DK163365B - Process for enzymically preparing dipeptide derivatives - Google Patents

Process for enzymically preparing dipeptide derivatives Download PDF

Info

Publication number
DK163365B
DK163365B DK567988A DK567988A DK163365B DK 163365 B DK163365 B DK 163365B DK 567988 A DK567988 A DK 567988A DK 567988 A DK567988 A DK 567988A DK 163365 B DK163365 B DK 163365B
Authority
DK
Denmark
Prior art keywords
amino acid
carboxypeptidase
amino
process according
reaction
Prior art date
Application number
DK567988A
Other languages
Danish (da)
Other versions
DK567988A (en
DK567988D0 (en
DK163365C (en
Inventor
Pia Thorbek
Fred Widmer
Stig Aasmul-Olsen
Original Assignee
Carlsberg Biotechnology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DK072587A external-priority patent/DK72587D0/en
Application filed by Carlsberg Biotechnology Ltd filed Critical Carlsberg Biotechnology Ltd
Priority to DK567988A priority Critical patent/DK163365C/en
Publication of DK567988D0 publication Critical patent/DK567988D0/en
Publication of DK567988A publication Critical patent/DK567988A/en
Publication of DK163365B publication Critical patent/DK163365B/en
Application granted granted Critical
Publication of DK163365C publication Critical patent/DK163365C/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

DK 163365 BDK 163365 B

Den foreliggende opfindelse angår en fremgangsmåde til enzymatisk fremstilling af dipeptider og derivater af dipeptider af den i krav 1's indledning anførte art.The present invention relates to a process for enzymatically preparing dipeptides and derivatives of dipeptides of the kind set forth in claim 1.

5 Der har i de" seneste år været en stigende interesse for dipeptider og dipeptid-derivater eventuelt indeholdende en aminosyrerest af D-konfiguration, med henblik på disses potentielle farmakologiske virkninger, som f.eks. antibiotika. Ligeledes har der været stor interesse for di-10 peptider indenfor områder som kunstig ernæring - såvel human som veterinær, sødemidler og indenfor agrokemien, som f.eks. insektbekæmpelsesmidler.In recent years there has been a growing interest in dipeptides and dipeptide derivatives, possibly containing an amino acid residue of D configuration, for their potential pharmacological effects, such as antibiotics. -10 peptides in areas such as artificial nutrition - both human and veterinary, sweeteners and agrochemicals, such as insecticides.

Sådanne dipeptider H-A-B-Y kan fremstilles ved hjælp af 15 kendte kemiske koblingsreaktioner, men fælles for alle disse metoder er, at det som regel er nødvendigt at beskytte de involverede aminosyrer - A og B - på henholdsvis aminogruppen og carboxylsyregruppen samt ofte også på sidekæderne, hvis disse bærer funktionelle grupper. På 20 grund af de anvendte reagenser og betingelser er der endvidere iboende risiko for sidereaktioner under det kemiske koblingstrin. Racemisering, fortrinsvis på A-komponen-ten, er en sådan væsentlig sidereaktion. Ved at erstatte det kemiske koblingstrin med et enzymatisk koblingstrin, 25 der forløber under milde betingelser, kan sådanne sidereaktioner og racemisering undgås, hvorved der dannes et stereokemisk rent produkt.Such dipeptides HABY can be prepared by 15 known chemical coupling reactions, but common to all these methods is that it is usually necessary to protect the amino acids involved - A and B - on the amino and carboxylic acid groups, as well as often on the side chains, if these carrying functional groups. Furthermore, due to the reagents and conditions used, there is an inherent risk of side reactions during the chemical coupling step. Racemization, preferably on the A component, is such a significant side reaction. By replacing the chemical coupling step with an enzymatic coupling step which runs under mild conditions, such side reactions and racemization can be avoided, thereby forming a stereochemically pure product.

Tilstedeværelsen af amino- eller carboxybeskyttelsesgrup-30 per er obligatorisk både ved kemisk kobling og ved enzymatisk kobling under anvendelse af endoproteaser, og ifølge den kendte teknik også på substratets amino-funktion ved enzymatisk exoprotease-katalyseret dipeptidfrem-stilling.The presence of amino or carboxy protecting groups is mandatory both by chemical coupling and by enzymatic coupling using endoproteases, and according to the prior art, also on the amino function of the substrate by enzymatic exoprotease-catalyzed dipeptide preparation.

Herved tilføres disse processer som forklaret nedenfor adskillige uønskede træk, der i alvorlig grad påvirker 35 2Hereby, as explained below, these processes are added to several undesirable features that severely affect 35 2

DK 163365 BDK 163365 B

deres procesøkonomi i industrielt omfang, hvilket er særligt tydeligt ved dipeptidfremstilling. Ulemperne opstår i forbindelse med beskyttelsesgruppernes indførelse, fjernelse og tilstedeværelse under processen, hvilket 5 forøger den samlede procesudgift og -tid samt udbyttet som sådant.their process economics on an industrial scale, which is particularly evident in dipeptide production. The disadvantages arise from the introduction, removal and presence of the protecting groups during the process, which increases the overall process cost and time as well as the yield as such.

Typiske eksempler på almindeligt anvendte amino-beskyt-telsesgrupper er grupper af carbobenzoxy (Z-) og tertbut-10 oxycarbonyl- (Boc-) typen, der har en med aminosyreres-terne sammenlignelig molekylvægt. For det første skal beskyttelsesgrupperne indføres i udgangsmaterialerne ved hjælp af egnede, dyre midler i et separat reaktionstrin efterfulgt af et isoleringstrin. Tilstedeværelsen af 15 disse hydrofobe grupper har ofte en drastisk effekt på mellemprodukternes og reaktionsprodukternes opløselighed og kan påvirke både den type og mængde af opløsningsmidler, der kræves til deres behandling, og den lethed hvormed de kan oprenses og debeskyttes. Endvidere skal debe-20 skyttelsen ske i et separat trin efterfulgt af et oprensningstrin.Typical examples of commonly used amino protecting groups are carbobenzoxy (Z-) and tert-butoxycarbonyl (Boc) -type groups having a molecular weight comparable to the amino acid residues. First, the protecting groups must be introduced into the starting materials by suitable, expensive agents in a separate reaction step followed by an isolation step. The presence of these hydrophobic groups often has a drastic effect on the solubility of the intermediates and the reaction products and can affect both the type and amount of solvents required for their treatment, and the ease with which they can be purified and de-protected. Furthermore, the de-protection must be done in a separate step followed by a purification step.

Der findes et antal reaktioner til dette formål men med undtagelse af katalytisk hydrogenering, der i sig selv 25 volder industrielle problemer, foregår disse reaktioner under voldsomme og ofte stærkt sure eller basiske betingelser, hvilket ofte forårsager en række sidereaktioner. Resultatet heraf vil være et urent produkt, medmindre dette underkastes krævende og omstændelig oprensning.There are a number of reactions for this purpose, but with the exception of catalytic hydrogenation, which in itself causes 25 industrial problems, these reactions take place under severe and often highly acidic or basic conditions, often causing a number of side reactions. The result of this will be an unclean product, unless it is subject to demanding and elaborate purification.

3030

De sidste trin i denne forholdsvis lange række af syntesetrin kan således blive en ret omfattende debeskyttelse til opnåelse af de ønskede dipeptider. På grund af de · næsten uundgåelige sekundære reaktioner kræves desuden 35 ofte ret omstændige rensningsprocedurer for at opnå et produkt med den ønskede høje renhedsgrad.Thus, the final steps of this relatively long series of synthesis steps can become quite extensive deb protection to obtain the desired dipeptides. In addition, due to the · almost inevitable secondary reactions, 35 fairly clean cleaning procedures are required to obtain a product of the desired high purity.

33

DK 163365 BDK 163365 B

Forsøg på at undgå aminoterminal-beskyttelse ved fremstillingen af dipeptider har omfattet mikrobiel gæring, f.eks. den i EP-A1-074095 og EP-A2-102529 beskrevne gæringsproces under dannelse af aspartam. Denne teknik er 5 fundamentalt 'forskellig fra syntetiske metoder og er afhængig af specifikke organismer for hvert peptid. Den er derfor ikke generelt anvendelig. Desuden er udbytterne ofte lave, og genvindingen fra gæringsmediet omstændelig.Attempts to avoid amino terminal protection in the preparation of dipeptides have included microbial fermentation, e.g. the fermentation process described in EP-A1-074095 and EP-A2-102529 to form aspartame. This technique is fundamentally different from synthetic methods and relies on specific organisms for each peptide. It is therefore not generally applicable. Furthermore, the yields are often low and the recovery from the fermentation medium is cumbersome.

10 Set i lyset af den totale procesøkonomi er det derfor en åbenlys fordel at kunne undgå beskyttelsesgrupper, også på amino- og carboxyterminalen. Det er formålet med nærværende opfindelse at muliggøre dette ved dipeptid-synte-se på basis af serin- og thiolcarboxypeptidase-katalyse.10 In view of the overall process economy, it is therefore an obvious advantage to be able to avoid protecting groups, also at the amino and carboxy terminals. It is the object of the present invention to enable this by dipeptide synthesis on the basis of serine and thiol carboxypeptidase catalysis.

15 Det kan være interessant at kunne fremstille et dipeptid, der har sidekædebeskyttelse, men ingen terminalbeskyttelse, og det vil fremgå, at dette også er muligt ved fremgangsmåden ifølge opfindelsen, når man går ud fra sidekæ-debeskyttede men amino- henholdsvis carboxyubeskyttede 20 udgangsmaterialer. Herved kan der opnås de samme fordele ! med hensyn til milde reaktionsbetingelser og total procesøkonomi, som ved sidekædebeskyttede udgangsmaterialer.It may be of interest to be able to produce a dipeptide having side chain protection but no terminal protection, and it will be seen that this is also possible in the process of the invention when starting from side chain protected but amino and carboxy protected 20 starting materials, respectively. Hereby the same benefits can be obtained! in terms of mild reaction conditions and overall process economics, as with side chain protected starting materials.

Den C-terminale beskyttelsesgruppe kan om ønsket fjernes ' enzymatisk med det samme eller med et andet enzym end 25 det, der anvendtes til syntesen. Tilstedeværelsen af en beskyttelsesgruppe, f.eks. et amid, kan have betydning for forbindelsernes biologiske virkning, hvorfor den ikke altid fjernes. Om ønsket kan sidekædebeskyttelsesgruppen fjernes kemisk eller enzymatisk, i reglen under mildere 30 betingelser end det er muligt for aminobeskyttelsesgruppen.The C-terminal protecting group can be removed enzymatically immediately or with an enzyme other than that used for the synthesis. The presence of a protecting group, e.g. an amide, may have an effect on the biological effect of the compounds, so it is not always removed. If desired, the side chain protecting group can be removed chemically or enzymatically, usually under milder conditions than is possible for the amino protecting group.

Kendte er de enzymkatalyserede koblingsreaktioner, der tillader anvendelse af sidekæde-ubeskyttede aminosyrede-35 rivater og eventuelt en C-terminal ubeskyttet B-komponent (nucleophil). Der kan eksempelvis henvises til dansk patentskrift nr. 155613 (ans. nr. 5202/80) samt det tilsva- 4Known are the enzyme catalyzed coupling reactions which allow the use of side chain unprotected amino acid derivatives and optionally a C-terminal unprotected B component (nucleophile). For example, reference may be made to Danish Patent Specification No. 155613 (App. No. 5202/80) and the corresponding 4

DK 163365 BDK 163365 B

rende EP patentskrift nr. 17 485 (EP-B1-17485).No. EP-A-17 485 (EP-B1-17485).

I EP-B1-17485 beskrives en fremgangsmåde til fremstilling af peptider med den almene formel 5 A1"B1"Z1 hvori A^ betegner en N-terminalbeskyttet L-aminosyrerest eller en eventuelt N-terminalbeskyttet peptidrest med en 10 C-terminal L-aminosyrerest, og betegner en L-aminosy rerest, og er OH eller en C-terminal beskyttelsesgruppe, ved omsætning af en substratkomponent med en aminkom-ponent i nærvær af et enzym, og om ønsket fraspaltning af eventuelle terminalbeskyttelsesgrupper til dannelse af et 15 peptid med formlenEP-B1-17485 discloses a process for the preparation of peptides of general formula 5 A1 "B1" Z1 wherein A 1 represents an N-terminal protected L-amino acid residue or an optional N-terminal protected peptide residue with a 10 C-terminal L-amino acid residue and represents an L-amino acid residue, and is OH or a C-terminal protecting group, by reacting a substrate component with an amine component in the presence of an enzyme and, if desired, cleavage of any terminal protecting groups to form a peptide of the formula

Al"Bl"Zl der er ejendommelig ved, at man omsætter en substratkom-20 ponent valgt blandt aminosyreestere, peptidestere, depsipeptider, eventuelt N-substituerede aminosyreamider eller peptidamider, og eventuelt N-terminalbeskyttede peptider 25 med formlenAl "B1" Z1, which is characterized by reacting a substrate component selected from amino acid esters, peptide esters, depsipeptides, optionally N-substituted amino acid amides or peptide amides, and optionally N-terminal protected peptides of the formula

A1-0R1, A^NR^' eller Aj-Xj-OHA1-0R1, A ^ NR ^ 'or Aj-Xj-OH

hvori A^ har den ovenfor anførte betydning, 30 R^ betegner alkyl, aryl, heteroaryl, aralkyl eller et a-des-aminofragment af en aminosyrerest, R2 og r2' hver betegner hydrogen, alkyl, aryl, he-teroaryl eller aralkyl, og betegner en L-aminosyrerest, med en aminkomponent (nucleophil) valgt blandt 35 5wherein A 1 is as defined above, R 2 represents alkyl, aryl, heteroaryl, aralkyl or an α-des amino fragment of an amino acid residue, R 2 and R 2 'each represent hydrogen, alkyl, aryl, heteroaryl or aralkyl, and represents an L-amino acid residue, with an amine component (nucleophile) selected from 35

DK 163365 BDK 163365 B

eventuelt N-substituerede L-aminosyreamider, L-ami-nosyrer og L-aminosyreestere, med formlen H-B^NRgRg' eller H-B^OR^ 5 hvori B^ har den ovenfor anførte betydning Rg og Rg’ hver betegner hydrogen, hydroxy, amino, alkyl, aryl, heteroaryl eller aralkyl, og er hydrogen, alkyl, aryl, heteroaryl eller 10 aralkyl i nærvær af et L-specifikt serin- eller thiolcarboxypep-tidase-enzym stammende fra gær eller af animalsk, vegetabilsk eller anden mikrobiel oprindelse, i en vandig op-15 løsning eller dispersion ved pH 5-10,5, fortrinsvis ved en temperatur på 20-50°C. Det foretrukne enzym er carb-oxypeptidase Y fra gær, i det følgende benævnt CPD-Y.optionally N-substituted L-amino acid amides, L-amino acids and L-amino acid esters, of the formula HB ^ NRgRg 'or HB ^ OR ^ wherein B ^ is as defined above Rg and Rg' each represents hydrogen, hydroxy, amino, alkyl, aryl, heteroaryl or aralkyl, and is hydrogen, alkyl, aryl, heteroaryl or aralkyl in the presence of an L-specific serine or thiol carboxypeptidase enzyme derived from yeast or of animal, vegetable or other microbial origin, in a aqueous solution or dispersion at pH 5-10.5, preferably at a temperature of 20-50 ° C. The preferred enzyme is carb oxypeptidase Y from yeast, hereinafter referred to as CPD-Y.

(Det bemærkes, at ovennævnte symbolbetydninger ikke er identiske med de ifølge EP-B1-17485 anvendte for at undgå 20 forveksling med de ifølge ansøgningen anvendte).(It should be noted that the above symbol meanings are not identical to those used in EP-B1-17485 to avoid confusion with those used in the application).

