DK164380B - MEASURING DEVICE FOR MEASURING CHARACTERISTIC CHARACTERISTICS OF RED BLOOD BODIES - Google Patents

MEASURING DEVICE FOR MEASURING CHARACTERISTIC CHARACTERISTICS OF RED BLOOD BODIES Download PDF

Info

Publication number
DK164380B
DK164380B DK292286A DK292286A DK164380B DK 164380 B DK164380 B DK 164380B DK 292286 A DK292286 A DK 292286A DK 292286 A DK292286 A DK 292286A DK 164380 B DK164380 B DK 164380B
Authority
DK
Denmark
Prior art keywords
measuring device
foil
measuring
electrode
chamber
Prior art date
Application number
DK292286A
Other languages
Danish (da)
Other versions
DK292286A (en
DK292286D0 (en
DK164380C (en
Inventor
Helmut Jahn
Waldemar Karger
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of DK292286D0 publication Critical patent/DK292286D0/en
Publication of DK292286A publication Critical patent/DK292286A/en
Publication of DK164380B publication Critical patent/DK164380B/en
Application granted granted Critical
Publication of DK164380C publication Critical patent/DK164380C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/012Red blood cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Ecology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Alcoholic Beverages (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Prostheses (AREA)

Abstract

The deformability measurement chamber is subdivided by a foil into two chamber spaces. The foil has a passage opening, the diameter of which is smaller than the diameter, at rest, of a red blood corpuscle. A static pressure gradient exists between the two chamber spaces, so that a flow takes place from one chamber space to the other. In the region of the passage opening there is situated on each side of the foil an electrode, which is connected to an alternating voltage source. In order to achieve a measurement signal which is approximately one order of magnitude greater, at a given alternating voltage frequency, a current-measuring operational amplifier is disposed in the connecton of one electrode to the voltage source.

Description

DK 164380BDK 164380B

i oin Island

Opfindelsen angår en måleindretning til måling af formforandringsegenskaber ved røde blodlegemer, erythro-cyter, hvilken måleindretning indbefatter et målekammer, som ved en folie er underdelt i to kamre, idet folien 5 er tilvejebragt med en gennemstrømningsåbning, hvis diameter er mindre, end et rødt blodlegemes hvilediameter, hvor kamrene er således udformede, at der er tilvejebragt en trykforskel mellem de to kamre, og dermed en strøm fra det ene til det andet kammer, idet der tillige 10 er tilvejebragt mindst en elektrode på hver side af folien i området ved åbningen, hvilke elektroder er forbundne med en vekselstrømskilde.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for measuring the shape-changing properties of red blood cells, erythrocytes, which includes a measuring chamber which is divided into two chambers by a film, the film 5 being provided with a flow opening of a diameter smaller than a red blood cell. a resting diameter, wherein the chambers are designed to provide a pressure difference between the two chambers, and hence a current from one chamber to the other, with at least one electrode on each side of the film in the region of the aperture, which electrodes are connected to an AC source.

En måleindretning af den nævnte art er omtalt i DE patentskrift nr. 3.215.719. Til måling af erythrocyternes 15 formforandringsegenskaber fyldes det ene kammer i målekammeret med en blanding af en bufferopløsning og blod, og det andet med bufferopløsning. Eftersom der på grund af kanalforløbet er tilvejebragt et hydrostatisk trykfald, påvirkes erythrocyterne på en sådan måde, at de passerer 20 gennem åbningen i folien. Den tid de enkelte erythrocyter bruger til at passere en membran med et hul, tages som udtryk for formforandringsegenskaberne. Ved erythrocyternes passage gennem åbningen i folien forandres målekammerets samlede elektriske modstand. Disse ændringer registreres, 25 og de er et direkte mål for passagetiden. På de på begge sider af åbningen tilvejebragte elektroder påtrykkes en vekselspænding med stor modstand, og den under passagen af erythrocyterne gennem åbningen varierende samlede modstand i målecellen registreres som spændingsændringer.A measuring device of the kind mentioned is disclosed in DE patent specification 3,215,719. To measure the shape-changing properties of the erythrocytes 15, one chamber of the measurement chamber is filled with a mixture of a buffer solution and blood, and the other with buffer solution. Since, due to the passage of the duct, a hydrostatic pressure drop is provided, the erythrocytes are affected in such a way that they pass through the opening in the foil. The amount of time each erythrocytes uses to pass a membrane with a hole is taken as an expression of the shape change properties. As the erythrocytes pass through the opening in the foil, the total electrical resistance of the measuring chamber changes. These changes are recorded, 25 and are a direct measure of passage time. On the electrodes provided on both sides of the orifice, a high resistance AC voltage is applied and the total resistance varying in the measurement cell during the passage of the erythrocytes is recorded as voltage changes.

