DK161974B - COATING MATERIAL FOR PROTECTION OF IRON METALS AGAINST CORROSION CONTAINING ORGANIC SILICATES AND FINISHED ZINC - Google Patents
COATING MATERIAL FOR PROTECTION OF IRON METALS AGAINST CORROSION CONTAINING ORGANIC SILICATES AND FINISHED ZINC Download PDFInfo
- Publication number
- DK161974B DK161974B DK209778A DK209778A DK161974B DK 161974 B DK161974 B DK 161974B DK 209778 A DK209778 A DK 209778A DK 209778 A DK209778 A DK 209778A DK 161974 B DK161974 B DK 161974B
- Authority
- DK
- Denmark
- Prior art keywords
- coating material
- paint
- zinc
- material according
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/10—Anti-corrosive paints containing metal dust
- C09D5/106—Anti-corrosive paints containing metal dust containing Zn
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paints Or Removers (AREA)
Description
DK 161974 BDK 161974 B
Λ \Λ \
Den foreliggende opfindelse angår et overtræksmateriale til beskyttelse af jernholdige metaller mod korrosion indeholdende organiske silikater og findelt zink.The present invention relates to a coating material for the protection of ferrous metals from corrosion containing organic silicates and comminuted zinc.
Zinkrige malinger er effektive til at beskytte stål mod korrosion. Princippet i den beskyttende virkning tillægges den kendsgerning, at zink, der står højere end jern i den elektromotoriske række af grundstoffer, reagerer først i alle omgivelser, der er ledende for den ioniske opløsning (oxidation) af metaller, og derved beskytter stålunderlaget.Zinc-rich paints are effective in protecting steel against corrosion. The principle of the protective effect is attributed to the fact that zinc higher than iron in the electromotive series of elements reacts first in all environments that are conductive to the ionic solution (oxidation) of metals, thereby protecting the steel substrate.
Som navnet indebærer, indeholder zinkrige malinger en høj koncentration af zink i den tørre film. Dette er nødvendigt for at opnå den elektriske kontinuitet og dermed ledningsevne, der er nød-As the name implies, zinc-rich paints contain a high concentration of zinc in the dry film. This is necessary to achieve the electrical continuity and thus conductivity required.
DK 161974 BDK 161974 B
2 vendig for, at den elektrokemiske proces kan finde sted.2 is necessary for the electrochemical process to take place.
For at kunne opnå disse zinkrige malinger på et jernholdigt underlag anvendes en malingssammensætning, der indeholder meget fint zinkstøv fremstillet ved at destillere metallet under regulerede kondensationsbetingelser. Når malingen påføres, holdes det metalliske pulver på plads på overfladen af et bindemiddel. De zinkrige malinger opdeles alt efter bindemidlets natur i organiske og uorganiske malinger.In order to obtain these zinc-rich paints on an ferrous substrate, a paint composition is used which contains very fine zinc dust prepared by distilling the metal under controlled condensation conditions. When the paint is applied, the metallic powder is held in place on the surface of a binder. The zinc-rich paints are divided according to the nature of the binder into organic and inorganic paints.
Organiske zinkrige malinger anvender syntetiske polymere som bindemiddel. Selv om sådanne malinger yder effektiv korrosionsbeskyttelse, er deres modstandsevne over for varme og opløsningsmidler begrænset.Organic zinc-rich paints use synthetic polymers as binder. Although such paints provide effective corrosion protection, their resistance to heat and solvents is limited.
Uorganiske bindemidler har ikke disse begrænsninger. Sådanne bindemidler omfatter vandopløselige silikater, der er gjort uopløselige ved hjælp af et hærdemiddel efter påføring, samt alkylsilika-ter der ikke kræver efterhærdning. Selv om alkylsilikater indeholder organiske kæder, klassificeres de deraf fremstillede zinkrige malinger som uorganiske, fordi man mener, at der ved tørring dannes en fuldstændig uorganisk grundmasse af Si02* Denne reaktion finder kun langsomt sted og forløber gennem kontinuerlige hydrolysestadier.Inorganic binders do not have these limitations. Such binders include water-soluble silicates rendered insoluble by a curing agent after application, as well as alkyl silicates which do not require post-cure. Although alkyl silicates contain organic chains, the zinc-rich paints produced therefrom are classified as inorganic because it is believed that upon drying, a completely inorganic matrix of SiO2 * is formed. This reaction occurs only slowly and proceeds through continuous hydrolysis stages.
De alkylsilikater, der kan anvendes til zinkrige malinger, kan variere med hensyn til hydrolyseniveau. Hvis der anvendes et alkylsili-kat med meget lavt hydrolyseniveau, er hærdningsreaktionen så langsom, at filmen forbliver uhærdet i meget lang tid. Anvendelse af alkylsilikater, der er hydrolyseret til højere niveauer, reducerer den tid, der kræves for at få tørre film. Uheldigvis er det sådan, at efterhånden som tørretiden aftager på grund af højere grad af hydrolyse, aftager til gengæld produktets stabilitet. Denne mindre stabilitet giver sig udtryk på forskellige måder. En af disse er en stigende tendens hos malingen til at gelere i beholderen ved lagring. En anden er kortere holdbarhed i dunken, når alkylsilkatet blandes med zinkstøvet, i hvilket tilfælde gelering i reglen indtræder i løbet af få timer.The alkyl silicates which can be used for zinc-rich paints may vary in the level of hydrolysis. If a very low level of hydrolysis alkyl silicate is used, the curing reaction is so slow that the film remains uncured for a very long time. Use of higher-level hydrolyzed alkyl silicates reduces the time required to dry films. Unfortunately, as the drying time decreases due to the higher degree of hydrolysis, the stability of the product in turn decreases. This less stability manifests itself in various ways. One of these is an increasing tendency of the paint to gel in the container upon storage. Another is shorter shelf life when the alkyl silkate is mixed with the zinc dust, in which case gelation usually occurs within a few hours.
En måde til at undgå malingens ustabilitet i beholderen og for tidlig gelering med- zinken er at emballere zinken adskilt fra alkyl-silikatet og så blande de to komponenter umiddelbart før påføring.One way to avoid the paint instability in the container and premature gelling with the zinc is to pack the zinc separately from the alkyl silicate and then mix the two components immediately before application.
DK 161974 BDK 161974 B
33
Dette gøres med de såkaldte zinkrige tokomponentmalinger, og man har tilpasset arbejdsmetoderne til denne ejendommelighed ved produktet eller malingen, der anvendes til overtrækning. Imidlertid gør de pjroblemer, der er forbundet med en tokomponent-maling såsom dobbelt fremstilling, oplagring, lagerbeholdning og lagerlister, samt opmåling og blanding på stedet i forbindelse med begrænset holdbarhed i dåsen, at en zinkrig enkomponent malingsgrunder er meget ønskelig.This is done with the so-called zinc-rich two-component paints, and the working methods have been adapted to this peculiarity of the product or paint used for coating. However, the problems associated with a two-component paint such as dual manufacture, storage, inventory and stock lists, as well as on-site measurement and mixing for limited canister life, make a zinc rich single component paint base very desirable.
Hvis der fremstilles zinkrige malinger med alkylsilikater med lav hydrolysegrad, forbedres alkylsilikatets stabilitet i beholderen samt grunderens dåseholdbarhed efter tilsætning af zinkstøv til alkylsili-katet betydeligt. Prisen for denne forbedrede stabilitet er imidlertid en stærk forøget tørretid. Det problem, som kemikeren derfor stilles over for, er, hvordan man opnår hærdning af en zinkrig enkomponent malingsgrunder med alkylsilikat inden for et rimeligt kort tidsrum og samtidig bibeholder god emballeringsstabilitet kombineret med, at alkylsilikatet ikke reagerer med zinkstøvet.If zinc-rich paints with low hydrolysis alkyl silicates are produced, the stability of the alkyl silicate in the container as well as the primer can-shelf life after the addition of zinc dust to the alkyl silicate is significantly improved. However, the price of this improved stability is a greatly increased drying time. The problem that the chemist therefore faces is how to achieve curing a zinc rich single component paint primer with alkyl silicate within a reasonably short period of time while maintaining good packaging stability combined with the alkyl silicate not reacting with the zinc dust.
Der er blevet fremsat adskillige forslag til løsning af dette problem. Således fremstilledes ifølge USA patentskrift nr. 3.653.930 en enkomponent zinkrig maling ved tilsætning af aminer med lav molekylvægt til ethylsilikat, der er hydrolyseret til ca. 40%, sammen med nitroforbindelser for at forhindre gasdannelse. Det samme princip beskrives i hollandsk patentansøgning nr. 69.00729.Several proposals have been made to solve this problem. Thus, according to U.S. Patent No. 3,653,930, a one-component zinc-rich paint was prepared by adding low molecular weight amines to ethyl silicate hydrolyzed to ca. 40%, along with nitro compounds to prevent gas formation. The same principle is described in Dutch Patent Application No. 69.00729.
