLOA02, pSPE 308, pSPE 312 og pLOB03 skåret med restriktionsenzymer som angivet i figur 21. Proben var 2,4 kb BglII-EcoRl-fragmentet af pLOB03 radioaktivt mærket 5 ved hjælp af nicktranslation (Rigby et al., 1977, (ref.A Southern blot was prepared using DNA extracted as described in Example 4 (a K1 gradient (0.875 g / ml) was used instead of CsCl2 gradient) from the toxinogenic P. multocida 45/78 and from a toxinogen 63 DK 169749 B1 P. multocida strain MH81P8, type D (ref. 36) and the plasmids pLOA03, pLOA02, pSPE 308, pSPE 312 and pLOB03 cut with restriction enzymes as indicated in Figure 21. The probe was 2.4 kb BglII-EcoRl The fragment of pLOB03 radiolabeled 5 by nick translation (Rigby et al. 1977, ref.

19)). Resultaterne viser, at: 1) Proben genkender en DNA-sekvens på hvert af plasmiderne pLOA03 og pLOB03. Der er således en homolog sekvens på hver side af pmt-genet. Afstanden mellem disse ho- 10 mologe sekvenser er ca. 25 kb.19)). The results show that: 1) The probe recognizes a DNA sequence on each of the plasmids pLOA03 and pLOB03. Thus, there is a homologous sequence on each side of the pmt gene. The distance between these homologous sequences is approx. 25 kb.

2) Proben genkender distinkte fragmenter af kromosomalt DNA fra begge P. multocida-stammer anvendt i denne Southern blot.2) The probe recognizes distinct fragments of chromosomal DNA from both P. multocida strains used in this Southern blot.

De ovennævnte fund tyder på, at det DNA, der flankerer pmt-15 genet, og følgelig pmt-genet selv, oprindeligt har været indeholdt i en bakteriofag, en transposon, et plasmid eller et andet genetisk element, som er integreret i bakteriekromosomet .The above findings indicate that the DNA flanking the pmt-15 gene and, consequently, the pmt gene itself, was initially contained in a bacteriophage, a transposon, a plasmid or other genetic element integrated into the bacterial chromosome.

Dot blot 20 DNA fra 24 bakteriofager, som var isoleret fra P. multocida- stammer. og som alle var fundet at være forskellige med hensyn til deres lyseringsmønstre over for en række P. multocida- stammer. blev bundet til et nylonfilter ved hjælp af dot blotting. Plasmidet pLOA03 blev radioaktivt mærket 25 ved hjælp af nicktranslation og anvendt som en probe mod filteret. Hybridiserings- og vaskningsbetingelser var som beskrevet ovenfor. Resultaterne er vist i figur 22. Proben hybridiserede til 22 ud af 24 bakteriofager og, som forventet, til de 4 positive kontroller. Under anvendelse af pSPE 30 308 og pLOB03 som prober blev lignende resultater opnået.Dot just 20 DNA from 24 bacteriophages isolated from P. multocida strains. and all of which were found to differ in their lysis patterns against a variety of P. multocida strains. was bonded to a nylon filter by dot blotting. Plasmid pLOA03 was radiolabeled by nick translation and used as a probe against the filter. Hybridization and washing conditions were as described above. The results are shown in Figure 22. The probe hybridized to 22 out of 24 bacteriophages and, as expected, to the 4 positive controls. Using pSPE 30 308 and pLOB03 as probes, similar results were obtained.

pSPE 312 gav kun ringe hybridisering til nogle af bakterio-fag-genomerne. 4,5 kb pmt-genet indeholdende Clal-PvuII-fragmentet af pSPE 312 (figur 5) viste ikke nogen homologi 64 DK 169749 B1 til nogen af bakteriofag-genomerne (autoradiografer er ikke vist).pSPE 312 gave little hybridization to some of the bacteriophage genomes. The 4.5 kb pmt gene containing the Clal-PvuII fragment of pSPE 312 (Figure 5) did not show any homology 64 to any of the bacteriophage genomes (autoradiographs are not shown).

Disse resultater viser, at der er sekvenser homologe med P. multocida-bakteriofacr-DNA på begge sider af pmt-genet. Det-5 te underbygger yderligere antagelsen om, at pmt-genet er indeholdt i en profag.These results indicate that there are sequences homologous to P. multocida bacteriofacr DNA on both sides of the pmt gene. This further supports the assumption that the pmt gene is contained in a prophage.