Hvis der således ved fremgangsmåden ifølge EP-B1-17485 skal fremstilles et dipeptid, anvendes der som substratkomponent obligatorisk et N-terminalbeskyttet aminosyre-25 derivat, og den indgående aminosyre er obligatorisk en L-aminosyre.Thus, if a dipeptide is to be prepared by the method of EP-B1-17485, an N-terminal protected amino acid derivative is used as the substrate component and the incoming amino acid is mandatory an L-amino acid.

Mere alment siges det, at behovet for N-terminal amino-gruppebeskyttelse af substratkomponenten aftager med sti-30 gende kædelængde af peptidresten og i det væsentlige bortfalder, når peptidresten består af 3 aminosyrer, dog afhængigt af disses art og sekvens.More generally, it is said that the need for N-terminal amino group protection of the substrate component decreases with increasing chain length of the peptide residue and essentially lapses when the peptide residue consists of 3 amino acids, however depending on their nature and sequence.

Dette er illustreret i Breddam et al. "Influence of the 35 substrate structure on carboxypeptidase Y catalyzed peptide bond formation", Carlsberg Res. Commun., vol. 45. p. 361-67, 30th December 1980, hvor Ac-Ala-Ala-Ala-OMe og 6This is illustrated in Breddam et al. "Influence of the 35 substrate structure on carboxypeptidase Y catalyzed peptide bond formation", Carlsberg Res. Commun., Vol. 45, pp. 361-67, December 30, 1980, where Ac-Ala-Ala-Ala-OMe and 6

DK 163365 BDK 163365 B

H-Ala-Ala-Ala-OMe kobledes med H-Leu-NH2 i nærvær af CPD-Y under dannelse af Ac-Ala-Ala-Ala-LeuNH2 og H-Ala-Ala-Ala-LeuNH2 i udbytter på henholdsvis 90 og 80%.H-Ala-Ala-Ala-OMe was coupled with H-Leu-NH2 in the presence of CPD-Y to form Ac-Ala-Ala-Ala-LeuNH2 and H-Ala-Ala-Ala-LeuNH2 in yields of 90 and 90, respectively. 80%.

5 Breddam et al. undersøgte også aminosyrekonfigurationens betydning for koblingsudbyttet ved CPD-Y katalyseret peptidsyntese, jfr. følgende tabel, hvor Ala betegner L-ala-nin og ala betegner D-alanin.Breddam et al. also investigated the importance of the amino acid configuration for the coupling yield in CPD-Y catalyzed peptide synthesis, cf. the following table wherein Ala represents L-alanine and ala represents D-alanine.

10 Substrat Produkt Udbytte (%) H-Ala-Ala-Ala-OMe H-Ala-Ala-Ala-Leu-NH2 80 H-Ala-ala-Ala-OMe H-Ala-ala-Ala-Leu-NH2 40 H-Ala-Ala-ala-OMe H-Ala-Ala-ala-Leu-NH2 0 15 _Substrate Product Yield (%) H-Ala-Ala-Ala-OMe H-Ala-Ala-Ala-Leu-NH2 80 H-Ala-ala-Ala-OMe H-Ala-ala-Ala-Leu-NH2 40 H -Ala-Ala-ala-OMe H-Ala-Ala-ala-Leu-NH 2 0 15 _

Betingelser: 25 mM substrat, 0,1 M KC1, 1 mM EDTA, pHConditions: 25 mM substrate, 0.1 M KCl, 1 mM EDTA, pH

9,5, CPD-Y = 12 »im, 0,2 M Leu-NH2.9.5, CPD-Y = 12 µm, 0.2 M Leu-NH 2.

Reaktionen afbrudt efter 20 min.The reaction stopped after 20 min.

2020

Det fremgår af tabellen, at hvis C-terminalen er på D-form, som i H-Ala-Ala-ala-OMe, sker der ingen peptidsyntese, fordi esteren ikke omsættes. Med D-aminosyren nabostillet til C-terminalen som i H-Ala-ala-Ala-OMe sker der 25 omsætning, men koblingsudbyttet reduceres til 40% sammenlignet med de 80% ved den rene L-konfiguration H-Ala-Ala-Ala-OMe.It is evident from the table that if the C-terminal is in D-form, as in H-Ala-Ala-ala-OMe, no peptide synthesis occurs because the ester is not reacted. With the D-amino acid adjacent to the C-terminal as in H-Ala-ala-Ala-OMe, 25 reactions occur, but the coupling yield is reduced to 40% compared with the 80% in the pure L-configuration H-Ala-Ala-Ala. OMe.

Man har endvidere længe været klar over, at nogle endo-30 proteaser kan katalysere oligomerisering af visse N-ube-skyttede aminosyreestere med L-konfiguration, men det er aldrig tidligere blevet forsøgt udnyttet til fremstilling af dipeptider, der ikke er simple dimere. Resultaterne af sådanne observationer har som regel været en blanding af 35 en til tider lang række oligomere, og kun i tilfælde af produktudfældning har det været muligt at isolere et enkelt produkt.Furthermore, it has long been recognized that some endo-proteases can catalyze the oligomerization of certain N-unprotected amino acid esters with L configuration, but it has never been tried before to make dipeptides which are not simple dimers. The results of such observations have usually been a mixture of 35 occasionally oligomers, and only in the case of product precipitation has it been possible to isolate a single product.

77

DK 163365 BDK 163365 B

Af denne grund har anvendelsen af endoproteaser til peptidfremstilling været begrænset til anvendelsen af amino-og carboxyterminalbeskyttede udgangsmaterialer, som beskrevet i US-A-4.086.136.For this reason, the use of endoproteases for peptide preparation has been limited to the use of amino- and carboxy-terminal protected starting materials, as described in US-A-4,086,136.

55

De ovennævnte amino- og carboxyterminalbeskyttede udgangsmaterialer er også obligatoriske, hvis der anvendes aspartat-endoproteaser, som beskrevet i US-A-3.972.773, eller metallo-endoproteaser, som beskrevet i EP-A1-10 0099585 ved fremstillingen af Z-AspPheOMe.PheOMe-salt.The above amino and carboxy terminal protected starting materials are also mandatory if aspartate endoproteases as described in US-A-3,972,773 or metalloendoproteases as described in EP-A1-10 0099585 are used in the preparation of Z-AspPheOMe. PheOMe salt.

Endelig har det indtil nu ikke været muligt med carboxy-peptidaser og som regel heller ikke med noget proteoly-tisk enzym (Klasse EC 3,4) at fremstille de diastereomere 15 dipeptider af DL, LD og DD-konfiguration eller peptider indeholdende β-aminosyrerester fra amino-ubeskyttede udgangsforbindelser. Der har været gjort forsøg med en anden klasse enzymer, aminoacyl-t-RNA-synthetase (Klasse EC 6,1), som eksemplificeret i EP-A1-086053. Her skal der 20 anvendes et specifikt enzym for hver type aminosyrerest, og endvidere er dyre Co-faktorer såsom ATP nødvendige. Samtidig er udbytterne meget ringe, så selvom en vis mængde dipeptidester eller amid blev isoleret og identificeret, krævede det typisk ti gange så meget co-faktor-25 overskud, flere hundrede gange så meget nucleophil-over-skud og flere hundrede gange så meget enzym-overskud baseret på vægt, jvf. eks. 1, hvor 1 mg Tyr omsættes med 4 g L-Phe-methylester i nærvær af 0,6 g tyrosyl-tRNA-syn-thetase under dannelse af 0,4 mg Tyr-Phe-OMe.Finally, it has not been possible so far with carboxy peptidases and usually with no proteolytic enzyme (Class EC 3.4) to produce the diastereomeric dipeptides of DL, LD and DD configuration or peptides containing β-amino acid residues. from amino-unprotected starting compounds. A second class of enzymes, aminoacyl-t-RNA synthetase (Class EC 6.1), as exemplified in EP-A1-086053, has been tested. Here, a specific enzyme must be used for each type of amino acid residue, and furthermore expensive Co-factors such as ATP are needed. At the same time, the yields are very low, so although a certain amount of dipeptide ester or amide was isolated and identified, it typically required ten times as much co-factor-25 excess, several hundred times as much nucleophilic excess and several hundred times as much enzyme. excess weight, cf. Example 1, wherein 1 mg of Tyr is reacted with 4 g of L-Phe methyl ester in the presence of 0.6 g of tyrosyl-tRNA synthetase to give 0.4 mg of Tyr-Phe- OMe.

3030

Det har nu overraskende vist sig, at de i EP-B1-17485 anvendte serin- og thiolcarboxypeptidaser er i stand til at udnytte N-ubeskyttede aminosyreestere som substratkomponent i kontrollerede reaktioner til syntese af dipeptider 35 og dipeptidderivater, og at det er muligt at undertrykke en eventuel oligomerisering af substratet.It has now surprisingly been found that the serine and thiol carboxypeptidases used in EP-B1-17485 are capable of utilizing N-unprotected amino acid esters as substrate component in controlled reactions for the synthesis of dipeptides and dipeptide derivatives and that it is possible to suppress a possible oligomerization of the substrate.

88

DK 163365 BDK 163365 B

Det har endvidere overraskende vist sig, at også N-ube-skyttede aminosyrederivater af D-konfiguration kan anvendes som substrater i disse reaktioner, således at det foruden LL-dipeptider også er muligt at syntetisere DL-5 dipeptider. Omsætningshastigheden for D-substrater er dog som regel noget lavere end for L-substrater under ens betingelser, men forskellen i hastighed er dog som illustreret nedenfor langt mindre end for de tilsvarende N-beskyttede aminosyreestere, hvor D-substratet omsættes 10 med en hastighed, der er langt mindre end hastigheden for L-substratet. Udbytterne er ofte lige så høje eller højere ved de ubeskyttede D-substrater i forhold til de ubeskyttede L-substrater som vist ved de følgende eksempler.Furthermore, it has surprisingly been found that N-unprotected amino acid derivatives of D configuration can also be used as substrates in these reactions, so that in addition to LL dipeptides, it is also possible to synthesize DL-5 dipeptides. However, the rate of turnover for D substrates is usually somewhat lower than for L substrates under similar conditions, however, as illustrated below, the difference in rate is far less than for the corresponding N-protected amino acid esters, where the D substrate is reacted at a rate. which is far less than the velocity of the L substrate. The yields are often as high or higher at the unprotected D substrates relative to the unprotected L substrates as shown by the following examples.

15 Endnu mere overraskende har det endvidere vist sig, at med substrater med D-konfiguration kan nucleophiler af D-konfiguration kobles ved hjælp af disse enzymer, der ellers vides at være L-specifikke på aminosiden af syntesepunktet. En aminosyreester, der inkorporeres på denne må-20 de, hydrolyseres ikke yderligere.Even more surprisingly, it has also been found that with D-configuration substrates, D-configuration nucleophiles can be coupled by these enzymes, otherwise known to be L-specific at the amino side of the synthesis site. An amino acid ester incorporated in this manner is not further hydrolyzed.

Fremgangsmåden ifølge opfindelsen er således ejendommelig ved det i krav l's kendetegnende del anførte.The process according to the invention is thus characterized by the characterizing part of claim 1.

25 Som eksempler på anvendelige aminosyrer kan nævnes ali-phatiske aminosyrer, såsom monoaminomonocarboxy1syrer, f.eks. glycin (Gly), alanin (Ala), valin (Val), norvalin (Nval), leucin (Leu), isoleucin (iso-Leu) og norleucin (Nleu), hydroxyaminosyrer, såsom serin (Ser), threonin 30 (Thr) og homoserin (homo-Ser), svovlholdige aminosyrer, såsom methionin (Met) eller cystin (CysS) og cystein (CysH), monoaminodicarboxylsyrer, såsom asparaginsyre (Asp), glutaminsyre (Glu) og amider deraf, såsom aspara-gin (Asn) og glutamin (Gin), diaminomonocarboxylsyrer, 35 såsom omi thin (Orn) og lysin (Lys), arginin (Arg), aromatiske aminosyrer, såsom phenylalanin (Phe) og tyrosin (Tyr), samt heterocycliske aminosyrer, såsom histidin 9As examples of useful amino acids may be mentioned aliphatic amino acids such as monoaminomonocarboxylic acids, e.g. glycine (Gly), alanine (Ala), valine (Val), norvaline (Nval), leucine (Leu), isoleucine (iso-Leu) and norleucine (Nleu), hydroxyamino acids such as serine (Ser), threonine (Thr) and homoserine (homo-Ser), sulfur-containing amino acids such as methionine (Met) or cystine (CysS) and cysteine (CysH), monoaminodicarboxylic acids such as aspartic acid (Asp), glutamic acid (Glu) and amides thereof, such as asparagine (Asn) and glutamine (Gin), diaminomonocarboxylic acids such as omin thin (Orn) and lysine (Lys), arginine (Arg), aromatic amino acids such as phenylalanine (Phe) and tyrosine (Tyr), and heterocyclic amino acids such as histidine 9

DK 163365 BDK 163365 B

(His), Prolin (Pro) og tryptophan (Trp). Som eksempler på anvendelige aminosyrer med mere usædvanlig . struktur kan nævnes penicillamin (Pen), aminophosphonsyrer, såsom ala-nin-phosphonsyre (AlaP) aminosulfonsyrer, såsom Taurin 5 (Tau), eller'ω-aminosyrer, såsom Ø-alanin (BAla). I substratkomponenten og i den nucleophile komponent kan aminosyren som nævnt også være på D-form.(His), Prolin (Pro) and tryptophan (Trp). As examples of useful amino acids with more unusual ones. structure may be mentioned penicillamine (Pen), aminophosphonic acids such as alanine phosphonic acid (AlaP) amino sulfonic acids such as Taurine 5 (Tau), or'ω amino acids such as ε-alanine (BA1a). In the substrate component and in the nucleophilic component, as mentioned, the amino acid may also be in D form.

Fordelene ved fremgangsmåden ifølge opfindelsen i forhold 10 til de omtalte kendte metoder er minimal eller ingen si-dekædebeskyttelse, ingen N-beskyttelse af substratkomponenten, der kan have både D- og L-konfiguration, ingen risiko for racemisering, få syntesetrin og et forholdsvis rent slutprodukt, hvilket tilsammen åbner mulighed for en 15 yderst enkel og økonomisk fremstillingsmetode.The advantages of the method according to the invention in relation to the known methods are minimal or no side chain protection, no N protection of the substrate component which can have both D and L configuration, no risk of racemization, few synthetic steps and a relatively pure end product, which together allows for a very simple and economical manufacturing method.

Foretrukne substratkomponenter er estere med formlen H-A- OR1, hvori A er som defineret i krav 1, R betegner lige-kædet eller forgrenet alkyl med 1-6 carbonatomer, såsom 20 methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert.butyl, amyl og hexyl, eller aralkylet benzyl. Særlig hensigtsmæssige nucleophilkomponenter er frie L-aminosy-rer eller aminosyreamider med formlen /Η2 25 Η-Β-Ν \Η3' hvor Β er som defineret i krav 1, R2 er H, og R3 er H eller C^-Cg alkyl, eller aminosyreestere med formlen H-B-OR4, hvor B er som defineret i krav 1, og hvor R4 beteg-30 ner ligekædet eller forgrenet alkyl med 1-6 carbonatomer, såsom ovennævnte. Som nævnt kan R1 være alkyl, aryl eller aralkyl eventuelt substitueret med hydroxy, nitro eller halogen.Preferred substrate components are esters of the formula HA-OR1, wherein A is as defined in claim 1, R is straight-chain or branched-chain alkyl of 1-6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl , amyl and hexyl, or aralkyl benzyl. Particularly suitable nucleophilic components are free L-amino acids or amino acid amides of the formula / Η2 Η-Β-Ν \ Η3 'wherein Β is as defined in claim 1, R 2 is H and R 3 is H or C 1 -C 6 alkyl, or amino acid esters of the formula HB-OR4, wherein B is as defined in claim 1 and wherein R4 represents straight or branched alkyl of 1-6 carbon atoms such as the above. As mentioned, R 1 may be alkyl, aryl or aralkyl optionally substituted by hydroxy, nitro or halogen.