I USA patentskrift nr. 3.660.119 når man frem til filmdannelse af et 40% hydrolyseret alkylsilikat ved anvendelse af stærke baser såsom natrium- eller kaliummethoxid eller -ethoxid.In U.S. Patent No. 3,660,119, film formation of a 40% hydrolyzed alkyl silicate is obtained using strong bases such as sodium or potassium methoxide or ethoxide.
USA patentskrift nr. 3.859.101 omtaler anvendelse af zinkchromat i stedet for nitroforbindelser som anti-gasdannende additiver i en blanding af alkylsilikat og zinkstøv.U.S. Patent No. 3,859,101 discloses the use of zinc chromate instead of nitro compounds as anti-gas-forming additives in a mixture of alkyl silicate and zinc dust.
USA patentskrift nr. 3.917.648 benytter et reaktionsprodukt af alkylsilikater og polyoler til dannelse af et produkt, der er stabilt i nærværelse af zink.U.S. Patent No. 3,917,648 uses a reaction product of alkyl silicates and polyols to form a product which is stable in the presence of zinc.
USA patentskrift nr. 4.084.971 angår en enkomponent alkylsili-kat/zink-grunder, der indeholder fedt- og amidoaminer for at opnå stabilitet.U.S. Patent No. 4,084,971 relates to a one-component alkyl silicate / zinc primer containing grease and amidoamines for stability.
Alle de omtalte løsninger lider af følgende ulemper: 1. Aminer med lav molekylvægt er flygtige, og derfor mister alky lbindemidler med indhold heraf deres effektivitet ved lagring.All of the solutions mentioned suffer from the following drawbacks: 1. Low molecular weight amines are volatile and therefore alkaline binders containing their contents lose their efficiency in storage.
DK 161974BDK 161974B
4 2. Aminer med lav molekylvægt er vandopløselige, hvorfor der indføres en vandfølsomhedsfaktor i en maling, der i første række er beregnet til beskyttelse mod korrosion.4 2. Low molecular weight amines are water soluble, which is why a water sensitivity factor is introduced into a paint which is primarily intended for protection against corrosion.
3. Arainer med lav molekylvægt har høj kemisk reaktivitet. De reagerer således med sådanne syrer, der fremkommer på grund af absorberet carbondioxid under oplagring. Dette kan være grunden til, at de med tiden mister deres effektivitet.3. Low molecular weight arains have high chemical reactivity. Thus, they react with such acids which arise from absorbed carbon dioxide during storage. This may be why they lose their effectiveness over time.
4. De aminer med lav molekylvægt, der er til stede i det overtræk, der dannes på det jernholdige substrat, har negative virkninger på den zinkrige films modstand over for omgivende midler og griber ind i vedhængningen og den kemiske modstandsevne hos de afsluttende malinger der påføres grundingsmalingen.4. The low molecular weight amines present in the coating formed on the ferrous substrate have adverse effects on the zinc-rich film's resistance to surrounding agents and interfere with the adhesion and chemical resistance of the final paints applied. priming paint.
5. Aminer med lav molekylvægt er giftige og udgør en potentiel sikkerhedsrisiko for dem, der kommer i berøring med malingerne.5. Low molecular weight amines are toxic and pose a potential safety risk to those who come in contact with the paints.
6. Stærke baser såsom alkalimetalalkoxider eller disses tilsvarende hydroxid-biprodukter påvirker på negativ måde et metal af amphoter karakter såsom zink.6. Strong bases such as alkali metal alkoxides or their corresponding hydroxide by-products adversely affect an amphoteric metal such as zinc.
7. Alkalimetalalkoxiderne eller disses tilsvarende hydroxid--biprodukter forbliver i den zinkrige film, der dannes på det jernholdige substrat og medfører derfor et moment af følsomhed over for vand og kemikalier, der negativt kan påvirke egenskaberne hos de afsluttende malinger, der påføres oven på grundingsmalingen.7. The alkali metal alkoxides or their corresponding hydroxide - by-products remain in the zinc-rich film formed on the ferrous substrate and therefore cause a moment of sensitivity to water and chemicals that may adversely affect the properties of the final paints applied on top of the primer paint. .
8. Zinkrige polyolsilikatmalinger giver film, der er mere bløde end ønskeligt.8. Zinc-rich polyol silicate paints produce films that are more soft than desirable.
Det er således den foreliggende opfindelses formål at angive et zinkrigt overtræksmateriale indeholdende et alkylsilikat, der som grundingsmaling forbliver stabil i emballagen over længere tidsrum og ved påføring på et jernholdigt substrat hurtigt danner en tør, hård, korrosionsbestandig beskyttende grundingsfilm.Accordingly, it is an object of the present invention to provide a zinc-rich coating material containing an alkyl silicate which, as primer paint, remains stable in the packaging for extended periods of time and upon application to an ferrous substrate rapidly forms a dry, hard, corrosion-resistant protective primer film.
Det ovennævnte formål opfyldes med et overtræksmateriale til beskyttelse af jernholdige metaller mod korrosion omfattende findelt zink, et ikke-hydrolyseret eller delvist hydrolyseret, op til ca. 40%, organisk silikat og en aminogruppeholdig forbindelse, hvilket overtræksmateriale er ejendommeligt ved, at den aminogrup-peholdige forbindelse er en hydrolyserbar siliciumforbindelse, der anvendes i en mængde på 5-45 vægt-%, beregnet på mængden afThe above purpose is met with a coating material for the protection of ferrous metals against corrosion comprising comminuted zinc, a non-hydrolyzed or partially hydrolyzed, up to approx. 40%, organic silicate and an amino group-containing compound, the coating material being characterized in that the amino-group-containing compound is a hydrolyzable silicon compound used in an amount of 5-45% by weight, based on the amount of
DK 161974 BDK 161974 B
5 organisk silikat, og som er (a) aminosilaner med formlen5 are organic silicate and are (a) amino silanes of the formula
tt
Z-fN - R^ - Ϊ MZ-fN - R ^ - Ϊ M
hvor t er et helt tal fra 0 til 10, Μ. Y, Q og Z er hver R eller - R1- Si - X3_b R er H, alkyl med 1-4 carbonatomer eller hydroxyalkyl med 2 eller 3 carbonatomer, R1 er -C2H4-, c3Hg- eller -R2-o-R2-, og R2 er en alkylengruppe med 1-8 carbonatomer, b er et helt tal fra 0 til 2, forudsat at mindst et M, Q, Y eller Z er i 'b - R1- Si - X3.b X er en hydrolyserbar alkoxygruppe med 1-2 carbonatomer eller en alkoxyalkoxylgruppe, (b) kvaternære ammoniumsalte af aminosilanerne under (a), og (c) hydrolysaterne og kondensaterne af aminosilanerne under (a) .where t is an integer from 0 to 10, Μ. Y, Q and Z are each R or - R1- Si - X3_b R is H, alkyl of 1-4 carbon atoms or hydroxyalkyl of 2 or 3 carbon atoms, R1 is -C2H4-, c3Hg- or -R2-o-R2-, and R 2 is an alkylene group of 1-8 carbon atoms, b is an integer from 0 to 2, provided that at least one M, Q, Y or Z is in 'b - R1 - Si - X3.b X is a hydrolyzable alkoxy group having 1-2 carbon atoms or an alkoxyalkoxyl group, (b) quaternary ammonium salts of the amino silanes of (a), and (c) the hydrolysates and condensates of the amino silanes of (a).
De ovenfor beskrevne overtræksmaterialer er stabile over længere tidsrum i en lukket beholder. Derfor er adskilt emballering ikke nødvendig. Når materialerne påføres på et jernholdigt substrat, tørrer de hurtigt og resulterer i dannelsen af en hård, kontinuerlig, glat film med udmærkede korrosionsbeskyttende egenskaber.The coating materials described above are stable over extended periods of time in a closed container. Therefore, separate packaging is not necessary. When applied to an ferrous substrate, the materials dry quickly and result in the formation of a hard, continuous, smooth film with excellent corrosion protection properties.
De alkylsilikater, der anvendes i overtræksmaterialerne, er kendte og omfatter ikke-hydrolyserede alkyl- og alkoxyalkylsilika-ter og alkyl- og alkoxyalkylsilkater, der er hydrolyseret op til ca.The alkyl silicates used in the coating materials are known and include non-hydrolyzed alkyl and alkoxyalkyl silicates and alkyl and alkoxyalkyl silicates which are hydrolyzed up to approx.
40 procent. Alkylsilikater fremstilles ved at omsætte silicium-tetrachlorid og alkoholer og alkoxyalkoholer, i reglen i en reaktionsbeholder udstyret med omrører, kondensator og en beholderenser. Bi40 percent. Alkyl silicates are prepared by reacting silicon tetrachloride and alcohols and alkoxy alcohols, usually in a reaction vessel equipped with a stirrer, condenser and a container purifier. Bee
DK 161974 BDK 161974 B
6 produktet af hydrogenchlorid fjernes ved tilbagesvaling, der kan finde sted ved formindsket eller atmosfærisk tryk. Ved hjælp af denne fremgangsmåde fremstilles de mest almindelige TEOS-produkter (tetra-ethylorthosilikat) og Cellosolve (Union Carbid Corporations registrerede varemærke for monoalkylethere af ethylenglycol-silikat).6 The product of hydrogen chloride is removed at reflux which can occur at reduced or atmospheric pressure. This method produces the most common TEOS (tetraethyl orthosilicate) products and Cellosolve (Union Carbid Corporation's registered trademark for ethylene glycol silicate monoalkyl ethers).