65 DK 169749 B165 DK 169749 B1

BIBLIOGRAFIBIBLIOGRAPHY

1. K.B. Pedersen og K. Barfod, 1981. The aetiological significance of Bordetella bronchiseptica amd P. multocida in atrophic rhinitis of swine. Mord. Vet.-Med. 33: 5 s. 513-522.1. K.B. Pedersen and K. Barfod, 1981. The aetiological significance of Bordetella bronchiseptica amd P. multocida in atrophic rhinitis of swine. Murder. Vet.-Med. 33: 5 pp. 513-522.

2. J.M. Rutter og X. Rojas, 1982. Atrophic rhinitis in piglets: Differences in the pathogenicity of Pasteurella multocida in combined infections with Bordetella bronchiseptica. Vet. Rec. 110: s. 531-535.2. J.M. Rutter and X. Rojas, 1982. Atrophic rhinitis in piglets: Differences in the pathogenicity of Pasteurella multocida in combined infections with Bordetella bronchiseptica. Vet. Rec. 110: pp. 531-535.

10 3. F. Elling og K.B. Pedersen, 1985. The pathogenesis of persistent turbinate atrophy induced by toxigenic Pasteurella multocida in pigs. Vet. Pathol. 22: s. 469-474.10 3. F. Elling and K.B. Pedersen, 1985. The pathogenesis of persistent turbinate atrophy induced by toxigenic Pasteurella multocida in pigs. Vet. Pathol. 22: pp. 469-474.

4. K.B. Pedersen, J.P. Nielsen, N.T. Foged, F. Elling, N.C. Nielsen og P. Willeberg, 1988. Atrophic rhinitis in pigs: 15 Proposal for a revised definition. Vet. Rec. 22: s. 490-491.4. K.B. Pedersen, J.P. Nielsen, N.T. Foged, F. Elling, N.C. Nielsen and P. Willeberg, 1988. Atrophic rhinitis in pigs: 15 Proposal for a revised definition. Vet. Rec. 22: pp. 490-491.

5. K.B. Pedersen og F. Elling, 1984. The pathogenesis of atrophic rhinitis in pigs induced by toxigenic Pasteurella multocida. J. Comp. Pathol. 94: s. 203-214.5. K.B. Pedersen and F. Elling, 1984. The pathogenesis of atrophic rhinitis in pigs induced by toxigenic Pasteurella multocida. J. Comp. Pathol. 94: pp. 203-214.

20 6. N.T. Foged, K.B. Pedersen og F. Elling, 1987, Charac terization and biological effect of the P. multocida toxin. FEMS Microbiol. Lett. 43: s. 45-51.6. N.T. Foged, K.B. Pedersen and F. Elling, 1987, Charac terization and biological effect of the P. multocida toxin. FEMS Microbiol. Lett. 43: pp. 45-51.

7. E.M. Kamp, P.J. v.d. Heijden og B.J. Tetenburg, 1987, Purification of a heat labile dermonecrotic toxin from 25 culture fluid of Pasteurella multocida. Vet. Microbiol. 13: s. 235-248.7. E.M. Kamp, P.J. v.d. Heijden and B.J. Tetenburg, 1987, Purification of a heat labile dermonecrotic toxin from culture fluid of Pasteurella multocida. Vet. Microbiol. 13: pp. 235-248.

8. T. Nakai, A. Sawata, M. Tsuji, Y. Samejima og K. Kume, 1984. Purification of dermonecrotic toxin from a sonic extract of Pasteurella multocida SP-72 serotype D. Infect.8. T. Nakai, A. Sawata, M. Tsuji, Y. Samejima, and K. Kume, 1984. Purification of dermonecrotic toxin from a sonic extract of Pasteurella multocida SP-72 serotype D. Infect.

30 Immun. 46: s. 429-434.Immune. 46: pp. 429-434.

66 DK 169749 B1 9. C.L. Trummel, J.O. Cisar, M.J. Pabst og P. Goforth, 1979. Stimulation of bone resorption by a factor from Actinomyces viscosus. J. Perdont. Res. 14: s. 263-264.66 DK 169749 B1 9. C.L. Trummel, J.O. Cisar, M.J. Pabst and P. Goforth, 1979. Stimulation of bone resorption by a factor from Actinomyces viscosus. J. Perdont. Res. 14: pp. 263-264.

