DK166517B - WASTE DISPOSAL PROCEDURES - Google Patents

WASTE DISPOSAL PROCEDURES Download PDF

Info

Publication number
DK166517B
DK166517B DK156686A DK156686A DK166517B DK 166517 B DK166517 B DK 166517B DK 156686 A DK156686 A DK 156686A DK 156686 A DK156686 A DK 156686A DK 166517 B DK166517 B DK 166517B
Authority
DK
Denmark
Prior art keywords
gas
reaction chamber
process according
post
shaft furnace
Prior art date
Application number
DK156686A
Other languages
Danish (da)
Other versions
DK166517C (en
DK156686D0 (en
DK156686A (en
Inventor
Sven Santen
Sven Eriksson
Lars Bentell
Haakan Johansson
Original Assignee
Skf Steel Eng Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE8502165A external-priority patent/SE453776B/en
Application filed by Skf Steel Eng Ab filed Critical Skf Steel Eng Ab
Publication of DK156686D0 publication Critical patent/DK156686D0/en
Publication of DK156686A publication Critical patent/DK156686A/en
Publication of DK166517B publication Critical patent/DK166517B/en
Application granted granted Critical
Publication of DK166517C publication Critical patent/DK166517C/en

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Paper (AREA)
  • Refuse Collection And Transfer (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

iin

DK 166517 BDK 166517 B

Den foreliggende opfindelse angår en fremgangsmåde til destruktion af husholdnings- og industriaffald under dannelse af en udludningsresistent slagge og en gas, der alene indeholder H^ og CO som brændbare bestanddele, 5 hvorved affaldsmaterialet indføres fra toppen af en skaktovn under samtidig energitilførsel i form af en med en plasmagenerator opvarmet oxiderende gas ved skaktov- . nens bund samt udtagning af flydende slagger derfra og udtagning af genereret gas i skaktovnens øvre del.The present invention relates to a process for the destruction of household and industrial waste to form a leach-resistant slag and a gas containing only H 2 and CO as combustible components, whereby the waste material is introduced from the top of a shaft furnace during simultaneous energy supply. with a plasma generator heated oxidizing gas at the shaft furnace. the bottom of the shaft as well as the removal of liquid slag from it and the extraction of generated gas in the upper part of the chimney.

10 I dag destrueres sådant affald, hvis det ikke deponeres, så godt som udelukkende ved fuldstændig forbrænding. På grund af en lav varmeværdi samt en uensartet sammensætning fås en relativt lav temperatur i forbrændingstrin-15 net. Dette medfører ulemper, f.eks. ufuldstændig forbrænding og dannelse af tungere carbonhydrider. Ikke-brændba-re bestanddele udtages som en aske, i hvilken de indgående bestanddele er opløste eller helt ubundne, hvilket fører til deponeringsproblemer i form af støvdannelse. Et 20 andet deponeringsproblem består i, at de skadelige stoffer let kan udludes fra asken.10 Today, such waste, if not disposed of, is destroyed almost exclusively by complete incineration. Due to a low heat value and a non-uniform composition, a relatively low temperature is obtained in the combustion stage. This causes disadvantages, e.g. incomplete combustion and formation of heavier hydrocarbons. Non-combustible constituents are taken out as an ash in which the constituent constituents are dissolved or completely unbound, which leads to deposition problems in the form of dust formation. Another 20 landfill problem is that the harmful substances can easily be excluded from the ash.

I tysk offentliggørelsesskrift DE-OS nr. 33 38 478 omtales en fremgangsmåde af tilsvarende art, hvorved de i en 25 skaktovn indførte affaldsmaterialer underkastes en forgasnings- og forbrændingsproces i zoner placeret i forskellige højder i ovnen. Herved indføres varme gasser i skaktovnens forskellige zoner. Den her omtalte fremgangsmåde har vist sig værdifuld. Det har dog vist sig vanske-30 ligt at styre temperaturforholdene i skaktovnens enkelte zoner med henblik på de i den dannede gas forløbende reaktioner.German publication DE-OS No. 33 38 478 discloses a similar process, whereby the waste materials introduced in a shaft furnace are subjected to a process of gasification and combustion in zones located at different heights in the furnace. Hereby hot gases are introduced into the various zones of the chimney. The method discussed here has proved valuable. However, it has been found difficult to control the temperature conditions in the individual zones of the shaft furnace for the reactions occurring in the gas formed.