Bagefter kan disse produkter hydrolyseres delvis ved tilsætning af vand og en syrekatalysator. Den tilsatte vandmængde bestemmer slutproduktets hydrolysegrad.' De i handelen værende produkter, der stammer fra ethanol, omfatter ikke-hydrolyseret TEOS, Kondenseret E-thyl Silicate(ca. 7% hydrolyse), Ethyl Silicate 40 (40% hydrolyse indeholdende 40% SiC^) og Ethyl Silicate P-18 med et hydrolyseniveau på 80-85%.Afterwards, these products can be partially hydrolyzed by the addition of water and an acid catalyst. The amount of water added determines the degree of hydrolysis of the final product. The commercially available products derived from ethanol include non-hydrolyzed TEOS, Condensed E-thyl Silicate (about 7% hydrolysis), Ethyl Silicate 40 (40% hydrolysis containing 40% SiC 2) and Ethyl Silicate P-18 with a hydrolysis level of 80-85%.
De hydrolyserbare siliciumforbindelser, der anvendes i overtræksmaterialerne, er ligeledes kendte og omfatter en lang række forbindelser. Typiske eksempler er γ-aminopropyltriethoxysilan med formien HThe hydrolyzable silicon compounds used in the coating materials are also known and include a wide variety of compounds. Typical examples are γ-aminopropyl triethoxysilane of the form H
i 2 5 H C 0 - Si - CH CH CH NH 5 2 t 2 2 2 2 oc2h5 og Ν-β(aminoethyl)-γ-aminopropyltrimethoxysilan med formlen OCHo CH3O - Si - CH2CH2CH2-NH-ch2ch2nh2 och3in 2 H 2 O - Si - CH CH CH NH 5 2 t 2 2 2 2 oc2h5 and Ν-β (aminoethyl) -γ-aminopropyltrimethoxysilane of formula OCHo CH3O - Si - CH2CH2CH2-NH-ch2ch2nh2 and3
Andre eksempler på aminosilaner er: aminomethy 1 tr imethoxy s i lan γ-aminopropyltrimethoxysilan γ-methylaminopropyltrimethoxysilan γ-aminopropy1tripropoxys ilan γ-aminopropylmethyldiethoxysilan γ-aminopropylethoxyldiethoxysilan γ-aminopropylphenyldiethoxysilan γ-aminoisobutyltrimethoxysilan delta-aminobutyltriethoxysilan delta-aminobutylmethyldiethoxysilan β-aminoethyltriethoxys ilanOther examples of aminosilanes are: aminomethyl-1 TR Dimethoxy s in the LAN γ-aminopropyl trimethoxysilane γ-γ-methylaminopropyltrimethoxysilane aminopropy1tripropoxys Ilan γ-aminopropylmethyldiethoxysilane aminopropylethoxyldiethoxysilan γ-γ-γ-aminopropylphenyldiethoxysilan aminoisobutyltrimethoxysilan delta-delta-aminobutyltriethoxysilan aminobutylmethyldiethoxysilan β-aminoethyltriethoxys Ilan
DK 161974 BDK 161974 B
7 epsilon-aminopentylphenyldibutoxysilan N- ((3-aminoethy 1) -γ-aminopropyltrimethoxysilan N-(β-aminoethylaminoethy1)-γ-aminopropyltrimethoxysilan N-(γ-aminopropyl)-γ-aminoisobutylmethyldiethoxysilan N-(β-aminoethyl)-γ-aminopropyltriethoxysilan.7 epsilon-aminopentylphenyldibutoxysilane N- ((3-aminoethyl) -γ-aminopropyltrimethoxysilane N- (β-aminoethylaminoethyl) -γ-aminopropyltrimethoxysilane N- (γ-aminopropyl) -γ-aminobutylmethyl .
Ud over de ovenfor anførte aminosilaner, der indeholder én si-langruppe, kan der også anvendes beslægtede aminosilaner med to eller flere silangrupper.In addition to the above-mentioned amino silanes containing one silane group, related amino silanes having two or more silane groups can also be used.
Eksempler herpå omfatter: Ν-β[Ν'-γ-(trimethoxysilylpropyl)-aminoethyl]-γ-aminopropyltri-methoxysilan ?CH3 h H OCH, 1 J » » i 3 CH3°-Si-(CH2)3N-CH2CH2-N-(CH2)3Si-OCH3 0CH3 OCH3 Ν,Ν-β-[-/Ν'-γ-(trimethoxysilylpropyl)aminoethyl7-Y-aminopropy1-trimethoxysilan] OCH, OCH, » J »3 CH30-Si-(CH2)3N-CH2CH2-N-(CH2)3-Si-OCH3 och3 h (ch2)3 och3 CH30 - Si-OCH3 och3 Ν,Ν-β- [bis/N' ,Ν'-γ-bis (trimethoxysilylpropyl)aminoethyl]_7“Y“ami-nopropy1trimethoxysi1an] OCH,Examples include: Ν-β [Ν'-γ- (trimethoxysilylpropyl) -aminoethyl] -γ-aminopropyltrimethoxysilane? CH 3 h H OCH, 1 J »» in 3 CH3 ° -Si- (CH2) 3N-CH2CH2-N - (CH2) 3 Si-OCH3 OCH3 OCH3 Ν, Ν-β - [- / Ν'-γ- (trimethoxysilylpropyl) aminoethyl7-Y-aminopropyl-trimethoxysilane] AND, AND, J »3 CH30-Si- (CH2) 3N -CH 2 CH 2 -N- (CH 2) 3-Si-OCH 3 and 3 h (ch 2) 3 and 3 CH 30 - Si-OCH 3 and 3 Ν, Ν-β- [bis / N ', Ν'-γ-bis (trimethoxysilylpropyl) aminoethyl] _7 "Y" aminopropyltrimethoxysilane] AND,
I JI J
CH,0 Si-OCH, 3 f 3 och3 CCR2)3 och3 CH30-Si-(CH2)3N-CH2CH2N-(CH2)3-$i-OCH3 °ch3 (ch2)3 och3 CH 0 - Si-OCH 3 3 t OCH.CH, O Si-OCH, 3 f 3 and 3 CCR2) 3 and 3 CH30-Si- (CH2) 3N-CH2CH2N- (CH2) 3- $ i-OCH3 ° ch3 (ch2) 3 and 3 CH O - Si-OCH3 3 t AND.
3 83 8
DK 1.61974 BDK 1.61974 B
og lignende.and the like.
En typisk fremgangsmåde til fremstilling af en alkoxysilylpro-pylamin findes i USA patentskrift nr. 2.832.754, hvor γ-chlorpropyl-triethoxysilan og flydende ammoniak i forholdet ca. 1:20 fyldes i en trykbeholder og varmes ved en. temperatur på ca. 100°C i 12 timer. Efter afkøling, filtrering, vask og fraktioneret destillation af blandingen opnås ca. 50% af det ønskede produkt.A typical process for preparing an alkoxysilylpropylamine is found in U.S. Patent No. 2,832,754, wherein γ-chloropropyl-triethoxysilane and liquid ammonia are about 1:20 is filled in a pressure vessel and heated by one. temperature of approx. 100 ° C for 12 hours. After cooling, filtration, washing and fractional distillation of the mixture, approx. 50% of the desired product.
En anden fremgangsmåde til fremstilling af aminoalkyltrialkoxy-silan er beskrevet i USA patentskrift nr. 2.930.809,,hvor et cyano-alkyltrichlorsilan beskrevet i USA patentskrift nr. 2.837.551 fremstilles efterfulgt af alkoholyse og hydrogenering. Således forsegles hexachlordisilan og acrylonitril i et molforhold på 1:1 i en autoklav og opvarmes til en temperatur på ca. 200°C i to timer. Et af de produkter, der opnås ved fraktioneret destillation af blandingen, er fHcyanoethyltrichlorsilan. Ethanolyse af denne forbindelse giver β-cyanoethyltriethoxysilan. Denne sidstnævnte forbindelse fyldes i en trykbeholder af rustfrit stål sammen med Raney-nikkel. Beholderens temperatur afkøles derefter til -78°C, og der tilsættes overskud af ammoniak. Der fyldes hydrogengas i systemet, og blandingen opvarmes ved en temperatur på 100°C i 16 timer i en vuggeautoklav. Derefter afkøles blandingen til stuetemperatur, filtreres, vaskes med diethyl-ether og destilleres fraktioneret. Et af de fremstillede produkter er triethoxysilylpropylamin.Another method of preparing aminoalkyltrialkoxy silane is described in U.S. Patent No. 2,930,809, wherein a cyanoalkyltrichlorosilane described in U.S. Patent No. 2,837,551 is prepared followed by alcoholysis and hydrogenation. Thus hexachlorodisilane and acrylonitrile are sealed in a 1: 1 molar ratio in an autoclave and heated to a temperature of approx. 200 ° C for two hours. One of the products obtained by fractional distillation of the mixture is f-cyanoethyltrichlorosilane. Ethanolysis of this compound gives β-cyanoethyl triethoxysilane. This latter compound is filled into a stainless steel pressure vessel together with Raney nickel. The temperature of the container is then cooled to -78 ° C and excess ammonia is added. Hydrogen gas is charged into the system and the mixture is heated at a temperature of 100 ° C for 16 hours in a cradle autoclave. Then, the mixture is cooled to room temperature, filtered, washed with diethyl ether and distilled fractionally. One of the products produced is triethoxysilylpropylamine.