30 Det er en ulempe ved vekselspændingsmålingen, at folien selv virker som en kondensator, således at åbningens ohmske modstand er parallelforbundet med en kapacitiv parasitmodstand. Hertil må føjes parasitshuntkapaciteter.It is a disadvantage of the AC voltage measurement that the foil itself acts as a capacitor such that the ohmic resistance of the aperture is connected in parallel with a capacitive parasite resistance. To this must be added parasite hunting capabilities.

Ved stigende frekvens tilvejebringes der ganske vist 35 en stigende opløsningsevne i målingen af passagetiden, men størrelsen af den kapacitive modstand falder. Som 0 2With increasing frequency, while increasing resolution is provided in measuring the passage time, the magnitude of the capacitive resistance decreases. Like 0 2

DK 164380 BDK 164380 B

følge heraf bliver ændringen af målesignalet ved erythrocyternes passage gennem åbningen i folien stadigt mindre med stigende målefrekvens, således at der skal tilvejebringes kostbart elektronisk udstyr 5 til størrelsesbestemmelse.As a result, the change of the measurement signal as the erythrocytes pass through the aperture in the foil becomes increasingly smaller with increasing measurement frequency, so that expensive electronic equipment 5 for size determination must be provided.

Denne ulempe overvindes ved opfindelsen. Det er således formålet med opfindelsen, at tilvejebringe en måleindretning til måling af røde blodlegemers formforandringsegenskaber, ved hvilken indretning der frembringes 10 et målesignal, som ved en given vekselspændingsfrekvens er omtrent en størrelsesorden større.This disadvantage is overcome by the invention. It is thus the object of the invention to provide a measuring device for measuring the shape-changing properties of red blood cells, in which device 10 produces a measuring signal which, at a given alternating voltage frequency, is about an order of magnitude larger.

Det angivne formål opnås med en.indretning af den indledningsvis omhandlede art, som ifølge opfindelsen er ejendommelig ved den i krav l's kendetegnende del angivne 15 udformning.The stated object is achieved with a device of the kind referred to in the preamble, which according to the invention is characterized by the design according to the characterizing part of claim 1.

Ved opfindelsen tilvejebringes en indretning, hvor der i forbindelsen mellem en elektrode og vekselstrømskilden er indskudt en strømmålingsindretning.The invention provides a device in which a current measuring device is inserted in the connection between an electrode and the alternating current source.

I en udførelsesform af opfindelsen kan en af 20 elektroderne være forbundet med vekselstrømskilden og virke som virtuelt nulpunkt, og i denne forbindelse kan strømmåleindretningen være indskudt. Som strømmåleind-retning kan en som inverterende forstærker virkende operationsforstærker med en dermed forbunden analog/-25 digital konverter være forbundet med elektroden.. Analog/- digital konverteren kan efterfølgende være forbundet med et filter og/eller en spidsværdidetektor, f.eks. en tovejsdetektor.In one embodiment of the invention, one of the 20 electrodes may be connected to the AC source and act as a virtual zero point, and in this connection the current measuring device may be inserted. As a power measuring device, an operating amplifier acting as an inverting amplifier with an associated analog / -25 digital converter may be connected to the electrode. The analog-to-digital converter may subsequently be connected to a filter and / or a peak value detector, e.g. a two-way detector.

Ved omhyggelig minimering af kapaciteterne i 30 målecellen og de elektriske tilslutninger kan der med den ved opfindelsen tilvejebragte måleindretning opnås et målesignal, som er omtrent en størrelsesorden større. Herved er der for første gang, udover oplysningen om passagetiden, mulighed for tilvejebringelse af det 35 elektriske målesignals kvalitative kurveforløb under det røde blodlegemes passage gennem folien.By carefully minimizing the capacities of the measuring cell and the electrical connections, a measuring signal which is approximately an order of magnitude larger can be obtained with the measuring device provided by the invention. In this way, for the first time, in addition to the information about the passage time, it is possible to provide the qualitative curve of the electrical measurement signal during the passage of the red blood cell through the foil.