10. P.A. Price, 1987. Structure and function of vitamin K-5 dependent bone proteins. In: C. Christiansen, J.S. Johansen, B.J. Riis (eds.) Osteoporosis, Nørhaven A/S, Viborg, Denmark, s. 656-663.10. P.A. Price, 1987. Structure and function of vitamin K-5 dependent bone proteins. In: C. Christiansen, J.S. Johansen, B.J. Riis (eds.) Osteoporosis, Nørhaven A / S, Viborg, Denmark, pp. 656-663.

11. (se 30.) 12. J. Mestecky, 1987. The common mucosal immune system and 10 current strategies for induction of immune response in external secretions. J. Clin. Immunol. 7 (4): s. 265-276.11. (see 30.) 12. J. Mestecky, 1987. The common mucosal immune system and 10 current strategies for the induction of immune response in external secretions. J. Clin. Immunol. 7 (4): pp. 265-276.

13. H.W.D. Matthes, W.H. Zenke, T. Grundstrom, A. Staub, M. Wintzerith og P. Chambon, 1984. Simultaneous rapid chemical synthesis of over 100 oligonucleotides on a microscale.13. H.W.D. Matthes, W.H. Zenke, T. Grundstrom, A. Staub, M. Wintzerith, and P. Chambon, 1984. Simultaneous rapid chemical synthesis of over 100 oligonucleotides on a microscale.

15 The EMBO Journal 3: s. 801-805.15 The EMBO Journal 3: pp. 801-805.

14. 14. T. Maniatis, E.F. Frisch og J. Sambrook, 1982. Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.14. 14. T. Maniatis, E.F. Frisch and J. Sambrook, 1982. Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

15. 15. G. KShler og C. Milstein, 1975. Continuous cul-20 tures of fused cells secreting antibody of predefined specificity. Nature. 256: s. 495-497.15. 15. G. KShler and C. Milstein, 1975. Continuous cul-20 tures of fused cells secreting antibody of predefined specificity. Nature. 256: pp. 495-497.

16. G. Klein, J. Luka og J. Zeuthen, 1980. Transformation induced by Epstein-Barr virus and the role of the nuclear antigen. Cold Spring Harbor Svmp. Quant. Biol. 44: 25 s. 253-261.16. G. Klein, J. Luka, and J. Zeuthen, 1980. Transformation induced by Epstein-Barr virus and the role of the nuclear antigen. Cold Spring Harbor Svmp. Quant. Biol. 44: 25 pp. 253-261.

17. J.W. Goding, 1983. Monoclonal antibodies: Principles and practice. Academic Press, London, 267 sider.17. J.W. Goding, 1983. Monoclonal antibodies: Principles and practice. Academic Press, London, 267 pages.

67 DK 169749 B1 18. E. Southern, 1975, Detection of specific sequences among DN BA fragments separated by gel electrophoresis. J. Mol. Biol. 98. s. 503.67 DK 169749 B1 18. E. Southern, 1975, Detection of specific sequences among DN BA fragments separated by gel electrophoresis. J. Mol. Biol. 98. pp. 503.

19. Rigby, P.W.J., Dieckmann, M., Rhodes, C., og Berg, P.19. Rigby, P.W.J., Dieckmann, M., Rhodes, C., and Berg, P.

5 1977. Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase.5 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase.

I.J.Mol.Biol. 113: s. 237-251.I.J.Mol.Biol. 113: pp. 237-251.

20. Gebeyechu, G., Rao, P.Y., SooChan, P., Simms, D.A., og Kievan, L. 1987. Novel biotinylated nucleotide - analogs 10 for labelling and colorimetric detection of DNA. Nucleic Acids Res. 15: s. 4513-4534.20. Gebeyechu, G., Rao, P.Y., SooChan, P., Simms, D.A., and Kievan, L. 1987. Novel biotinylated nucleotide analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res. 15: pp. 4513-4534.

21. R.K. Saiki, S.J. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Ehrlich og N.A. Arnhiem, 1985. Enzymatic ampli- 15 fication of jS-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230: s. 1350-1354.21. R.K. Saiki, S.J. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Ehrlich and N.A. Arnhiem, 1985. Enzymatic amplification of jS-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230: pp. 1350-1354.

22. J.P. Nielsen, M. Bisgaard, og K.B. Pedersen, 1986, Production of toxin in strains previously classified as P^_ 20 multocida. Acta Path. Microbiol. Immunol. Scand. Sec. B, 94= S. 203-204.22. J.P. Nielsen, M. Bisgaard, and K.B. Pedersen, 1986, Production of toxin in strains previously classified as P ^ 20 multocida. Acta Path. Microbiol. Immunol. Scand. Sec. B, 94 = pp. 203-204.