Den til grund for den foreliggende opfindelse liggende 35 opgave går ud på at tilvejebringe en fremgangsmåde til destruktion af affald, ved hvilken ovennævnte ulemper er elimineret, og som muliggør en miljøvenlig proces, såle- 2The object of the present invention is to provide a process for the destruction of waste, in which the above-mentioned disadvantages are eliminated and which allows for an environmentally friendly process, such as

DK 166517 BDK 166517 B

des at der produceres en fast remanens, der praktisk taget ikke indeholder nogen som helst frie, forurenende stoffer, samt en brændbar gas, der hovedsageligt alene indeholder H2 og CO som brændbare bestanddele.that a solid residue is produced which contains practically no free pollutants, and a combustible gas which mainly contains only H2 and CO as combustible constituents.

55

Denne opgave løses ifølge opfindelsen ved en fremgangsmåde af den i krav 1' s indledning nævnte art, og denne fremgangsmåde er ejendommelig ved det i krav l's kendetegnende del anførte.This task is solved according to the invention by a method of the kind mentioned in the preamble of claim 1, and this method is characterized by the characterizing part of claim 1.

1010

Herved kan reaktionerne styres uafhængigt af hverandre på den ene side i skaktovnen og på den anden side i det påfølgende reaktionskammer.Hereby, the reactions can be controlled independently of one another on the one hand in the shaft furnace and on the other side in the subsequent reaction chamber.

15 Den i skaktovnen genererede gas indeholder urenheder, bl.a. i form af tunge carbonhydrider. Ved energitilførselen i efterreaktionskammeret og tilstedeværelsen af vand, som er fordampet fra affaldsmaterialet, spaltes carbonhy-driderne termisk til CO og H2- 2015 The gas generated in the shaft furnace contains impurities, i.a. in the form of heavy hydrocarbons. Upon the energy supply in the post-reaction chamber and the presence of water evaporated from the waste material, the hydrocarbons are thermally decomposed to CO and H2

Ifølge en udførelsesform for opfindelsen udnyttes plasma-generatoropvarmet oxiderende gas, fortrinsvis luft, til energitilførselen i skaktens nedre del. Herved kan temperaturen styres præcist og hurtigt til et ønsket niveau, 25 afhængigt af variationerne i affaldets sammensætning.According to an embodiment of the invention, the plasma generator heated oxidizing gas, preferably air, is utilized for the energy supply in the lower part of the shaft. Hereby the temperature can be precisely and quickly controlled to a desired level, depending on the variations in the composition of the waste.

Ved én anden udførelsesform for opfindelsen opvarmes den til efterreaktionskammeret tilførte varme gas i en plasmagenerator. Ved at udnytte en plasmagenerator til op-30 varmning af gassen kan den varme gas bibringes en særdeles høj energitæthed, således at det til overføringen af den nødvendige energimængde nødvendige gasvolumen er forholdsvis lille.In another embodiment of the invention, the hot gas supplied to the post-reaction chamber is heated in a plasma generator. By utilizing a plasma generator for heating the gas, the hot gas can be provided with a very high energy density, so that the gas volume required for the transmission of the required amount of energy is relatively small.

35 Ifølge en anden udførelsesform for opfindelsen injiceres desuden findelt koks og/eller vanddamp i efterreaktionskammeret til kompensation af et for lavt C- og/eller ^0- 3In another embodiment of the invention, finely divided coke and / or water vapor is also injected into the post-reaction chamber to compensate for a too low C and / or

DK 166517 BDK 166517 B

indhold.contents.

