DK162728B - RECEIVER DEVICE FOR AT LEAST TWO RADIO NAVIGATION SYSTEMS - Google Patents

RECEIVER DEVICE FOR AT LEAST TWO RADIO NAVIGATION SYSTEMS Download PDF

Info

Publication number
DK162728B
DK162728B DK557982A DK557982A DK162728B DK 162728 B DK162728 B DK 162728B DK 557982 A DK557982 A DK 557982A DK 557982 A DK557982 A DK 557982A DK 162728 B DK162728 B DK 162728B
Authority
DK
Denmark
Prior art keywords
switch
receives
filter
circuit
radio navigation
Prior art date
Application number
DK557982A
Other languages
Danish (da)
Other versions
DK557982A (en
DK162728C (en
Inventor
Michel Collomby
Original Assignee
Thomson Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9265182&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK162728(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thomson Csf filed Critical Thomson Csf
Publication of DK557982A publication Critical patent/DK557982A/en
Publication of DK162728B publication Critical patent/DK162728B/en
Application granted granted Critical
Publication of DK162728C publication Critical patent/DK162728C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuits Of Receivers In General (AREA)
  • Superheterodyne Receivers (AREA)
  • Burglar Alarm Systems (AREA)

Description

iin

DK 162728 BDK 162728 B

Opfindelsen angår et modtagerapparat af den i krav l's indledning angivne art.The invention relates to a receiver apparatus of the kind specified in the preamble of claim 1.

Eksisterende radionavigationsmodtagerapparater af denne type anvendes til at lokalisere positionen af et 5 bevægende objekt ved hjælp af udsendelser fra mindst to radionavigationssystemer. Målinger fra mindst to systemer sammenlignes i sådanne modtagere, som er dyrere at fremstille, da det er nødvendigt at kombinere to separate modtagere i en enkelt boks.Existing radio navigation receivers of this type are used to locate the position of a moving object by means of broadcasts from at least two radio navigation systems. Measurements from at least two systems are compared in such receivers, which are more expensive to manufacture, as it is necessary to combine two separate receivers in a single box.

10 Fra USA-patentskrift nr. 3 936 763 kendes et apparat til samtidig forstærkning af to radionavigationssignal-frekvenser, f.eks. OMEGA, uden at ændre signalernes fase (modulus ΙΊΓ) .US Patent No. 3,936,763 discloses an apparatus for simultaneously amplifying two radio navigation signal frequencies, e.g. OMEGA, without changing the phase of the signals (modulus ΙΊΓ).

Fra USA-patentskrift nr. 3 936 828 kendes et radionavi-15 gationsapparat, som har et antal modtagere, som er for bundet med en multiplekser til en datamat.US Patent No. 3,936,828 discloses a radio navigation apparatus having a number of receivers which are too connected to a multiplexer for a computer.

Formålet med opfindelsen er at tilvejebringe et modtagerapparat af den indledningsvis angivne art, som har en forbedret opbygning, der fører til en nedsat frem-20 stillingspris.The object of the invention is to provide a receiver apparatus of the kind initially indicated, which has an improved structure which leads to a reduced production cost.

Dette opnås ifølge opfindelsen ved, at det indledningsvis angivne modtagerapparat er ejendommeligt ved det i krav l's kendetegnende del angivne.This is achieved in accordance with the invention in that the receiver apparatus indicated at the beginning is peculiar to the characteristic part of claim 1.

Mikroprocessoren kan også være indrettet til at ændre 25 forstærkningsgraden af det automatisk styrede forstær kerkredsløb som anført i krav 2.The microprocessor may also be adapted to change the gain rate of the automatically controlled gain control circuit as set forth in claim 2.

I en udførelsesform for modtagelse af et radionavigationssystem med frekvensændring omfatter apparatet et blandingskredsløb til at modtage signalet fra en lokalIn one embodiment of receiving a radio navigation system with frequency change, the apparatus comprises a mixing circuit for receiving the signal from a local

DK 162728 BDK 162728 B

2 oscillator, og mikroprocessoren er indrettet til at skifte omskifteren således, at blandingskredsløbet også modtager signaler fra modtagerfilteret for systemet, der skal modtages med en frekvensændring, og hvor et 5 filter for et andet system modtager blandingskredsløbets udgangssignal, hvor filterets udgangssignal frembringer omskifterudgangssignalet. Radionavigationssystemet for modtagelse med frekvensændring kan være LORAN systemet i den interferens-detekterende fase, hvor den lokale 10 oscillator kan tunes.2 oscillator and the microprocessor is arranged to switch the switch so that the mixing circuit also receives signals from the receiver filter of the system to be received with a frequency change and where a filter for another system receives the output of the mixing circuit where the output signal of the filter generates the switch output. The radio navigation system for reception with frequency change may be the LORAN system in the interference-detecting phase where the local 10 oscillator can be tuned.

Apparatet kan endvidere være indrettet til at modtage mindst tre radionavigationssystemer, hvor apparatet i dette tilfælde til modtagelse af et første system med dobbelt frekvensændring, omfatter frekvensblandings-15 kredsløb, som hver især modtager et signal fra en lokal oscillator, og mikroprocessoren er indrettet til at skifte omskifteren således, at det første blandings-kredsløb også modtager udgangssignalerne fra modtager-filteret for det første system, at et filter for det 20 andet system modtager udgangssignalerne fra det første blandingskredsløb, at det andet blandingskredsløb også modtager udgangssignalerne fra det andet systemfilter, at det tredje systemfilter modtager udgangssignalerne fra det andet blandingskredsløb, og at udgangssignalet 25 fra det tredje filter frembringer omskifterens udgangs signal. Det første system kan være udvalgt fra gruppen omfattende markeringsfyr, radiofyr og retningssøgesende-re, og det andet system kan være et LORAN system, og det tredje system et OMEGA system, hvor i det mindste 30 den første oscillator hørende til det første blandings- kredsløb kan tunes. I en anbefalet udførelsesform kan det første system være et differentielt OMEGA system, som sendes fra radiofyr eller markeringsfyr.The apparatus may further be arranged to receive at least three radio navigation systems, the apparatus in this case for receiving a first dual frequency change system comprising frequency mixing circuits, each receiving a signal from a local oscillator and the microprocessor adapted to switching the switch such that the first mixing circuit also receives the output signals from the receiver filter for the first system, that a filter for the second system receives the output signals from the first mixing circuit, the second mixing circuit also receives the output signals from the second system filter, the third system filter receives the output signals from the second mixing circuit, and the output signal 25 from the third filter generates the output signal of the switch. The first system may be selected from the group comprising marker beacon, radio beacon and directional search transmitters, and the second system may be a LORAN system and the third system an OMEGA system wherein at least 30 the first oscillator belonging to the first mixing circuit can be tuned. In a recommended embodiment, the first system may be a differential OMEGA system transmitted from a radio or marking beacon.