23. S. Fazekas, Groth, S. og D. Scheidegger, Production of monoclonal antibodies: Strategy and tactics, J. Immunol.23. S. Fazekas, Groth, S., and D. Scheidegger, Production of Monoclonal Antibodies: Strategy and Tactics, J. Immunol.

Meth. 35. 1980, S. 1-21.Meth. 35. 1980, pp. 1-21.

25 24. U.K. Laemmli, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: s. 680-685.25 24. U.K. Laemmli, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: pp. 680-685.

25. J. Kyhse-Andersen, 1984, Electroblotting of multiple gels: A simple apparatus without buffer tank for rapid 30 transfer of proteins from polyacrylamide to nitrocellulose.25. J. Kyhse-Andersen, 1984, Electroblotting of multiple gels: A simple buffer-free apparatus for rapid transfer of proteins from polyacrylamide to nitrocellulose.

J. Biochem. Biophvs. Methods 10: s. 203-209.J. Biochem. Biophys. Methods 10: pp. 203-209.

68 DK 169749 B1 26. O.J. Bjerrum, K.P. Larsen og M. Wilken, 1983. Some recent developments of the electroimmunochemical analysis of membrane proteins. Application of Zwittergent, Triton X-114 and western blotting technique, s. 79-124. In H. Tsche- 5 sche (ed.), Modern methods in protein chemistry. Walther de Gruyter Berlin, New York.68 DK 169749 B1 26. O.J. Bjerrum, K.P. Larsen and M. Wilken, 1983. Some recent developments of the electroimmunochemical analysis of membrane proteins. Application of Zwittergent, Triton X-114 and western blotting technique, pp. 79-124. In H. Tsche- sche (ed.), Modern methods in protein chemistry. Walther de Gruyter Berlin, New York.

27. L.J. Anderson, J.C. Hierholzer, Y.O. Stone, C. Tsou og B.F. Fernie, 1986. Identification of epitopes on respiratory syncytial virus proteins by competitive binding immu- 10 noassay. J. Clin. Microbiol. 23; s. 475-480.27. L.J. Anderson, J.C. Hierholzer, Y.O. Stone, C. Tsou and B.F. Fernie, 1986. Identification of epitopes on respiratory syncytial virus proteins by competitive binding immunoassay. J. Clin. Microbiol. 23; pp. 475-480.

28. J.L. Guesdon, T. Temynck og T. Avrameas, 1979. The use of avidin-biotin interaction in immunoenzymatic techniques. J. Histochem. Cvtochem. 27: s. 1131-1139.28. J.L. Guesdon, T. Temynck, and T. Avrameas, 1979. The use of avidin-biotin interaction in immunoenzymatic techniques. J. Histochem. Cytochem. 27: pp. 1131-1139.

29. H. Towbin, T. Staehlin og J. Gordon, 1979, Electropho-15 retie transfer of proteins from polyacrylamide gel to nitrocellulose sheets: Procedure and applications. Proc.29. H. Towbin, T. Staehlin, and J. Gordon, 1979, Electrophoresis transfer of proteins from polyacrylamide gel to nitrocellulose sheets: Procedure and applications. Proc.

Natl. Acad. Sci. USA 76: s. 4350-4354.Natl. Acad. Sci. USA 76: pp. 4350-4354.

30. M.J. Casadaban og S. Cohen, 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia 20 coli. J. Mol. Biol. 138: s. 179-207.30. M.J. Casadaban and S. Cohen, 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia 20 coli. J. Mol. Biol. 138: pp. 179-207.

31. W.B. Wood, 1966. Host specificity of DNA produced by Escherichia coli: Bacterial mutations affecting the restriction and modification of DNA. J. Mol. Biol. 16: s. 118-133.31. W.B. Wood, 1966. Host specificity of DNA produced by Escherichia coli: Bacterial mutations affecting the restriction and modification of DNA. J. Mol. Biol. 16: pp. 118-133.

25 32. B. Nilsson, M. Uhlen, S. Josephson, S. Gatenbeck og L.25 32. B. Nilsson, M. Uhlen, S. Josephson, S. Gatenbeck, and L.