35 Ved fremgangsmåden ifølge opfindelsen kan der afhængigt af den anvendte nucleofil intermediært dannes et peptid indeholdende gruppen 10In the process of the invention, depending on the nucleophile used, a peptide containing the group 10 may be formed intermediately

DK 163365 BDK 163365 B

R2 / -N eller -OR* \ 5 * R’ hvor R2, R3 og R* har de i krav 1 angivne betydninger, hvorefter denne gruppe om ønsket fraspaltes under dannelse af en carboxylsyregruppe. Denne spaltning kan katalyseres af et andet eller af det samme enzym, som blev an-10 vendt til dannelsen af peptidet.R2 / -N or -OR * \ 5 * R 'wherein R2, R3 and R * have the meanings set forth in claim 1, whereupon this group is optionally cleaved to form a carboxylic acid group. This cleavage can be catalyzed by another or by the same enzyme used for the formation of the peptide.

Enzymer kan også anvendes til fraspaltning af sidekæde-beskyttelsesgrupper. På tale som anvendelige enzymer kommer, afhængigt af beskyttelsesgruppens type, proteolytis-15 ke enzymer, lipaser og esteraser, jvf. "The peptides, Analysis, Synthesis, Biology" Vol 9, Special Methods in peptide Synthesis Part C. J.A. Glaas, Enzymatic Manipulation of Protecting Groups in Peptide Synthesis, Academic Press 1987.Enzymes can also be used for cleavage of side chain protecting groups. Speaking as useful enzymes, depending on the type of protecting group, proteolytic enzymes, lipases and esterases, cf. "The Peptides, Analysis, Synthesis, Biology" Vol 9, Special Methods in Peptide Synthesis Part C. J.A. Glass, Enzymatic Manipulation of Protecting Groups in Peptide Synthesis, Academic Press 1987.

2020

Foruden med CPD-Y, der p.t. er det foretrukne enzym, og som er nærmere karakteriseret i EP-B1-17485, lader fremgangsmåden ifølge opfindelsen sig også gennemføre med andre serin- eller thiolcarboxypeptidaser, såsom de i ne-25 denstående oversigt anførte, idet disse betjener sig af en fælles virkningsmekanisme via acylenzymmellemproduk-ter.In addition to CPD-Y, which p.t. is the preferred enzyme, and more specifically characterized in EP-B1-17485, the process of the invention is also carried out with other serine or thiol carboxypeptidases, such as those listed below, which serve a common mechanism of action via acylenzymmellemproduk-ter.

30 35 1130 35 11

DK 163365 BDK 163365 B

Enzym OprindelseEnzyme Origin

SvampeMushrooms

Penicillocarboxypeptidase S-l Penicillium janthinellum S-2 5 Carboxypeptidase(r) fra Aspergillus saitoiPenicillocarboxypeptidase S-1 Penicillium janthinellum S-2,5 Carboxypeptidase (s) from Aspergillus saitoi

Aspergillus oryzaeAspergillus oryzae

Planterplants

Carboxypeptidase(r) C Orangeblade 10 OrangeskallerCarboxypeptidase (s) C Orange Leaves 10 Orange Shells

Carboxypeptidase C^ Citrus natsudaidaiCarboxypeptidase C ^ Citrus natsudaidai

HayataHayata

Phased in BønnebladePhased in Bean Leaves

Carboxypeptidase(r) fra Spirende byg eller malt 15 Carboxypeptidase W fra HvedeCarboxypeptidase (s) from Germinating barley or ground Carboxypeptidase W from Wheat

Carboxypeptidase(r) fra Spirende bomuldsplanterCarboxypeptidase (s) from Germinating Cotton Plants

Tomatertomatoes

Vandmelonerwatermelons

Bromelein (ananas) pulver 20Bromelain (pineapple) powder 20

Det nære slægtskab mellem en række af de ovennævnte car-boxypeptidaser er diskuteret af Kubota et al, Carboxypeptidase C. J. Biochem., Vol. 74, No. (1973), p. 757-770. Carboxypeptidase fra malt, hvede og andre kilder er 25 beskrevet af Breddam, Carlsberg Res. Comm. Vol. 51, p.The close relationship between a number of the above carboxypeptidases is discussed by Kubota et al., Carboxypeptidase C. J. Biochem., Vol. 74, no. (1973), pp. 757-770. Carboxypeptidase from malt, wheat and other sources is described by Breddam, Carlsberg Res. Comm. Vol. 51, p.

83-128, 1986.83-128, 1986.

Den anvendte carboxypeptidase kan også være kemisk modificeret eller være en biosyntetisk mutant af en naturlig 30 form.The carboxypeptidase used may also be chemically modified or be a biosynthetic mutant of a natural form.

Som illustreret nærmere i det følgende er fremgangsmåden ifølge opfindelsen ret enkel, blot er det vigtigt at holde en ret konstant pH-værdi i reaktionsblandingen. Denne 35 pH-værdi ligger mellem 5 og 10,5, dog fortrinsvis mellem 7 og 9,5 og afhænger iøvrigt af de konkrete udgangsmaterialer, det dannede dipeptid og enzymet.As illustrated in the following, the process of the invention is quite simple, but it is important to maintain a fairly constant pH in the reaction mixture. This pH is between 5 and 10.5, but preferably between 7 and 9.5, and moreover depends on the specific starting materials, the dipeptide formed and the enzyme.

1212

DK 163365 BDK 163365 B

Reaktionen foretages i et vandigt reaktionsmedium, der om ønsket kan indeholde af et organisk opløsningsmiddel, der er blandbart eller ublandbart med vand, og som er kompatibelt med det anvendte enzym under de givne betingelser 5 i mængder på indtil 10% eller mere. Foretrukne opløs ningsmidler er lavere alkoholer, dimethylformamid, dime-thylsulfoxid, dimethoxyethan, ethylenglycol og ethylace-tat.The reaction is carried out in an aqueous reaction medium which, if desired, may contain an organic solvent which is miscible or immiscible with water and which is compatible with the enzyme used under the given conditions 5 in amounts up to 10% or more. Preferred solvents are lower alcohols, dimethylformamide, dimethylsulfoxide, dimethoxyethane, ethylene glycol and ethyl acetate.

10 Reaktionstemperaturen er fortrinsvis stuetemperatur og derover, 20-50®C, men temperaturer i intervallet 0-60°C er anvendelige, hvis de er fordelagtige under de øvrige givne betingelser.The reaction temperature is preferably room temperature and above, 20-50 ° C, but temperatures in the range 0-60 ° C are applicable if advantageous under the other given conditions.

15 Koncentrationen af de to reaktionskomponenter kan varieres inden for vide grænser, men oftest vil nucleophilkom-ponenten være i overskud, og for at undgå oligomerisering af substratkomponenten tilsættes denne ofte i mindre portioner fordelt over hele reaktionsforløbet. Hvis der an- f Ϊ 20 vendes en ester med formlen H-A-OR1 , hvor R1 betyder C^-C'IO alkyl, observeres der overraskende ingen oligomerisering, og der kan anvendes meget høje substratkoncentrationer uden sidereaktioner. Her kan der ud fra en enkelt udgangsforbindelse dannes et homodipeptid, hvor A = 25 B, uden oligomerisering, idet nucleophilen dannes in situ ved hydrolyse af denne ester.The concentration of the two reaction components can be varied within wide limits, but most often the nucleophile component will be in excess, and to avoid oligomerization of the substrate component, it is often added in smaller portions distributed over the entire reaction course. If an ester of formula H-A-OR1 is used, where R 1 is C 1 -C 10 alkyl, surprisingly no oligomerization is observed and very high substrate concentrations can be used without side reactions. Here, from a single starting compound, a homodipeptide can be formed, where A = 25 B, without oligomerization, the nucleophile being formed in situ by hydrolysis of this ester.

Således kan udgangskoncentrationen for substratkomponenten typisk være 0,005 - 2 molær og for nucleophilkomponen-30 ten i de tilfælde, hvor denne tilsættes separat 0,005 - 3 molær. Det vil i de fleste situationer være muligt at genvinde overskud af nucleophilkomponenten og hydrolyseproduktet fra substratkomponenten til eventuel reesteri-ficering og genanvendelse. Komponenterne kan let føres 35 tilbage til processen, hvilket skyldes deres enkle struktur og fraværet af sidereaktioner og debeskyttelsestab.Thus, the initial concentration for the substrate component can typically be 0.005 - 2 molar and for the nucleophilic component in cases where it is added separately 0.005 - 3 molar. In most situations, it will be possible to recover excess of the nucleophilic component and the hydrolysis product from the substrate component for any residual refining and recycling. The components can easily be traced back to the process, due to their simple structure and the absence of side reactions and debarking losses.

1313

DK 163365 BDK 163365 B

Enzymkoncentrationerne kan ligeledes varieres, men er ofte noget højere (5-50 μιη) end de koncentrationer, der er brugbare ved anvendelse af N-beskyttede aminosyreester-substrater, men som illustreret i de efterfølgende eksem-5 pier kan mængden af enzym til gennemførelse af reaktionen dog nedsættes mere end tifold ved anvendelse af et stabilt immobiliseret enzympræparat, hvorved udnyttelse af enzymet i en kontinuert proces kan opnås.The enzyme concentrations can also be varied, but are often somewhat higher (5-50 μιη) than the concentrations useful using N-protected amino acid ester substrates, but as illustrated in the following examples, the amount of enzyme to carry however, the reaction is reduced more than tenfold by using a stable immobilized enzyme preparation, thereby utilizing the enzyme in a continuous process.

10 Reaktionsmediet kan også indeholde salte, såsom NaCl, der har indflydelse på enzymets binding til substratet, samt et komplexbindingsmiddel for tilstedeværende metalioner, såsom EDTA, som stabiliserer enzymet.The reaction medium may also contain salts, such as NaCl, which influence the binding of the enzyme to the substrate, as well as a complex binding agent for metal ions present, such as EDTA, which stabilize the enzyme.

15 Fremgangsmåden ifølge opfindelsen illustreres nærmere under henvisning til tegningen, hvorThe process according to the invention is further illustrated with reference to the drawing, wherein

Fig. 1 viser hydrolyseforløbet for henholdsvis L- og D-TyrOEt og L- og D-AcTyrOEt ved 50 mM koncentration 20 i 20% DMS0 indeholdende 1 mM EDTA ved pH 9,0 ka talyseret af 10 μΜ CPD-Y, ogFIG. Figure 1 shows the course of hydrolysis of L- and D-TyrOEt and L- and D-AcTyrOEt, respectively, at 50 mM concentration 20 in 20% DMS0 containing 1 mM EDTA at pH 9.0 ka talysed by 10 μΜ CPD-Y, and

Fig 2 viser reaktionsforløbet ved dannelse af homodipep-tidet L,L-MetMet ud fra L-MetOEt i udgangskoncentrationer på henholdsvis 0,05 M og 0,5 M ved pH 25 8,5 i nærvær af henholdsvis 13 μΜ og 39 μΜ CPD-Y.Fig. 2 shows the course of the reaction by formation of the homodipep time L, L-MetMet from L-MetOEt at initial concentrations of 0.05 M and 0.5 M at pH 25 8.5 in the presence of 13 μΜ and 39 μΜ CPD, respectively. Y.

De indledningsvis omtalte forskelle i omsætningshastigheden for D- og L-substrater er illustreret på fig. 1, der viser reaktionsforløbet for CPD-Y hydrolysen af en be-30 skyttet (Ac-TyrOEt) og ubeskyttet aminosyreester (TyrOEt) på D- og L-form.The differences mentioned initially in the rate of turnover of D and L substrates are illustrated in FIG. 1, showing the reaction course of the CPD-Y hydrolysis of a protected (Ac-TyrOEt) and unprotected amino acid ester (TyrOEt) in D and L form.

Det ses af figuren, at mens L-AcTyrOEt hydrolyseres næsten momentant, er der efter 2 timers forløb kun sket en 35 ubetydelig hydrolyse (under 5%) af D-AcTyrOEt. 1 modsætning hertil er der kun små forskelle på hydro- 14It can be seen from the figure that while the L-AcTyrOEt is hydrolyzed almost instantaneously, after 2 hours only a negligible hydrolysis (less than 5%) of the D-AcTyrOEt has occurred. In contrast, there are only small differences in hydro- 14

DK 163365 BDK 163365 B

lyseforløbet for de ubeskyttede estere på L- og D-form.the course of light for the unprotected esters in the L and D form.

Dette overraskende hydrolyseforløb afspejler sig i de efterfølgende eksempler, der illustrerer fremstillingen af 5 forskellige dipeptider ved fremgangsmåden ifølge opfindelsen under anvendelse af enzymerne CPD-Y og maltcar-boxypeptidase II (CPD-MII) og hvedecarboxypeptidase (CPD-W).This surprising course of hydrolysis is reflected in the following examples which illustrate the preparation of 5 different dipeptides by the process of the invention using the enzymes CPD-Y and maltcarboxypeptidase II (CPD-MII) and wheat carboxypeptidase (CPD-W).

10 Som det fremgår af Fig. 2 observeres der ingen oligomeri-sering ved CPD-Y katalyseret homodipeptidsyntese af L,L-MetMet ud fra MetOEt.10 As can be seen from FIG. 2, no oligomerization is observed by CPD-Y catalyzed homodipeptide synthesis of L, L-MetMet from MetOEt.

Generel metode for eksempel 1-15 eksemplificeret nedenfor 15General method for example 1-15 exemplified below 15

Reaktionerne, udført i analytisk skala med et reaktions-volumen på 1 ml, blev udført i en pH-stat, idet den valgte pH-værdi blev holdt konstant ved automatisk tilsætning af 1 N NaOH. Reaktionstemperatur var stuetemperatur, hvor 20 ikke andet er anført. I tabellen er desuden opført reaktantkoncentrationer, indhold af organisk opløsningsmiddel, produkt og udbytte. Reaktionstider ligger typisk mellem 0,5 og 5 timer, og enzymkoncentrationerne er typisk 10-20 μπι, hvor intet andet er anført.The reactions, performed on an analytical scale with a reaction volume of 1 ml, were carried out in a pH state, keeping the chosen pH value constant by the automatic addition of 1 N NaOH. Reaction temperature was room temperature, where not otherwise stated. The table also lists reactant concentrations, organic solvent content, product and yield. Reaction times are typically between 0.5 and 5 hours, and the enzyme concentrations are typically 10-20 μπι, where nothing else is stated.

2525

Produktidentifikation og bestemmelse af produktudbytte blev udført ved hjælp af reverse-phase HPLC (Waters 6000 A pumper, 660 gradientblander, UK 6 injektor) på en C^g NOVA PAK kolonne (Waters, RCM) under anvendelse af pas-30 sende gradienter af elueringssystemer indeholdende 50 mM triethylammoniumphosphat, pH 3,0 fra 0% til 80% acetoni-tril med et flow på 2 ml/min. Elueringen blev fulgt ved hjælp af en UV-detektor (Waters 480) ved 230 nm, 254 nm, 278 nm eller 290 nm.Product identification and product yield determination were performed by reverse-phase HPLC (Waters 6000 A pumps, 660 gradient mixer, UK 6 injector) on a C ^ g NOVA PAK column (Waters, RCM) using appropriate gradients of elution systems containing 50 mM triethylammonium phosphate, pH 3.0 from 0% to 80% acetonitrile at a flow rate of 2 ml / min. The elution was followed by a UV detector (Waters 480) at 230 nm, 254 nm, 278 nm or 290 nm.