Gassen underkastes fortrinsvis rensning i et katalytisk rensningstrin til fjernelse af eventuelle rester af tun-5 gere carbonhydrider. I dette tilfælde ledes gassen gennem et kammer indeholdende en katalysator. Katalysatoren er fortrinsvis kalk eller dolomit, men man kan også anvende andre katalysatorer, f.eks. nikkel.The gas is preferably subjected to purification in a catalytic purification step to remove any residues of heavier hydrocarbons. In this case, the gas is passed through a chamber containing a catalyst. The catalyst is preferably lime or dolomite, but other catalysts, e.g. nickel.

10 Processen styres fortrinsvis således, at temperaturen i den fra skaktovnen udgående gas højst er 800 °C, og således at temperaturen af den fra efterreaktionskammeret kommende gasblanding overstiger 1000 °C og fortrinsvis har en temperatur på op til ca. 1200 °C. Den høje tempe-15 ratur i efterreaktionskammeret giver en praktisk taget fuldstændig termisk sønderdeling af de i gassen forekommende tunge carbonhydrider.The process is preferably controlled such that the temperature of the gas exiting the shaft furnace is at most 800 ° C, and so that the temperature of the gas mixture coming from the after-reaction chamber exceeds 1000 ° C and preferably has a temperature of up to approx. 1200 ° C. The high temperature in the post-reaction chamber provides a virtually complete thermal decomposition of the heavy hydrocarbons present in the gas.

I skaktovnens nedre del holdes en temperatur, som ikke 20 overstiger slaggens smeltepunkt. Ved slaggens størkning bindes de i slaggen forekommende, ikke-pyrolyserbare bestanddele i glasfasen, således at der sikres en sikker deponering af slaggen.In the lower part of the shaft furnace a temperature not exceeding the melting point of the slag is maintained. Upon solidification of the slag, the non-pyrolysable constituents present in the slag are bonded in the glass phase to ensure a safe deposit of the slag.

25 Ifølge en anden udførelsesform for opfindelsen gennemføres også en bortrensning af de i gassen forekommende chlor-forbindelser, idet gassen efter afkøling ved varmeveksling føres gennem et kammer indeholdende brændt kalk.According to another embodiment of the invention, a purification of the chlorine compounds present in the gas is also carried out, the gas, after cooling by heat exchange, being passed through a chamber containing burnt lime.

Den brændte kalk kan med fordel hentes fra et tidligere 30 katalytisk rensningstrin, i hvilket kalksten og dolomit calcineres på grund af gassens høje indgangstemperatur.The burnt lime can advantageously be obtained from a previous catalytic purification step in which limestone and dolomite are calcined due to the high inlet temperature of the gas.

I det følgende illustreres opfindelsen nærmere under henvisning til tegningen, hvor fig. 1 skematisk viser et anlæg til gennemførelse af fremgangsmåden ifølge opfindelsen, og 35In the following, the invention is further illustrated with reference to the drawing, in which fig. Fig. 1 shows schematically a plant for carrying out the method according to the invention, and 35

DK 166517 BDK 166517 B

4 fig. 2 viser et anlæg til katalytisk sønderdeling af tunge carbonhydrider og fjernelse af chlorforbindelser fra den ved affaldspyrolysen genererede gas.4 FIG. Figure 2 shows a catalytic decomposition plant for heavy hydrocarbons and removal of chlorine compounds from the gas generated by the waste pyrolysis.

5 Affaldsmaterialet indføres i en skaktovn 1 gennem en passende sluse 2. Energi og oxidationsmiddel tilføres i skaktovnens nedre del, i den viste udførelsesform ved hjælp af en eller flere anordninger 3, 4 til tilførsel af varm luft. Disse anordninger kan f.eks. være plasmagene-10 ratorer. Den ved pyrolysen genererede gas fjernes via en ringformet kanal 5, som i den viste udførelsesform er anbragt således, at gassen fjernes på et niveau, der ligger under overfladen 7 for affaldsmaterialet 6 i skaktovnen.5 The waste material is introduced into a shaft furnace 1 through a suitable sluice 2. Energy and oxidizing agent are supplied in the lower part of the shaft furnace, in the illustrated embodiment by means of one or more devices 3, 4 for supplying hot air. These devices may e.g. be plasmagene generators. The gas generated by the pyrolysis is removed via an annular channel 5, which in the illustrated embodiment is arranged so that the gas is removed at a level below the surface 7 of the waste material 6 in the shaft furnace.