DK 164380 BDK 164380 B

0 30 3

Opfindelsen forklares i det følgende nærmere under henvisning til tegningen, på hvilken: fig. 1 viser måleindretningens kredsløb, fig. 2 viser en del af målekammerets kredsløb 5 med en alternativ forbindelse af operationsforstærkeren, fig. 3 anskueliggør det digitaliserede indgangssignal til mikroprocessoren.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the circuit of the measuring device; FIG. 2 shows a portion of the measuring chamber circuit 5 with an alternative connection of the operational amplifier; FIG. 3 illustrates the digitized input signal to the microprocessor.

Målekammeret i måleindretningen, således som det eksempelvis er beskrevet i DE patentskrift nr. 3.215.7X9, 10 er opdelt i to kamre ved en folie. Folien er tilvejebragt med en gennemstrømningsåbning, hvis diameter er mindre et rødt blodlegemes hvilediameter. Kamrene er således udformede, at der er tilvejebragt en trykforskel mellem de to kamre, hvorved tilvejebringes en strøm fra det ene 15 kammer til det andet, når der i kamrene er placeret enThe measuring chamber of the measuring device, as described, for example, in DE patent specification 3.215.7X9, 10 is divided into two chambers by a foil. The foil is provided with a flow opening whose diameter is less than the red diameter of a red blood cell. The chambers are designed such that a pressure difference is provided between the two chambers, thereby providing a flow from one chamber to the other when a chamber is placed in the chambers.

opløsning med røde blodlegemer. På begge sider af folien i nærheden af gennemstrømningsåbningen er der tilvejebragt mindst én elektrode, som er forbundet med en vekselspændingskilde 4. Strømmåleindretningen kan indbefatte en som inver-20 terende forstærker virkende operationsforstærker 7. Ired blood cell solution. On both sides of the foil in the vicinity of the flow opening, at least one electrode is provided which is connected to an AC voltage source 4. The current measuring device may include an operating amplifier 7 which operates as an inverting amplifier.

dette tilfælde er den inverterende indgang 9 på forstærkeren forbundet med elektroden 2 eller 3, medens den ikke--inverterende indgang 10 er forbundet med vekselspændingskilden 4, hhv. med stel. Strømmen måles fortrinsvis ved 25 målekammerets kolde ledningsende. Den inverterende indgang 9 på operationsforstærkeren 7 er forbundet med elektroden 3, og virker, gennem tilbagekobling 11 af en ligeså stor, modsat rettet strøm, med et virtuelt nulpunkt. Herved tilvejebringes der en udgangsspænding på udgangen 12 på 30 operationsforstærkeren 7, som er nøjagtig proportional med strømmen. I praksis er der ikke nogen spændingsforskel mellem elektroden 3 og stel ved måling af strømmen. Gennem den særlige kredsløbsteknik, er de ellers skadelige forbindelser i målekammeret 1 med stel uden betydning.in this case, the inverting input 9 of the amplifier is connected to the electrode 2 or 3, while the non-inverting input 10 is connected to the alternating voltage source 4, respectively. with frame. The current is preferably measured at the cold conductor end of the measuring chamber. The inverting input 9 of the operational amplifier 7 is connected to the electrode 3 and acts, through feedback 11, of an equally large, opposite directed current, with a virtual zero point. This provides an output voltage at the output 12 of the operational amplifier 7 which is exactly proportional to the current. In practice, there is no voltage difference between the electrode 3 and the frame when measuring the current. Through the particular circuit technique, the otherwise harmful compounds in the measuring chamber 1 with frame are of no significance.