I en anbefalet alternativ ud føre Ises form er blandings-In a recommended alternative to lead Ice's form,

DK 162728BDK 162728B

3 kredsløbet omskifterstyret ved hjælp af den tilhørende oscillator i det mindste under tilstedeværelsen af et aktiveringssignal, der repræsenterer modtagerkonfi-gurationen.3, the circuit is controlled by the associated oscillator at least in the presence of an activation signal representing the receiver configuration.

5 I en anden udførelsesform er mikroprocessoren indret tet til at lagre programmerede tidsintervaller, og indrettet til, ved hjælp af integration, at beregne tidsforløbet mellem afslutning af en eksempleringsperiode for et system og starten af en eksempleringsperiode 10 for det næste system, således at ingen tidsfejl er min dre end en given varighed, og at denne varighed plus den inverse eksempleringsfrekvens for begge systemer heller ikke overskrides, samt at genoptagelsen af synkroniseringen findes i en stationær form.In another embodiment, the microprocessor is adapted to store programmed time intervals, and arranged, by means of integration, to calculate the time elapsed between completion of one sample period for one system and the start of sample period 10 for the next system, so that no time error is less than a given duration and that this duration plus the inverse sample rate for both systems is also not exceeded, and that resumption of synchronization is in a stationary form.

15 Opfindelsen vil blive nærmere forklaret ved den følgen de beskrivelse af nogle udførelsesformer, idet der henvises til tegningen, hvor fig. 1 viser et modtagerapparat, som anvender tidsfordelt multipleksning, 20 fig. 2a og 2b viser OMEGA og LORAN eksempleringsmønster, fig. 3 viser styringen af omskiftningen mellem OMEGA og LORAN, fig. 4 og 5 viser de anbefalede alternative udførelsesformer, der anvender mindst ét OMEGA filter til en frekvens-ændring, som indebærer modtagelse af et andet radionavi-25 gationssystem, medens fig. 6 viser en variant af den på fig. 4 viste udførelses-form.The invention will be further explained by the description of some embodiments, with reference to the drawing, in which fig. 1 shows a receiver apparatus using time-distributed multiplexing; FIG. Figures 2a and 2b show OMEGA and LORAN sample patterns; 3 shows the control of the switch between OMEGA and LORAN; FIG. 4 and 5 show the recommended alternative embodiments using at least one OMEGA filter for a frequency change which involves receiving another radio navigation system, while FIGS. 6 shows a variant of the embodiment of FIG. 4.

Fig. 1 viser en kombineret modtager for OMEGA og LORAN C systemer, hvor modtagerne omfatter et filter og omskifterkreds-løb 1, der indeholder OMEGA filtre 11, et LORAN C filter 12FIG. 1 shows a combined receiver for OMEGA and LORAN C systems, the receivers comprising a filter and switching circuit 1 containing OMEGA filters 11, a LORAN C filter 12

DK 162728 BDK 162728 B

4 og en omskifter 14. Standard OMEGA filtre omfatter tre individuelle filtre Fq (10,2 kHz), F^ (11,3 kHz) og F^ (13,6 kHz), som er tunet til de tre frekvenser, der normalt anvendes til at beregne positionen af et bevægende objekt. Hvert af'disse 5 filtre kan have et båndpas mellem - 10 og +-500 Hz. LORAN C filteret 12 har en nominel frekvens på 100 kHz og et båndpas på ca. - 10 kHz. Når omskifteren 14 modtager en ordre, styrer den disse filtre således, at deres udgangsklemmer forbindes på skift til indgangsklemmen af et automatisk forstær-10 kerstyringskredsløb 1, der er forbundet til et digitalt ek-sempleringskredsløb 3, som omfatter et eksempleringskredsløb 31 og en digital/analog omsætter 32.4 and a switch 14. Standard OMEGA filters include three individual filters Fq (10.2 kHz), F ^ (11.3 kHz) and F ^ (13.6 kHz) tuned to the three frequencies normally used to calculate the position of a moving object. Each of these 5 filters can have a bandpass between - 10 and + -500 Hz. The LORAN C filter 12 has a nominal frequency of 100 kHz and a bandpass of approx. - 10 kHz. When switch 14 receives an order, it controls these filters so that their output terminals are connected in turn to the input terminal of an automatic amplifier control circuit 1 connected to a digital exemplary circuit 3 which includes a sample circuit 31 and a digital / analog converter 32.

Eksempleringskredslobet 31 styres ved hjælp af en tidsbase 3, der modtager impulser fra en lokal klokke 6. Indstillingen 15 af omskifteren 14 og deleforholdet af tidsbasen 5 styres ved hjælp af en mikroprocessor 4 således, at der frembringes en tidsfordelt multipleksning af modtagelsen af OMEGA og LORAN CThe sample circuit 31 is controlled by a time base 3 which receives pulses from a local clock 6. The setting 15 of the switch 14 and the division ratio of the time base 5 are controlled by a microprocessor 4 to produce a time-distributed multiplexing of the reception of OMEGA and LORAN. C

systemerne. Forstærkerstyrekredsløbet 2 kan være selvstyret, eller styret ved hjælp af mikroprocessorer 4, således at for- 20 stærkningen svarer til et maksimalt antal af betydende bit i løbet af omsætteren 32's omsætning. Forstærkerkredsløbet 2 kan f.eks. være en trinvis programmerbar forstærker. Den nødvendige forstærkningsgrad i den programmerbare forstærker er til enhver tid fastlåst på den modtagende station, som er 25 velkendt gennem det valgte indgangsfilter (modtagningsfrekvens) og gennem synkroniseringen af systemet (stationen aktiveres på et givet tidspunkt af den modtagede frekvens). Til OMEGA systemet findes der tre frekvenser og otte stationer, dvs. fireogtyve mulige forstærkningsgrader i lageret, og for 30 LORAN C systemet findes der en frekvens og fire stationer, dvs. fem mulige forstærkningsgrader i lageret. Disse forstærkerniveauer bestemmes ved at undersøge udgangssignalet fra A/D omsætteren 32, og ved at øge forstærkningsgraden i forstærkeren 2 indtil en given procent (f.eks. 10 %) af afklip-35 pede eksempleringer, som^opnås i omsætteren 32. Disse individuelle automatiske forstærkerstyrekredsløb til hver station stabiliseres langsomt fra et middelbegyndelsesniveau. Mikro-systems. The amplifier control circuit 2 may be self-controlled, or controlled by microprocessors 4, so that the gain corresponds to a maximum number of significant bits during the turnover of the transducer 32. The amplifier circuit 2 may e.g. be a stepwise programmable amplifier. The required amplitude of the programmable amplifier is always locked at the receiving station, which is well known through the selected input filter (reception frequency) and through the synchronization of the system (the station is activated at a given time by the received frequency). For the OMEGA system there are three frequencies and eight stations, ie. twenty-four possible levels of gain in the storage, and for the 30 LORAN C system there is a frequency and four stations, ie. five possible levels of reinforcement in the warehouse. These amplifier levels are determined by examining the output of the A / D converter 32, and by increasing the amplitude of the amplifier 2 to a given percentage (e.g., 10%) of cut-off samples obtained in the transducer 32. These individual automatic amplifier control circuits for each station are slowly stabilized from an average starting level. micro-