Produkterne identificeredes ved aminosyreanalyse af fraktioner fra HPLC-analysen, der svarede til den formodede 35The products were identified by amino acid analysis of fractions from the HPLC assay corresponding to the putative 35

DK 163365 BDK 163365 B

15 produkttop og/eller ved HPLC-sammenligning med et kemisk syntetiseret referenceprodukt. Disse blev fremstillet efter kendte principer, som regel via reaktion mellem BOC-A-OSu - tert.butyloxycarbonyl - succinimidester-derivatet 5 af substrataminosyren - og den anvendte nucleophilkompo-nent efterfulgt af deblokering af den N-terminale amino-syrerest. Det var i alle tilfælde muligt at adskille LL-og DD-dipeptider fra de diastereomere DL- og LD-dipeptid-produkter.15 and / or by HPLC comparison with a chemically synthesized reference product. These were prepared according to known principles, usually via reaction between BOC-A-OSu - tert-butyloxycarbonyl - succinimide ester derivative 5 of the substrate amino acid - and the nucleophilic component used followed by unblocking of the N-terminal amino acid residue. In all cases, it was possible to separate LL and DD dipeptides from the diastereomeric DL and LD dipeptide products.

1010

Produktudbytterne blev for de produkter, der kun kan de-tekteres ved 230 nm, bestemt ved hjælp af absorptions/ koncentrationskurven for den kemisk syntetiserede referenceforbindelse. For de øvrige produkter blev udbytterne 15 bestemt på basis af forholdet mellem de integrerede arealer under toppene i elueringskromatogrammet, svarende til henholdsvis produkt og den reaktant, der absorberer ved den pågældende bølgelængde.The product yields for the products which can only be detected at 230 nm were determined by the absorption / concentration curve of the chemically synthesized reference compound. For the other products, the yields 15 were determined on the basis of the ratio of the integrated areas below the peaks of the elution chromatogram corresponding to the product and the reactant absorbing at the respective wavelength, respectively.

20 Som eksempel på denne metode gengives fremstilling af D,L-PheØAlaOMe i henhold til eksempel 12 nedenfor.As an example of this method, preparation of D, L-PheØAlaOMe according to Example 12 is reproduced below.

Fremstilling af D,L-phenylalanin-betaalaninmethylester (D,L-phegAlaOMe) i henhold til eksempel 12 25 I en pH-stat afvejedes D-phenylalaninethylesterhydrochlo-rid (11,4 mg; 50 mrtol) og betaalaninmethylesterhydrochlo-rid (70 mg; 0,5 mmol). Dette blev opløst i 800 μΐ demineraliseret vand og 10 1 af en 100 mM EDTA-opløsning blev 30 tilsat, hvorefter pH blev justeret til 9,0 med ca. 40 μΐ 6N NaOH. Der blev udtaget 25 al til kontrol (opbevares ved stuetemperatur) og 5 ul 0-prøve til HPLC-kørsel. Reaktionen startedes ved tilsætning af 60 ul carboxypep-tidase-Y-opløsning (333 uM) til slutkoncentration på ca.Preparation of D, L-phenylalanine-beta-anatine methyl ester (D, L-phegAlaOMe) according to Example 12 In a pH state, D-phenylalanine-ethyl ester hydrochloride (11.4 mg; 50 moles) and beta-ananine methyl ester hydrochloride (70 mg; 0.5 mmol). This was dissolved in 800 μΐ of demineralized water and 10 L of a 100 mM EDTA solution was added, after which the pH was adjusted to 9.0 by ca. 40 μΐ 6N NaOH. 25 µl was taken for control (stored at room temperature) and 5 µl 0 sample for HPLC run. The reaction was started by adding 60 µl of carboxypeptidase-Y solution (333 µM) to a final concentration of ca.

35 20 μΜ. pH blev holdt konstant på 9,0 med 1 M NaOH, gennem reaktionen ialt ca. 100 ul. Reaktionstemperaturen var stuetemperatur. Reaktionstiden var ca. 30 min, hvorefter 1635 20 μΜ. The pH was kept constant at 9.0 with 1 M NaOH, through the reaction a total of approx. 100 µl. The reaction temperature was room temperature. The reaction time was approx. 30 min, then 16

DK 163365 BDK 163365 B

ca. 90% af substratet var forbrugt. 83% heraf var omdannet til produktet. Aminosyreanalyse af fraktioner fra HPLC-analyse, der svarede til den formodede produkttop, viste den forventede sammensætning.ca. 90% of the substrate was consumed. 83% of these were converted to the product. Amino acid analysis of fractions from HPLC analysis corresponding to the putative product peak showed the expected composition.

55

Reaktionsbetingelserne i fremstillingseksemplerne 16-25 beskrives i de enkelte eksempler. Reaktionerne blev fulgt på analytisk HPLC som beskrevet. Enzymkoncentrationerne er generelt lavere og reaktionstiderne længere end i de 10 tilsvarende analytiske eksempler, men det er ikke forsøgt at optimere reaktionsbetingelserne.The reaction conditions in Preparation Examples 16-25 are described in the individual Examples. The reactions were followed by analytical HPLC as described. The enzyme concentrations are generally lower and the reaction times longer than in the 10 corresponding analytical examples, but no attempt was made to optimize the reaction conditions.

15 20 25 30 3515 20 25 30 35

Carboxypeptidase Y ) katalyseret syntese af LL-dipepti- der med L-tyrosinethylester (50 mM) som substratkomponent 5 og frie aminosyrer som nucleophilerCarboxypeptidase Y) catalyzed synthesis of LL dipeptides with L-tyrosine ethyl ester (50 mM) as substrate component 5 and free amino acids as nucleophiles

Eksempel 1 17Example 1 17

DK 163365 BDK 163365 B

aa

Nucleophil (Kone.) Medium pH Produkt Udbytte %Nucleophil (Wife) Medium pH Product Yield%

Alanin (1/9 M) Vand 9,5 TyrAlaOH 10 10 Arginin (0,8 M) Vand 9,5 TyrArgOH 31Alanine (1/9 M) Water 9.5 TyrAlaOH 10 Arginine (0.8 M) Water 9.5 TyrArgOH 31

Cystein (1 M) Vand 8,0 TyrCysOH 30 LD-Cystein (2 M) Vand 8,0 TyrCysOH(LL) 40Cysteine (1 M) Water 8.0 TyrCysOH 30 LD Cysteine (2 M) Water 8.0 TyrCysOH (LL) 40

Leucin (0,2 M) Vand 8,0 TyrLeuOH 1Leucine (0.2 M) Water 8.0 TyrLeuOH 1

Lysin (2 M) Vand 9,5 TyrLysOH 18 15 Methionin (0,3 M) Vand 8,0 TyrMetOH 8Lysine (2 M) Water 9.5 TyrLysOH 18 Methionine (0.3 M) Water 8.0 TyrMetOH 8

Methionin (0,3 M) Vand 9,0 TyrMetOH 9Methionine (0.3 M) Water 9.0 TyrMetOH 9

Methionin (0,3 M) 30% DMS0 9,0 TyrMetOH 15Methionine (0.3 M) 30% DMSO 9.0 TyrMetOH 15

Methionin (0,3 M) 15% EtOH 9,0 TyrMetOH 7Methionine (0.3 M) 15% EtOH 9.0 TyrMetOH 7

Glutamin (0,8 M) Vand 9,5 TyrGlnOH 8 20 Penicilamin (0,5 M) Vand 8,0 TyrPenOH 7Glutamine (0.8 M) Water 9.5 TyrGlnOH 8 Penicilamine (0.5 M) Water 8.0 TyrPenOH 7

a) 10 um, 1 mM EDTAa) 10 µm, 1 mM EDTA

25 30 3525 30 35

Carboxypeptidase Y ) katalyseret syntese af LL-dipepti- der med L-methionin (0,3 M) som nucleophilkomponent i 5 vand ved pH 9,0Carboxypeptidase Y) catalyzed synthesis of LL dipeptides with L-methionine (0.3 M) as nucleophilic component in 5 water at pH 9.0

Eksempel 2 18Example 2 18

DK 163365 BDK 163365 B

aa

Substrat (50 mM) Produkt Udbytte %Substrate (50 mM) Product Yield%

Leucin methylester LeuMetOH 30 10 Leucin isoproylester LeuMetOH 36Leucine methyl ester LeuMetOH 30 10 Leucine isoproyl ester LeuMetOH 36

Methionin ethylesterb) MetMetOH 25Methionine ethyl ester b) MetMetOH 25

Phenylalanin methylester PheMetOH 16Phenylalanine methyl ester PheMetOH 16

Phenylalanin ethylester PheMetOH 19Phenylalanine ethyl ester PheMetOH 19

Phenylalanin isopropylester PheMetOH 23 15 Serin isopropylester0) SerMetOH 21Phenylalanine isopropyl ester PheMetOH 23 Serine isopropyl ester O) SerMetOH 21

Tryptophan methylester TrpMetOH 26Tryptophan methyl ester TrpMetOH 26

Tyrosin benzylester ) TyrMetOH 19Tyrosine Benzyl Ester) TyrMetOH 19

20 a) 10 um, 1 mM EDTAA) 10 µm, 1 mM EDTA

b) 5 mMb) 5 mM

°) Reaktionstid > 20 h°) Reaction time> 20 hours

d) 30% DMSOd) 30% DMSO

25 30 3525 30 35

Carboxypeptidase Y ) katalyseret syntese af LL-dipepti- der med L-tyrosinethylester (50 mM) som substratkomponent 5 og L-aminosyreamider eller -estere som nucleophilerCarboxypeptidase Y) catalyzed synthesis of LL dipeptides with L-tyrosine ethyl ester (50 mM) as substrate component 5 and L-amino acid amides or esters as nucleophiles

Eksempel 3 19Example 3 19

DK 163365 BDK 163365 B

Sub- Nucleophil (Kone.) Medium pH Produkt Udbyt- strat te % 10 TyrOEt Leucinamid (0,2 M) 30% DMSO 9,5 TyrLeuNH2b) 42Sub-Nucleophil (Cone.) Medium pH Product Yield% 10% TyrOEt Leucinamide (0.2M) 30% DMSO 9.5 TyrLeuNH2b) 42

TyrLeuOH 4TyrLeuOH 4

TyrOEt Lysinamid (0,3 M) Vand 9,5 TyrLysNH2 20TyrOEt Lysinamide (0.3 M) Water 9.5 TyrLysNH2 20

TyrLysOH 22TyrLysOH 22

TyrOEt Argininamid (0,2 M) Vand 9,0 TyrArgNH2 50 15 TyrOEt Valinamid (0,3 M) Vand 9,0 TyrValNH2 77TyrOEt Argininamide (0.2 M) Water 9.0 TyrArgNH2 50 TyrOEt Valinamide (0.3M) Water 9.0 TyrValNH2 77

TyrOEt Leucin methylester (0,2 M) 30% DMSO 9,0 TyrLeuOH 6TyrOEt Leucine methyl ester (0.2 M) 30% DMSO 9.0 TyrLeuOH 6

20 a) 20 am, 1 mM EDTA20 a) 20 am, 1 mM EDTA

u °) Reaktionstid > 20 h, 50% substrat omsat 25 30 35u °) Reaction time> 20 hours, 50% substrate reacted 35

Eksempel 4 20Example 4 20

DK 163365 BDK 163365 B

Carboxypeptidase Y a) katalyseret syntese af LL-homodi-peptider fra en enkelt udgangsforbindelse i vand ved pH 5 8,5Carboxypeptidase Y a) Catalyzed synthesis of LL homodi peptides from a single starting compound in water at pH 8.5

Substrat (Kone.) Produkt Udbytte %Substrate (Wife) Product Yield%

Methionin methylester (0,5 M)b)c) MetMetOH 14 10 Methionin ethylester (0,5 M) MetMetOH 16Methionine methyl ester (0.5 M) b) c) MetMetOH 14 Methionine ethyl ester (0.5 M) MetMetOH 16

Methionin isopropylester (0,5 M MetMetOH 14Methionine isopropyl ester (0.5 M MetMetOH 14

Tyrosin methylester (0,2 M) TyrTyrOH c) 1Tyrosine methyl ester (0.2 M) TyrTyrOH c) 1

Tyrosin ethylester (0,2 M) TyrTyrOH c) 1Tyrosine ethyl ester (0.2 M) TyrTyrOH c) 1

Phenylalanin ethylester (0,2 M^)e) PhePheOH 2 15 Alaninamid (0,2 M)f)^) AlaAlaN^ a) 10 μπ CPD-Y, 1 mM EDTA ^) Polymerisation 20 C) Udfældning d) pH 9,0Phenylalanine ethyl ester (0.2 M 2) e) PhePheOH 2 Alanine amide (0.2 M) f) ^) AlaAlaN ^ a) 10 µm CPD-Y, 1 mM EDTA ^) Polymerization 20 C) Precipitation d) pH 9, 0

e) 30% DMSOe) 30% DMSO

f) 50 um CPD-Y, 1 mM EDTA 25 30 35f) 50 µm CPD-Y, 1 mM EDTA 35

Carboxypeptidase Y a) katalyseret syntese af DL-dipepti- der med D-tyrosinethylester (50 mM) som substrat og frie 5 L-aminosyrer som nucleophiler i vandCarboxypeptidase Y a) catalyzed synthesis of DL dipeptides with D-tyrosine ethyl ester (50 mM) as substrate and free 5 L amino acids as nucleophiles in water

Eksempel 5 21Example 5 21

DK 163365 BDK 163365 B

Nucleophil (Kone.) pH Produkt Udbytte % 10 Arginin (1 M) 9,0 tyrArgOH 75Nucleophil (Cone.) PH Product Yield% 10 Arginine (1 M) 9.0 TyrArgOH 75

Cystein (1 M) 8,0 tyrCysOH 86 LD-cystein (2 M) 8,0 tyrCysOH(DL) 45Cysteine (1 M) 8.0 tyrCysOH 86 LD cysteine (2 M) 8.0 tyrCysOH (DL) 45

Leucin (0,2 M) 8,0 tyrLeuOH 22Leucine (0.2 M) 8.0 tyrLeuOH 22

Methionin (1 M) 9,0 tyrMetOH 65 15 Penicilamin (1 M)13) 8,0 tyrPenOH 27Methionine (1 M) 9.0 TyrMetOH 65 Penicilamine (1 M) 13) 8.0 TyrPenOH 27

a) 10 um, 1 mM EDTAa) 10 µm, 1 mM EDTA

k) Reaktionstid > 20 h 20 25 30 35k) Reaction time> 20 h 20 25 30 35

CarboxypeptIdase Y a) katalyseret syntese af DL-dipepti- der med L-methionin (0,3 M) som nucleophilkomponent 1 5 vand ved pH 9,0Carboxypeptidase Y a) catalyzed synthesis of DL dipeptides with L-methionine (0.3 M) as nucleophilic component in water at pH 9.0

DK 163365BDK 163365B

Eksempel 6 22 D-substrat (50 mM) Produkt Udbytte % 10 leucin methylester leuMetOH 50 leucin isopropylester leuMetOH 71 methionin ethylester metMetOH 68 phenylalanin ethylester pheMetOH 71 phenylalanin isopropylester pheMetOH 72 15 serin isopropylester serMetOH b) 46 tryptophan ethylester trpMetOH 72 a) 15 um, 1 mM EDTA 20 D) Reaktionstid 5 dage 25 30 35Example 6 22 D substrate (50 mM) Product Yield% 10 leucine methyl ester leuMetOH 50 leucine isopropyl ester leuMetOH 71 methionine ethyl ester withMetOH 68 phenylalanine ethyl ester pheMetOH 71 phenylalanine isopropyl ester pheMetOH 72 (trine 1 mM EDTA 20 D) Reaction time 5 days 25 30 35