35 Der optræder principielt ingen parasitstrømmen i målekredsløbet, hvorfor anvendelsen af en dyrere instrument-35 In principle, there is no parasitic current in the measurement circuit, so the use of a more expensive instrument-

DK 164380 BDK 164380 B

0 4 forstærker ikke er påkrævet. Således kan der også uden betænkelighed som tilledning anvendes længere skærmledninger 13, 14. På grund af den lave modstand, såvel ved den "varme" indgangsende (elektroden 2), som ved den 5 "kolde" stelende (elektroden 3) på målekammeret 1 undertrykkes støj stråling, herunder også i det anvendte frekvensspektrum, i vid udstrækning. Efter eventuel undertrykkelse af yderligere forstyrrelser i det aktive filter 15, kan tilvejebringes en detektion af spidsværdier i en 10 spidsværdidetektor 16. Signalet føres herefter til yderligere behandling i en analog/digital konverter 8 med en egnet opløsning til tilvejebringelse af en dertil knyttet amplitudeberegning. Spidsværdidetektoren 16 sikrer, at analog/-digitalkonverteren 8 modtager et tilstrækkeligt konstant 15 signal gennem omsætningsperioden. I mange tilfælde kan anvendelsen af en tovejsdetektor være fordelagtigere.0 4 amplifier is not required. Thus, longer screen leads 13, 14. can also be used without concern as a conduit because of the low resistance, both at the "hot" input end (electrode 2) and at the 5 "cold" setting (electrode 3) on the measuring chamber 1 is suppressed noise radiation, including also in the frequency spectrum used, extensively. Following suppression of further interference in the active filter 15, a detection of peak values can be provided in a peak value detector 16. The signal is then passed for further processing in an analog / digital converter 8 with a suitable solution to provide an associated amplitude calculation. The peak value detector 16 ensures that the analogue / digital converter 8 receives a sufficiently constant signal throughout the conversion period. In many cases, the use of a two-way detector may be more advantageous.

Ved indsættelse af en efter analog/digitalkonverteren 8 følgende mikroprocessor 17 kan der, uden ændringer i hardwareopbygningen, tilvejebringes forskellige bereg-20 ninger, hvorved frembringes informationer af medicinsk relevans fra måledata. Gennem beregningsalgoritmer kan langsomme ændringer i målekammerstrømmen kompenseres, og kortere støjimpulser elimineres, når sådanne ændringer ikke modsvarer det karakteristiske forløb i tilknytning 25 til erythrocytgennemgang. Eventuelt kan der indsættes en indstillelig forstærker 22 efter operationsforstærkeren.By inserting a microprocessor 17 following the analog / digital converter 8, various calculations can be made, without changes to the hardware structure, thereby producing information of medical relevance from measurement data. Through calculation algorithms, slow changes in the measurement chamber current can be compensated and shorter noise pulses are eliminated when such changes do not match the characteristic course associated with erythrocyte review. Optionally, an adjustable amplifier 22 may be inserted after the operational amplifier.

Til slut tilvejebringes oplysning om det totale tidsforbrug 20 (fig. 3) for den enkelte erythrocyts passage gennem folien, idet der beregnes en statistik herfor, og 30 resultatet vises i fremvisningsorganet 18 og/eller udskrives i printeren 19. Tillige tilvejebringes detaljeret registrering af særligt vigtige faser af passagen, eksempelvis forløbet af elongationsfasen 21 (fig. 3) for erythrocyterne ved indtrædning i åbningen i folien.Finally, information is provided on the total time consumption 20 (Fig. 3) for the passage of the individual erythrocyte through the foil, calculating a statistic thereof, and the result is displayed in the display means 18 and / or printed in the printer 19. In addition, detailed recording of particular important phases of the passage, for example the elongation phase 21 (Fig. 3) of the erythrocytes upon entry into the aperture of the foil.

3535

Claims (5)