15 Den således genererede gas indføres derpå i et efterreak-tionskammer 8. Energi tilføres ved hjælp af en varm gas, som i den viste foretrukne udførelsesform opvarmes i en plasmagenerator 9. Herved kan gassen føres helt eller delvis gennem plasmageneratoren. Endvidere kan man efter 20 behov tilføre findelt koks og/eller vanddamp gennem lanser 10 i tilslutning til indløbet 11 for den plasmagene-ratoropvarmede gas. I efterreaktionskammeret opnås en termisk sønderdeling af de i gassen forekommende urenheder, der først og fremmest foreligger som tungere carbon-25 hydrider.The gas thus generated is then introduced into a post-reaction chamber 8. Energy is supplied by means of a hot gas, which in the illustrated preferred embodiment is heated in a plasma generator 9. This allows the gas to be passed in whole or in part through the plasma generator. Furthermore, after 20 needs, finely divided coke and / or water vapor can be supplied through lances 10 adjacent to the inlet 11 of the plasma generator heated gas. In the post-reaction chamber, a thermal decomposition of the impurities present in the gas is obtained, primarily as heavier hydrocarbons.

Efter denne termiske sønderdeling kan gassen underkastes yderligere rensning i et apparat 12, der på tegningen er skematisk antydet som et tomt kammer. I dette kammer kan 30 man f.eks. injicere findelt kalk til katalytisk sønderde ling af eventuelt i gassen tilbageblivende tunge carbonhydrider. Alternativt kan gassen ledes gennem et fyldmateriale af stykformigt kalk eller en anden katalysator for sønderdelingsprocessen.After this thermal decomposition, the gas may be subjected to further purification in an apparatus 12 schematically indicated as an empty chamber in the drawing. In this chamber, 30 inject comminuted lime for catalytic decomposition of possibly heavy hydrocarbons remaining in the gas. Alternatively, the gas may be passed through a filler-lime filler material or other catalyst for the decomposition process.

Derefter kan gassen underkastes chlorrensning i et særligt trin, jvf. den nærmere beskrivelse i omtalen af 35 5Thereafter, the gas may be subjected to chlorine purification in a special step, cf.

DK 166517 BDK 166517 B

fig. 2, hvorefter den i et afsluttende trin renses for kviksølv ved udkondensering af dette.FIG. 2, after which it is purified in a final step by mercury by condensing it.

Det i fig. 2 viste gasrensningsapparatur omfatter en før-5 ste skakt 13 indeholdende en kalkstens- eller dolomit-fyldning 14, som indføres i skakten gennem en gastæt sluseanordning 15. Gassen fra efterreaktionskammeret indføres efter en eventuel varmeudveksling gennem et gasindløb 16 ved skaktens bund og fjernes efter passage gennem 10 fyldningen via et gasudløb 17 ved skaktens top. I skaktens bund findes et udtagningsorgan eller lignende til udtagning af helt eller delvist calcineretr kalksten via en gastæt sluseanordning 18.The FIG. 2, a gas cleaning apparatus shown in Fig. 2 comprises a first shaft 13 containing a limestone or dolomite filling 14 which is introduced into the shaft through a gas-tight locking device 15. The gas from the post-reaction chamber is introduced after any heat exchange through a gas inlet 16 at the bottom of the shaft and removed after passage through the filling through a gas outlet 17 at the top of the shaft. At the bottom of the shaft is a recessing means or the like for removing whole or partial calcined limestone via a gas-tight locking device 18.

15 Den udtagne, helt eller delvist calcinerede kalksten transporteres derpå på et transportbånd eller lignende, som i figuren er antydet med linien 19, til en anden skakt 20 via en gastæt sluseanordning 21, hvor den indgår i en fyldning 22.The extracted, wholly or partially calcined limestone is then conveyed on a conveyor belt or the like, as indicated in the figure by line 19, to another shaft 20 via a gas-tight locking device 21 where it forms part of a filling 22.