Hydrolysaterne og kondensaterne af de ovenfor beskrevne amino-silaner kan fremstilles ved kendte hydrolyse- og kondensationsmetoder. Som det er velkendt på området, repræsenterer hydrolysater de metathetiske reaktionsprodukter af vand og tilsvarende hydrolyserbare aminosilaner, medens kondensater repræsenterer de siloxanprodukter, der fås ved kondensation af hydrolysatreaktionsblandingen. Den anvendte mængde vand er ikke afgørende og afhænger udelukkende af den ønskede grad af hydrolyse og kondensation. Der kan derfor fås fuldstændig hydrolyserede som delvis hydrolyserede produkter. .The hydrolysates and condensates of the above-described amino silanes can be prepared by known hydrolysis and condensation methods. As is well known in the art, hydrolysates represent the metathetic reaction products of water and corresponding hydrolysable amino silanes, while condensates represent the siloxane products obtained by condensation of the hydrolyzate reaction mixture. The amount of water used is not essential and depends solely on the desired degree of hydrolysis and condensation. Therefore, completely hydrolyzed as partially hydrolyzed products can be obtained. .
Fremstillingen af kvaternære salte af aminosilaner er omtalt i USA patentskrift nr. 3.389.160.The preparation of quaternary salts of amino silanes is disclosed in U.S. Patent No. 3,389,160.
Den hydrolyserbare siliciumforbindelse anvendes som nævnt i en mængde på 5-45 vægt-%, beregnet på mængden af organisk silikat.The hydrolyzable silicon compound is used, as mentioned, in an amount of 5-45% by weight, based on the amount of organic silicate.
DK 161974 BDK 161974 B
99
Det har vist sig, at mindst 5 vægt-% hydrolyserbar siliciumforbindelse beregnet på vægten af organisk silikat er nødvendigt for at få en tør film i løbet af en praktisk eksponeringstid, dvs. i løbet af 5-10 minutter. Der er af praktiske grunde ingen fordel ved at anvende mere end 45 vægt-% hydrolyserbar siliciumforbindelse.It has been found that at least 5% by weight of hydrolyzable silicon compound based on the weight of organic silicate is necessary to obtain a dry film during a practical exposure time, i.e. in 5-10 minutes. For practical reasons, there is no advantage in using more than 45% by weight of hydrolysable silicon compound.
Selv om det ikke er afgørende for udførelsen af den foreliggende opfindelse, kan overtræksmaterialet ifølge opfindelsen omfatte et vandfjernelsesmiddel. Egnede vandfjernelsesmidler omfatter zeolitter, silicagel, tetraalkylsilikater, trialkylborater og lignende. Zeolitter foretrækkes, fordi de i modsætning til de andre ovenfor anførte ikke frembringer et reaktionsprodukt ved fjernelsen af vand.While not essential to the practice of the present invention, the coating material of the invention may comprise a water removal agent. Suitable water removal agents include zeolites, silica gel, tetraalkyl silicates, trialkyl borates and the like. Zeolites are preferred because, unlike the others listed above, they do not produce a reaction product in the removal of water.
Vandfjernelseszeolitten kan være en hvilken som helst af de velkendte tredimensionale krystallinske zeolitter af molekylær sigte-typen, enten naturligt forekommende eller fremstillet syntetisk ved gængs hydrotermisk krystallisation og med poredimensioner, der er store nok til at tillade passage af vandmolekyler. Typiske for de naturligt forekommende zeolitter er clinoptilolit, chabazit, gmelinit, mordenit, erionit, offretit, phillipsit og faujasit. Eksempler på syntetiske molekylsigte-zeolitter er zeolit A, USA patentskrift nr. 2.882.243, zeolit X, USA patentskrift nr. 2.882.244, zeolit R, USA patentskrift nr. 3.030.181, zeolit S, USA patentskrift nr. 3.054.657, zeolit T, USA patentskrift nr. 2.950.952, zeolit F, USA patentskrift nr. 2.996.358, zeolit B, USA patentskrift nr. 3.008.803, zeolit M, USA patentskrift nr. 2.995.423, zeolit H, USA patentskrift nr. 3.010.789, zeolit J, USA patentskrift nr. 3.011.809, zeolit Y, USA patentskrift nr. 3.130.007 og zeolit L, USA patentskrift nr. 3.216.789. Den zeolit, der vælges, skal helst have et strukturelt molforhold mellem SiC>2 og A^Oø på mindre end 50 og fortrinsvis mindre end 20, idet de stærkt siliciumholdige zeolitter har en tendens til at udvise or-ganofile egenskaber til skade for deres hydrofile egenskaber. Særlig egnede på grund af deres ekstremt store vandsorptionsevne er de forskellige kationformer for zeolit A. Kalium-kationformen for zeolit A har desuden en effektiv porediameter på mellem 3 og 5 Å og er således i stand til let at adsorbere vand, men effektivt udelukke de flesteThe water removal zeolite may be any of the well-known three-dimensional molecular sieve type molecular zeolites, either naturally occurring or synthetically produced by conventional hydrothermal crystallisation and with pore dimensions large enough to allow passage of water molecules. Typical of the naturally occurring zeolites are clinoptilolite, chabazite, gmelinite, mordenite, erionite, offretite, phillipsite and faujasite. Examples of synthetic molecular sieve zeolites are zeolite A, U.S. Patent No. 2,882,243, zeolite X, U.S. Patent No. 2,882,244, zeolite R, U.S. Patent No. 3,030,181, zeolite S, U.S. Patent No. 3,054,657 , zeolite T, U.S. Patent No. 2,950,952, zeolite F, U.S. Patent No. 2,996,358, zeolite B, U.S. Patent No. 3,008,803, zeolite M, U.S. Patent No. 2,995,423, zeolite H, U.S. Pat. No. 3,010,789, Zeolite J, U.S. Patent No. 3,011,809, Zeolite Y, U.S. Patent No. 3,130,007, and Zeolite L, U.S. Patent No. 3,216,789. The zeolite selected should preferably have a structural molar ratio of SiC> 2 to A₂Oø of less than 50 and preferably less than 20, as the highly silicon-containing zeolites tend to exhibit organophilic properties to the detriment of their hydrophilic properties. Particularly suitable because of their extremely high water sorption capacity are the different cation forms of zeolite A. The potassium cation form of zeolite A also has an effective pore diameter of between 3 and 5 Å and is thus capable of easily adsorbing water, but effectively excludes most
DK 161974 BDK 161974 B
10 andre molekyler i systemet på grundlag af molekylestørrelse.10 other molecules in the system based on molecular size.
Når de skal anvendes som adsorbenser, skal zeolitterne i det mindste være delvis dehydratiseret, fortrinsvis helt dehydratiseret, ved opvarmning i luft eller vakuum ved moderate temperaturer på ca. 250 til 350°C i flere timer. Da zeolitkrystallerne er små, sjældent større end 10 mikrometer, kan de passende blandes i malingerne uden at påvirke de vigtigste egenskaber negativt. Alternativt kan zeolitkrystaller dannes til formede agglomerater med konventionelle bindemidler såsom lerarter og medtages i den beholder, hvori produktet oplagres.When used as an adsorbent, the zeolites must be at least partially dehydrated, preferably fully dehydrated, when heated in air or vacuum at moderate temperatures of approx. 250 to 350 ° C for several hours. Since the zeolite crystals are small, rarely larger than 10 micrometers, they can be appropriately mixed in the paints without adversely affecting the main properties. Alternatively, zeolite crystals can be formed into shaped agglomerates with conventional binders such as clays and included in the container in which the product is stored.
Opfindelsen vil i det følgende blive nærmere belyst ved hjælp af eksempler, hvor alle dele og procentdele er efter vægt, medmindre andet er anført.The invention will be further elucidated in the following by way of example, where all parts and percentages are by weight, unless otherwise stated.
Eksempel 1Example 1
Zinkrig enkomponentmaling med ethylsilikat 40 og γ-aminopropyltri-ethoxysilan.Zinc rich single component paint with ethyl silicate 40 and γ-aminopropyl triethoxysilane.