DK 162728 BDK 162728 B

5 processoren lagrer de nødvendige forstærkningsgrader til hver station og styrer forstærkerkredsløbet 1, og de anvendte filtre, samt eksempleringstiden. Dette kan frembringes ved at ændre forstærkningsgraden med Vi ved hver niveauændring, og 5 med fire bit, dvs. 16 mulige forstærkerniveauer, er det muligt at opnå en dynamisk modtagelse.The processor stores the required gain ratios for each station and controls the amplifier circuit 1 and the filters used, as well as the sample time. This can be achieved by changing the gain rate with Vi at each level change, and 5 by four bits, ie. 16 possible amplifier levels, it is possible to achieve a dynamic reception.

Tidsbasen 5 kan være en programmerbar tidsintervalgenerator (f.eks. et MOTOROLA 6840 kredsløb), som sikrer eksemplering-erne på tidspunkter, der er indlagt i mikroprocessorens pro-10 gram.The time base 5 may be a programmable time interval generator (for example, a MOTOROLA 6840 circuit) which secures the samples at times entered into the microprocessor's program.

Da OMEGA systemet anvender tidssignaler i grupper på otte med ti sekunders format, medens LORAN C systemet anvender en impulsbase med an langs hurtigere repetitionshastighed (40 til 199 ms), vil ti sekunder være en passende tidsenhed til at 15 multiplekse de to systemer med OMEGA signalerne som synkronisering, for at svare til ott'e efterfølgende signaler, 'som fortrinsvis har det samme OMEGA format.Since the OMEGA system uses time signals in groups of eight by 10 seconds format, while the LORAN C system uses an impulse base at a faster repetition rate (40 to 199 ms), ten seconds will be an appropriate time unit to multiplex the two systems by the OMEGA signals as synchronization, to correspond to eight consecutive signals, which preferably have the same OMEGA format.

Efter opstart af mcdtagerapparatet udføres følgende trin.After starting the receiver, the following steps are performed.

Det første trin består i at frembringe en synkronisering på 2(1 OMEGA formatet.· Apparatet anvendes som en OMEGA modtager med omskiftning mellem filtrene Fg, og F2J indtil synkroniseringen på OMEGA formatet frembringes, således at multi-pleksningen i perioderne justeres til OMEGA formatet. Det andet trin består i at frembringe synkronisering for de to systemer.The first step is to generate a synchronization of 2 (1 OMEGA format. · The apparatus is used as an OMEGA receiver with switching between filters Fg and F2J until synchronization of the OMEGA format is produced, so that the multi-plexing is adjusted to the OMEGA format during the periods. The second step is to generate synchronization for the two systems.

25 Under forudsætning af den lokale klokke 6 er tilstrækkelig stabil, i det mindste statistisk, kan dette trin frembringes med multipleksningsoperationer. Statistisk opsamling frembringes for et antal OMEGA formater, f.eks. 5-10 for hvert system, således at der frembringes positionsdata. I løbet af 30 multipleksningen lagrer mikroprocessoren 4 de akkumulerede impulser fra den lokale klokke 6, imedens instruktionerne til tidsbasen 5 holdes opdateret, ligesom dataerne for tidligere eksempleringer. Instruktionerne til tidsbasen 5 involverer en ordre til at frembringe en eksempleringsimpuls efter et program-Provided the local clock 6 is sufficiently stable, at least statistically, this step can be produced by multiplexing operations. Statistical collection is generated for a number of OMEGA formats, e.g. 5-10 for each system so that position data is generated. During the multiplexing, the microprocessor 4 stores the accumulated pulses from the local clock 6, while keeping the instructions for the time base 5 updated, as do the data for previous samples. The instructions for the time base 5 involve an order to generate a sample pulse after a program.

DK 162728 BDK 162728 B

6 merbart antal springimpulser fra den lokale klokke 6. Akkumuleringen af disse springinstruktioner er derfor repræsentative for akkumulationen af de lokale klokimpulser. Apparatet kan derefter funktionere i kontinuerlig multipleksning, dvs. skifte-5 vis som en OMEGA modtager i løbet af et OMEGA format og som en LORAN C modtager i løbet af det næste format.6 noticeable number of jump pulses from the local clock 6. The accumulation of these jump instructions is therefore representative of the accumulation of the local clock pulses. The apparatus can then function in continuous multiplexing, ie. alternately as an OMEGA receiver over an OMEGA format and as a LORAN C receiver over the next format.

Løbende klokimpulser anvendes til at styre multipleksningen og for at genvinde synkroniseringen, som næsten er øjeblikkelig efter omskiftningen fra det ene system til det andet.Continuous clock pulses are used to control the multiplexing and to recover the synchronization, which is almost instantaneous after switching from one system to another.

10 Det fremgår af fig. 2a, at OMEGA-behandlingen frembringes ved at eksemplere de tre frekvenser 10,2 11,3 og 13,6 Khz ved hjælp af impulser i tværfasepar, dvs. adskilt med ΤΓ/2 (24, 22 og 18 mikrosekunder), modulus 2 TV. Eksempleringsf rekvensen F^. er et submultiplum af.de tre ovenstående OMEGA-frekvenser, f.eks.10 It can be seen from FIG. 2a, the OMEGA treatment is generated by exemplifying the three frequencies 10.2 11.3 and 13.6 Khz by means of pulses in cross-phase pairs, i.e. separated by ΤΓ / 2 (24, 22 and 18 microseconds), modulus 2 TV. The sampling frequency F ^. is a sub-multiple of the three above OMEGA frequencies, e.g.

15 188,88 Hz. Hvis Tg, og T^ er perioder svarende til frekven serne Fg, F^ og F^ og Kg, K^ og er hele tal, der ikke er mindre end 0, da frembringer mikroprocessoren 4 i løbet af en periode 1/F^. en sekvens på 3 par af eksempleringsimpulser med intervaller på Tg (1/4+Kg), T^ (1/4 + K^) og 1^(1/4 + 20 hvor de første impulser i efterfølgende par fortrinsvis er adskilt med 1/3 F^. Kg, K^ og K^ vælges således, at eksem-pleringsimpulserne fordeles med perioden T^ (som i dette eksempel er ca. 6,29 millisekunder). Disse eksempleringer er naturligvis kun effektive i løbet af signalernes brugbare del, 25 som afhængig af signalerne varer fra 0,9 - 1,2 sekunder. En konsekvens heraf er, at OMEGA formatet begynder og ender med en tidsfejl, da den effektive del af det første og sidste signal er henholdsvis 0,9 og 1 sekund.188.88 Hz. If Tg, and T ^ are periods corresponding to the frequencies Fg, F ^ and F ^ and Kg, K ^ and are integers not less than 0, then the microprocessor 4 produces during a period 1 / F ^. a sequence of 3 pairs of sample pulses at intervals of Tg (1/4 + Kg), T ^ (1/4 + K ^) and 1 ^ (1/4 + 20) where the first pulses of subsequent pairs are preferably separated by 1 / K 3, K 2, K 2, and K 2 are chosen so that the sample pulses are distributed with the period T 2 (which in this example is about 6.29 milliseconds), which of course are only effective during the useful portion of the signals. , 25 depending on the signals lasts from 0.9 - 1.2 seconds, a consequence of which is that the OMEGA format starts and ends with a time error, since the effective part of the first and last signal is 0.9 and 1 second respectively. .