Philipson, 1983, An improved positive selection plasmid vector constructed by oligonucleotide mediated mutagenesis, Nucleic Acids Res. 11(22): s. 8019-8030.Philipson, 1983, An improved positive selection plasmid vector constructed by oligonucleotide mediated mutagenesis, Nucleic Acids Res. 11 (22): pp. 8019-8030.

69 DK 169749 B1 33. F. Sanger, S. Nicklin og A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: S. 5463-5467.69 DK 169749 B1 33. F. Sanger, S. Nicklin and A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: pp. 5463-5467.

34. D.J. Clark og 0. Maaløe, 1967. DNA replication and the 5 division cycle in Escherichia coli. J. Mol. Biol. 23: s. 99-112.34. D.J. Clark and 0. Maaløe, 1967. DNA replication and the 5 division cycle in Escherichia coli. J. Mol. Biol. 23: pp. 99-112.

35. K.K. Stanley, 1983, Solubilization and immune-detection of jS-galactosidase hybrid proteins carrying foreign antigenic determinants. Nucleic Acids Res. 11(12): 10 s. 4077-4092.35. K.K. Stanley, 1983, Solubilization and immune detection of jS-galactosidase hybrid proteins carrying foreign antigenic determinants. Nucleic Acids Res. 11 (12): 10 pp. 4077-4092.

36. J.M. Rutter, 1983. Virulence of Pasteurella multocida in atrophic rhinitis of gnotobiotic pigs infected with Bordetella bronchiseotica. Res. Vet. Sci. 34: s. 287-295.36. J.M. Rutter, 1983. Virulence of Pasteurella multocida in atrophic rhinitis or gnotobiotic pigs infected with Bordetella bronchiseotica. Res. Vet. Sci. 34: pp. 287-295.

37. K. Kaiser og N. Murry, 1985: The use of phage lambda 15 replacement vectors in the construction of representative genomic DNA libraries. In: DNA cloning, Vol. I, A practical approach, D.M. Glover (ed.) IRL Press, Oxford.37. K. Kaiser and N. Murry, 1985: The use of phage lambda 15 replacement vectors in the construction of representative genomic DNA libraries. In: DNA cloning, Vol. I, A Practical Approach, D.M. Glover (ed.) IRL Press, Oxford.

Claims (25)