1. Måleindretning til måling af røde blodlegemers formforandringsegenskaber indbefattende et målekammer (1), som er opdelt i to kamre af en folie, idet folien er 5 udformet med en gennemstrømningsåbning, hvis diameter er mindre end et rødt blodlegemes hvilediameter, og idet kamrene er således udformede, at der tilvejebringes et statisk trykfald mellem de to kamre og dermed en strøm fra det ene kammer til det andet, samt at der på begge sider 10 af folien i nærheden af gennemstrømningsåbningen er placeret mindst en elektrode, hvilke elektroder er forbundne med en vekselspændingskilde, kendetegnet ved, at den ene elektrode er forbundet med vekselstrømskilden (4) i et virtuelt nulpunkt, og at der i denne forbindelse 15 er tilvejebragt- en strømmåleindretning.A measuring device for measuring the shape-changing properties of red blood cells, including a measuring chamber (1), which is divided into two chambers of a foil, the foil being formed with a flow opening, the diameter of which is less than the resting diameter of a red blood cell, and the chambers are thus designed to provide a static pressure drop between the two chambers and hence a current from one chamber to the other, and at least on one side 10 of the foil near the flow opening, at least one electrode is provided which electrodes are connected to an AC voltage source , characterized in that one electrode is connected to the alternating current source (4) at a virtual zero point and in this connection 15 a current measuring device is provided. 2. Måleindretning ifølge krav 1, kendetegnet ved, at der som strømmåleindretning med elektroden er forbundet en som inverterende forstærker virkende operationsforstærker(7) med en derefter forbunden analog/- 20 digital konverter 8.Measuring device according to claim 1, characterized in that, as a current measuring device with the electrode, an operating amplifier (7) acting as an inverting amplifier (7) is connected to an analog / digital digital converter 8 connected thereto. 3. Måleindretning ifølge krav 1, kendetegnet ved, at der mellem operationsforstærkeren (7). og analog/digital konverteren (8) er tilvejebragt et filter (15).Measuring device according to claim 1, characterized in that between the operational amplifier (7). and the analog / digital converter (8) is provided with a filter (15). 4. Måleindretning ifølge krav 2, kendeteg-25 net ved, at der foran analog/digitalkonverteren (8) er forbundet en spidsværdidetektor (16).Measuring device according to claim 2, characterized in that a peak value detector (16) is connected in front of the analogue / digital converter (8). 5. Måleindretning ifølge krav 4, kendetegnet ved, at en tovejsdetektor virker som spidsværdidetektor. 1 35Measuring device according to claim 4, characterized in that a two-way detector acts as a peak value detector. 1 35
DK292286A 1985-06-21 1986-06-20 MEASURING DEVICE FOR MEASURING CHARACTERISTIC CHARACTERISTICS OF RED BLOOD BODIES DK164380C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3522186 1985-06-21
DE19853522186 DE3522186A1 (en) 1985-06-21 1985-06-21 MEASURING DEVICE FOR MEASURING THE DEFORMITY OF RED BLOOD BODIES

Publications (4)

Publication Number Publication Date
DK292286D0 DK292286D0 (en) 1986-06-20
DK292286A DK292286A (en) 1986-12-22
DK164380B true DK164380B (en) 1992-06-15
DK164380C DK164380C (en) 1992-11-16

Family

ID=6273801

Family Applications (1)

Application Number Title Priority Date Filing Date
DK292286A DK164380C (en) 1985-06-21 1986-06-20 MEASURING DEVICE FOR MEASURING CHARACTERISTIC CHARACTERISTICS OF RED BLOOD BODIES

Country Status (11)

Country Link
US (1) US4797606A (en)
EP (1) EP0209711B1 (en)
JP (1) JPS62182654A (en)
AT (1) ATE61669T1 (en)
BR (1) BR8602869A (en)
DE (2) DE3522186A1 (en)
DK (1) DK164380C (en)
ES (1) ES8706962A1 (en)
FI (1) FI84403C (en)
NO (1) NO166382C (en)
PT (1) PT82787B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685544B2 (en) * 1988-11-11 1997-12-03 株式会社日立製作所 Blood filter, blood test method, and blood test apparatus
WO1992015878A1 (en) * 1991-03-04 1992-09-17 Kensey Nash Corporation Apparatus and method for determining deformability of red blood cells of a living being
US5532139A (en) * 1992-10-30 1996-07-02 Micro-Med, Inc. Micro lysis-analysis process to measure cell characteristics and diagnose diseases
US5610027A (en) * 1992-10-30 1997-03-11 Micro-Med, Inc. Microphoto lysis-anlaysis process to measure cell characteristics
US5955295A (en) * 1992-10-30 1999-09-21 Micro-Med, Inc. Micro lysis-analysis process to measure cell characteristics and diagnose diseases
US5528133A (en) * 1994-07-21 1996-06-18 Powerpoint Technologies, Inc. Method and apparatus for determining the quality of a colloidal suspension
US8026102B2 (en) 2009-01-21 2011-09-27 Blaze Medical Devices, LLC Apparatus and method to characterize blood and red blood cells via erythrocyte membrane fragility quantification