Filtrene behøves kun at blive omskiftet mellem OMEGA-systemet 30 og LORAN C systemet hvert tiende sekund, og den tilhørende eksempleringshastighed frembringes. Opdatering af løbende klokimpulser betyder, at synkroniseringen af et system ikke bliver udført, når apparatet behandler det andet system.The filters need only be switched between the OMEGA system 30 and the LORAN C system every ten seconds, and the associated sample rate is generated. Updating current clock pulses means that synchronization of one system is not performed when the device processes the other system.

DK 162728 BDK 162728 B

77

Som vist på fig. 2b omfatter LORAN C-systemet udsendelse af impulssekvenser fra 4 lokale stationer, en hovedstation og 3 slavestationer X, Y og Z, med en repetionshastig Tg, som afhængig af lokale stationsgrupper kan være ca. 40 - 100 milli-5 sekunder. Hver station udsender efter tur 8 impulser. For hver impuls udføres tre eksempieringer, dvs. 96 eksempleringer i intervallet Tg.As shown in FIG. 2b, the LORAN C system comprises the transmission of pulse sequences from 4 local stations, a main station and 3 slave stations X, Y and Z, with a repetition rate Tg which, depending on local station groups, may be approx. 40 - 100 milli-5 seconds. Each station in turn transmits 8 pulses. Three pulses are performed for each pulse, ie. 96 samples in the interval Tg.

Fig. 3 viser sekvensen af fire 10 sekunders perioder, synkroniseret på OMEGA-formatet, for multipleksningsmodtagelse af 10 OMEGA og LORAN C, dvs. perioder svarende til perioderne (N-l) og N for LORAN C-systemet, og til perioderne N og (N+l) for OMEGA-systemet. Synkroniseringen på OMEGA-formatet giver hver 10. sekund tiden t^ . Overgangen mellem OMEGA og LORAN C vil blive beskrevet i det følgende.FIG. 3 shows the sequence of four 10-second periods, synchronized on the OMEGA format, for multiplexing reception of 10 OMEGA and LORAN C, ie. periods corresponding to the periods (N-1) and N of the LORAN C system, and to the periods N and (N + 1) of the OMEGA system. The synchronization on the OMEGA format gives the time t ^ every 10 seconds. The transition between OMEGA and LORAN C will be described below.

15 Den nøjagtige tidsangivelse af slutningen af OMEGA-perioden N er kendt gennem mikroprocessorens programmerede intervaller ved tidsbaseniveauet. Hvis det forudsættes, at denne N-periode er den, hvor OMEGA-synkroniseringen frembringes, vælges et vilkårligt tidsintervalAtn, f.eks. lig med 0,5 - 1,5 Tg, og 20 i slutningen af dette interval aktiveres LORAN C- etableringen fra tiden t2- Som det fremgår af fig. 2b, kan denne tid t2 anbringes på en vilkårlig måde i forhold til LORAN C-udsendel-sesperioderne. Fra t2 beregner mikroprocessoren tiden tg inden for perioden N svarende til den mest favorable LORAN-eksem- 25 piering således, at en sådan eksemplering fastholdes. Tiden tQ er på den ene side adskilt 'fra tiden t2 med et interval K’ Tr, hvor K' er et helt tal, og på den anden side fra tiden T'j, som angiver starten af perioden (N+l) svarende til ØMEGA-eksempleringen i en tid^t'^, der ikke er mindre end Tg. 1The exact timing of the end of the OMEGA period N is known through the programmed intervals of the microprocessor at the time base level. Assuming that this N period is the one in which the OMEGA synchronization is generated, any time intervalAtn, e.g. equal to 0.5 - 1.5 Tg, and 20 at the end of this interval, the LORAN C establishment from time t2 is activated. As can be seen in FIG. 2b, this time t 2 can be applied in any manner with respect to the LORAN C broadcasting periods. From t2, the microprocessor calculates the time tg within the period N corresponding to the most favorable LORAN example so that such a sample is maintained. Time tQ is, on the one hand, separated 'from time t2 by an interval K' Tr, where K 'is an integer, and on the other hand from time T'j, which indicates the start of the period (N + l) corresponding to The OMEGA sample for a time ^ t '^ not less than Tg. 1

For LORAN-eksempleringsperioden (N+l) beregner mikroprocessoren intervallet K^+^Tg adskillelsestid tg i LORAN-eksempleringsperioden N fra tiden t2 i LORAN-eksempleringsperioden N+l. Kfg+2er et helt tal og£t^ skal være så lille som muligt dog med en nedre grænse, f.eks. 0,5 Tg, således at mikroproces-For the LORAN sample period (N + 1), the microprocessor calculates the interval K + + Tg separation time tg in the LORAN sample period N from time t2 in the LORAN sample period N + 1. Kfg + 2 is an integer and £ t ^ must be as small as possible though with a lower bound, e.g. 0.5 Tg, so that microprocessing

DK 162728 BDK 162728 B

8 soren har tilstrækkelig tid til at udføre de nødvendige omskiftninger. Under disse betingelser vil variere mellem 0,5 og 1,5 TG for efterfølgende eksempleringsperioder med en kontinuerlig cyklus, så længe som apparatet forbliver virksomt.The soren has enough time to perform the necessary switches. Under these conditions, between 0.5 and 1.5 TG will vary for subsequent sample periods with a continuous cycle as long as the apparatus remains operational.