1. DNA-fragment, kendetegnet ved, at det omfatter en nukleotidsekvens som vist i figur 10 (a)-(j), som koder for et Pa-5 steurella multocida-toxin, eller en subsekvens eller analog deraf, som koder for en immunogen subsekvens eller analog af toxinet.A DNA fragment, characterized in that it comprises a nucleotide sequence as shown in Fig. 10 (a) - (j), which encodes a Pasteurella multocida toxin, or a sub sequence or analog thereof which encodes a immunogenic sub-sequence or analog of the toxin. 2. DNA-fragment ifølge krav 1, kendetegnet ved, at nukleotidsekvensen hidrører 10 fra et Pasteurella multocida-genom.DNA fragment according to claim 1, characterized in that the nucleotide sequence is derived from a Pasteurella multocida genome. 3. DNA-fragment ifølge krav 1, kendetegnet ved, at nukleotidsekvensen hidrører fra en for Pasteurella multocida infektiøs bakteriofag eller fra et plasmid.DNA fragment according to claim 1, characterized in that the nucleotide sequence is derived from a bacteriophage for Pasteurella multocida infectious or from a plasmid. 4. DNA-fragment ifølge krav 1, kendetegnet ved, at nukleotidsekvensen er en syntetisk sekvens.DNA fragment according to claim 1, characterized in that the nucleotide sequence is a synthetic sequence. 5. DNA-fragment ifølge krav 1, kendetegnet ved, at nukleotidsekvensen er en 20 blandet genom- og syntetisk sekvens.DNA fragment according to claim 1, characterized in that the nucleotide sequence is a mixed genome and synthetic sequence. 6. DNA-fragment ifølge krav 1, kendetegnet ved, at det er modificeret ved substituering, addition, insertion eller deletion af ét eller flere nukleotider i sekvensen.DNA fragment according to claim 1, characterized in that it is modified by substitution, addition, insertion or deletion of one or more nucleotides in the sequence. 7. DNA-fragment ifølge krav 6, kendetegnet ved, at det er en DNA-subsekvens valgt blandt de kodende regioner A-R som beskrevet i eksempel 9 og vist i figur 13.DNA fragment according to claim 6, characterized in that it is a DNA sub-sequence selected from the coding regions A-R as described in Example 9 and shown in Figure 13. 8. DNA-fragment ifølge et hvilket som helst af kravene 1, 6 30 og 7, DK 169749 B1 kendetegnet ved, at det yderligere omfatter en nukleotidsekvens, som koder for et andet polypeptid, fusioneret til nukleotidsekvensen, der koder for toxinet eller toxinanalogen.DNA fragment according to any of claims 1, 6, 30 and 7, characterized in that it further comprises a nucleotide sequence encoding a second polypeptide fused to the nucleotide sequence encoding the toxin or toxin analog. 9. Ekspressionsvektor, som er i stand til at replikere i en værtsmikroorganisme, kendetegnet ved, at den omfatter et indsat DNA-fragment ifølge et hvilket som helst af kravene 1-8.An expression vector capable of replicating in a host microorganism, characterized in that it comprises an inserted DNA fragment according to any one of claims 1-8. 10. Ekspressionsvektor ifølge krav 9, 10 kendetegnet ved, at det indsatte DNA-fragment er en hvilken som helst af de kodende regioner A-R som beskrevet i eksempel 9 og vist i figur 13.The expression vector of claim 9, 10, characterized in that the inserted DNA fragment is any of the coding regions A-R as described in Example 9 and shown in Figure 13. 11. Mikroorganisme, kendetegnet ved, at den er i stand til at ud-15 trykke et DNA-fragment ifølge et hvilket som helst af kravene 1-8, og at den indeholder en vektor ifølge krav 9 eller 10.Microorganism, characterized in that it is capable of expressing a DNA fragment according to any one of claims 1-8 and containing a vector according to claim 9 or 10. 12. Mikroorganisme ifølge krav 11, kendetegnet ved, at den er en bakterie.Microorganism according to claim 11, characterized in that it is a bacterium. 13. Mikroorganisme ifølge krav 12, kendetegnet ved, at den er en gram-negativ bakterie, fortrinsvis E. coli.Microorganism according to claim 12, characterized in that it is a gram-negative bacterium, preferably E. coli. 14. Fremgangsmåde til fremstilling af et Pasteurella multo-cida-toxin eller en immunogen subsekvens- eller analog der-25 af, kendetegnet ved, at den omfatter dyrkning af en mikroorganisme indeholdende en ekspressions-vektor ifølge krav 9 eller 10 tinder egnede betingelser til ekspression af toxinet eller den immunogene subsekvens 30 eller analog deraf, DK 169749 B1 høstning af toxinet eller toxinsubsekvensen eller -analogen fra kulturen, og eventuelt udsættelse af toxinet for posttranslationel modifikation til opnåelse af det detoxificerede toxin eller den 5 detoxificerede toxinanalog.A method for producing a Pasteurella multicida toxin or an immunogenic sub-sequence or analog thereof, characterized in that it comprises culturing a microorganism containing an expression vector according to claim 9 or 10, suitable conditions for expression. harvesting the toxin or toxin sub sequence or analogue from the culture, and optionally subjecting the toxin to post-translational modification to obtain the detoxified toxin or the detoxified toxin analog. 15. Fremgangsmåde ifølge krav 14, kendetegnet ved, at den omfatter følgende initiale trin a) isolering af et DNA-fragment omfattende en nukleotid-10 sekvens som vist i figur 10 (a)-(j), som koder for toxinet, eller en subsekvens eller analog af DNA-fragmentet, der koder for den immunogene toxinsubsekvens eller -analog, b) insertion af DNA-fragmentet, eventuelt i en egnet modificeret form resulterende i ekspression af det detoxifice- 15 rede toxin eller den detoxificerede toxinanalog eller en subsekvens eller analog deraf, som koder for en immunogen subsekvens af toxinet eller toxinanalogen, i en ekspressionsvektor, c) transformation af en egnet værtsmikroorganisme med 20 vektoren fremstillet i trin b).A method according to claim 14, characterized in that it comprises the following initial step a) isolating a DNA fragment comprising a nucleotide sequence as shown in Figure 10 (a) - (j) encoding the toxin, or a (b) insertion of the DNA fragment, optionally in a suitably modified form, resulting in expression of the detoxified toxin or detoxified toxin analogue or a sub sequence or a sequence or analog of the DNA fragment encoding the immunogenic toxin sequence or analog analog thereof, which encodes an immunogenic sub-sequence of the toxin or toxin analog, in an expression vector; c) transformation of a suitable host microorganism by the vector prepared in step b). 