En maling til jernmetal fremstilles ved at blande 45 g delvis hydrolyseret ethylpolysilikat indeholdende 40 vægtprocent Si02 med 5 g γ-aminopropyltriethoxysilan og 30 g findelt zink med en partikelstørrelse på ca. 2 til ca. 15 Mm (American Smelting and Refining Co. ASARCO L-15). For desuden at holde blandingen i vandfri tilstand tilsættes 5 g af et vandfjernelsesmiddel (Union Carbide Corp. mole-kylsigter 4 A), og blandingen fortyndes med 50 g af et carbonhydrid-opløsningsmiddel bestående af en blanding af 61 volumenprocent paraffiner og 39 volumenprocent naphthener med et kogepunktsområde på ca. 158-196°C (fra American Mineral Spirits Company,"Mineral Spiriets 66-3"). Den herved opnåede flydende beskyttende maling eller grundingsmaling har en emballagestabilitet på mere end 6 måneder.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilicate containing 40 wt.% SiO 2 with 5 g of γ-aminopropyl triethoxysilane and 30 g of finely divided zinc with a particle size of approx. 2 to approx. 15 Mm (American Melting and Refining Co. ASARCO L-15). In addition, to keep the mixture in anhydrous state, 5 g of an aqueous removal agent (Union Carbide Corp. molecular sieves 4 A) is added and the mixture is diluted with 50 g of a hydrocarbon solvent consisting of a mixture of 61% by volume paraffins and 39% by volume naphthenes with a boiling range of approx. 158-196 ° C (from American Mineral Spirits Company, "Mineral Spirits 66-3"). The liquid protective or primer paint obtained thereby has a packaging stability of more than 6 months.
Når denne maling påføres ved sprøjtning på sandblæste koldtval-sede stålplader, der måler ca. 10 x 10 x 0,2 cm, fås en glat film, der tørrer på mindre end 1C minutter. Stålpladen, der var malet på denne måde, underkastes i 1000 timer sprøjtning med salt (ASTM metode B-117) og 1000 timer neddyppet i fersk vand (ASTM metode B-870). Der var ingen tegn på korrosion eller andre defekter på pladen, der var malet på denne måde.When this paint is applied by spraying on sandblasted cold rolled steel sheets measuring approx. 10 x 10 x 0.2 cm, a smooth film is obtained which dries in less than 1C minutes. The steel plate painted in this way is subjected to 1000 hours spraying with salt (ASTM method B-117) and 1000 hours immersed in fresh water (ASTM method B-870). There was no evidence of corrosion or other defects on the plate painted in this way.
11 DK 161974 B11 DK 161974 B
Eksempel 2Example 2
Zlnkriq enkomponent maling med ethylsilikat 40 og Ν-β-(aminoethyl)--γ-aminopropyltrimethoxysilanZlnkriq single component paint with ethyl silicate 40 and Ν-β- (aminoethyl) - γ-aminopropyltrimethoxysilane
En jernmetalmaling fremstilles ved at blande 45 g delvis hydrolyseret ethylpolysilicat indeholdende 40 vægtprocent med 5 g Ν-β-(aminoethyl)-γ-aminopropyltrimethoxysilan og 300 g findelt zinkstøv (ASARCO L-15), 5 g vandfjernelsesmiddel (Union Carbide molekyl-sigter 4A) og 50 g Amsco Mineral Spirits 66-3.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilicate containing 40% by weight with 5 g of Ν-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and 300 g of finely divided zinc dust (ASARCO L-15), 5 g of water removal agent (Union Carbide molecular sieves 4A ) and 50 g of Amsco Mineral Spirits 66-3.
Den herved fremstillede grundingsmaling var stabil i mere end 6 måneder ved lagring. Efter påføring på sandblæste stålplader som i eksempel 1 tørrede malingen til en hård film på mindre end 10 minutter. Efter at disse stålplader havde været underkastet saltsprøjtning og neddypning i vand i 1000 timer frembød de ingen tegn på korrosion eller anden defekt.The primer paint thus produced was stable for more than 6 months upon storage. After application to sandblasted steel sheets as in Example 1, the paint dried to a hard film in less than 10 minutes. After being subjected to salt spraying and immersion in water for 1000 hours, these steel plates presented no evidence of corrosion or other defect.
Eksempel 3Example 3
Zinkrig enkomponentmaling med tetraethylorthosilikat og Ν-β-(amino-ethyl)-γ-aminopropyltrimethoxysilanZinc rich single component paint with tetraethyl orthosilicate and Ν-β- (aminoethyl) -γ-aminopropyltrimethoxysilane
En beskyttende maling til jernmetal fremstilles ved at blande 45 g tetraethylorthosilicat med 5 g N-0-(aminoethyl)-γ-aminopropy1-methoxysilan og 300 g ASARCO zinkstøv L-15, 5 g molekylsigter 4A og 50 g Amsco Mineral Spirits 66-3. Den herved fremstillede grundingsmaling er stabil ved lagring i mere end 6 måneder. Når den påføres som sprøjtemaling på en sandblæst stålplade, dannes der en tør film på mindre end 10 minutter. Når pladerne som i eksempel 1 udsættes i 1000 timer for prøven med saltsprøjtning og neddypning i vand, fremkommer der ingen tegn på korrosion eller anden defekt.An iron metal protective paint is prepared by mixing 45 g of tetraethyl orthosilicate with 5 g of N-O- (aminoethyl) -γ-aminopropyl-methoxysilane and 300 g of ASARCO zinc dust L-15, 5 g of molecular sieves 4A and 50 g of Amsco Mineral Spirits 66-3 . The primer paint thus produced is stable when stored for more than 6 months. When applied as spray paint on a sandblasted steel plate, a dry film of less than 10 minutes is formed. When, as in Example 1, the plates are exposed for 1000 hours to the salt spray and immersion sample in water, no evidence of corrosion or other defect appears.
Eksempel 4Example 4
Zinkrig enkomponentmaling med cellosolvesilikat og γ-aminopropyltri-ethoxysilanZinc-rich single-component paint with cellosolvesilicate and γ-aminopropyltriethoxysilane
En beskyttende jernmetalgrundingsmaling fremstilles ved at blande 45 g delvis hydrolyseret ethoxyethylpolysilikat indeholdende 19% S1O2, 5 g γ-aminopropyltriethoxysilan, 300 g ASARCO L-15 zinkstøv, 5 g molekylsigter 4A og 50 g Amsco Mineral Spirits 66-3. Den herved fremstillede grundingsmaling har en emballagestabilitet på mere end 6 måneder. Når den påføres ved sprøjtning på sandblæsta plader, tørrer malingen til en hård film på mindre end 10 minutter. Når pladerne udsættes for prøven med saltsprøjtning og vandneddypning som beskrevet i eksempel 1 i 1000 timer, frembyder de ingen tegn på korrosion eller andre defekter.A protective ferrous metal primer is prepared by mixing 45 g of partially hydrolyzed ethoxyethyl polysilicate containing 19% S1O2, 5 g of γ-aminopropyl triethoxysilane, 300 g of ASARCO L-15 zinc dust, 5 g of molecular sieves 4A and 50 g of Amsco Mineral Spirits 66-3. The primer paint thus obtained has a packaging stability of more than 6 months. When applied by spraying on sandblasted sheets, the paint dries to a hard film in less than 10 minutes. When exposed to salt spray and water immersion samples as described in Example 1 for 1000 hours, the plates show no signs of corrosion or other defects.
12 DK 161974 B12 DK 161974 B
Eksempel 5Example 5
Zinkrig enkomponent maling med tetraethylorthosilikat og poly(amino-alkyl)-dimethylpolysiloxanZinc rich single component paint with tetraethyl orthosilicate and poly (amino-alkyl) dimethylpolysiloxane
Der fremstilles en beskyttende maling til jernmetal ved at blande 45 g tetraethylorthosilikat med 5 g af en poly(aminoalkyl)dimethylpolysiloxan, 300 g ASARCO zinkstøv L-15, 5 g molekylsigter 4A og 50 g Amsco Mineral Spirits 66-3. Den herved fremstillede maling er stabil ved lagring i mere end 6 måneder. Når denne maling påføres sandblæste stålplader, dannes der en tør film på mindre end 10 minutter. Når disse plader udsættes i 1000 timer for saltsprøjtning og vand-neddypning som i eksempel 1, fremkommer der ingen tegn på korrosion eller anden defekt.An iron metal protective paint is prepared by mixing 45 g of tetraethyl orthosilicate with 5 g of a poly (aminoalkyl) dimethylpolysiloxane, 300 g of ASARCO zinc dust L-15, 5 g of molecular sieves 4A and 50 g of Amsco Mineral Spirits 66-3. The resulting paint is stable when stored for more than 6 months. When this paint is applied to sandblasted steel sheets, a dry film of less than 10 minutes is formed. When these plates are subjected to salt spray and water immersion as in Example 1 for 1000 hours, no evidence of corrosion or other defect appears.