Fig. 4 viser en 0MEGA/L0RAN C modtager for 285-425 kHz båndet 5 omfattende en anbefalet ud førelses form, som omfatter filterne 11 og 12 (fig. 1) og omskifterkredsløbet 14 i form af omskifterne Ag, A^, A2 og D, der er beliggende ved udgangsklemmerne fra filtrene henholdsvis Fg, F^, og 12. Denne udførelses-form omfatteret mere raffineret omskifterkredsløb omfattende 1Π omskiftere, som gør det muligt at anvende LORAN C filter og et OMEGA-filter (f.eks. ¥ ^ til at frembringe en dobbelt frekvensændring for modtagelse af udsendelser, såsom retnings-søgesignaler, radiofyrsignaler eller markeringssignaler.FIG. 4 shows a 0MEGA / LORAN C receiver for the 285-425 kHz band 5 comprising a recommended embodiment comprising filters 11 and 12 (Fig. 1) and switching circuit 14 in the form of switches Ag, A are located at the output terminals of the filters Fg, F ^, and 12. This embodiment comprises more refined switching circuits comprising 1Π switches, which allow the use of LORAN C filter and an OMEGA filter (e.g., produce a dual frequency change for receiving broadcasts, such as directional search signals, radio beacon signals, or marker signals.

Et filter 1 er kombineret med en antenne, som er i stand til 15 at modtage alle tre systemer. Filter 13's båndpas strækker fra 285 til 425 KHz, således at det er lige velegnet for retningssøger og for radio- og markeringssignaler, såsom udsendelse af differentielle OMEGA-korrektioner. Filter 13 er forbundet til et blandingskredsløb 15, der også modtager signaler fra 2Π en lokal oscillator 0L^, og dets udgangsklemme er forbundet til LORAN C-filterets 12 indgangsklemme gennem et kontakt G. LORAN C-filterets udgangsklemme er forbundet til en kontakt D og til et blandingskredsløb 14', som også modtager signaler fra en lokal oscillator 0ί£, og blandingskredsløbets udgangs-25 klemme er forbundet til filterets indgangsklemme gennem kontakten E.A filter 1 is combined with an antenna capable of receiving all three systems. The bandpass of Filter 13 extends from 285 to 425 KHz, making it equally suitable for directional search and for radio and marker signals such as broadcasting differential OMEGA corrections. Filter 13 is connected to a mixing circuit 15 which also receives signals from 2Π a local oscillator 0LL, and its output terminal is connected to the input terminal of the LORAN C filter 12 through a contact G. The output terminal of the LORAN C filter is connected to a contact D and to a mixing circuit 14 ', which also receives signals from a local oscillator 0, and the output terminal of the mixing circuit is connected to the input terminal of the filter through switch E.

De følgende tre typer operationer er gjort mulige ved multi-plexen: a - OMEGA-modtaqelse: kontakterne D, G og E er åbne, en kon-3Π takt B2 er lukket, og kontakterne Ag, A^ og A^ lukkes efter tur for at modtage eksempleringen af de tre normale OMEGA-frekvenser.The following three types of operation are made possible by the multiplex: a - OMEGA reception: contacts D, G and E are open, a con-3Π beat B2 is closed and contacts Ag, A ^ and A ^ are closed in turn for to receive the sample of the three normal OMEGA frequencies.

DK 162728 BDK 162728 B

9 b - LORAN C-modtaqelse: kontakterne Ag, Ap A^og G er åbne, og i kontakt C oven over LORAN C-filteret 12 er lukket ligesom kontakten D.9 b - LORAN C reception: contacts Ag, Ap A ^ and G are open and in contact C above LORAN C filter 12 is closed just like switch D.

c - 285-425 KHz-båndmodtaqelse: kontakterne Ag, A^, B2, C og 5 D er åbne, og kontakterne A^, E og G er lukket, signalerne fra filteret 13 overføres til LORAN C-filteret 12 efter passagen gennem blandingskredsløbet 15, herefter til filteret F efter passagen gennem blandingskredsløbet 14, LORAC C og F2~ filterne virker derpå som mellem frekvensfiltre for 285-425 10 KHz-båndmodtagelse.c - 285-425 KHz band reception: contacts Ag, A ^, B2, C and 5 D are open and contacts A ^, E and G are closed, signals from filter 13 are transmitted to LORAN C filter 12 after passage through the mixing circuit 15, then to the filter F after passing through the mixing circuit 14, the LORAC C and the F2 filters, then act as between frequency filters for 285-425 10 KHz band reception.

Detaljer i 285-425 KHz-båndmodtagelsen beskrives nedenfor. Filteret har en frekvens på 13,6 KHz, og hvis en lokal oscillator 0L2 med en fast frekvens F02 vælges, vil den første mellemfrekvens FI^ blive som følgende (enhed 1 KHz): FIX = F02 - 13,6 15 hvor FI^ skal ligge inden for båndpasset af LORAN C-filteret 12. Hvis F02 er 125 KHz, vil FIj være 111,4 KHz, som er på kanten af LORAN C-filterbåndet. Dette holder imidlertid spejl-frekvensen af den anden frekvensændring så langt væk som muligt, dvs. FI^ + 2F2, dvs. 138,6 KHz.Details in the 285-425 KHz band reception are described below. The filter has a frequency of 13.6 KHz and if a local oscillator 0L2 with a fixed frequency F02 is selected, the first intermediate frequency FI ^ will be as follows (unit 1 KHz): FIX = F02 - 13.6 where FI ^ should be within the bandpass of the LORAN C filter 12. If F02 is 125 KHz, FIj will be 111.4 KHz, which is on the edge of the LORAN C filter band. However, this keeps the mirror frequency of the second frequency change as far away as possible, ie. F1 + 2F2, ie 138.6 KHz.

20 Tuningen på 285-425 KHz-båndet frembringes ved hjælp af den lokale oscillator OL^, som er en syntetisator, hvis frekvensområde ligger fra 285 + FI^ til 425 + FI^, dvs. i dette tilfælde 396,4 til 536,4 KHz. Spejlfrekvensen af den første frekvensændring varierer fra 285 + 2FI^ til 425 + 2FI^, dvs.The tuning of the 285-425 KHz band is produced by the local oscillator OL ^, which is a synthesizer whose frequency range is from 285 + FI ^ to 425 + FI ^, i.e. in this case 396.4 to 536.4 KHz. The mirror frequency of the first frequency change ranges from 285 + 2FI ^ to 425 + 2FI ^, i.e.

25 507,8 til 647,8 KHz.25 507.8 to 647.8 KHz.

I praksis er det tilrådeligt at anvende en syntetisator OL^ med en udgangsfrekvens, der varierer i trin på 100 eller 200 Hz, og et filter F2 med et båndpas på 300 Hz. Disse parametre er specielt velegnet for OMEGA-modtagelse og for modtagelse 30 i området 285-425 KHz, og specielt for modtagelse af diffe-In practice, it is advisable to use a synthesizer OL1 with an output frequency varying in steps of 100 or 200 Hz and a filter F2 with a band pass of 300 Hz. These parameters are particularly suitable for OMEGA reception and for reception 30 in the range of 285-425 KHz, and especially for receiving

DK 162728 BDK 162728 B

10 rentielle OMEGA-udsendelser, som frembringes ved fasemodulation af det radio eller markeringssignal. En syntetisator kan også anvendes for den lokale oscillator OL^ til at frembringe en fintuning af frekvensen.10 profitable OMEGA broadcasts generated by phase modulation of the radio or marker signal. A synthesizer may also be used for the local oscillator OL ^ to produce a fine tuning of the frequency.