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783247A (en) * 1971-08-30 1974-01-01 Coulter Electronics Particle analyzing system for coulter particle device and method
US3815022A (en) * 1972-10-04 1974-06-04 Gen Electric Method and apparatus for measuring small aspherical particles
US3812425A (en) * 1972-11-21 1974-05-21 Becton Dickinson Co Method and apparatus for determination of hematocrit
US3944917A (en) * 1973-08-13 1976-03-16 Coulter Electronics, Inc. Electrical sensing circuitry for particle analyzing device
CH614781A5 (en) * 1977-06-27 1979-12-14 Contraves Ag
DE2750447C2 (en) * 1977-11-11 1986-04-17 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Device for measuring certain properties of particles suspended in a particle suspension
DE2828232C2 (en) * 1978-06-28 1986-04-17 Kernforschungsanlage Jülich GmbH, 5170 Jülich Device for determining the dielectric breakthrough and the size of particles having a membrane as an envelope
FR2484077B1 (en) * 1980-06-06 1984-07-06 Inst Nat Sante Rech Med METHOD AND DEVICE FOR MEASURING THE DEFORMABILITY OF LIVING CELLS, ESPECIALLY RED BLOOD CELLS
DE3215719C2 (en) * 1982-04-28 1984-01-26 Holger Dr. 5100 Aachen Kiesewetter Measuring device for measuring the deformability of red blood cells

Also Published As

Publication number Publication date
DK292286A (en) 1986-12-22
EP0209711A1 (en) 1987-01-28
US4797606A (en) 1989-01-10
JPS62182654A (en) 1987-08-11
FI862630A (en) 1986-12-22
ES556231A0 (en) 1987-07-01
DK292286D0 (en) 1986-06-20
NO862469L (en) 1986-12-22
DK164380C (en) 1992-11-16
DE3522186A1 (en) 1987-01-02
FI84403B (en) 1991-08-15
ES8706962A1 (en) 1987-07-01
FI862630A0 (en) 1986-06-19
NO166382C (en) 1991-07-10
ATE61669T1 (en) 1991-03-15
PT82787A (en) 1986-12-29
NO166382B (en) 1991-04-02
PT82787B (en) 1994-07-29
DE3678056D1 (en) 1991-04-18
NO862469D0 (en) 1986-06-20
FI84403C (en) 1991-11-25
EP0209711B1 (en) 1991-03-13
BR8602869A (en) 1987-02-10

Similar Documents

Publication Publication Date Title
CA1193662A (en) Hematocrit measuring instrument
KR100566547B1 (en) Magnetic field detection device
AU8278087A (en) Particle analyzer for measuring the resistance and reactance of a particle
DK164380B (en) MEASURING DEVICE FOR MEASURING CHARACTERISTIC CHARACTERISTICS OF RED BLOOD BODIES
US4525666A (en) Cell breakdown
Blott et al. A two frequency vibrating capacitor method for contact potential difference measurements
CN203815454U (en) Body surface conductivity distribution tester
US3473010A (en) Apparatus and method for determining mean particle volume
Bewig Ionization method of measuring contact potential differences
Tudyka et al. Very low cost multichannel analyzer with some additional features
CN205264827U (en) Current detecting circuit
US20040005024A1 (en) Apparatus and method for measuring current flow in an animal or human body
CN106908647A (en) Current detection circuit
Olmsted Phase detection electromagnetic flowmeter-design and use
Al-Hashimi et al. Bioimpedance spectroscopy system for characterization of cancer cells
CN203815456U (en) Conductance biological feedback training instrument
SU1489720A1 (en) Apparatus for investigating electric resistance of skin
Sinha et al. MATLAB based on-line polygraph test using galvanic skin resistance and heart rate measurement
SU949543A1 (en) Device for measuring substance dielectric properties
Holmer et al. An electrometer amplifier with low input capacitance and large input dynamic range
Bertemes-Filho et al. Parasitic Effects on Electrical Bioimpedance Systems: Critical Review
Oliveira et al. A comparison between direct digital measurement technique and digital quadrature demodulation for complex bioimpedance measurement implementation in FPGA
Murari et al. Signal processing and calibration electronics for the metal foil bolometers of RFX
CN103860170A (en) Electrical conductance biological feedback training instrument
Grieve et al. An accessible electrical impedance tomograph for 3D imaging