2020

Den fra skakten 13 udtagne gas føres gennem en ledning 23 til en varmeveksler 24 og varmeveksles, fortrinsvis med luft, således at gassens fysiske varme kan udnyttes i tidligere procestrin eller på anden måde. Derefter føres 25 gassen gennem ledningen 25 til et nedre gasindløb 26 i den anden skakt og føres gennem fyldningen 22, hvorefter den udtages via et gasudtag 27 beliggende ved toppen af skakten 20. I skaktens bund findes et udtagningsorgan eller lignende til udtagning af det ved chlorrensningen 30 dannede produkt via en gastæt sluseanordning 28.The gas extracted from the shaft 13 is passed through a conduit 23 to a heat exchanger 24 and heat exchanged, preferably with air, so that the physical heat of the gas can be utilized in previous process steps or otherwise. Then, the gas is passed through the conduit 25 to a lower gas inlet 26 of the second shaft and passed through the filling 22, after which it is taken out via a gas outlet 27 located at the top of the shaft 20. At the bottom of the shaft there is a withdrawal means or the like for removing it at the chlorine purge. 30 formed via a gas-tight locking device 28.

Den gas, som er indført i bunden af den første skakt, skal have en temperatur større end 800 eC. Ved en sådan temperatur calcineres kalkstenen under dannelse af CaO + 35 CC>2. Gassens indhold af tunge carbonhydrider, såsom tjære eller lignende, spaltes ved hjælp af H20 og/eller CO^ med CaO som katalysator. Kalkstenskvaliteten vælges afhængigtThe gas introduced into the bottom of the first shaft must have a temperature greater than 800 eC. At such a temperature, the limestone is calcined to form CaO + 35 CC> 2. The gas content of heavy hydrocarbons, such as tar or the like, is decomposed by H 2 O and / or CO 2 with CaO as the catalyst. The limestone quality is selected depending on

DK 166517 BDK 166517 B

6 af den rådende gastemperatur, idet forskellige typer kalksten calcineres ved forskellige temperaturer. I dette første trin fungerer kalken således alene som katalysator ved spaltningen, og den påvirkes ikke af gassens kemiske 5 sammensætning. Den udtagne, calcinerede kalksten foreligger også stykformigt, men den er nu særdeles porøs.6 of the prevailing gas temperature, different types of limestone being calcined at different temperatures. Thus, in this first step, the lime acts solely as a catalyst in the decomposition and is not affected by the chemical composition of the gas. The extracted calcined limestone is also present in unitary form, but it is now highly porous.

Efter fjernelse af tjæren eller de tunge carbonhydrider i gassen kan denne uden vanskelighed underkastes varmeveks-10 ling. Gassen varmeveksles fortrinsvis med kold luft, og den opvarmede luft kan siden udnyttes ved et eller flere af de foregående procestrin.After removal of the tar or heavy hydrocarbons in the gas, it can easily be subjected to heat exchange. The gas is preferably heat exchanged with cold air, and the heated air can then be utilized in one or more of the preceding process steps.

Den calcinerede kalksten transporteres videre til den an-15 den skakt og danner en fyldning i denne, som udnyttes til rensning af gassen fra indeholdte chlorforbindelser og/eller chlor. Herved foregår f.eks. reaktionerne CaO + 2HC1, som fører til dannelse af CaC^. Denne reaktion skal ske under smeltepunktet for CaC^ i den foreliggende 20 form.The calcined limestone is further transported to the other shaft and forms a filling therein which is utilized to purify the gas from contained chlorine compounds and / or chlorine. This takes place, for example. the reactions CaO + 2HCl leading to formation of CaCl3. This reaction must occur below the melting point of CaCl3 in the present form.