5 Fig. 5 viser en OMEGA-og LORAN C-modtager, der anvender et OMEGA-filter, såsom F^, til at tage målinger af LORAN C-inter-ferens, således at det er muligt at detektere udsendelserne i nærheden af LORAN-systemets benyttede 90-100 KHz-bånd, og at deres frekvenser måles. En eller flere velegnede resonans^ 10 kredse kan derefter tunes således, at vilkårlige interferenser elimineres. Udsendelser, som sandsynligvis medfører interferens, omfatter frekvenserne 85 KHz og ΓΓ2 KHz ii OECCA-systemet.FIG. 5 shows an OMEGA and LORAN C receiver using an OMEGA filter, such as F 1, to take measurements of LORAN C interference so that it is possible to detect the broadcasts near the LORAN system used 90 -100 KHz band and that their frequencies are measured. One or more suitable resonance ^ 10 circuits can then be tuned so that arbitrary interferences are eliminated. Broadcasts that are likely to cause interference include frequencies 85 KHz and ΓΓ2 KHz in the OECCA system.

Fig. 5 viser komponenter, som allerede er omfattet af fig. 4, nemlig filterne Fg, F^, F2 99-12, og kontakterne Ag, A^, A2, 15 B^, D og E, samt blandingskredsløbet 14, der modtager signaler fra den lokale oscillator 0L2·FIG. 5 shows components already included in FIG. 4, namely the filters Fg, F ^, F2 99-12, and the contacts Ag, A ^, A2, 15 B ^, D and E, as well as the mixing circuit 14 which receives signals from the local oscillator 0L2 ·

For at detektere interferenserne modtager LORAN C-filteret 12 signaler fra 90 - 110 KHz LORAN C-båndet og sidebåndene 70 - 90 KHz og 110 - 130 KHz, der naturligvis dæmpes ved hjælp 20 af filteret 12. Den lokale oscillator 0L2 er en variabel fre-kvenssyntetisator, således at 70 - 90 KHz og 110 - 130 KHz-sidebåndene bringes, ved hjælp af en frekvensændring, til en frekvens på 13,6 KHz.To detect the interferences, the LORAN C filter receives 12 signals from the 90 - 110 KHz LORAN C band and sidebands 70 - 90 KHz and 110 - 130 KHz, which of course is attenuated by the filter 12. The local oscillator 0L2 is a variable fre frequency synthesizer so that the 70 - 90 KHz and 110 - 130 KHz sidebands are brought, by means of a frequency change, to a frequency of 13.6 KHz.

For 70 - 90 KHz-båndet kan den lokale oscillator 0L2's fre-25 kvens F02 række fra 70 - 13,6 til 90 - 13,6 KHz, dvs. 57,4 - 77,4 KHz, med en spejlfrekvens på F02~13,6, dvs. 43,8 - 63,8 KHz.For the 70 - 90 KHz band, the local oscillator 0L2's frequency F02 range can range from 70 - 13.6 to 90 - 13.6 KHz, ie. 57.4 - 77.4 KHz, with a mirror frequency of F02 ~ 13.6, i.e. 43.8 - 63.8 KHz.

For 110 - 130 KHz-båndet kan syntetisatoren 0L2's frekvens F02 række fra 110 + 13,6 til 130 + 13,6 KHz, dvs. 123,6 til 30 143,6 KHz, med en spejlfrekvens på F02 + 13,6 dvs.‘ 137,2 til 157,2 KHz.For the 110 - 130 KHz band, the synthesizer 0L2's frequency F02 can range from 110 + 13.6 to 130 + 13.6 KHz, ie. 123.6 to 30 143.6 KHz, with a mirror frequency of F02 + 13.6 ie, '137.2 to 157.2 KHz.

1111

DK 162728 BDK 162728 B

I en anbefalet udførelsesform varierer syntetisatoren Ol^'s frekvens i trin på 200 eller 500 Hz, med en eller flere 1 KHz-båndpasresonanskredse. Fig. 1 viser to sådanne resonanskredse REJj og RE^, som kan tunes ved hjælp af en variabel kondensa-5 tor (alternativt en diode med variabel kapacitet, hvis spænding styres af mikroprocessoren), og som kan tunes til en udsendelse, der er modtaget på et sidebånd. Fig. 6 viser en alternativ udførelsesform af det på fig. 4 viste apparat. Kontakterne E og G anvendes som blandingskredsløbene. Oscillatorerne 0L^ 10 og OL^ modtager udgangssignalet fra OG-kredsløbene 41 og 42.In a recommended embodiment, the frequency of the synthesizer Ol 2 varies in steps of 200 or 500 Hz, with one or more 1 KHz bandpass resonant circuits. FIG. 1 shows two such resonant circuits REJ1 and RE1 which can be tuned by a variable capacitor (alternatively a variable capacity diode whose voltage is controlled by the microprocessor) and which can be tuned to a broadcast received on a sideband. FIG. 6 shows an alternative embodiment of the embodiment of FIG. 4. The switches E and G are used as the mixing circuits. Oscillators 0L ^ 10 and OL ^ receive the output of OG circuits 41 and 42.

Den ene indgangsklemme af hver af disse OG-kredsløb 41 og 42 modtager et signal S, der repræsenterer modtagerkonfigurationen, dvs. logisk 1, når multipleksningen bringes til at modtage i 285-425 KHz-båndet. OG-kredsløbene 41 og 42's anden ind-15 gangsklemme modtager signaler fra den tilhørende lokale klokke, dvs. henholdsvis 0L^ og som skifter fra 0 til 1 ved den ønskede frekvens. Dette giver en frekvensændring med et minimum af komponenter. Når modtagerapparatet er i OMEGA- eller L0RANI C-modtagelseskonfiguration er signalet S logisk 0, hvil- 20 ket medfører, at OG-kredsløbenes 41 og 42's udgangsklemmer er logisk 0, og at kontakterne E og G åbnes.The one input terminal of each of these AND circuits 41 and 42 receives a signal S representing the receiver configuration, ie. logical 1 when multiplexing is received in the 285-425 KHz band. The second input terminal of the AND circuits 41 and 42 receives signals from the associated local clock, ie. 0L ^ and which switch from 0 to 1 at the desired frequency. This gives a frequency change with a minimum of components. When the receiver apparatus is in OMEGA or LORANI C reception configuration, the signal S is logical 0, which results in the output terminals of the OG circuits 41 and 42 being logical 0 and the contacts E and G being opened.