16. Fremgangsmåde ifølge krav 14 eller 15, kendetegnet ved, at sekvensen, der koder for toxinet eller toxinanalogen, er modificeret ved substituering, addition, insertion eller deletion af én eller flere 25 nukleotider i sekvensen.A method according to claim 14 or 15, characterized in that the sequence encoding the toxin or toxin analog is modified by substitution, addition, insertion or deletion of one or more 25 nucleotides in the sequence. 17. Fremgangsmåde ifølge krav 14 eller 15, kendetegnet ved, at de eventuelle posttransla-tionelle modifikationer er valgt blandt termisk behandling, behandling med et kemikalie, og substituering, addition, 30 insertion eller deletion af én eller flere aminosyrer i toxinet eller toxinanalogen. DK 169749 B1A method according to claim 14 or 15, characterized in that any post-translational modifications are selected from thermal treatment, treatment with a chemical, and substitution, addition, insertion or deletion of one or more amino acids in the toxin or toxin analog. DK 169749 B1 18. Fremgangsmåde ifølge krav 17, kendetegnet ved, at kemikaliet er valgt blandt formaldehyd, glutaraldehyd og et egnet proteolytisk enzym.Process according to claim 17, characterized in that the chemical is selected from formaldehyde, glutaraldehyde and a suitable proteolytic enzyme. 19. Fremgangsmåde ifølge krav 14, 5 kendetegnet ved, at ekspressionsvektoren omfatter en hvilken som helst af de kodende regioner A-R som beskrevet i eksempel 9 og vist i figur 13.The method of claim 14, 5, characterized in that the expression vector comprises any of the coding regions A-R as described in Example 9 and shown in Figure 13. 20. Fremgangsmåde ifølge krav 14, kendetegnet ved, at ekspressionsvektoren omfat-10 ter den kodende region G som beskrevet i eksempel 9 og vist i figur 13.Method according to claim 14, characterized in that the expression vector comprises the coding region G as described in Example 9 and shown in Figure 13. 21. Fremgangsmåde ifølge krav 14, kendetegnet ved, at ekspressionsvektoren omfatter den kodende region L som beskrevet i eksempel 9 og vist 15 i figur 13.Method according to claim 14, characterized in that the expression vector comprises the coding region L as described in Example 9 and shown 15 in Figure 13. 22. Fremgangsmåde ifølge krav 14, kendetegnet ved, at ekspressionsvektoren omfatter den kodende region 0 som beskrevet i eksempel 9 og vist i figur 13.Method according to claim 14, characterized in that the expression vector comprises the coding region 0 as described in Example 9 and shown in Figure 13. 23. Fremgangsmåde ifølge krav 14, kendetegnet ved, at ekspressionsvektoren omfatter den kodende region Q som beskrevet i eksempel 9 og vist i figur 13.The method of claim 14, characterized in that the expression vector comprises the coding region Q as described in Example 9 and shown in Figure 13. 24. Anvendelse af en immunogen subsekvens eller analog afUse of an immunogenic sub sequence or analogue of 25 Pasteurella multocida-toxinet bestående af 1285 aminosyrer, som kodes for af DNA-sekvensen vist i figur 10 (a)-(j), idet subsekvensen eller analogen er én, som kan kodes for af et derivat af DNA-sekvensen som vist i figur 10 (a)-(j) fremstillet ved substituering, addition, insertion eller 30 deletion af ét eller flere nukleotider i sekvensen, til fremstilling af en vaccine til immunisering af et dyr mod atrofisk rhinitis.The Pasteurella multocida toxin consisting of 1285 amino acids encoded by the DNA sequence shown in Figure 10 (a) - (j), the sub sequence or analog being one encoded by a derivative of the DNA sequence as shown in FIG. Figures 10 (a) - (j) prepared by substitution, addition, insertion or deletion of one or more nucleotides in the sequence, to prepare a vaccine for immunizing an animal against atrophic rhinitis.
DK230890A 1988-04-12 1990-09-24 A DNA fragment which encodes a Pasteurella multocida toxin, or an immunogenic subsequence or analogue thereof, an expression vector which comprises the DNA fragment, a process for preparing a Pasteurella multocida toxin, and the use of a Pasteurella multocida toxin sequence or toxin sequence analogue for producing a vaccine DK169749B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK230890A DK169749B1 (en) 1988-04-12 1990-09-24 A DNA fragment which encodes a Pasteurella multocida toxin, or an immunogenic subsequence or analogue thereof, an expression vector which comprises the DNA fragment, a process for preparing a Pasteurella multocida toxin, and the use of a Pasteurella multocida toxin sequence or toxin sequence analogue for producing a vaccine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DK199588A DK199588D0 (en) 1988-04-12 1988-04-12 VACCINE
DK199588 1988-04-12
DK8900084 1989-04-11
PCT/DK1989/000084 WO1989009617A1 (en) 1988-04-12 1989-04-11 A pasteurella vaccine
DK230890 1990-09-24
DK230890A DK169749B1 (en) 1988-04-12 1990-09-24 A DNA fragment which encodes a Pasteurella multocida toxin, or an immunogenic subsequence or analogue thereof, an expression vector which comprises the DNA fragment, a process for preparing a Pasteurella multocida toxin, and the use of a Pasteurella multocida toxin sequence or toxin sequence analogue for producing a vaccine