Den afgående gas er således renset for carbonhydridfor-bindelser og chlorforbindelser, og efter en eventuel ud-kondensering af kviksølv fås en gas, der som brændbare 25 bestanddele alene indeholder CO og ^, og efter en forbrænding af gassen, som da alene indeholder CC^, H^O og N2, slippes denne ud i atmosfæren uden forurenende virkning.The outgoing gas is thus purified from hydrocarbon compounds and chlorine compounds, and after a possible condensation of mercury there is obtained a gas which, as a combustible component, contains only CO and 2, and after combustion of the gas which then contains only CC , H 2 O and N 2, it is released into the atmosphere without pollutant effect.

30 Ved udnyttelse af den her omhandlede fremgangsmåde kan man således behandle alle de skadelige, miljøfarlige stoffer, der normalt forårsager store problemer ved konventionelle, i dag udnyttede processer, og omdanne disse til ufarlige og eventuelt også anvendelige produkter, 35 såsom CaC^-Thus, by utilizing the process of this invention, one can treat all the harmful, environmentally hazardous substances which usually cause great problems in conventional, presently utilized processes, and convert them into harmless and possibly also useful products, such as Ca

Claims (13)

1. Fremgangsmåde til destruktion af affald under dannelse 5 af en udludningsresistent slagge og en gas, der alene indeholder U.2 og CO som brændbare bestanddele, hvorved affaldsmaterialet indføres fra toppen af en skaktovn under samtidig energitilførsel i form af en med en plasmagenerator opvarmet oxiderende gas ved skaktovnens bund, samt 10 udtagning af flydende slagger fra skaktovnens bund og udtagning af genereret gas i skaktens øvre del, kendetegnet ved, at den genererede gas l-edes ind i et efterreaktionskammer (8) under samtidig energitilførsel med en varm gas. 15A process for the destruction of waste during formation of a leaching-resistant slag and a gas containing only U.2 and CO as combustible components, whereby the waste material is introduced from the top of a shaft furnace during simultaneous energy supply in the form of a oxidizer heated by a plasma generator. gas at the bottom of the shaft furnace, as well as withdrawal of liquid slag from the bottom of the shaft furnace and withdrawal of generated gas in the upper part of the shaft, characterized in that the generated gas l is discharged into a post-reaction chamber (8) during simultaneous energy supply with a hot gas. 15 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at den i efterreaktionskammeret (8) tilførte varme gas opvarmes med en plasmagenerator (9).Process according to claim 1, characterized in that the hot gas supplied to the after-reaction chamber (8) is heated with a plasma generator (9). 3. Fremgangsmåde ifølge krav 1-2, kendetegnet ved, at den i efterreaktionskammeret (8) tilførte varme gas består af luft, recirkuleret gas eller nitrogen.Process according to claims 1-2, characterized in that the hot gas supplied to the after-reaction chamber (8) consists of air, recycled gas or nitrogen. 4. Fremgangsmåde ifølge krav 1-3, kendetegnet 25 ved, at der injiceres vanddamp i efterreaktionskammeret (8).Method according to claims 1-3, characterized in that water vapor is injected into the post-reaction chamber (8). 5. Fremgangsmåde ifølge krav 1-4, kendetegnet ved, at der injiceres findelt koks i efterreaktionskamme- 30 ret (8).Process according to claims 1-4, characterized in that finely divided coke is injected into the after-reaction chamber (8). 6. Fremgangsmåde ifølge krav 1-5, kendetegnet ved, at den i skaktovnens (1) nedre del tilførte varme gas består af luft. 35Process according to claims 1-5, characterized in that the hot gas supplied in the lower part of the chimney (1) consists of air. 35 7. Fremgangsmåde ifølge krav 1-6, kendetegnet ved, at gassen i et yderligere trin underkastes kataly- 8 DK 166517 B tisk rensning.Process according to claims 1-6, characterized in that the gas is subjected to catalytic purification in a further step. 7 DK 166517 B7 DK 166517 B 8. Fremgangsmåde ifølge krav 7, kendetegnet ved, at gassen ledes gennem en fyldning (14) af stykfor- 5 migt kalk.Method according to claim 7, characterized in that the gas is passed through a filling (14) of unitary lime. 9. Fremgangsmåde ifølge krav 7, kendetegnet ved, at der injiceres pulverformigt kalk i gassen.Method according to claim 7, characterized in that powdered lime is injected into the gas. 10. Fremgangsmåde ifølge krav 1-9, kendetegnet ved, at eventuelt i gassen forekommende chlorforbindelser spaltes, idet gassen ledes gennem et kammer-(20) indeholdende en fyldning af brændt kalk.Process according to claims 1-9, characterized in that any chlorine compounds present in the gas are decomposed, the gas being passed through a chamber (20) containing a filling of burnt lime. 11. Fremgangsmåde ifølge krav 8 og 10, k e n d e t e g- n e t ved, at man ved spaltningen udnytter ved katalytisk sønderdeling dannet brændt kalk.11. A process as claimed in claims 8 and 10, characterized in that burnt lime formed by catalytic decomposition is utilized in the cleavage. 12. Fremgangsmåde ifølge krav 1-11, kendetegnet 20 ved, at processen styres således, at temperaturen i den fra skaktovnen (1) afgående gas højest er 800 °C.Process according to claims 1-11, characterized in that the process is controlled such that the temperature of the gas exiting the shaft furnace (1) is at most 800 ° C. 13. Fremgangsmåde ifølge krav 1-12, kendetegnet ved, at den i efterreaktionskammeret (8) tilførte energi- 25 mængde styres således, at den i efterreaktionskammeret genererede gasblanding har en temperatur højere end ca. 1000 °C. 30 35Process according to claims 1-12, characterized in that the amount of energy supplied in the post-reaction chamber (8) is controlled so that the gas mixture generated in the post-reaction chamber has a temperature higher than approx. 1000 ° C. 30 35
DK156686A 1985-05-03 1986-04-07 WASTE DISPOSAL PROCEDURES DK166517C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8502165 1985-05-03
SE8502165A SE453776B (en) 1985-02-15 1985-05-03 WANTED TO DISPOSE WASTE FOR THE formation of a leaching-resistant slag and a gas containing only H? 712 AND CO AS FLAMMABLE INGREDIENTS