%%

Claims (11)

1. Modtagerapparat for mindst to radionavigationssystemer med modtagerorganer (11, 12, 13) for radionavigationssignaler, en flervejsomskifter (14), et automa- 5 tisk styret forstærkerkredsløb (2), et digitalt eksem- pleringskredsløb (3), der modtager eksempleringsimpul-ser, en lokal taktgiver (6), en mikroprocessor (4), der modtager det nævnte digitale eksempleringskredsløbs (3) eksempleringsimpulser og er indrettet til at udføre 10 en signalbehandling og positionsberegninger i overensstemmelse med radionavigationssystemerne, kendetegnet ved, at de nævnte modtagerorganer består af et antal modtagerfiltre (11, 12, 13) svarende til nævnte radionavigationssystemer og omskiftet med omskif-15 teren (14), at omskifterens (14) udgang er forbundet med eksempleringskredsløbet (3) via det automatisk styrede forstærkerkredsløb (2), at en tidsbase (5), som modtager den nævnte taktgivers (6) signal, deler dette i et forhold, som tillader flere eksempleringsimpulser 20 under et transmissionsinterval omfattende det længste transmissionsinterval af radionavigationssystemet, for at afgive nævnte digitale eksempleringsimpulser, og at mikroprocessoren (4) er indrettet til at frembringe en sekventiel omskiftning af flervejsomskifteren (14) 25 og indrettet til at ændre tidsbasens (5) delingsforhold således, at eksempleringen bliver synkroniseret med andre radionavigationssystemer, så en tidsmultiplekse-ring frembringes ved modtagelse af nævnte systemer.1. Receiver apparatus for at least two radio navigation systems with receiver means (11, 12, 13) for radio navigation signals, a multipath switch (14), an automatic controlled amplifier circuit (2), a digital sampling circuit (3) receiving sample pulses , a local clock sensor (6), a microprocessor (4) receiving the sampling pulses of said digital sampling circuit (3) and arranged to perform a signal processing and position calculations in accordance with the radio navigation systems, characterized in that said receiver means consist of a the number of receiver filters (11, 12, 13) corresponding to said radio navigation systems and the switch with the switch (14), that the output of the switch (14) is connected to the sample circuit (3) via the automatically controlled amplifier circuit (2), that a time base ( 5) which receives the signal of said clock transducer (6) divides this into a ratio which allows multiple sample pulses 20 during a transmit an emission interval comprising the longest transmission interval of the radio navigation system to output said digital sample pulses, and that the microprocessor (4) is adapted to produce a sequential switching of the multipath switch (14) 25 and adapted to change the division ratio of the time base (5) so that the sample becomes synchronized with other radio navigation systems so that a time multiplexing is produced upon receiving said systems. 2. Apparat ifølge krav 1, kendetegnet ved, 30 at mikroprocessoren (4) er indrettet til at ændre for stærkningsgraden af det automatisk styrede forstærkerkredsløb (2). DK 162728 B 13Apparatus according to claim 1, characterized in that the microprocessor (4) is adapted to change the degree of strength of the automatically controlled amplifier circuit (2). DK 162728 B 13 3. Apparat ifølge krav 1 eller 2, kendetegnet ved, at det, for modtagelse af et radionavigationssystem med frekvensændring, omfatter et blandingskredsløb (14') til at modtage signalet fra en lokal oscilla- 5 tor (Ol^), at mikroprocessoren er indrettet til at skif te omskifteren (14) således, at blandingskredsløbet (14') også modtager signaler fra modtagerfilteret for systemet, der skal modtages med en frekvensændring, og at et filter for et andet system modtager blandings-10 kredsløbets (14) udgangssignal, og at dette filters udgangssignal frembringer omskifterudgangssignalet.Apparatus according to claim 1 or 2, characterized in that, for receiving a radio navigation system with frequency change, a mixing circuit (14 ') for receiving the signal from a local oscillator (Ol 2) comprises the microprocessor being arranged for changing the switch (14) such that the mixing circuit (14 ') also receives signals from the receiver filter for the system to be received with a frequency change and that a filter for another system receives the output signal of the mixing circuit (14), and that the output signal of this filter produces the switch output signal. 4. Apparat ifølge krav 1 til 3, kendetegnet ved, at det er indrettet til at modtage mindst tre radionavigationssystemer, og at det, for modtagelse af 15 et første system med dobbelt frekvensændring, omfatter to frekvensblandingskredsløb (14*, 15), som hvert især modtager et signal fra en lokal oscillator (0L^, 01^), og at mikroprocessoren (4) er indrettet til at skifte omskifteren således, at det første blandingskredsløb 20 (15) også modtager udgangssignalerne fra modtagefilte- ret fra det første system, at det andet blandingskredsløb (14') også modtager udgangssignalerne fra filtret for det andet system, et filter for et tredje system modtager udgangssignalerne fra det andet blandingskredsløb 25 (14'), samt at udgangssignalet fra dette tredje filter frembringer omskifterens (14) udgangssignal.Apparatus according to claims 1 to 3, characterized in that it is arranged to receive at least three radio navigation systems and comprises, for receiving 15 a first dual frequency change system, two frequency mixing circuits (14 *, 15) each in particular, receives a signal from a local oscillator (0L ^, 01 ^) and the microprocessor (4) is arranged to switch the switch such that the first mixing circuit 20 (15) also receives the output signals from the receiving filter from the first system, that the second mixing circuit (14 ') also receives the output signals from the filter of the second system, a filter for a third system receives the output signals of the second mixing circuit 25 (14'), and that the output of this third filter generates the output signal of the switch (14). 5. Apparat ifølge krav 4, kendetegnet ved, at det første system udvælges fra gruppen omfattende markeringsfyr, radiofyr og retningssøge-sendere, at 30 det andet system er et LORAN, langtrækkende navigations system, at det tredje system er et OMEGA system, samt at i mindst den første lokaloscillator (OL^) hørende til det første blandingskredsløb (15) kan tunes. DK 162728 B 14Apparatus according to claim 4, characterized in that the first system is selected from the group comprising marker lighthouse, radio beacon and directional search transmitters, that the second system is a LORAN, long-range navigation system, that the third system is an OMEGA system, and that at least the first local oscillator (OL ^) of the first mixing circuit (15) can be tuned. DK 162728 B 14 6. Apparat ifølge krav 5, kendetegnet ved, at det første system er det differentielle OMEGA-system, som udsendes fra radiofyr eller markeringsfyr.Apparatus according to claim 5, characterized in that the first system is the differential OMEGA system which is emitted from a radio or marking beacon. 7. Apparat ifølge krav 3, kendetegnet ved, 5 at radionavigationssystemet til at blive modtaget med frekvensændring er LORAN-systemet i interferens-detekteringsfase, samt at den lokale oscillator kan tunes.Apparatus according to claim 3, characterized in that the radio navigation system to be received with frequency change is the LORAN system in the interference detection phase and the local oscillator can be tuned. 8. Apparat ifølge et vilkårligt eller flere af kravene 10. til 7, kendetegnet ved, at én lokal oscil lator (OL^, OL2) er en syntetisator.Apparatus according to any one or more of claims 10 to 7, characterized in that one local oscillator (OL1, OL2) is a synthesizer. 9. Apparat ifølge et vilkårligt eller flere af kravene 3 til 8, kendetegnet ved, at blandingskredsløbet (14', 15) er en afbryder (E.G.), som er styret 15 af den tilsvarende lokale oscillator (0L^, OL^)» i det mindste under tilstedeværelsen af et aktiveringssignal (S), der repræsenterer modtagerkonfigurationen.Apparatus according to any one or more of claims 3 to 8, characterized in that the mixing circuit (14 ', 15) is a switch (EG) controlled by the corresponding local oscillator (0L ^, OL ^). at least in the presence of an activation signal (S) representing the receiver configuration. 10. Apparat ifølge krav 9, kendetegnet ved, at afbryderen (E, G) modtager et OG-kredsløbs (41, 42) 20 udgangssignal, hvor kredsløbets ene indgangsklemme mod tager det tilhørende lokale oscillatorsignal (OL·^, 0I_2)> og hvor den anden indgangsklemme modtager det logiske aktiveringssignal (5).Apparatus according to claim 9, characterized in that the switch (E, G) receives an output of an AND circuit (41, 42), wherein one input terminal of the circuit receives the corresponding local oscillator signal (OL ·, 0I_2)> and wherein the second input terminal receives the logic activation signal (5). 11. Apparat ifølge et vilkårligt eller flere af kravene 25. til 10, kendetegnet ved, at mikroprocesso ren (4) er indrettet til at lagre programmerede tidsintervaller, og indrettet til, ved hjælp af iteration, at beregne tidsforløbet (At'^) mellem afslutningen af eksempleringsperiode for et system og starten 30 af en eksempleringsperiode for det næste system, såle des at ingen tidsfejl er mindre end en given varighed, DK 162728 B 15 og at denne varighed plus den inverse eksempleringsfre-kvens for begge systemer heller ikke overskrides, samt at genoptagelsen af synkroniseringen finder sted i en stationær form.Apparatus according to any one or more of claims 25 to 10, characterized in that the microprocessor (4) is arranged to store programmed time intervals and arranged, by means of iteration, to calculate the time elapsed (At ') between the end of a sample period for one system and the start of a sample period for the next system so that no time error is less than a given duration, and that this duration plus the inverse sample frequency for both systems is not exceeded either, as well as resuming the synchronization in a stationary form.
DK557982A 1981-12-18 1982-12-16 RECEIVER DEVICE FOR AT LEAST TWO RADIO NAVIGATION SYSTEMS DK162728C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8123728 1981-12-18
FR8123728A FR2518758A1 (en) 1981-12-18 1981-12-18 DEVICE RECEIVING AT LEAST TWO RADIO NAVIGATION SYSTEMS