DK 163365BDK 163365B

Eksempel 7 23Example 7 23

Carboxypeptidase Y a) katalyseret syntese af D,L-dipep-tidamider med D-tyrosin eller D-phenylalaninethylester 5 (50 mM) som 'substratkomponent og L-aminosyreamider som nucleophilkomponenter i vandCarboxypeptidase Y a) Catalyzed synthesis of D, L-dipeptidamides with D-tyrosine or D-phenylalanine ethyl ester 5 (50 mM) as a substrate component and L-amino acid amides as nucleophilic components in water

Substrat Nucleophil (Kone.) pH Produkt Udbytte % 10 _ tyrOEt Leucinamid (0,2 M) 9,0 tyrLeuNH^ 82 tyrLeuOH 2 tyrOEt Valinamid (0,3 M) 9,0 tyrValN^ 94 tyrOEt Argininamid (0,2 M) 9,0 tyrArgNH- 86 15 pheOEt Alaninamid (0,8 M) 9,0 pheAlaN^J 50Substrate Nucleophil (Con.) PH Product Yield% 10-tyrOEt Leucinamide (0.2 M) 9.0 tyrLeuNH ^ 82 tyrLeuOH 2 tyrOEt Valinamide (0.3 M) 9.0 tyrValN ^ 94 tyrOEt Argininamide (0.2 M) 9.0 tyrArgNH- 86 pheOt Alanine amide (0.8 M) 9.0 pheAlAn ^ J 50

a) 15 μm, 1 mM EDTAa) 15 μm, 1 mM EDTA

b) Nogen polymerisation 20 25 30 35b) Some polymerization

Eksempel 8 24Example 8 24

DK 163365 BDK 163365 B

Carboxypeptidase Y a) katalyseret syntese af D,D-homodi-peptidestere fra D-substratesterkomponenter i vand ved pH 5 9,0, der også fungerer som nucleophilkomponent D-substrat (Kone.) Produkt Udbytte % tyrosin ethylester (0,05 M) tyrtyrOEt 9 10 phenylalanin ethylester (0,1 M) phepheOEt 10 tyrosin ethylglycolester (0,05 M) tyrtyrOEtOH 1 methionin methylester (0,1 M) metmetOMe 3 15 a) 15 m, 1 mM EDTA 20 25 30 35Carboxypeptidase Y a) Catalyzed synthesis of D, D homodi peptide esters from D-substrate ester components in water at pH 5 9.0, which also acts as nucleophilic component D substrate (Kone.) Product Yield% tyrosine ethyl ester (0.05 M) tyrthyrOEt 9 10 phenylalanine ethyl ester (0.1 M) phepheOEt 10 tyrosine ethyl glycol ester (0.05 M) tyrthyrOEtOH 1 methionine methyl ester (0.1 M) methomethome 3 15 a) 15 m, 1 mM EDTA 20 25 30

Eksempel 9 25Example 9 25

DK 163365 BDK 163365 B

Carboxypeptidase Y a) katalyseret syntese af LL-dipepti-der med sidekædebeskyttede carboxyterminaleaminosyrer med 5 L-TyrOEt (50 mM) som substratkomponent og sidekædebeskyttede L-aminosyrer og amider som nucleophilerCarboxypeptidase Y a) Catalyzed synthesis of LL dipeptides with side chain protected carboxy terminal amino acids with 5 L-TyrOEt (50 mM) as substrate component and side chain protected L amino acids and amides as nucleophiles

Nucleophil (Kone.) pH Medium Produkt Udbytte 10 Acetamidomethyl (1 M) 8,5 Vand iyrCys(-SAcm)0H 10 acetamidomethyl cysteinamid (0,4 M) 8,5 Vand TyrCys(-SAcm)NH2 12Nucleophil (Kone.) PH Medium Product Yield 10 Acetamidomethyl (1 M) 8.5 Water iyrCys (-SAcm) 0H 10 acetamidomethyl cysteine amide (0.4 M) 8.5 Water TyrCys (-SAcm) NH2 12

TyrCys(-SAcm)0H 1 Ø-benzyl- 15 asparaginsyre (0,1 M)b) 9,0 30% DMSO TyrAsp(0Bzl)0H 13 ε Trifluoracetyl- lysin (0,1 M)b) 8,5 30% DMSO TyrLys(Tfa)0H 12 r-tertbutyl- glutaminsyreamid (0,1 M)b) 8,0 30% DMSO TyrGluiOtBu)!^ 3 20 TyrGlu(0tBu)0H 12 r-methyl- glutaminsyre (0,3 M) 8,5 Vand TyrGlu(OMe)0H 20 r-methyl- glutaminsyre (0,3 M) 8,5 Vand TyrGlu(0Et)0H 18 25_____TyrCys (-SAcm) OH 1 O -benzyl-aspartic acid (0.1 M) b) 9.0 30% DMSO TyrAsp (OBzl) OH 13 ε Trifluoroacetyl-lysine (0.1 M) b) 8.5 30% DMSO TyrLys (Tfa) OH 12 r-tertbutylglutamic acid amide (0.1 M) b) 8.0 30% DMSO TyrGluiOtBu) 3 TyrGlu (0tBu) OH 12 r-methyl-glutamic acid (0.3 M) 8 , 5 Water TyrGlu (OMe) OH 20 r-Methylglutamic acid (0.3 M) 8.5 Water TyrGlu (0Et) OH 18 25_____

a) 10 am, 1 mM EDTAa) 10 am, 1 mM EDTA

b) 25 mM substrat, 20 *im 30 35b) 25 mM substrate, 20 µm 35

Eksempel 10 26Example 10 26

DK 163365 BDK 163365 B

Carboxypeptidase Y a) katalyseret syntese af DL-dipepti-der med sidekædebeskyttede carboxytermlnale aminosyrer 5 med D-Tyr0Et'(50 mM) som substratkomponent og sidekædebeskyttede L-aminosyrer og amider som nucleophilerCarboxypeptidase Y a) Catalyzed synthesis of DL dipeptides with side chain protected carboxyterminal amino acids 5 with D-Tyr0Et '(50 mM) as substrate component and side chain protected L amino acids and amides as nucleophiles

Nucleophil (Kone.) pH Medium Produkt Udbytte % 10 Acetamidomethyl cystein ( 1 M) 8,5 Vand tyrCys(-SAcm)CH 75Nucleophil (Con.) PH Medium Product Yield% 10 Acetamidomethyl cysteine (1 M) 8.5 Water tyrCys (-SAcm) CH 75

Acetamidomethyl cystein- amid (0,4 M) 8,5 Vand tyrCys(-SAcm)NH2 71 tyrCys(-SAcm)0H 6 Ø-benzyl asparaginsyre (0,1 Mb) 9,0 30% DMSO tyrAsp(0Bzl)0H 54 15 e trifluoracetyl- lysin (0,1 M)b 8,5 30% DMSO tyrLys(Tfa)0H 51 r-tertbutyl glutamin- syreamid (0,1 M)b 8,0 30% DMSO tyrGlu(0tBu)NH2 42 tyrGlu(0tBu)0H 10 20 ι-methyl glutamin- syre (0,3 M) 8,5 Vand tyrGlu(0Me)0H 75 T-ethyl glutamin- syre (0,3 M) 8,5 Vand tyrGlu(0Et)0H 71 25 a) 10 um, 1 mM EDTA °) 25 mM substrat, 20 m 30 35Acetamidomethyl cysteine amide (0.4 M) 8.5 Water tyrCys (-SAcm) NH2 71 tyrCys (-SAcm) OH 6 O -benzyl aspartic acid (0.1 Mb) 9.0 30% DMSO tyrAsp (OBzl) OH 54 Trifluoroacetyl-lysine (0.1 M) b 8.5 30% DMSO tyrLys (Tfa) OH 51 r-tertbutyl glutamic acid amide (0.1 M) b 8.0 30% DMSO tyrGlu (0tBu) NH2 42 tyrGlu (0tBu) 0H 10 20 ι-methyl glutamic acid (0.3 M) 8.5 Water tyrGlu (0Me) OH 75 T-ethyl glutamic acid (0.3 M) 8.5 Water tyrGlu (0Et) 0H 71 25 a) 10 µm, 1 mM EDTA ° 25 mM substrate, 20 m 35

Eksempel 11 27Example 11 27

DK 163365 BDK 163365 B

Carboxypeptidase Y a) katalyseret syntese af LL-dipeptid-er med sidekædebeskyttede aminoterminale-aminosyrerester 5 fra sidekædebeskyttede substratkomponenter (25 mM) og L-methionin (0,3) som nucleophilkomponent i 30% DMSO ved pHCarboxypeptidase Y a) Catalyzed synthesis of LL dipeptides with side chain protected amino-terminal amino acid residues 5 from side chain protected substrate components (25 mM) and L-methionine (0.3) as nucleophilic component in 30% DMSO at pH

9,09.0

Substrat Produkt Udbytte 10 % L-asparaginsyre dibenzylester Asp(OBzl)MetOH 65 L-glutaminsyre dibenzylester c) Glu(0Bzl)Met0H 70 15 a) 20 am, 1 mM EDTA, reaktionstid > 20 h k) ved 35% omsætning c) Ved 60% omsætning 20 25 30 35Substrate Product Yield 10% L-Aspartic Acid Dibenzyl Ester Asp (OBzl) MetOH 65 L-Glutamic Acid Dibenzyl Ester c) Glu (OBzl) MetOH 70 15 a) 20 am, 1 mM EDTA, reaction time> 20 hp) at 35% turnover c) At 60 % turnover 20 25 30 35

Eksempel 12 28Example 12 28

DK 163365 BDK 163365 B

Carboxypeptidase Y a) katalyseret syntese af dipeptides-tere og amider indeholdende ω-aminosyrer fra L- og D-ami-5 nosyreester-substrater ved 50 mM i vand med Ø-alanin og Æ-alaninamid som nucleophilerCarboxypeptidase Y a) Catalyzed synthesis of dipeptide esters and amides containing ω-amino acids from L- and D-amino acid ester substrates at 50 mM in water with? -Alanine and? -Alaninamide as nucleophiles

Sub- Nucleophil (Kone.) pH Produkt Ud- strat bytte 10 % tyrOEt &-Alaninmethylester (0,2 M) 8,5 tyrBAlaOMe 51 tyrOEt /5-Alaninmethylester (0,5 M) 8,5 tyrBAlaOMe 72 pheOEt 5-Alaninmethylester (0,5 M) 9,0 pheBalaOMe 83 15 PheOEt Ø-Alaninmethyl (0,5 M) 9,0 PheBAlaOMe 15 pheOEt J5-Alaninamid (0,5 M) 9,0 pheBAlaNH2 70Sub-Nucleophil (Cone.) PH Product Exchanged exchange 10% TyrOEt & Alanine methyl ester (0.2 M) 8.5 tyrBAlaOMe 51 tyrOEt / 5-Alanine methyl ester (0.5 M) 8.5 tyrBAlaOMe 72 pheOEt 5-Alanine methyl ester (0.5 M) 9.0 pheBalaOMe 83 15 PheOEt E-Alanine methyl (0.5 M) 9.0 PheBAlaOMe 15 pheOEt J5-Alanine amide (0.5 M) 9.0 pheBAlaNH2 70

PheOEt 0-Alaninamid (0,5 M) 9,0 PheBAlaNH2 3PheOEt O-Alanine amide (0.5 M) 9.0 PheBAlaNH2 3

20 a) 20 fim, 1 mM EDTA20 a) 20 µm, 1 mM EDTA

25 30 3525 30 35

Eksempel 13 29Example 13 29

DK 163365 BDK 163365 B

Carboxypeptidase Y a) katalyseret syntese af LL- og DL-dipeptider med hydroxyalkylestere af L- og D-tyrosin og 5 L-phenylalanfn (50 mM) som substratkomponenter og fri L-methionin (0,3 M) som nucleophil i vand/ ethylenglycol-blandinger ved pH 9,0Carboxypeptidase Y a) Catalyzed synthesis of LL and DL dipeptides with hydroxyalkyl esters of L and D tyrosine and 5 L-phenylalanine (50 mM) as substrate components and free L-methionine (0.3 M) as nucleophile in water / ethylene glycol mixtures at pH 9.0

Substrat % glycol (vol/vol) Produkt Udbytte % 10___Substrate% glycol (vol / vol) Product Yield% 10___

TyrOEtOH 0 TyrMetOH 10TyrOEtOH 0 TyrMetOH 10

TyrOEtOH 40 TyrMetOH 8TyrOEtOH 40 TyrMetOH 8

TyrOEtOH 60 ) TyrMetOH 5 tyrOEtOH 0 tyrMetOH 56 15 PheOEtOH 0 PheMetOH 16TyrOEtOH 60) TyrMetOH 5 TyrOEtOH 0 TyrMetOH 56 15 PheOEtOH 0 PheMetOH 16

a) 5 nm, 1 mM EDTAa) 5 nm, 1 mM EDTA

b) 10 μπι, 1 mM EDTAb) 10 μπι, 1 mM EDTA

20 25 30 3520 25 30 35

Eksempel 14 30Example 14 30

DK 163365 BDK 163365 B

Syntese af LL-dipeptider katalyseret af carboxypeptidaser fra byg og hvede ved 50 mM udgangs-L-substrat esterkon-5 centration ve'd pH 8,0 i vand og L-aminosyrer som nucleo-philkomponenterSynthesis of LL dipeptides catalyzed by barley and wheat carboxypeptidases at 50 mM starting L substrate ester concentration ve pH pH 8.0 in water and L amino acids as nucleophilic components

Enzym Substrat Nucleophil (Kone.) Produkt Udbytte % 10 _ CPD-MII3) PheOEt Methionin (0,4 M) PheMetOH 10 CPD-W*3) PheOEt Arginin (0,8 M) PheArgOH 8Enzyme Substrate Nucleophil (Wife) Product Yield% 10 _ CPD-MII3) PheOEt Methionine (0.4 M) PheMetOH 10 CPD-W * 3) PheOEt Arginine (0.8 M) PheArgOH 8

15 a) 20 tun, 1 mM EDTA, 2 M NaCl b) 10 um, 1 mM EDTAA) 20 tun, 1 mM EDTA, 2 M NaCl b) 10 um, 1 mM EDTA

Eksempel 15 20 Syntese af DL-dipeptider katalyseret af carboxypeptidaser fra byg og hvede ved 50 mM udgangskoncentration af D-Phe-nylalaninethylester ved pH 8,0 i vand og frie L-aminosy-rer som nucleophilkomponenter 25 Enzym Substrat Nucleophil (Kone.) Produkt Udbyt te % CPD-MIIa) pheOEt Methionin (0,4 M) pheMetOH 15 CPD-Wb) pheOEt Arginin (0,8 M) pheArgOH 13 30 CPD-Vjh) pheOEt Methionin (0,4 M) pheMetOH 40 a) 20 μΐη, 1 HIM EDTA, 2 M NaCl b) 10 um, 1 mM EDTA, 2 M NaCl, Reaktionstid > 20 h, 35 omsætning mindre end 50%Example 15 Synthesis of DL Dipeptides Catalyzed by Barley and Wheat Carboxypeptidases at 50 mM Starting Concentration of D-Phe Nylalanine Ethyl Ester at pH 8.0 in Water and Free L-Amino Acids as Nucleophil Components 25 Enzyme Substrate Nucleophil (Kone.) Product Yield te% CPD-MIIa) pheOEt Methionine (0.4 M) pheMetOH CPD-Wb) pheOEt Arginine (0.8 M) pheArgOH 13 30 CPD-Vjh) pheOEt Methionine (0.4 M) pheMetOH 40 a) 20 μΐη , 1 HIM EDTA, 2 M NaCl b) 10 µm, 1 mM EDTA, 2 M NaCl, Reaction time> 20 h, 35 turnover less than 50%

Eksempel 16 31Example 16 31

DK 163365 BDK 163365 B

Fremstilling af L,L-tyrosylcystein, TyrCysOH 5 Fremgangsmåde L-tyrosinethylester hydrochlorid (1,5 g, 6 mmol) og L-cystein (15,2 g, 125 mmol) opløses i 110 ml 0,1 M KC1-opløsning, indeholdende 1 mM EDTA. pH indstilles til 8,0 10 med triethylamin. Reaktionen startes ved tilsætning af 7,5 ml carboxypeptidase Y-opløsning (16 mg/ml), og pH holdes på 8,0 under hele reaktionsforløbet ved tilsætning af triethylamin under kontinuert omrøring ved stuetemperatur. Resten af substratet (13,5 g, 54 mmol) tilsættes 15 i portioner å 1,5 g i løbet af en time. Efter 0,5 time påbegynder udfældningen af tyrosin, og efter 3,5 time standses reaktionen ved opvarmning til 45°C i 20 min.Preparation of L, L-tyrosylcysteine, TyrCysOH Process L-tyrosine ethyl ester hydrochloride (1.5 g, 6 mmol) and L-cysteine (15.2 g, 125 mmol) are dissolved in 110 ml of 0.1 M KCl solution containing 1 mM EDTA. The pH is adjusted to 8.0 10 with triethylamine. The reaction is started by adding 7.5 ml of carboxypeptidase Y solution (16 mg / ml), and the pH is maintained at 8.0 throughout the course of the reaction by adding triethylamine with continuous stirring at room temperature. The remainder of the substrate (13.5 g, 54 mmol) is added 15 in 1.5 g portions over one hour. After 0.5 hours, the precipitation of tyrosine begins and after 3.5 hours the reaction is stopped by heating to 45 ° C for 20 minutes.