Eksempel 6Example 6
Zinkrig enkomponent maling med ethylsilikat 40 og aminoalkylalkylalk-oxysilanZinc rich single component paint with ethyl silicate 40 and aminoalkylalkylalkoxysilane
Der fremstilles en beskyttende maling til jernmetal ved at blande 45 gram delvis hydrolyseret ethylpolysilicat indeholdende 40 vægtprocent SiC>2 med 5 g af et aminoalkylalkylalkoxysilan (Union Carbide Silane A-1902), 300 g ASARCO zinkstøv L-15, 5 g molekylsigter 4A og 50 g Amsco Mineral Spirits 66-3. Den herved fremstillede maling er stabil i mere end 6 måneder ved lagring. Når denne maling påføres på sandblæste stålplader, dannes der en tør film på mindre end 10 minutter. Når disse plader udsættes i 1000 timer for saltsprøjtning og vandneddypning som i eksempel 1, fremkommer der ingen tegn på korrosion eller anden defekt.An iron metal protective paint is prepared by mixing 45 grams of partially hydrolyzed ethyl polysilicate containing 40% by weight SiC> 2 with 5 g of an aminoalkylalkylalkoxysilane (Union Carbide Silane A-1902), 300 g of ASARCO zinc dust L-15, 5 g of molecular sieves 4A and 50 g Amsco Mineral Spirits 66-3. The resulting paint is stable for more than 6 months when stored. When this paint is applied to sandblasted steel sheets, a dry film of less than 10 minutes is formed. When these plates are subjected to salt spray and water immersion as in Example 1 for 1000 hours, no evidence of corrosion or other defect appears.
Eksempel 7Example 7
Zinkrig enkomponent maling med cellosolvesilikat og Ν-β-(aminoethyl)--γ-aminopropyltrimethoxysilanZinc rich single component paint with cellosol vesilicate and Ν-β- (aminoethyl) - γ-aminopropyltrimethoxysilane
Der fremstilles en beskyttende maling til jernmetal ved at blande 45 g delvis hydrolyseret ethoxyethylpolysilikat indeholdende 10% S1O2, 10 g Ν-β-(aminoethyl)-γ-aminopropyltrimethoxysilan, 300 g ASARCO zinkstøv L-15, 5 g molkylsigter 4A og 50 g Amsco Mineral Spirits 66-3. Den herved fremstillede maling er stabil ved lagring i mere end 6 måneder. Når denne maling påføres sandblæste stålplader, dannes der en tør film på mindre end 10 minutter. Når de således malede plader udsættes i 1000 timer for saltsprøjtning og vandneddypning som i eksempel 1, fremkommer der ingen tegn på korrosion eller anden defekt.An iron metal protective paint is prepared by mixing 45 g of partially hydrolyzed ethoxyethyl polysilicate containing 10% S1O2, 10 g of Ν-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, 300 g of ASARCO zinc dust L-15, 5 g of molecular sieves 4A and 50 g of Mineral Spirits 66-3. The resulting paint is stable when stored for more than 6 months. When this paint is applied to sandblasted steel sheets, a dry film of less than 10 minutes is formed. When the plates thus painted are subjected to salt spraying and water immersion for 1000 hours as in Example 1, no evidence of corrosion or other defect appears.
13 DK 161974 B13 DK 161974 B
Eksempel 8-11Examples 8-11
Zinkrig enkomponentmaling med ethylsilikat 40 og varierende koncentrationer af N-3-(aminoethyl)-γ-aminopropyltrimethoxysilanZinc rich single component paint with ethyl silicate 40 and varying concentrations of N-3- (aminoethyl) -γ-aminopropyltrimethoxysilane
Beskyttende malinger til jernmetal fremstilles ved at blande 45 g delvis hydrolyseret ethylpolysilikat indeholdende 40 vægtprocent Si02, 2 g molekylsigter 4A, 300 g ASARCO zinkstøv L-15 og henholdsvis 2, 5, 10 og 20 g N-3-(aminoethyl)-γ-aminopropyltrimethoxy-silan. I hvert eksempel er de fremstillede malinger stabile i mere end 6 måneder. Når disse malinger påføres sandblæste stålplader, danner de tørre film på mindre end 10 minutter. Når således behandlede plader i 1000 timer udsættes for saltsprøjtning og neddypning i vand som i eksempel 1, fremkommer der ingen tegn på korrosion eller anden defekt.Iron metal protective paints are prepared by mixing 45 g of partially hydrolyzed ethyl polysilicate containing 40% by weight SiO2, 2 g of molecular sieves 4A, 300 g of ASARCO zinc dust L-15 and 2, 5, 10 and 20 g of N-3- (aminoethyl) -γ aminopropyltrimethoxy-silane. In each example, the paints produced are stable for more than 6 months. When these paints are applied to sandblasted steel sheets, they form dry films in less than 10 minutes. When plates so treated for 1000 hours are subjected to salt spray and immersion in water as in Example 1, no evidence of corrosion or other defect appears.
Eksempel 12-15Examples 12-15
Zinkrige enkomponentmalinger med varierende mængdeforhold af Ν-β-(aminoethyl) -γ-aminopropyltrimethoxysilan og glimmerZinc-rich single-component paints with varying proportions of Ν-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and mica
Der fremstilles beskyttende malinger til jernmetal ved at blande følgende komponenter: _Eksempel_Protective coatings for iron metal are prepared by mixing the following components:
Komponent_12_13_14_15 ASARCO zinkstøv L-15 600 g 600 g 600 g 600 gComponent_12_13_14_15 ASARCO zinc dust L-15 600 g 600 g 600 g 600 g
Glimmer 40 g 40 g 40 g 40 gMica 40 g 40 g 40 g 40 g
Molekylsigte 4A 4g 4g 4g 4gMolecular Sights 4A 4g 4g 4g 4g
Delvis hydrolyseret ethylsilikat indeholdende 40% Si09 109 g 105,5 g 102 g 98,5Partially hydrolyzed ethyl silicate containing 40% SiO9 109 g 105.5 g 102 g 98.5
Union Carbide Silicone A-1120 ' Hg 22,5 g 33 g 45 g *) Ν-β-(aminoethyl)-γ-aminopropyltrimethoxysilanUnion Carbide Silicone A-1120 'Hg 22.5 g 33 g 45 g *) Ν-β- (aminoethyl) -γ-aminopropyltrimethoxysilane
De således fremstillede malinger er stabile i mere end 6 måneder. Når de påføres sandblæste plader dannes der en tør film på mindre end 10 minutter. Disse malede plader udviste, når de udsattes i 1000 timer for saltsprøjtning og neddypning vand, ingen tegn på korrosion eller anden defekt.The paints thus produced are stable for more than 6 months. When applied to sandblasted sheets, a dry film is formed in less than 10 minutes. These painted plates, when exposed to salt spray and immersion water for 1000 hours, showed no signs of corrosion or other defect.
14 DK 161974 B14 DK 161974 B
Eksempel 16Example 16
Zinkrig enkomponent maling med ethylsilikat 40 og N-(β-ethylendiamino-ethyl)-β-aminoethoyltrimethoxysilanZinc rich single component paint with ethyl silicate 40 and N- (β-ethylenediaminoethyl) -β-aminoethoyltrimethoxysilane
Der fremstilles en jernmetalmaling ved at blande 45 g delvis hydrolyseret ethylpolysilikat indeholdende 40% Si02, 10 g N-(3-ethyl-endiaminoethyl)-β-aminoethyltrimethoxysilan, 300 g ASARCO zinkstøv L-15 og 5 g molekylsigter 4A. Den fremstillede maling er stabil i mere end 6 måneder.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilicate containing 40% SiO 2, 10 g of N- (3-ethylenediaminoethyl) -β-aminoethyltrimethoxysilane, 300 g of ASARCO zinc dust L-15 and 5 g of molecular sieves 4A. The paint produced is stable for more than 6 months.
Når den fremstillede maling påføres sandblæste stålplader, opnås der en tør film på mindre end 10 minutter. De således malede plader underkastes saltsprøjtning og neddypning i vand som i eksempel 1 og frembyder ingen tegn på korrosion eller anden defekt.When the prepared paint is applied to sandblasted steel sheets, a dry film of less than 10 minutes is obtained. The plates so painted are subjected to salt spray and immersion in water as in Example 1 and show no signs of corrosion or other defect.
Eksempel 17Example 17
Zinkrig enkomponentmaling med ethylsilikat 40 og Y-N-(Y-butylamino)-propyltrimethoxysilanZinc rich single component paint with ethyl silicate 40 and Y-N- (Y-butylamino) propyl trimethoxysilane
Der fremstilles en jernmetalmaling ved at blande 45 g delvis hydrolyseret ethylpolysilikat indeholdende 40% Si02, 10 g y-N-(Y-bu-tylamino)propyltrimethoxysilan, 300 g ASARCO zinkstøv L-15 og 5 g molekylsigter 4A. Den fremstillede maling er stabil i mere end 6 måneder.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilicate containing 40% SiO2, 10 g of γ-N- (γ-butylamino) propyltrimethoxysilane, 300 g of ASARCO zinc dust L-15 and 5 g of molecular sieves 4A. The paint produced is stable for more than 6 months.
Når malingen påføres en sandblæst stålplade, fås der en tør film på mindre end 10 minutter. De således malede plader underkastes saltsprøjtning og neddypning i vand som i eksempel 1 og frembyder ingen tegn på korrosion eller anden defekt.When the paint is applied to a sandblasted steel plate, a dry film of less than 10 minutes is obtained. The plates so painted are subjected to salt spray and immersion in water as in Example 1 and show no signs of corrosion or other defect.