Publications (3)

Publication Number Publication Date
DK230890A DK230890A (en) 1990-09-24
DK230890D0 DK230890D0 (en) 1990-09-24
DK169749B1 true DK169749B1 (en) 1995-02-13

Family

ID=26066268

Family Applications (1)

Application Number Title Priority Date Filing Date
DK230890A DK169749B1 (en) 1988-04-12 1990-09-24 A DNA fragment which encodes a Pasteurella multocida toxin, or an immunogenic subsequence or analogue thereof, an expression vector which comprises the DNA fragment, a process for preparing a Pasteurella multocida toxin, and the use of a Pasteurella multocida toxin sequence or toxin sequence analogue for producing a vaccine

Country Status (1)

Country Link
DK (1) DK169749B1 (en)

Also Published As

Publication number Publication date
DK230890A (en) 1990-09-24
DK230890D0 (en) 1990-09-24

Similar Documents

Publication Publication Date Title
EP0462210B1 (en) Vaccines for nontypable haemophilus influenzae
Pruksakorn et al. Conserved T and B cell epitopes on the M protein of group A streptococci. Induction of bactericidal antibodies.
JP3051130B2 (en) Recombinant coccidiosis vaccines
Von Specht et al. Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins
JP2548148B2 (en) Antigenic protein for preventing coccidiosis and vaccine containing the same
JP2776633B2 (en) DNA sequence encoding Streptococcus suis virulence, part of the DNA sequence, polypeptides and antibodies derived from the DNA sequence
Shivachandra et al. Immunogenicity of highly conserved recombinant VacJ outer membrane lipoprotein of Pasteurella multocida
JP3578799B2 (en) Vaccine against Streptococcus suis infection
US10261092B2 (en) Cross-reactive determinants and methods for their identification
CA2071863C (en) Recombinant vaccine for porcine pleuropneumonia
DK175831B1 (en) Neisseria gonorrhoeae-related nucleic acids, recombinant vectors, host organisms, unicellular organisms, polypeptide preparation methods, polypeptide compositions, vaccine preparations, DNA probes, detection methods and diagnostic tests, .........
CA2257826C (en) Helicobacter pylori adhesin binding group antigen
EP0409895B1 (en) A pasteurella vaccine
US5369005A (en) Method for mycoplasma detection in a biological sample
KR19990087436A (en) Porphyromonas gingivalis antigen for diagnosis and treatment of periodontitis
CA2013113A1 (en) Coccidiosis vaccine
KR0170752B1 (en) Vaccines and diagnostic assays for haemophilus influenzae
US5885589A (en) Pasteurella vaccine
US6911206B1 (en) Fusion proteins comprising carriers that can induce a dual immune response
US5026636A (en) Methods and compositions for production of mycoplasmal adhesins
Smerdou et al. A continuous epitope from transmissible gastroenteritis virus S protein fused to E. coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity
US5911996A (en) 43 Kd protein vaccine and method for the production thereof
DK169749B1 (en) A DNA fragment which encodes a Pasteurella multocida toxin, or an immunogenic subsequence or analogue thereof, an expression vector which comprises the DNA fragment, a process for preparing a Pasteurella multocida toxin, and the use of a Pasteurella multocida toxin sequence or toxin sequence analogue for producing a vaccine
EP0527771A1 (en) Polypeptides useful in diagnosis of and treatment against mycoplasma infections in animals
CA1341040C (en) Pasteurella vaccine

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PUP Patent expired