Den dannede tyrosin frafiltreres, og filtratet oprenses 20 ved R-præparativ HPLC (Waters Prep. L C/system 500A) under anvendelse af to kolonner (5,7 x 30 cm) pakket med 60 um g-partikler og 50 mM eddikesyre som eluent. Op- samlede fraktioner indeholdende rent produkt inddampes i vakuum til tørhed under tilsætning af absolut ethanol 25 flere gange. Remanensen opslæmmes i diethylether, hvorefter 3,88 g L,L-tyrosincystein (14 mmol, 22%) kunne isoleres ved filtrering og tørring.The tyrosine formed is filtered off and the filtrate is purified by R-preparative HPLC (Waters Prep. L C / system 500A) using two columns (5.7 x 30 cm) packed with 60 µm g particles and 50 mM acetic acid as eluent. The collected fractions containing pure product are evaporated in vacuo to dryness with the addition of absolute ethanol 25 several times. The residue is slurried in diethyl ether, after which 3.88 g of L, L-tyrosine cysteine (14 mmol, 22%) can be isolated by filtration and drying.

Identifikation 30Identification 30

Chlorid og acetat kunne ikke påvises. D.v.s. produktet forefindes som zwitterion.Chloride and acetate could not be detected. I.e. the product is available as zwitterion.

Aminosyreanalyse efter sur hydrolyse og derivering af Cys 35 med acrylonitril gav:Amino acid analysis after acidic hydrolysis and derivation of Cys 35 with acrylonitrile gave:

Tyr (1,00)Tyr (1.00)

Cys (1,08) 32Cys (1.08) 32

DK 163365 BDK 163365 B

Renhed TLC viste kun en plet efter derivering af cystein-5 sidekæden med acrylonitril på kiselgel 60-F under anvendelse af ninhydrin-detektion (Rf 0,73, eluent: ethylace-tat, butanol, eddikesyre og vand (1:1:1:1:)).Purity TLC showed only a stain after derivation of the cysteine 5 side chain with acrylonitrile on silica gel 60-F using ninhydrin detection (Rf 0.73, eluent: ethyl acetate, butanol, acetic acid and water (1: 1: 1: 1 :)).

HPLC-renhed: 99,5% (nucleosil 7 C^g, 0,1 M ammoniumphos-10 phat, pH 3,0/acetonitril, 220 nm).HPLC purity: 99.5% (nucleosil 7 Cg, 0.1 M ammonium phosphate, pH 3.0 / acetonitrile, 220 nm).

UV-kvantisering: 98,5% (293 nm, tyrosin absorbans i 0,1 M NaOH).UV quantization: 98.5% (293 nm, tyrosine absorbance in 0.1 M NaOH).

15 Eksempel 17Example 17

Fremstilling af L,L-methionylmethionin, MetMetOH Fremgangsmåde 20 L-methioninethylester hydrochlorid (24,6 g, 115 mmol) og L-methionin (20,6 g, 138 mmol) opløses i 190 ml 0,1 M KCl-opløsning indeholdende 1 mM EDTA. pH indstilles til 9,0 med natriumhydroxid-opløsning, og reaktionen startes 25 ved tilsætning af 14,2 ml carboxypeptidase Y-opløsning (20 mg/ml). Reaktionen omrøres natten over ved stuetemperatur, og pH holdes konstant på 9,0 ved tilsætning af natriumhydroxidopløsning ved hjælp af en PH-stat. pH indstilles til 3,0 med HCl-opløsning ved reaktionens ophør.Preparation of L, L-methionylmethionine, MetMetOH Process 20 L-methionine ethyl ester hydrochloride (24.6 g, 115 mmol) and L-methionine (20.6 g, 138 mmol) are dissolved in 190 ml of 0.1 M KCl solution containing 1 mM EDTA. The pH is adjusted to 9.0 with sodium hydroxide solution and the reaction is started by adding 14.2 ml of carboxypeptidase Y solution (20 mg / ml). The reaction is stirred overnight at room temperature and the pH is kept constant at 9.0 by the addition of sodium hydroxide solution with the aid of a PH state. The pH is adjusted to 3.0 with HCl solution at the end of the reaction.

3030

Udfældet methionin frafiltreres, og filtratet oprenses ved R-præparativ HPLC som beskrevet i eksempel 16. Opsam-lede fraktioner indeholdende rent produkt koncentreres ved inddampning og frysetørres til slut. Herved fremkom-35 mer 10,6 g (37,8 mmol, 33%) L-methionyl-L-methionin som et hvidt amorft pulver.Precipitated methionine is filtered off and the filtrate is purified by R-preparative HPLC as described in Example 16. Collected fractions containing pure product are concentrated by evaporation and finally lyophilized. There was thus obtained 10.6 g (37.8 mmol, 33%) of L-methionyl-L-methionine as a white amorphous powder.

3333

DK 163365 BDK 163365 B

Identi fikationIdentification

Chlorid kunne ikke påvises og acetat kun i en mængde af 1,9% (på vægtbasis). D.v.s. produktet forefindes overve-5 jende på zwitterion-form. Aminosyreanalyse efter sur hydrolyse påviste methionin men ingen fri methionin i uhy-drolyserede prøver.Chloride could not be detected and acetate only in an amount of 1.9% (by weight). I.e. the product is predominantly in zwitterion form. Amino acid analysis after acid hydrolysis detected methionine but no free methionine in unhydrolyzed samples.

Renhed 10 HPLC-renhed: 99,8 (nucleosil 7 Clg, 0,1 M ammoniumphos-phat, pH 3,0/acetonitril, 220 run).Purity 10 HPLC purity: 99.8 (nucleosil 7 Clg, 0.1 M ammonium phosphate, pH 3.0 / acetonitrile, 220 run).

Kvantisering ved reaktion med trinitrobenzensulfonsyre 15 (TNBS) og UV-detektion: 92,5%.Quantization by reaction with trinitrobenzenesulfonic acid (TNBS) and UV detection: 92.5%.

Vandindhold ifølge Karl Fisher: 1,5%.Water content according to Karl Fisher: 1.5%.

Eksempel 18 20Example 18 20

Fremstilling af L,L-tyrosylvalinamid, TyrValN^Preparation of L, L-tyrosylvalinamide, TyrValN

Fremgangsmåde 25 L-tyrosinethylester-hydrochlorid (16,0 g, 65 mmol) og L-valinamid-hydrochlorid (60 g, 390 mmol) opløses i 1150 ml vand og 65 ml 20 nM EDTA tilsættes. pH indstilles til 9,0 med natriumhydroxid-opløsning. Reaktionen startes ved tilsætning af 12 ml carboxypeptidase Y-opløsning (20 30 mg/ml). Reationen omrøres ved stuetemperatur i fire timer, og pH holdes konstant på 9,0 ved tilsætning af natriumhydroxid-opløsning. Efter endt omsætning standses reaktionen ved forhøjelse af pH til 11.Process 25 Dissolve L-tyrosine ethyl ester hydrochloride (16.0 g, 65 mmol) and L-valinamide hydrochloride (60 g, 390 mmol) in 1150 ml of water and 65 ml of 20 nM EDTA are added. The pH is adjusted to 9.0 with sodium hydroxide solution. The reaction is started by adding 12 ml of carboxypeptidase Y solution (20 30 mg / ml). The reaction is stirred at room temperature for four hours and the pH is kept constant at 9.0 by the addition of sodium hydroxide solution. After completion of the reaction, the reaction is stopped by raising the pH to 11.

35 Det denaturerede enzym frafiltreres og reaktionsblandingen fortyndes og oprenses ved efterfølgende anion-bytning på en Dowex A61x4 søjle og kationbytning på en Dowex 34The denatured enzyme is filtered off and the reaction mixture is diluted and purified by subsequent anion exchange on a Dowex A61x4 column and cation exchange on a Dowex 34

DK 163365 BDK 163365 B

A650Wx4 søjle under anvendelse af henholdsvis natrium- og ammoniumacetat-saltgradienter, og afsaltes til slut. Produktfraktioner kombineres og inddampes i vakuum til tørhed under tilsætning af absolut ethanol flere gange, 5 hvorved der fremkommer 11,2 g L,L-tyrosylvalinamid (40 mmol, 62%) som et hvidt pulver.A650Wx4 column using sodium and ammonium acetate salt gradients, respectively, and finally desalted. Product fractions are combined and evaporated in vacuo to dryness with the addition of absolute ethanol several times, yielding 11.2 g of L, L-tyrosylvalinamide (40 mmol, 62%) as a white powder.

Identifikation 10 Der blev påvist 1,8% (på vægtbasis) acetat, D.v.s. produktet er overvejende på zwitterionisk form.Identification 10 1.8% (by weight) of acetate, i.e. the product is predominantly in zwitterionic form.

Aminosyreanalyse efter sur hydrolyse gav følgende resultat: 15Amino acid analysis after acid hydrolysis gave the following result: 15

Tyr (1,01)Tyr (1.01)

Val (0,99)Choice (0.99)

Renhed 20 HPLC-renhed: 99,5 (Novapak C^g, 0,1 M ammoniumphosphat indeholdende alkylsulfonat, pH 4,5/acetonitril, 220 nm).Purity 20 HPLC purity: 99.5 (Novapak C ^ g, 0.1 M ammonium phosphate containing alkyl sulfonate, pH 4.5 / acetonitrile, 220 nm).

UV-kvantisering: 97,8% (293 nm, tyrosin absorbans i 0,1 M 25 NaOH).UV quantization: 97.8% (293 nm, tyrosine absorbance in 0.1 M NaOH).

Eksempel 19Example 19

Fremstilling af D, L-tyrosyl-arginin, D,L-tyrArgOH 30Preparation of D, L-tyrosyl-arginine, D, L-tyrArgOH 30

Fremgangsmåde 105 g L-arginin (105 g, 603 mmol) opløses i 400 ml vand. pH indstilles til 9,0 med HCl-opløsning. Der tilsættes D-35 tyrosinethylester-hydrochlorid (6,1 g, 25 mmol) og 5 ml 0,1 M EDTA, og pH genindstilles til 9,0. Reaktionen startes ved tilsætning af 7 ml carboxypeptidase Y-opløsning 35Process 105 g of L-arginine (105 g, 603 mmol) are dissolved in 400 ml of water. The pH is adjusted to 9.0 with HCl solution. D-35 tyrosine ethyl ester hydrochloride (6.1 g, 25 mmol) and 5 ml of 0.1 M EDTA are added and the pH is adjusted to 9.0. The reaction is started by adding 7 ml of carboxypeptidase Y solution 35

DK 163365 BDK 163365 B

(20 mg/ml), og pH holdes konstant på 9,0 ved tilsætning af NaOH-oplØsning. Reaktionen standses efter fire timer ved indstilling af pH til 3 med HCl-opløsning.(20 mg / ml) and the pH is kept constant at 9.0 by the addition of NaOH solution. The reaction is quenched after four hours by adjusting the pH to 3 with HCl solution.

5 Reaktionsblaridingen fortyndes og oprenses ved kation-ud-bytning på en Dowex A650Wx4 søjle under anvendelse af en ammoniumacetat·* saltgradient, og af sal tes til slut. Opsam-lede produktfraktioner koncentreres ved inddampning og frysetørres til slut, hvorved der fremkommer 6,45 g D,L-10 tyrosyl-arginin (19 mmol, 77%) som et hvidt pulver.The reaction mixture is diluted and purified by cation exchange on a Dowex A650Wx4 column using an ammonium acetate · salt gradient and finally salted. The collected product fractions are concentrated by evaporation and finally lyophilized to give 6.45 g of D, L-10 tyrosyl-arginine (19 mmol, 77%) as a white powder.

IdentifikationIdentification

Acetat og chlorid kunne ikke påvises. D.v.s. produktet 15 forefindes som zwitterion.Acetate and chloride could not be detected. I.e. product 15 is present as zwitterion.

Aminosyreanalyse efter sur hydrolyse gav følgende resultat:Amino acid analysis after acid hydrolysis gave the following results:

Arg (1,03) 20 Tyr (0,97)Arg (1.03) Tyr (0.97)

Renhed HPLC-renhed: 99,5% (Novapak Clg, 0,1 M ammoniumphosphat 25 med alkylsulfonsyre, pH 4,5/acetonitril, 220 nm).Purity HPLC purity: 99.5% (Novapak Clg, 0.1 M ammonium phosphate 25 with alkylsulfonic acid, pH 4.5 / acetonitrile, 220 nm).

Vandindhold ifølge Karl Fisher: 3,4% 30 35 36Water content according to Karl Fisher: 3.4% 30 35 36

DK 163365 BDK 163365 B

Eksempel 20Example 20

Fremstilling af D,L-phenylalanylmethionin, D,L-pheMetOH under anvendelse af immobiliseret carboxypeptidase Y 5Preparation of D, L-phenylalanylmethionine, D, L-pheMetOH using immobilized carboxypeptidase Y 5

ImmobiliseringsprocedureImmobiliseringsprocedure

Carboxypeptidase Y blev immobiliseret på Eupergit C efter den af producenten anbefalede procedure. Immobiliseringen 10 blev udført i en phospha tpuf fer ved pH på 7,5 og resterende aktive gel-grupper blev blokeret med ethanolamin ved pH 8,0 og efterfølgende vask.Carboxypeptidase Y was immobilized on Eupergit C following the manufacturer's recommended procedure. Immobilization 10 was carried out in a phosphate buffer at pH of 7.5 and residual active gel groups were blocked with ethanolamine at pH 8.0 and subsequent washing.

93% af enzymet blev bundet til gelen, der indeholdt 2,5 15 mg protein/ml. Det Eupergit C-koblede enzym blev opbevaret i 10 mM PIPES, 1 mM EDTA, 0,05% hydroxybenzoesyre-ethylester, pH 7,0 ved 4°C.93% of the enzyme was bound to the gel containing 2.5 mg of protein / ml. The Eupergit C-linked enzyme was stored in 10 mM PIPES, 1 mM EDTA, 0.05% hydroxybenzoic acid ethyl ester, pH 7.0 at 4 ° C.

Fremstillingsprocedure 20 D-phenylalaninethylester-hydrochlorid (5,7 g, 25 mmol) og L-methionin (29,8, 200 mmol) blev opløst i 400 ml ^0.Preparation Procedure 20 D-phenylalanine ethyl ester hydrochloride (5.7 g, 25 mmol) and L-methionine (29.8, 200 mmol) were dissolved in 400 mL of 0.