Publications (3)

Publication Number Publication Date
DK557982A DK557982A (en) 1983-06-19
DK162728B true DK162728B (en) 1991-12-02
DK162728C DK162728C (en) 1992-05-11

Family

ID=9265182

Family Applications (1)

Application Number Title Priority Date Filing Date
DK557982A DK162728C (en) 1981-12-18 1982-12-16 RECEIVER DEVICE FOR AT LEAST TWO RADIO NAVIGATION SYSTEMS

Country Status (6)

Country Link
EP (1) EP0082750B1 (en)
DE (1) DE3275754D1 (en)
DK (1) DK162728C (en)
FR (1) FR2518758A1 (en)
IE (1) IE53729B1 (en)
NO (1) NO159965C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617980B1 (en) * 1987-07-06 1990-03-23 Mlr Electronique METHOD FOR RADIO LOCATING A VEHICLE CARRYING A RECEIVING DEVICE, BY MEASURING DIFFERENCES IN RECEIVING RADIO FREQUENCY SIGNALS, AND RECEIVING DEVICE FOR CARRYING OUT SAID METHOD

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343169A (en) * 1965-08-26 1967-09-19 Electronic Concepts Inc Loran control and timing circuits
US3754260A (en) * 1971-12-02 1973-08-21 Beukers Labor Inc Loran-c third cycle identification through the use of omega
US3936828A (en) * 1972-12-22 1976-02-03 Communications Components Corporation VLF navigation system
US3936763A (en) * 1974-11-15 1976-02-03 The United States Of America As Represented By The Secretary Of The Navy Null input OMEGA tracking filter system
US4138680A (en) * 1975-09-04 1979-02-06 International Telephone And Telegraph Corporation Selective sampling method

Also Published As

Publication number Publication date
FR2518758A1 (en) 1983-06-24
NO159965B (en) 1988-11-14
EP0082750B1 (en) 1987-03-18
EP0082750A1 (en) 1983-06-29
NO824267L (en) 1983-06-20
DE3275754D1 (en) 1987-04-23
NO159965C (en) 1989-02-22
DK557982A (en) 1983-06-19
IE823002L (en) 1983-06-18
DK162728C (en) 1992-05-11
FR2518758B1 (en) 1984-04-06
IE53729B1 (en) 1989-01-18

Similar Documents

Publication Publication Date Title
RU2105423C1 (en) Method for correction of local heterodynes of receiver and device which implements said method
US4654884A (en) Radio receiver with switching circuit for elimination of intermodulation interference
RU96101192A (en) ALARM CHANNEL PACKAGE FOR A COMMUNICATION SYSTEM WITH A REFERENCE SIGNAL, MODULATED BY LAW, DEPENDING ON TIME
GB2065422A (en) Radio receiver with search tuning
US4800577A (en) GPS receiver
US4479249A (en) Apparatus for collecting and processing messages transmitted at different signal frequencies
JPS5899773A (en) Receiver for phase correction value of differential-omega system
JP2978263B2 (en) RDS receiver
KR100384554B1 (en) Wireless receiving method and apparatus
DK162728B (en) RECEIVER DEVICE FOR AT LEAST TWO RADIO NAVIGATION SYSTEMS
WO2002051075A2 (en) Receiving unit for searching for at least one unused transmission channel in a communications device, and a method for use
GB2188212A (en) Single frequency transceiver
EP2343803A1 (en) Automatic frequency offset compensation method and device
US4380826A (en) Control system for channel selection
RU2001122342A (en) Device for interfering with radar stations
JP2596274B2 (en) Received signal power alarm circuit
SU708531A1 (en) Device for receiving frequency-phase manipulated signals
JPH0376045B2 (en)
SU1525925A1 (en) Device for selecting channels for spaced reception
SU537432A1 (en) Receiver frequency control device
SU790358A1 (en) Discrete for receiving frequency-modulated signals with large base
SU1337879A1 (en) Device for adjusting time scales by radio signals
SU935810A1 (en) Signal parameter measuring device
SU1658406A1 (en) Device for audio channel testing
JPS5813638Y2 (en) PLL frequency synthesizer receiver that facilitates shortwave band reception

Legal Events

Date Code Title Description
PBP Patent lapsed