Eksempel 18Example 18
Zinkrig enkomponentmaling med ethylsilikat 40 og Ν,Ν-β-(bis-hydroxy-ethyl)-γ-aminopropyltriethoxysilanZinc rich single component paint with ethyl silicate 40 and Ν, Ν-β- (bis-hydroxyethyl) -γ-aminopropyltriethoxysilane
Der fremstilles en jernmetalmaling ved at blande 45 g delvis hydrolyseret ethylpolysilkat indeholdende 40% Si02 med 10 g Ν,Ν-β-(bis-hydroxyethyl)-γ-aminopropyltriethoxysilan, 300 g ASARCO zinkstøv L-15 og 5 g molekylsigter 4A. Den fremstillede maling er stabil i mere end 6 måneder.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilkate containing 40% SiO2 with 10 g of Ν, Ν-β- (bis-hydroxyethyl) -γ-aminopropyl triethoxysilane, 300 g of ASARCO zinc dust L-15 and 5 g of molecular sieve 4A. The paint produced is stable for more than 6 months.
Når denne maling påføres en sandblæst stålplade, fås der en tør film på mindre end 10 minutter. De således malede plader udsættes for saltsprøjtning og neddypning i vand i 1000 timer som i eksempel 1 og frembyder ingen tegn på korrosion eller anden defekt.When this paint is applied to a sandblasted steel plate, a dry film of less than 10 minutes is obtained. The plates thus painted are subjected to salt spraying and immersion in water for 1000 hours as in Example 1 and show no signs of corrosion or other defect.
DK 161974 BDK 161974 B
1515
Eksempel 19Example 19
Zinkrig enkomponentmaling med ethylsilikat 40 og polyaminoalkyltri-alkoxysilanZinc rich single component paint with ethyl silicate 40 and polyaminoalkyltri-alkoxysilane
Der fremstilles en jernmetalmaling ved at blande 45 g delvis hydrolyseret ethylpolysilkat indeholdende 40% Si02 med 10 g polyami-noalkyltrialkoxysilan, 300 g ASARCO zinkstøv L-15 og 5 g molekylsig-ter 4A. Malingen er stabil i mere end 6 måneder.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilkate containing 40% SiO2 with 10 g of polyaminoalkyltrialkoxysilane, 300 g of ASARCO zinc dust L-15 and 5 g of molecular sieves 4A. The paint is stable for more than 6 months.
Når malingen påføres en sandblæst stålplade, fås der en tør film på mindre end 10 minutter. Således malede plader udsættes for saltsprøjtning og neddypning i vand i 1000 timer som i eksempel 1 og frembyder ingen tegn på korrosion eller anden defekt.When the paint is applied to a sandblasted steel plate, a dry film of less than 10 minutes is obtained. Plates thus painted are subjected to salt spraying and immersion in water for 1000 hours as in Example 1 and show no signs of corrosion or other defect.
Eksempel 20Example 20
Zinkrig enkomponentmaling med ethylsilikat 40 og γ-Ν,Ν-dimethylammo-niumpropyltrimethoxysilanacetatZinc rich single component paint with ethyl silicate 40 and γ-Ν, Ν-dimethylammonium propyltrimethoxysilane acetate
Der fremstilles en jernmetalmaling ved at blande 45 g delvis hydrolyseret ethylpolysilikat indeholdende 40% Si02 med 10 g γ-Ν,Ν--dimethylammoniumpropyltrimethoxysilanacetat, 300 g ASARCO zinkstøv L-15 og 5 g molekylsigter 4A. Den fremstillede maling er stabil i mere end 6 måneder.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilicate containing 40% SiO2 with 10 g of γ-Ν, Ν dimethylammonium propyltrimethoxysilane acetate, 300 g of ASARCO zinc dust L-15 and 5 g of molecular sieves 4A. The paint produced is stable for more than 6 months.
Når malingen påføres en sandblæst stålplade, fås der en tør film på mindre end 10 minutter. Således malede plader udsættes for saltsprøjtning og neddypning i vand i 1000 timer som i eksempel 1 og udviser ingen tegn på korrosion eller anden defekt.When the paint is applied to a sandblasted steel plate, a dry film of less than 10 minutes is obtained. Plates thus painted are subjected to salt spray and immersion in water for 1000 hours as in Example 1 and show no signs of corrosion or other defect.
Eksempel 21Example 21
Zinkrig enkomponentmaling med ledende strækmiddelpigmentZinc War one-component paint with conductive elastomer pigment
Der fremstilles en jernmetalmaling ved at blande 45 g delvis hydrolyseret ethylpolysilikat indeholdende 40% Si02 med 5 g Union Carbide Silane A-1120, 200 g ASARCO zinkstøv L-15, 100 g ferrophos-phit (et elektrisk ledende strækmiddelpigment, der forhandles som "Ferrophos" 2131 fra Hooker Chemical Co. med en gennemsnitlig partikelstørrelse på 6 Mm) , 5 g molekylsigter 4A og 50 g Amsco Mineral Spirits 66-3. Den fremstillede maling er stabil i mere end 6 måneder.An iron metal paint is prepared by mixing 45 g of partially hydrolyzed ethyl polysilicate containing 40% SiO2 with 5 g of Union Carbide Silane A-1120, 200 g of ASARCO zinc dust L-15, 100 g of ferrophosphite (an electrically conductive excipient pigment sold as "Ferrophos "2131 from Hooker Chemical Co. with an average particle size of 6 mm), 5 g of molecular sieves 4A and 50 g of Amsco Mineral Spirits 66-3. The paint produced is stable for more than 6 months.
Når malingen påføres en sandblæst stålplade, fås der en tør film på mindre end 10 minutter. Således malede plader udsættesWhen the paint is applied to a sandblasted steel plate, a dry film of less than 10 minutes is obtained. Plates thus painted are exposed
DK 161974BDK 161974B
16 for saltsprøjtning og neddypning i vand i 1000 timer som i eksempel 1 og udviser ingen tegn på korrosion eller anden defekt.16 for salt spraying and immersion in water for 1000 hours as in Example 1 and showing no signs of corrosion or other defect.
Eksempel 22Example 22
Zinkrig enkomponentmaling med ethylsilikat 40 og Ν-β-[Ν'-γ-(trimethoxy-silylpropyl)-aminoethyl]-γ-aminopropyltrimethoxysilanZinc rich single component paint with ethyl silicate 40 and og-β- [Ν'-γ- (trimethoxy-silylpropyl) -aminoethyl] -γ-aminopropyltrimethoxysilane
Der fremstilles en jernmetalmaling ved at blande 155,2 g delvis hydrolyseret ethylpolysilicat indeholdende 40 vægtprocent S1O2 med 38,8 g Ν-β-[N'-γ-(trimethoxysilylpropyl)-aminoethyl]-γ-aminopropyl-trimethoxysilan og 892,5 g findelt zink med en partikelstørrelse på ca. 2 til ca. 15 μπι (American Smelting and Refining Co. ASARCO-L-15) og 74 g findelt strækmiddel (Water-Ground Mica 325 fra The English Mica Co.). For at holde blandingen i vandfri tilstand tilsætter desuden 7,5 g af et vandfjernelsesmiddel (Union Carbide Corp. molekyl-sigter 4A), og malingen fortyndes med 293,5 g ethylenglycolmonoethyl-ether (Cellosolve). Der anvendes et antibundfældningsmiddel for at forhindre hårdt bundfald (24 g MPA-60-X, en hydrogeneret ricinusolie fra NL Industries) og 15,5 g fortykkelsesmiddel (Ethocel Medium Premium 100 fra Dow Chemical Co.) tilsættes for at få den ønskede viskositet. Den fremstillede flydende ethylsilikatbeskyttelsesmaling eller grundingsmaling har en emballeringsstabilitet på mere end 3 måneder.An iron metal paint is prepared by mixing 155.2 g of partially hydrolyzed ethyl polysilicate containing 40% by weight S1O2 with 38.8 g of Ν-β- [N'-γ- (trimethoxysilylpropyl) aminoethyl] -γ-aminopropyl trimethoxysilane and 892.5 g finely divided zinc with a particle size of approx. 2 to approx. 15 μπι (American Melting and Refining Co. ASARCO-L-15) and 74 g of finely divided extender (Water-Ground Mica 325 from The English Mica Co.). In addition, to keep the mixture in anhydrous state, add 7.5 g of an aqueous removal agent (Union Carbide Corp. molecular sieves 4A) and dilute the paint with 293.5 g of ethylene glycol monoethyl ether (Cellosolve). An antifouling agent is used to prevent hard precipitation (24 g of MPA-60-X, a hydrogenated castor oil from NL Industries) and 15.5 g of thickening agent (Ethocel Medium Premium 100 from Dow Chemical Co.) to add the desired viscosity. The produced liquid ethyl silicate protective or primer paint has a packaging stability of more than 3 months.