Der blev tilsat 5 ml 0,1 N EDTA, og pH blev indstillet til 9,0 med natriumhydroxid-opløsning til et reaktionsvo-25 lumen på 500 ml. Reaktionsblandingen blev omrørt kontinuert, og pH blev holdt konstant på 9,0 med natriumhydroxid-opløsning, mens opløsningen blev ført over en søjle af immobiliseret CPD-Y med en strømningshastighed på 3 ml/min. Søjlen indeholdt immobiliseret CPD-Y på Eupergit 30 C, fremstillet som ovenfor beskrevet, og var 2,5 cm x 5,5 cm med et volumen på 27 ml, indeholdende ialt 67 mg CPD- Y. Cirkulationen fortsattes i 10 h. pH blev derpå indstillet til 7 med HCL-opløsning, og produktet blev oprenset på R-præparativ HPLC som beskrevet i eksempel 16.5 ml of 0.1 N EDTA was added and the pH was adjusted to 9.0 with sodium hydroxide solution to a reaction volume of 500 ml. The reaction mixture was stirred continuously and the pH was kept constant at 9.0 with sodium hydroxide solution while passing the solution over a column of immobilized CPD-Y at a flow rate of 3 ml / min. The column contained immobilized CPD-Y on Eupergit 30C, prepared as described above, and was 2.5 cm x 5.5 cm with a volume of 27 ml containing a total of 67 mg CPD-Y. The circulation was continued for 10 hours. then adjusted to 7 with HCl solution and the product was purified on R preparative HPLC as described in Example 16.

Opsamlede fraktioner indeholdende rent produkt blev kombineret, inddampet i vakuum og til slut frysetørret, 35 37Collected fractions containing pure product were combined, evaporated in vacuo and finally lyophilized, 37

DK 163365 BDK 163365 B

hvorved der fremkom 3,5 g (12 mmol, 48%) D,L-phenylala-nylMethionin som et hvidt amorft pulver.to give 3.5 g (12 mmol, 48%) of D, L-phenylalanylmethionine as a white amorphous powder.

Enzympræparations-stabilitet 5Enzyme Preparation Stability 5

Eksperimentet kunne gentages flere gange med den samme enzym-gel-præparation uden bemærkelsesværdig nedgang i omsætningshastighed og sammenlignelige resultater. Enzymet er således ret stabilt ved reaktionsbetingelseme, 10 hvilket yderligere forbedrer procesøkonomien.The experiment could be repeated several times with the same enzyme-gel preparation without remarkable decrease in turnover rate and comparable results. Thus, the enzyme is quite stable under the reaction conditions, which further improves the process economy.

Produktidentitetproduct Identity

Produktet indeholdt intet chlorid men 7,0% (på vægtbasis) 15 acetat, og var således delvis på acetat form.The product contained no chloride but 7.0% (by weight) of acetate and was thus partially in acetate form.

Aminosyreanalyse påviste fravær af frie aminosyrer og efter sur hydrolyse:Amino acid analysis detected the absence of free amino acids and after acidic hydrolysis:

Met (0,98) 20 Phe (1,03)With (0.98) 20 Phe (1.03)

Den specifikke optiske rotation under anvendelse af natrium D-linie ved 25°C og c=0,25 i vand var -128,9° 25 ProduktrenhedThe specific optical rotation using sodium D line at 25 ° C and c = 0.25 in water was -128.9 ° 25.

HPLC: 99,6% (nucleosil 7 C^g, 0,1 M ammoniumphosphat, pHHPLC: 99.6% (nucleosil 7 Cg, 0.1 M ammonium phosphate, pH

3/acetonitril, 220 nm).3 / acetonitrile, 220 nm).

30 Vandindhold ifølge Karl Fisher: 2,8% 3530 Water content according to Karl Fisher: 2.8% 35

Eksempel 21 38Example 21 38

DK 163365 BDK 163365 B

Fremstilling af D,D-phenylalanylphenylalaninethylester hydroohlorid, D,D-phepheOEt.HC1 5Preparation of D, D-Phenylalanylphenylalanine ethyl ester hydrochloride, D, D-phepheOEt.HC1 5

Fremgangsmåde D-phenylalaninethylester hydrochlorid (2,5 g, 11 mmol) blev opløst i 45 ml vand, hvorefter der blev tilsat 0,5 10 ml 0,1 N EDTA. pH blev indstillet til 9,0 med natriumhydroxid-opløsning, idet substratet i begyndelsen indgår som en delvis olieagtig suspnsion. Reaktionen blev startet ved tilsætning af 3,4 ml carboxypeptidase Y-opløsning (20 mg/ml) og blev omrørt i 2,5 time ved stuetemperatur.Process D-Phenylalanine ethyl ester hydrochloride (2.5 g, 11 mmol) was dissolved in 45 ml of water and then 0.5 ml of 0.1 N EDTA was added. The pH was adjusted to 9.0 with sodium hydroxide solution, with the substrate initially included as a partially oily suspension. The reaction was started by adding 3.4 ml of carboxypeptidase Y solution (20 mg / ml) and stirred for 2.5 hours at room temperature.

15 pH blev holdt på 9,0 med natriumhydroxid-opløsning. Reaktionen blev standset ved indstilling af pH til 3 med HC1-opløsning.The pH was maintained at 9.0 with sodium hydroxide solution. The reaction was stopped by adjusting the pH to 3 with HCl solution.

Reaktionsblandingen blev filtreret og oprenset ved R-præ-20 parativ HPLC, som beskrevet i eksempel 16.The reaction mixture was filtered and purified by R-preparative HPLC as described in Example 16.

Opsamlede produktfraktioner blev koncentreret ved ind-dampning i vakuum og frysetørret med tilsat HCl-opløs-ning, hvorved der fremkom 0,49 g (1,3 mmol, 12%) som et 25 hvidt amorft pulver.The collected product fractions were concentrated by evaporation in vacuo and lyophilized with added HCl solution to give 0.49 g (1.3 mmol, 12%) as a white amorphous powder.

IdentifikationIdentification

Produktet indeholdt 9,2% (på vægtbasis) chlorid og intet 30 acetat. D.v.s. produktet forefindes som hydrochlorid.The product contained 9.2% (by weight) of chloride and no acetate. I.e. the product is present as hydrochloride.

Aminosyreanalyse efter sur hydrolyse påviste phenylalanin og ingen phenylalanin inden sur hydrolyse.Amino acid analysis after acid hydrolysis detected phenylalanine and no phenylalanine before acid hydrolysis.

35 Produktet kunne hydrolyseres yderligere med en base, hvorved der fremkom et produkt, der var chromatografisk forskelligt fra D,L-PhePheOH, og selve produktet eluerede 39The product could be further hydrolyzed with a base to give a product which was chromatographically different from D, L-PhePheOH and the product itself eluted 39

DK 163365 BDK 163365 B

med en L,L-PhePheOEt-standard i det anvendte HPLC-system.with an L, L-PhePheOEt standard in the HPLC system used.

Til slut blev den specifikke optiske rotation under anvendelse af natrium D-linie ved 25°C og c=0,5 i eddikesy-5 re bestemt til -42,7°. Dette til sammenligning med en ren L,L-PhePheOEt-standard, der gav +52,1° under samme betingelser. Forskellen menes her at skyldes det fremstillede peptids lavere renhed.Finally, the specific optical rotation using sodium D line at 25 ° C and c = 0.5 in acetic acid was determined to be -42.7 °. This compares with a pure L, L-PhePheOEt standard which gave + 52.1 ° under the same conditions. The difference here is believed to be due to the lower purity of the produced peptide.

10 Renhed HPLC-renhed: 82,3% (nucleosil 7 Clg, 0,1 M ammoniumphos- phat, pH 3/acetonitril, 220 nm).Purity HPLC purity: 82.3% (nucleosil 7 Clg, 0.1 M ammonium phosphate, pH 3 / acetonitrile, 220 nm).

15 De påviste urenheder var chromatografisk forskellige fra substrat, substrathydrolyse, produkthydrolyse eller dia-stereomere deraf.The impurities detected were chromatographically different from substrate, substrate hydrolysis, product hydrolysis or diastereomers thereof.

Vandindhold ifølge Karl Fisher: 7,5%.Water content according to Karl Fisher: 7.5%.

2020

Eksempel 22Example 22

Fremstilling af D-tyrosyl-Ø-alanin, D-Tyr-Ø-Ala-OH via esteren D-tyrosyl-Æ-alaninmethylester ved enzymatisk 25 deblokeringPreparation of D-tyrosyl-β-alanine, D-Tyr-β-Ala-OH via the ester D-tyrosyl-β-alanine methyl ester by enzymatic unblocking

Fremgangsmåde 30 D-tyrosinethylester (1,07 g, 5,1 mmol) og Ø-alaninmethyl- ester (4,14 g, 40,1 mmol) opløses i 57 ml ^0 indeholdende 60 Mmol (22,3 mg) dinatrium EDTA og 3 mmol (363,3 mg) TRIS. Reaktionen startes ved tilsætning af 3,40 ml af en opløsning af carboxypeptidase-Y (353 uM) og holdes på 35 pH 8,3 under hele reaktionsforløbet.Process 30 D-tyrosine ethyl ester (1.07 g, 5.1 mmol) and ε-alanine methyl ester (4.14 g, 40.1 mmol) are dissolved in 57 mL of 60 containing 60 mmol (22.3 mg) of disodium EDTA. and 3 mmol (363.3 mg) of TRIS. The reaction is started by adding 3.40 ml of a solution of carboxypeptidase-Y (353 µM) and maintained at 35 pH 8.3 throughout the course of the reaction.

Efter 2 timer indstilles pH til 3,0 ved tilsætning af 1 NAfter 2 hours, the pH is adjusted to 3.0 by the addition of 1 N

4040

DK 163365 BDK 163365 B

saltsyre. Reaktionsblandingen, fortyndes til 100 ml og oprenses med RP-præparativ HPLC (Waters Prep LC/System 500Ά) under anvendelse af en søjle (5,7 x 30 cm) pakket med 60 urn C-18 partikler og 50 mM eddikesyre/ethanol-5 blandinger.hydrochloric acid. The reaction mixture is diluted to 100 ml and purified by RP preparative HPLC (Waters Prep LC / System 500Ά) using a column (5.7 x 30 cm) packed with 60 µm C-18 particles and 50 mM acetic acid / ethanol-5 mixtures.

Opsamlede fraktioner indeholdende rent produkt blev koncentreret under reduceret tryk og frysetørret til slut.Collected fractions containing pure product were concentrated under reduced pressure and finally lyophilized.

10 Ved fremgangsmåden blev der opnået 0,78 g D-tyrosyl-Æ-alaninmethylesteracetat (2,7 mmol, 58%).In the process 0.78 g of D-tyrosyl-α-alanine methyl ester acetate (2.7 mmol, 58%) was obtained.

Renhed 15 HPLC-renhed: 98,0% (Nucleosic 7 C-18, 0,1 M ammoniumphos- phat, pH 3,0/acetonitril, 220 nm).Purity HPLC purity: 98.0% (Nucleosic 7 C-18, 0.1 M ammonium phosphate, pH 3.0 / acetonitrile, 220 nm).

20 Identifikation20 Identification

Animosyreanalyse viste fravær af frie aminosyrer men efter sur hydrolyse fremkom følgende resultat: 25 Ø-Ala (1,04) D-Tyr (0,96)Animoic acid analysis showed the absence of free amino acids but after acidic hydrolysis the following result was obtained: 25 E-Ala (1.04) D-Tyr (0.96)

Fremgangsmåde 30 Dipeptidmethylesteren (0,65 g, 2,3 mmol) blev opløst i 40 ml H2O indeholdende 4 ml 0,5 M phosphatpuffer (pH 7,0). Reaktionen blev startet ved tilsætning af 2,8 ml af en opløsning af svineleveresterase (PLE, 357 uM) og blev holdt på pH 7,0 under hele reaktionsforløbet.Process 30 The dipeptide methyl ester (0.65 g, 2.3 mmol) was dissolved in 40 ml H 2 O containing 4 ml 0.5 M phosphate buffer (pH 7.0). The reaction was started by adding 2.8 ml of a pig liver esterase solution (PLE, 357 µM) and maintained at pH 7.0 throughout the course of the reaction.

Efter 4 timer blev pH indstillet til 3,0 ved tilsætning af 10 N saltsyre. Reaktionsblandingen blev fortyndet til 35After 4 hours, the pH was adjusted to 3.0 by the addition of 10 N hydrochloric acid. The reaction mixture was diluted to 35

DK 163365BDK 163365B

41 70 ml og oprenset med RP-præparativ HPLC (Waters Prep LC/System 500A) under anvendelse af en søjle (5,7 x 30 cm) pakket med 60 »m C-18 partikler og 50 mM eddikesy-re/ethanol-blandinger.41 70 ml and purified by RP Preparative HPLC (Waters Prep LC / System 500A) using a column (5.7 x 30 cm) packed with 60 »m C-18 particles and 50 mM acetic acid / ethanol mixtures .

55

Opsamlede fraktioner indeholdende rent produkt blev koncentreret under reduceret tryk og frysetørret til slut.Collected fractions containing pure product were concentrated under reduced pressure and finally lyophilized.

Ved denne fremgangsmåde blev der opnået 0,50 g D-tyrosyl-10 Ø-alaninacetat (1,5 mmol, 65%).By this process 0.50 g of D-tyrosyl-10? -Alanine acetate (1.5 mmol, 65%) was obtained.

IdentifikationIdentification

Aminosyreanalyse viste fravær af frie aminosyrer, men ef-15 ter sur hydrolyse fremkom følgende resultat: i-Ala (1,04) D-Tyr (0,96) 20 Acetat-indhold med HPLC: 1,2% (w/w). Chlorid blev ikke påvist.Amino acid analysis showed the absence of free amino acids, but after acidic hydrolysis the following result was obtained: i-Ala (1.04) D-Tyr (0.96) Acetate content by HPLC: 1.2% (w / w) . Chloride was not detected.

Specifik optisk rotation: -34,9° (C = 0,01 i 0,1 N HCL under anvendelse af natrium D-linien på 20°C).Specific optical rotation: -34.9 ° (C = 0.01 in 0.1 N HCL using the 20 ° C sodium D line).

2525

Renhed HPLC-renhed: 98,7% (Nucleosic 7 C-18, 0,1 M ammonium- phosphat, pH 3,0/acetonitril, 220 nm).Purity HPLC purity: 98.7% (Nucleosic 7 C-18, 0.1 M ammonium phosphate, pH 3.0 / acetonitrile, 220 nm).

30 3530 35

Eksempel 23 42Example 23 42

DK 163365 BDK 163365 B

Fremstilling af b-alany1-L-methionin katalyseret med g Λ carboxypeptidase-Y under anvendelse af b-alanin-benzyl-5 ester som siibstratkomponent og fri methioninsyre som nucleophilkomponent i vand ved 2 forskellige pH-værdierPreparation of b-alanyl-L-methionine catalyzed with g Λ carboxypeptidase-Y using b-alanine benzyl ester as a substrate component and free methionic acid as a nucleophilic component in water at 2 different pH values

Kone. af 10 substrat Nucleophil pH Udbytte (%) 25 mM 0,4 M 8,0 5b) 25 mM 0,4 8,5 8 15__ a) 50 nM CPD-Y, 2 mM Na2-EDTA.Wife. of 10 Substrate Nucleophil pH Yield (%) 25 mM 0.4 M 8.0 5b) 25 mM 0.4 8.5 8 15 a) 50 nM CPD-Y, 2 mM Na2-EDTA.

b) Bestemt ved mindre end 50% omsætning.b) Determined at less than 50% turnover.

20 25 30 35 4320 25 30 35 43

DK 163365 BDK 163365 B

Eksempel 24Example 24

Fremstilling af dipeptider katalyseret med carboxy- a \ peptidaser ' under anvendelse af D-aminosyre-ethylestere 5 som substratk'omponenter og aminomethyl fos for syre (AMP) og 2-aminoethylsulfonsyre (2-AES) som nucleophilkomponenter i vand ved forskellige pH-værdier.Preparation of dipeptides catalyzed with carboxy-α peptidases using D-amino acid ethyl esters 5 as substrate components and aminomethyl fos for acid (AMP) and 2-aminoethylsulfonic acid (2-AES) as nucleophilic components in water at various pH .

Enzym Substrat Nucleophil pH Udbytte (%) 10 _ CPD-Y D-tyr-OEt (50 mM) AMP (0,2 M) 9,3 2 CPD-W D-tyr-OEt (50 mM) AES (0,5 M) 8,5 4b) 15 a) 20 hM CPD-W, 2 mM Na2 EDTA og 0,1 M NH4C1 (pH indstillet) b) Bestemt i forhold til hydrolyse via en standard ved 20 mindre end 100% omsætning.Enzyme Substrate Nucleophilic pH Yield (%) 10-CPD-Y D-tyr-OEt (50 mM) AMP (0.2 M) 9.3 2 CPD-W D-tyr-OEt (50 mM) AES (0.5 M) 8.5 4b) 15 a) 20 hM CPD-W, 2 mM Na 2 EDTA and 0.1 M NH 4 Cl (pH adjusted) b) Determined relative to hydrolysis via a standard at 20 less than 100% turnover.

25 30 3525 30 35

Eksempel 25 44Example 25 44

DK 163365 BDK 163365 B

Fremstilling af L,L-TyrValNH2 katalyseret med carboxy-peptidase Y i høje koncentrationer af organisk opløs-5 ningsmiddel Under anvendelse af L-Tyrosinethylester som substratkomponent og L-Valinamid som nucleophilkomponent ved pH 8,5.Preparation of L, L-TyrValNH2 catalyzed with carboxy peptidase Y in high organic solvent concentrations Using L-Tyrosine ethyl ester as substrate component and L-Valinamide as nucleophilic component at pH 8.5.

Kone. af u \ « \ 10 substrat Nucleophil Opløsningsm. ' Udbytte (%) ' 25 mM 0,5 M 92% glycerol 53 15 a) Bestemt ved 80% omsætning, 100 uM CPD-Y, 2 mM Na2-EDTA.Wife. of u \ «\ 10 substrate Nucleophil Solution m. 'Yield (%)' 25 mM 0.5 M 92% Glycerol 53 15 a) Determined at 80% reaction, 100 µM CPD-Y, 2 mM Na2-EDTA.

b) Opløsningsmiddelkoncentrationen beregnes som for- 20 holdet mellem vand og organisk opløsningsmiddel, ekskl. faste stoffer i opløsning.b) The solvent concentration is calculated as the ratio of water to organic solvent, excl. solids in solution.

25 30 3525 30 35

Claims (13)

45 DK 163365 B Patentkrav ;45 DK 163365 B Patent claims; 1. Fremgangsmåde til fremstilling af dipeptidderivater med den almene formel 5 H-A-B-Y hvor A betyder en eventuelt sidekædebeskyttet L- eller D-α-aminosyrerest eller ω-aminosyrerest, og B betyder en 10 eventuelt sidekædebeskyttet L- eller D-a-aminocarboxyl-syrerest eller o-aminosyrerest, der kan være den samme eller forskellig fra A, en L- eller D-aminophosphonsyre-rest eller en L- eller D-aminosulfonsyrerest og Y er OH eller en C-terminal beskyttelsesgruppe eller syreaddi-15 tionssalte og hydrater deraf, kendetegnet ved, at man omsætter en substratkomponent, der er et aminosy-rederivat med formlen R2A process for the preparation of dipeptide derivatives of the general formula HABY wherein A means an optionally side chain protected L or D-α amino acid residue or ω amino acid residue, and B means an optionally side chain protected L or Da amino carboxylic acid residue or o-amino acid residue. amino acid residues which may be the same or different from A, an L or D aminophosphonic acid residue or an L or D amino sulfonic acid residue and Y is OH or a C-terminal protecting group or acid addition salts and hydrates thereof, characterized by reacting a substrate component which is an amino acid derivative of formula R2 20 H-A-OR1 eller H-A-N \ R3 hvori A har den ovenfor angivne betydning, R1 betyder hydrogen, alkyl, aryl eller aralkyl eventuelt substitu- 2 5 eret med hydroxy, nitro eller halogen eller et a-des-ami- no-fragment af en aminosyre, og R2 og R3 er ens eller forskellige, og hver betyder hydrogen, alkyl, aryl eller aralkyl eventuelt substitueret med hydroxy, nitro eller halogen, 30 a med en nucleophilkomponent, der, når A = B, kan dannes in situ og er valgt blandt (a) aminosyrer med formlen OD 46 DK 163365 B H-B-OH hvor B er som defineret ovenfor 5 (b) aminosyreamider med formlen R2 / H-B-N \ , io r3 hvor B er som defineret ovenfor, R2 har den ovenfor an- T givne betydning og R3 har den ovenfor for R3 angivne betydning, med undtagelse af at når R2 betyder hydrogen, , _ kan R3 også betyde hydroxy eller amino 15 (c) aminosyreestere med formlen H-B-OR4 20 hvor B er som defineret ovenfor, og R4 betyder alkyl, aryl eller aralkyl og (d) ligekædede eller forgrenede aminophosphonsyrer eller __ aminosulfonsyrer med formlen 25 NH2CxH2xP03H2 eller NH2CxH2xS03H hvori x er 1-6 30 i nærvær af en serin- eller thiolcarboxypeptidase fra gær eller af animalsk, vegetabilsk eller anden mikrobiel oprindelse, i en vandig opløsning eller suspension, eventuelt indeholdende et organisk opløsningsmiddel og/eller __ et enzymbindingsfremmende salt og/eller et komplexbin-ob dingsmiddel, idet der under omsætningen opretholdes en i 47 DK 163365 B det væsentlige konstant pH-værdi mellem 5 og 10,5, hvorefter man om ønsket fraspalter en tilstedeværende sidekæ-debeskyttelsesgruppe eller en C-terminal beskyttelsesgruppe og/eller om ønsket overfører det opnåede dipeptid-5 derivat i et"syreadditionssalt eller hydrat deraf.HA-OR1 or HAN \ R3 wherein A is as defined above, R1 is hydrogen, alkyl, aryl or aralkyl optionally substituted with hydroxy, nitro or halogen or an α-des-amino fragment of a and R 2 and R 3 are the same or different and each means hydrogen, alkyl, aryl or aralkyl optionally substituted with hydroxy, nitro or halogen, 30 a having a nucleophilic component which when A = B can be formed in situ and selected of (a) amino acids of formula OD 46 DK 163365 B HB-OH where B is as defined above 5 (b) amino acid amides of formula R2 / HBN \, R 10 where B is as defined above, R2 has the above and R3 has the meaning given above for R3, except that when R2 is hydrogen, then R3 may also mean hydroxy or amino (c) amino acid esters of formula HB-OR4 wherein B is as defined above and R4 is alkyl, aryl or aralkyl and (d) straight or branched chain the aminophosphonic acids or aminosulfonic acids of formula 25 NH and / or __ an enzyme-binding promoting salt and / or a complex-binding agent, maintaining during the reaction a substantially constant pH between 5 and 10.5, and if desired, a side chain protecting group present is deprotected. or a C-terminal protecting group and / or if desired transfers the obtained dipeptide derivative into an "acid addition salt or hydrate thereof. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at den anvendte carboxypeptidase er carboxypeptidase Y fra gær. 10Process according to claim 1, characterized in that the carboxypeptidase used is yeast carboxypeptidase Y. 10 3. Fremgangsmåde ifølge krav 2, kendetegnet ved, at den anvendte carboxypeptidase er renset ved affi-nitetschromatografi over en affinitetsresin bestående af et polymert resinskelet med et antal tilkoblede benzyl- 15 succinylgrupper.Process according to claim 2, characterized in that the carboxypeptidase used is purified by affinity chromatography over an affinity resin consisting of a polymeric resin backbone having a number of benzyl-succinyl groups attached. 4. Fremgangsmåde ifølge krav 1, kendetegnet ved, at den anvendte carboxypeptidase er carboxypeptidase a fra hvede penicillocarboxypeptidase S-l eller S-2 fraMethod according to claim 1, characterized in that the carboxypeptidase used is carboxypeptidase α from wheat penicillocarboxypeptidase S-1 or S-2 from 20 Penicillium janthinellum, en carboxypeptidase fra Aspergillus saitoi eller Aspergillus oryzae, en carboxypeptidase C fra orangeblade eller orangeskaller, carboxypeptidase CN fra Citrus natsudaidai Hayata, phaseolin fra bønneblade eller en carboxypeptidase fra spirende byg, 25 malt, spirende bomuldsplanter, tomater, vandmeloner eller Bromelein (ananas) pulver.20 Penicillium janthinellum, a carboxypeptidase from Aspergillus saitoi or Aspergillus oryzae; pineapple) powder. 5. Fremgangsmåde ifølge krav 1-4, kendetegnet ved, at den anvendte carboxypeptidase er kemisk modifice- 30 ret eller er en biosyntetisk mutant af en naturlig form.Process according to claims 1-4, characterized in that the carboxypeptidase used is chemically modified or is a biosynthetic mutant of a natural form. 6. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at den anvendte carboxypeptidase er immobiliseret. 35Method according to any one of the preceding claims, characterized in that the carboxypeptidase used is immobilized. 35 7. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at der anvendes en vandig. 48 DK 163365 B reaktionsopløsning eller -dispersion indeholdende fra 0 til 50% af et organisk opløsningsmiddel.Process according to any one of the preceding claims, characterized in that an aqueous is used. B reaction solution or dispersion containing from 0 to 50% of an organic solvent. 8. Fremgangsmåde ifølge krav 7, kendetegnet 5 ved, at det anvendte organiske opløsningsmiddel er valgt blandt alkanoler, dimethylsulfoxid, dimethylformamid, di-methoxyethan, ethylenglycol og ethylacetat.Process according to claim 7, characterized in that the organic solvent used is selected from alkanols, dimethyl sulfoxide, dimethylformamide, dimethoxyethane, ethylene glycol and ethyl acetate. 9. Fremgangsmåde ifølge ethvert af de foregående krav, 10 kendetegnet ved, at der som substratkomponent anvendes en D- eller L-aminosyreester valgt blandt ben-zylestere eller ligekædede eller forgrenede C-^-Cg alkyl-estere, der eventuelt er substitueret med hydroxy, nitro eller halogen. 15Process according to any one of the preceding claims, characterized in that a D- or L-amino acid ester selected from benzyl esters or straight or branched C 1 -C 6 alkyl esters optionally substituted with hydroxy is used as the substrate component. , nitro or halogen. 15 10. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at der som nucleophil-komponent anvendes en aminosyre eller et aminosyreamid med formlen 20 H-B -OH eller H-B -NHR3 Μ f hvori R8 er hydrogen eller C^-C^ alkyl, og B er en L-aminosyrerest. 25Process according to any of the preceding claims, characterized in that as an nucleophilic component an amino acid or amino acid amide of formula 20 HB -OH or HB -NHR3 Μ f wherein R8 is hydrogen or C1-C4 alkyl is used, and B is an L-amino acid residue. 25 11. Fremgangsmåde ifølge krav 1, kendetegnet ved, at der som nucleophilkomponent anvendes en ester med formlenProcess according to claim 1, characterized in that an ester of the formula is used as a nucleophile component 30 H-B'-OR4' " » hvori B er en aminocarboxylsyrerest, og R4 er C^-Cg alkyl.Wherein H is an amino carboxylic acid residue and R 4 is C 1 -C 6 alkyl. 12. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at der i det dannede dipeptid findes en C-terminal beskyttelsesgruppe, og at gruppen 49 DK 163365 B fraspaltes enzymatisk, fortrinsvis ved hjælp af det samme carboxypeptidaseenzym, som anvendtes ved den forudgående reaktion.Process according to any one of the preceding claims, characterized in that a C-terminal protecting group is present in the dipeptide formed and the group 49 DK 163365 B is enzymatically cleaved, preferably by the same carboxypeptidase enzyme used in the preceding reaction. . 13. Fremgangsmåde ifølge ethvert af de foregående krav, kendetegnet ved, at der i det dannede dipeptid findes en eller flere sidekæde-beskyttelsesgrupper, og at gruppen eller grupperne fraspaltes enzymatisk, fortrinsvis ved hjælp af en esterase, en lipase eller et 10 proteolytisk enzym. 15 20 25 30 35Process according to any one of the preceding claims, characterized in that one or more side chain protecting groups are present in the dipeptide formed and that the group or groups are enzymatically cleaved, preferably by an esterase, lipase or proteolytic enzyme. 15 20 25 30 35
DK567988A 1987-02-13 1988-10-12 PROCEDURE FOR ENZYMATIC PREPARATION OF DIPEPTIDE DERIVATIVES DK163365C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK567988A DK163365C (en) 1987-02-13 1988-10-12 PROCEDURE FOR ENZYMATIC PREPARATION OF DIPEPTIDE DERIVATIVES

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DK72587 1987-02-13
DK072587A DK72587D0 (en) 1987-02-13 1987-02-13 PROCEDURE FOR ENZYMATIC DIPEPTID PREPARATION
DK8800022 1988-02-15
PCT/DK1988/000022 WO1988006187A1 (en) 1987-02-13 1988-02-15 A process for enzymatic production production of dipeptides
DK567988 1988-10-12
DK567988A DK163365C (en) 1987-02-13 1988-10-12 PROCEDURE FOR ENZYMATIC PREPARATION OF DIPEPTIDE DERIVATIVES

Publications (4)

Publication Number Publication Date
DK567988D0 DK567988D0 (en) 1988-10-12
DK567988A DK567988A (en) 1988-12-12
DK163365B true DK163365B (en) 1992-02-24
DK163365C DK163365C (en) 1992-08-03

Family

ID=26064532

Family Applications (1)

Application Number Title Priority Date Filing Date
DK567988A DK163365C (en) 1987-02-13 1988-10-12 PROCEDURE FOR ENZYMATIC PREPARATION OF DIPEPTIDE DERIVATIVES

Country Status (1)

Country Link
DK (1) DK163365C (en)

Also Published As

Publication number Publication date
DK567988A (en) 1988-12-12
DK567988D0 (en) 1988-10-12
DK163365C (en) 1992-08-03

Similar Documents

Publication Publication Date Title
FI70597B (en) FOER FARING FOR ENZYMATIC FRAMSTAELLNING AV PEPTIDER
EP0278787B1 (en) A process for enzymatic production of dipeptides
US5304470A (en) Process for the enzymatic preparation of protected and unprotected di- and oligopeptides in aqueous solutions
EP0359399B1 (en) Process for the enzymatic production of dipeptides
AU660944B2 (en) Process for the preparation of C-terminally amidated peptides
US5580751A (en) Process for the preparation of C-terminally amidated peptides
DK2634193T3 (en) Condensation of the side-chain protected oligopeptidfragmenter using subtilisins in organic solvents
US8883444B2 (en) Peptide synthesis using enzymatic activation and coupling
Fischer et al. A novel approach to enzymatic peptide synthesis using highly solubilizing Nα-protecting groups of amino acids
EP0324659B1 (en) Enzymatic process for producing immunomodulating pentapeptides and intermediates for use in the process
DK163365B (en) Process for enzymically preparing dipeptide derivatives
NO157706B (en) PROCEDURE FOR ENZYMATIC PREPARATION OF PEPTIDES.
DK155613B (en) Process for the enzymatic preparation of peptides
Yuen Carboxypeptidase Y catalysed oligomerisation of methionine
DK148714B (en) Process for enzymically replacing the B-30 amino acid in insulins

Legal Events

Date Code Title Description
PBP Patent lapsed