Publications (4)

Publication Number Publication Date
DK156686D0 DK156686D0 (en) 1986-04-07
DK156686A DK156686A (en) 1986-11-04
DK166517B true DK166517B (en) 1993-06-01
DK166517C DK166517C (en) 1993-10-18

Family

ID=20360062

Family Applications (1)

Application Number Title Priority Date Filing Date
DK156686A DK166517C (en) 1985-05-03 1986-04-07 WASTE DISPOSAL PROCEDURES

Country Status (12)

Country Link
JP (1) JPH0649186B2 (en)
AT (1) AT396880B (en)
AU (1) AU585332B2 (en)
CA (1) CA1270405A (en)
DK (1) DK166517C (en)
ES (1) ES8704614A1 (en)
FI (1) FI861794A (en)
IL (1) IL78448A0 (en)
IT (1) IT1188649B (en)
NO (1) NO161759C (en)
NZ (1) NZ215734A (en)
ZA (1) ZA862683B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767979A (en) * 1993-06-29 1995-03-14 Ind Technol Res Inst Wastes discarding equipment and method
US20080202028A1 (en) * 2005-06-03 2008-08-28 Plasco Energy Group Inc. System For the Conversion of Carbonaceous Fbedstocks to a Gas of a Specified Composition
GB2423079B (en) * 2005-06-29 2008-11-12 Tetronics Ltd Waste treatment process and apparatus
BRPI0711330A2 (en) * 2006-05-05 2013-01-08 Plascoenergy Group Inc Gas reformulation system using plasma torch heating

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842014U (en) * 1981-09-14 1983-03-19 三井化学株式会社 saddle fusion machine
SE451033B (en) * 1982-01-18 1987-08-24 Skf Steel Eng Ab SET AND DEVICE FOR CONVERSION OF WASTE MATERIALS WITH PLASMA MAGAZINE
IL66144A (en) * 1982-01-18 1985-06-30 Skf Steel Eng Ab Method and plant for conversion of waste material to stable final products
US4479443A (en) * 1982-03-08 1984-10-30 Inge Faldt Method and apparatus for thermal decomposition of stable compounds
GB2136939B (en) * 1983-03-23 1986-05-08 Skf Steel Eng Ab Method for destroying refuse
JPS6051533A (en) * 1983-08-31 1985-03-23 Nippon Kokan Kk <Nkk> Dry removal of noxious gas

Also Published As

Publication number Publication date
DK166517C (en) 1993-10-18
NO161759C (en) 1989-09-20
NO861346L (en) 1986-11-04
NO161759B (en) 1989-06-12
NZ215734A (en) 1988-08-30
AT396880B (en) 1993-12-27
FI861794A (en) 1986-11-04
JPH0649186B2 (en) 1994-06-29
DK156686D0 (en) 1986-04-07
ES8704614A1 (en) 1987-04-01
JPS61254285A (en) 1986-11-12
ATA90986A (en) 1993-05-15
IT8620054A0 (en) 1986-04-11
ZA862683B (en) 1987-12-30
IL78448A0 (en) 1986-08-31
FI861794A0 (en) 1986-04-29
DK156686A (en) 1986-11-04
IT1188649B (en) 1988-01-20
ES554119A0 (en) 1987-04-01
AU585332B2 (en) 1989-06-15
CA1270405A (en) 1990-06-19
AU5577486A (en) 1986-11-06
IT8620054A1 (en) 1987-10-11

Similar Documents

Publication Publication Date Title
US4718362A (en) Waste destruction
TW313621B (en)
US6333015B1 (en) Synthesis gas production and power generation with zero emissions
US5319176A (en) Plasma arc decomposition of hazardous wastes into vitrified solids and non-hazardous gasses
JP3263094B2 (en) Methods of transporting, interim storage, energy utilization, material utilization of all kinds of waste, and devices for implementing those methods
RU2424277C2 (en) Procedure for carbonaceous material steam reforming
US5584255A (en) Method and apparatus for gasifying organic materials and vitrifying residual ash
US3707129A (en) Method and apparatus for disposing of refuse
JPH08501871A (en) Waste incinerator and method of converting waste to fluid fuel
DK166517B (en) WASTE DISPOSAL PROCEDURES
JP2000328072A (en) Cooling jacket structure of high temperature gasification furnace in waste gasification treatment equipment
CZ43993A3 (en) Process for producing heating gas from a low-grade solid fuel, and apparatus for making the same
ES2215061T3 (en) PROCEDURE AND DEVICE FOR THE USE OF GASES FROM THE DECANTATION DEPOSIT.
JPH11159718A (en) Device and method for combustion
RU2688990C1 (en) Method of utilization of solid hydrocarbon wastes (including medical and biological wastes) and installation for its implementation
JP2000273473A (en) Method for treating waste generated in coke oven
JPH11131078A (en) Production of fuel gas and synthetic gas from pyrolyzed product
SE453776B (en) WANTED TO DISPOSE WASTE FOR THE formation of a leaching-resistant slag and a gas containing only H? 712 AND CO AS FLAMMABLE INGREDIENTS
JP2003262319A (en) Gasification melting system and gasification melting method
KR100508856B1 (en) Method and Device for high temperature incineration and thermal decomposition of wastes
RU63498U1 (en) INSTALLATION FOR DISPOSAL OF PESTICIDES AND OTHER LOW-CONCENTRATED MIXTURES OF HIGH-TOXIC SUBSTANCES
RU2160300C2 (en) Method of processing of solid organic wastes, plant and destruction for its embodiment
US20230226581A1 (en) Treatment of mill scale containing hydrocarbons
RU2466332C1 (en) Method for thermal recycling of industrial and household wastes and apparatus for realising said method
RU2153632C2 (en) Method of processing liquid household garbage and industrial waste

Legal Events

Date Code Title Description
PBP Patent lapsed
PUP Patent expired