Når malingen ved sprøjtning påføres sandblæste, koldtvalsede stålplader, der måler ca. 10 x 20 x 0,2 cm, fås en glat film, der tørrer på mindre end 10 minutter. Den således malede stålplade udsættes i 500 timer for saltsprøjtning (ASTM metode B-117), og der fremkom ingen tegn på korrosion eller andre tegn på defekter på den således malede plade.When the paint is sprayed by sandblasting, cold rolled steel sheets measuring approx. 10 x 20 x 0.2 cm, a smooth film that dries in less than 10 minutes is obtained. The steel plate thus painted is subjected to salt spraying for 500 hours (ASTM method B-117) and no evidence of corrosion or other signs of defects on the plate thus painted.
Eksempel 23Example 23
Zinkrig enkomponentmaling med ethylsilikat 40 og Ν-β-[Ν'-γ-(triethoxy-silylpropyl)-aminoethyl]-γ-aminopropyltrimethoxysilanZinc rich single component paint with ethyl silicate 40 and og-β- [Ν'-γ- (triethoxy-silylpropyl) -aminoethyl] -γ-aminopropyltrimethoxysilane
En jernmetalmaling fremstilles ved at blande 174,6 g ethylsili-cat 40 med 19,4 g Ν-β-[Ν'-γ-(trimethoxysilylpropyl)-aminoethyl]-γ-aminopropyltrimethoxysilan, 892,5 g findelt zinkstøv (ASARCO L-15), 7,5 g af et vandfjernelsesmiddel (Union Carbide Molekylsigter 4A), 74 g glimmer 325, 24 g MPA-60-X, 15,5 g Ethocel Medium Premium 100 og 293,4 g Cellosolve.An iron metal paint is prepared by mixing 174.6 g of ethyl silicate 40 with 19.4 g of Ν-β- [Ν'-γ- (trimethoxysilylpropyl) -aminoethyl] -γ-aminopropyltrimethoxysilane, 892.5 g of finely divided zinc dust (ASARCO L- 15), 7.5 g of a water removal agent (Union Carbide Molecular Sieve 4A), 74 g mica 325, 24 g MPA-60-X, 15.5 g Ethocel Medium Premium 100 and 293.4 g Cellosolve.
1717
DK 161974 BDK 161974 B
Den fremstillede grundingsmaling er stabil ved lagring i 3 måneder. Når den påføres sandblæste stålplader som i eksempel 1, tørrer malingen til en hård film på mindre end 10 minutter. Når disse plader udsættes for saltsprøjtning og neddypning i vand i 500 timer, udviser de ingen tegn på korrosion eller anden defekt.The primer paint is stable when stored for 3 months. When applied to sandblasted steel sheets as in Example 1, the paint dries to a hard film in less than 10 minutes. When exposed to salt spray and immersion in water for 500 hours, these plates show no signs of corrosion or other defect.
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79671077A | 1977-05-13 | 1977-05-13 | |
US79671077 | 1977-05-13 | ||
US90088478A | 1978-04-28 | 1978-04-28 | |
US90088478 | 1978-04-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK209778A DK209778A (en) | 1978-11-14 |
DK161974B true DK161974B (en) | 1991-09-02 |
DK161974C DK161974C (en) | 1992-02-03 |
Family
ID=27121770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK209778A DK161974C (en) | 1977-05-13 | 1978-05-12 | COATING MATERIAL FOR PROTECTION OF IRON METALS AGAINST CORROSION CONTAINING ORGANIC SILICATES AND FINISHED ZINC |
Country Status (9)
Country | Link |
---|---|
CA (1) | CA1110048A (en) |
DE (1) | DE2821016C3 (en) |
DK (1) | DK161974C (en) |
FR (1) | FR2390482A1 (en) |
GB (1) | GB1593217A (en) |
IT (1) | IT1110476B (en) |
NL (1) | NL181280C (en) |
NO (1) | NO153009C (en) |
SE (1) | SE7805522L (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4239539A (en) * | 1979-06-25 | 1980-12-16 | Union Carbide Corporation | Aminosilane modified zinc-rich coating compositions |
DE3015063A1 (en) * | 1980-04-18 | 1981-10-22 | Wacker-Chemie GmbH, 8000 München | COATING AGENTS |
US4476260A (en) * | 1983-10-26 | 1984-10-09 | Union Carbide Corporation | Zinc rich coatings |
JP2819417B2 (en) * | 1989-04-17 | 1998-10-30 | 東レ・ダウコーニング・シリコーン株式会社 | Method for producing antibacterial silicone rubber granules |
DE4438959A1 (en) * | 1994-10-31 | 1996-05-02 | Schaeffler Waelzlager Kg | Mechanical valve tappet for internal combustion engine |
US6262216B1 (en) | 1998-10-13 | 2001-07-17 | Affymetrix, Inc. | Functionalized silicon compounds and methods for their synthesis and use |
US7875318B2 (en) | 2007-04-24 | 2011-01-25 | Momentive Performance Materials Inc. | Method of applying an anti-corrosion and/or adhesion promoting coating to a metal and resulting coated metal |
CN116200065B (en) * | 2022-11-18 | 2024-02-20 | 南京海配新材料有限公司 | Anti-settling paste for high-solid-content zinc-rich paint and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH594455A5 (en) * | 1975-03-17 | 1978-01-13 | Sulzer Ag |
-
1978
- 1978-05-11 NO NO781668A patent/NO153009C/en unknown
- 1978-05-12 FR FR7814205A patent/FR2390482A1/en active Granted
- 1978-05-12 NL NLAANVRAGE7805220,A patent/NL181280C/en not_active IP Right Cessation
- 1978-05-12 IT IT7823378A patent/IT1110476B/en active
- 1978-05-12 DE DE2821016A patent/DE2821016C3/en not_active Expired
- 1978-05-12 SE SE7805522A patent/SE7805522L/en unknown
- 1978-05-12 GB GB19136/78A patent/GB1593217A/en not_active Expired
- 1978-05-12 DK DK209778A patent/DK161974C/en not_active IP Right Cessation
- 1978-05-12 CA CA301,518A patent/CA1110048A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
NO153009B (en) | 1985-09-23 |
CA1110048A (en) | 1981-10-06 |
GB1593217A (en) | 1981-07-15 |
DK161974C (en) | 1992-02-03 |
FR2390482A1 (en) | 1978-12-08 |
DE2821016C3 (en) | 1984-09-20 |
DE2821016A1 (en) | 1978-11-16 |
DE2821016B2 (en) | 1980-08-07 |
NO781668L (en) | 1978-11-14 |
IT7823378A0 (en) | 1978-05-12 |
SE7805522L (en) | 1978-11-14 |
DK209778A (en) | 1978-11-14 |
IT1110476B (en) | 1985-12-23 |
NL7805220A (en) | 1978-11-15 |
NL181280C (en) | 1987-07-16 |
NL181280B (en) | 1987-02-16 |
FR2390482B1 (en) | 1982-12-03 |
NO153009C (en) | 1986-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4277284A (en) | Single-package zinc-rich coatings | |
US4239539A (en) | Aminosilane modified zinc-rich coating compositions | |
US3337496A (en) | Novel organosiloxane-silicate copolymers | |
US4479824A (en) | Silicate binders and coatings | |
DK161974B (en) | COATING MATERIAL FOR PROTECTION OF IRON METALS AGAINST CORROSION CONTAINING ORGANIC SILICATES AND FINISHED ZINC | |
NO329539B1 (en) | Water-based two-component protective coating compositions and methods for preparing a first component of said compositions | |
JPS58147483A (en) | Water and oil repellent for glass surface | |
DK162355B (en) | CORROSION AGENTS, PROCEDURES FOR THE MANUFACTURING THEM, AND A PROTECTIVE COATING CONTAINING THE CORROSION PROTECTION AGENT | |
US4354002A (en) | Novel aliphatic sulfosiloxane-silicate copolymers | |
JP2012516919A (en) | Solvent-free, water-soluble silane-modified silicate | |
US4352742A (en) | Alcohol composition containing novel hydroxy-substituted aliphatic silicone sulfonate-silicate copolymers | |
Wittmar et al. | Hybrid sol–gel coatings doped with transition metal ions for the protection of AA 2024-T3 | |
JPS58142958A (en) | Water and oil repellent for glass surface | |
JPS59136363A (en) | Alumina containing organic silicon resin | |
US4224213A (en) | Single package inorganic zinc rich paints having a silicate and titanate ester copolymer binder | |
JPS588708B2 (en) | Single package zinc-rich coating | |
JPH01172392A (en) | Organosilane and its production | |
US4462921A (en) | Siloxane stabilizers for inorganic silicates in antifreeze/coolant formulations | |
JPH07508791A (en) | Water-based binders and coatings | |
JPH0346194B2 (en) | ||
EP0029728B1 (en) | Glycol compositions containing an ether modified silicone | |
JP6726469B2 (en) | Two-component primary anticorrosive paint, method for producing primary anticorrosive paint composition, and anticorrosion method for substrate | |
US4767599A (en) | Silicate-containing antifreeze with carboxy-substituted organosilicon stabilizer | |
US4822901A (en) | Carboxy-substituted organosilicon stabilizers for a silicate-containing antifreeze | |
EP0217340B1 (en) | Carboxy-substituted organosilicon stabilizers for a silicate-containing antifreeze |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |