DK159662B - LIQUID FOR A HEAT PUMP AND PROCEDURE FOR HEATING AND / OR THERMAL CLIMATIZATION OF A ROOM USING A COMPRESSION HEAT PUMP USING A MIXED WORKING LIQUID - Google Patents

LIQUID FOR A HEAT PUMP AND PROCEDURE FOR HEATING AND / OR THERMAL CLIMATIZATION OF A ROOM USING A COMPRESSION HEAT PUMP USING A MIXED WORKING LIQUID Download PDF

Info

Publication number
DK159662B
DK159662B DK461882A DK461882A DK159662B DK 159662 B DK159662 B DK 159662B DK 461882 A DK461882 A DK 461882A DK 461882 A DK461882 A DK 461882A DK 159662 B DK159662 B DK 159662B
Authority
DK
Denmark
Prior art keywords
heat
mixture
liquid
heat pump
temperature
Prior art date
Application number
DK461882A
Other languages
Danish (da)
Other versions
DK159662C (en
DK461882A (en
Inventor
Claude Ramet
Alexandre Rojey
Original Assignee
Inst Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8119734A external-priority patent/FR2514875A1/en
Application filed by Inst Francais Du Petrole filed Critical Inst Francais Du Petrole
Publication of DK461882A publication Critical patent/DK461882A/en
Publication of DK159662B publication Critical patent/DK159662B/en
Application granted granted Critical
Publication of DK159662C publication Critical patent/DK159662C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

iin

DK 159662 BDK 159662 B

Den foreliggende opfindelse angår nye væsker til varmepumper og en fremgangsmåde til opvarmning og/eller termisk klimati sering af et rum ved hjælp af en kompressionsvarmepumpe ved anvendelse af en blandet arbejdsvæske.The present invention relates to novel liquids for heat pumps and to a method of heating and / or thermal air conditioning of a room by means of a compression heat pump using a mixed working fluid.

5 Det er allerede foreslået at anvende følgende arbejdsvæsker i varmepumper: R12: Dichlordifluormethan (kogepunkt: -29,8°C), R22: Monochlordifluormethan (kogepunkt: -40,8°C), R23: Trifluormethan (kogepunkt: -82,1°C), 10 R550: Azeotrop (temperatur: -23,5eC bestående af 73,8 vægtprocent dichlordifluormethan R12 og 26,2 vægtprocent difluor-ethan R152a (temperatur: -24,75°C), R501: Azeotrop (temperatur: -41,4*0 bestående af en blanding af 75 vægtprocent chlordifluormethan R22 og 25 vægtprocent 15 dichlordifluormethan R12, R502: Azeotrop (temperatur: -45,6°C) bestående af en blanding af 48,8 vægtprocent chlordifluormethan R22 og 51,2 vægtprocent chlorpentafluormethan R115 (temperatur: -38,7’C), og R503: Azeotrop af 40,1 vægtprocent trifluormethan R23 og 20 59,9 vægtprocent chlortrifluormethan R13.5 The following working liquids have already been proposed in heat pumps: R12: Dichlorodifluoromethane (boiling point: -29.8 ° C), R22: Monochlorodifluoromethane (boiling point: -40.8 ° C), R23: Trifluoromethane (boiling point: -82.1 ° C), R550: Azeotrope (temperature: -23.5 ° C consisting of 73.8% by weight dichlorodifluoromethane R12 and 26.2% by weight difluoro-ethane R152a (temperature: -24.75 ° C), R501: Azeotrope (temperature: - 41.4 * 0 consisting of a mixture of 75% by weight chlorodifluoromethane R22 and 25% by weight dichlorodifluoromethane R12, R502: Azeotrope (temperature: -45.6 ° C) consisting of a mixture of 48.8% by weight chlorodifluoromethane R22 and 51.2% by weight chlorpentafluoromethane R115 (temperature: -38.7 ° C), and R503: Azeotrope of 40.1% by weight of trifluoromethane R23 and 59.9% by weight of chlorotrifluoromethane R13.

De i det foregående nævnte halogenerede væsker anvendes løbende i varmepumpeanlæg, der er beregnet til opvarmning og/eller konditionering af lokaler eller byopvarmning og til industriel anvendelse ved lav temperatur som f.eks. visse tørre- eller koncen-25 trationsoperationer.The halogenated liquids mentioned above are used continuously in heat pump systems, which are intended for heating and / or conditioning of premises or urban heating and for low temperature industrial applications, e.g. certain drying or concentration operations.

Anvendelsen af monochlordifluormethan (R22) eller af R502 er meget hyppig i varmepumper, som anvendes til lokaleopvarmning, og som som kuldekilde anvender grundvand, brønde eller floder, yderluft eller udsugningsluft, og der som varmekilde anvender opvarmningsvand 30 eller rumluft til temperaturer, der kan andrage 55"C ved varme kilden.The use of monochlorodifluoromethane (R22) or of R502 is very frequent in heat pumps used for local heating, which uses groundwater, wells or rivers, external air or exhaust air, and as heat source uses heating water 30 or room air to temperatures which may be 55 "C at the heat source.

Substitutionen af R502 eller R22 i en varmepumpe forøger ikke pumpens termiske kapacitet særlig meget men tillader derimod en væsentlig formindskelse af returløbstemperaturen. Anvendelsen af R12 35 eller af R500 er navnlig tilpasset til relativt høje temperatur niveauer f.eks. over 50eC og mindre end 80°C.The substitution of R502 or R22 in a heat pump does not greatly increase the thermal capacity of the pump but allows a substantial reduction in the return flow temperature. The use of R12 35 or of R500 is particularly adapted to relatively high temperature levels e.g. above 50 ° C and less than 80 ° C.

Der findes to kendte muligheder for at forøge den varme-effekt, som afgives af en varmepumpe, og den første mulighed er at udstyre varmepumpen med en kompressor, som har en større kapacitet,There are two known options for increasing the heat output emitted by a heat pump, and the first option is to equip the heat pump with a compressor having a larger capacity,

DK 159662BDK 159662B

2 hvilket gør det muligt at suge en større volumenmængde, men denne løsning medfører en ekstrainvestering. Den anden mulighed for at øge en varmepumpes varmeydelse består i at anvende et arbejdsfluid, hvis kogepunkt er lavere end kogepunktet for det sædvanlige fluid. Under 5 alle omstændigheder medfører en sådan substitution en forringelse af effektfaktoren samt et meget begrænset anvendelsesområde for appa-ratet, hvilket anvendelsesområde er givet, da den kritiske temperatur for fluider med lavere kogepunkt generelt er mindre. Anvendelsen af blandinger af ikke azeotropiske væsker i en varmepumpe for at 10 forbedre den pågældende varmpumpes virkningsgrad er genstand for følgende ældre franske patentansøgninger: FR-A nr. 3337885, 2474151, 2474666 og 2497931).2 which allows a larger volume of suction to be sucked, but this solution entails an extra investment. The other option to increase the heat output of a heat pump consists of using a working fluid whose boiling point is lower than the boiling point of the usual fluid. In any case, such substitution results in a degradation of the power factor as well as a very limited range of use of the apparatus, which range is given since the critical temperature for lower boiling point fluids is generally less. The use of mixtures of non-azeotropic liquids in a heat pump to improve the efficiency of the heat pump in question is subject to the following older French patent applications: FR-A Nos. 3337885, 2474151, 2474666 and 2497931).

Navnlig beskriver fransk patentansøgning FR-A nr. 2474151 ikke azeotropiske blandinger af to bestanddele, som tillader en 15 forøgelse af en varmepumpes ydelse og dermed tillader en formindskelse af den pågældende varmepumpes driftsomkostninger. Blandingerne med to bestanddele, der er beskrevet i dette skrift, tillader imidlertid ikke at forøge varmekraften for en givet kompressor.In particular, French Patent Application FR-A No. 2474151 does not disclose azeotropic mixtures of two components which permit an increase in the performance of a heat pump and thus allow a reduction in the operating cost of the heat pump in question. However, the two-component mixtures described in this specification do not allow to increase the thermal power of a given compressor.

Det er formålet med den foreliggende opfindelse at vise, at 20 specielle blandinger af væsker gør det muligt at forøge den varme-effekt, der afgives af en varmepumpe i forhold til det tilfælde, hvor den samme varmepumpe drives med en ren væske. Ved at anvende de ifølge opfindelsen foreslåede væskeblandinger i en varmepumpe, er det således muligt at reducere investeringsomkostningerne. Følgelig 25 vil de blandede arbejdsvæsker ifølge opfindelsen muliggøre en forøgelse af en givet varmepumpes varmeydelse uden ændring af varmepumpens komponenter og især uden at ændre kompressoren.It is the object of the present invention to show that 20 special mixtures of liquids make it possible to increase the heat output delivered by a heat pump relative to the case where the same heat pump is operated with a clean liquid. Thus, by using the liquid mixtures proposed according to the invention in a heat pump, it is possible to reduce the investment costs. Accordingly, the mixed working fluids of the invention will allow an increase in the heat output of a given heat pump without changing the components of the heat pump and especially without changing the compressor.

Ifølge en første udførelsesform for den foreliggende opfindelse består en væske til en varmepumpe af en blanding af 30 (a) 95 til 80 mol% R22 eller R502 med (b) 5 til 20 mol% R23 eller R503, hvor R22 er monochlordifluormethan, R23 er trifluormethan, R502 er en blanding af 48,8 vægtprocent monochlordifluormethan med 51,2 vægtprocent chlorpentafluorethan, og R503 er en blanding af 40,1 35 vægtprocent trifluormethan med 59,9 vægtprocent monochlortrifluor-methan, hvor blandingens bestanddel (a) ikke danner azeotrop med den samme blandings bestanddel (b).According to a first embodiment of the present invention, a liquid for a heat pump consists of a mixture of 30 (a) 95 to 80 mole% R22 or R502 with (b) 5 to 20 mole% R23 or R503 wherein R22 is monochlorodifluoromethane, R23 is trifluoromethane, R502 is a mixture of 48.8% by weight monochlorodifluoromethane with 51.2% by weight chlorpentafluoroethane, and R503 is a mixture of 40.1% by weight trifluoromethane with 59.9% by weight monochlorotrifluoromethane where the component (a) does not form an azeotrope the constituent (b) of the same mixture.

Opfindelsen angår endvidere en fremgangsmåde til opvarmning og/eller til termisk klimatisering af et rum ved hjælp af en 3The invention further relates to a method for heating and / or for thermal air conditioning of a room by means of a 3

DK 159662 BDK 159662 B

kompressionsvarmepumpe ved anvendelse af en blandet arbejdsvæske, hvor denne væske udtager varme fra en varmekilde med en temperatur fra -15e til +40°C og afgiver varmen til en væske med en temperatur på fra 20° til 75eC, og hvor pumpen arbejder med et kondensat!ons-5 trin, et ekspansionstrin, et fordampningstrin og et kompressionstrin under anvendelse af denne arbejdsvæske. Ifølge den foreliggende opfindelse er denne fremgangsmåde ejendommelig ved, at arbejdsvæsken har følgende sammensætning: (a) 95 til 90 mol% R12, R22, R500, R501 eller R502 med 10 (b) 5-20 mol% R23 eller R503, hvor R12 er dichlordifluormethan, R500 er en blanding af 73,8% dichlordifluormethan med 26,2% difluorethan, R501 er en blanding af 75% chlordifluormethan med 25% dichlordifluormethan, og hvor R22, R23, R502 og R503 er defineret som anført i det følgende, hvorhos 15 bestanddelen (a) af blandingen ikke danner azeotrop med den samme blandings bestanddel (b).compression heat pump using a mixed working fluid, in which this liquid extracts heat from a heat source with a temperature of -15e to + 40 ° C and delivers the heat to a liquid with a temperature of 20 ° to 75 ° C and where the pump works with a condensate 5 steps, an expansion step, an evaporation step and a compression step using this working fluid. According to the present invention, this process is characterized in that the working fluid has the following composition: (a) 95 to 90 mole% R12, R22, R500, R501 or R502 with 10 (b) 5-20 mole% R23 or R503 where R12 is dichlorodifluoromethane, R500 is a mixture of 73.8% dichlorodifluoromethane with 26.2% difluoroethane, R501 is a mixture of 75% chlorodifluoromethane with 25% dichlorodifluoromethane and wherein R22, R23, R502 and R503 are defined as follows, The component (a) of the mixture does not form azeotrope with the same component (b) of the same mixture.

I en varmepumpes cyklus vil fordampningstrykket i en blanding af den ovennævnte type under identiske driftstilstande, alt andet lige, være større end fordampningstrykket for det største 20 grundelement, hvis det var anvendt i ren tilstand.In the cycle of a heat pump, the evaporation pressure in a mixture of the above type under identical operating conditions, all else equal, will be greater than the evaporation pressure of the largest 20 element if it was used in the pure state.

Følgelig er de af kompressoren indsugede dampes mol arvolumen mindre, hvilket for en kompressor med givet cylindervolumen forøger den molære fluidmængde og således varmepumpens varmeydelse. Desuden vil anvendelsen af et blandet arbejdsfluid, som indeholder et 25 største grundelement (R22 eller R12 eller R500 eller R501 eller R502) og et mindre grundelement (R23 eller R503), hvor kogepunktet er lavere, almindeligvis medføre en reduktion af kompressionsforholdet. Dette forøger den vol umetriske ydelse, når der er tale om kompressorer med alternerende stempler, og er således fordelagtig på 30 samme måde som en forøgelse af varmeydelsen. Denne er desuden større, da den molære koncentration af det mindste grundelement er af vigtighed. Den molære del af det mindst grundelement (R23 eller R503) bør være mellem 5 og 20%; faktisk vil en for stor del af dette grundelement medføre en forringelse af effektfaktoren og et over-35 drevent fortætningstryk. Faktisk har kompressorerne et anvendelsesområde, der er begrænset af visse driftsparametre, (komprimeringstemperatur og forskellen mellem maksimale tryk) og især af det maksimale pumpetryk. Fortætningstrykket for en blanding ifølge opfindelsen er fortrinsvis mindre end 30 bar.Accordingly, the mole volume of the vapors aspirated by the compressor is smaller, which for a compressor with a given cylinder volume increases the molar fluid volume and thus the heat output of the heat pump. In addition, the use of a mixed working fluid containing a 25 basic element (R22 or R12 or R500 or R501 or R502) and a minor element (R23 or R503), where the boiling point is lower, will generally result in a reduction in the compression ratio. This increases the volumetric performance in the case of compressors with alternating pistons, and is thus advantageous in the same way as an increase in heat output. This is also greater, since the molar concentration of the smallest element is important. The molar portion of the least basic element (R23 or R503) should be between 5 and 20%; in fact, too much of this basic element will cause a degradation of the power factor and an excessive condensation pressure. In fact, the compressors have a range limited by certain operating parameters (compression temperature and the difference between maximum pressures) and in particular by the maximum pump pressure. The compressive pressure of a mixture according to the invention is preferably less than 30 bar.

44

DK 159662 BDK 159662 B

Fluidblandingerne, der er foreslået ved opfindelsen, er i særdeleshed anvendelige, når temperaturen af den varme kilde for-( trinsvis er mellem 20°C og 75°C, og når temperaturen af den kolde kilde fortrinsvis er mellem -15°C og +40°C.The fluid mixtures proposed by the invention are particularly useful when the temperature of the hot source is preferably (preferably between 20 ° C and 75 ° C, and when the temperature of the cold source is preferably between -15 ° C and +40 ° C.

5 Varmepumper, hvori de ovenfor definerede blandinger er anvendelige, kan være af en hvilken som helst type. Kompressoren kan f.eks. være en kompressor med smurte stempler eller med tørre stempler, skruekompressor eller en centrifugal kompressor. Varmevekslerne kan f.eks. være dobbeltrørsvarmevekslere, varmevekslere 10 med rør og kalander, pladevarmevekslere, varmevekslere med lameller eller klassiske varmevekslere med flige for varmeoverføring med luften. Der foretrækkes en modløbsvarmeveksling; dette tilvejebringeslet i tilfælde med koaksiale varmevekslere, der anvendes til veksling af vand/kølemiddel i varmepumper med lille effekt. Det kan 15 tilnærmelsesvis ske på en måde som i luft/kølemiddel varmeveksleren ifølge en indretning som beskrevet i det franske patentskrift nr. 2.474.666. Den afgivne varmeeffekt kan variere, f.eks. mellem nogle kilowatt i varmepumper, som anvendes ved lokal opvarmning, og flere megawatt i varmepumper, som er beregnet til kollektiv opvarmning.Heat pumps in which the above-defined mixtures are useful can be of any type. The compressor can e.g. be a compressor with lubricated pistons or with dry pistons, screw compressor or a centrifugal compressor. The heat exchangers can e.g. be double-tube heat exchangers, heat exchangers 10 with pipes and calender, plate heat exchangers, heat exchangers with slats or classic heat exchangers with tabs for heat transfer with air. A counter heat exchange is preferred; this is provided in the case of coaxial heat exchangers used for the exchange of water / coolant in low power heat pumps. This can be done in a manner similar to the air / coolant heat exchanger according to a device as described in French Patent 2,474,666. The heat output delivered may vary, e.g. between several kilowatts in heat pumps used for local heating and several megawatts in heat pumps intended for collective heating.

20 En foretrukken fremgangsmåde er den, som er beskrevet i det franske patentskrift nr. 2.497.931.A preferred method is that described in French Patent No. 2,497,931.

Denne fremgangsmåde omfatter følgende trin: (a) det blandede arbejdsfluid komprimeres i dampfasen, (b) det blandede komprimerede fluid fra trinnet (a) bringes i en varmevekslingskontakt med et ydre 25 relativt koldt fluid, og denne kontakt opretholdes, indtil der tilnærmelsesvis er opnået en komplet kondensation af det blandede fluid, (c) det blandede fluid, der tilnærmelsesvis er komplet kondenseret, og som kommer fra trinnet (b), bringes i varmevekslingskontakt med et afkølingsfluid, som er tilvejebragt ved et trin (f) 30 på en måde, så det blandede fluid afkøles yderligere, (d) det blandede afkølede fluid, der kommer fra trinnet (c), ekspanderes, (e) det blandede og ekspanderede fluid, der stammer fra trinnet (d) bringes i en termisk varmevekslingskontakt med et ydre fluid, som udgør en varmekilde, og kontakttilstandene tillader en delvis 35 fordampning af det blandede og ekspanderede fluid, (f) det blandede og delvis fordampede fluid, der kommer fra trinnet (e), bringes i varmevekslingskontakt med det blandede fluid, som tilnærmelsesvis er helt fortættet og udsendt fra trinnet (c), hvilket blandet og delvis fordampet fluid udgør afkølingsfluidet i trinnet (c), og 5This method comprises the following steps: (a) the mixed working fluid is compressed in the vapor phase; (b) the mixed compressed fluid from the step (a) is brought into a heat exchange contact with an outer relatively cold fluid and this contact is maintained until approximately a complete condensation of the mixed fluid, (c) the mixed fluid, which is approximately completely condensed, coming from step (b), is brought into heat exchange contact with a cooling fluid provided at step (f) in a manner so that the mixed fluid is further cooled, (d) the mixed cooled fluid coming from step (c) is expanded, (e) the mixed and expanded fluid coming from step (d) is brought into a thermal heat exchange contact with an exterior fluid which constitutes a heat source and the contact states allow a partial evaporation of the mixed and expanded fluid, (f) the mixed and partially evaporated fluid coming from the step (s) being brought in heat exchange contact with the mixed fluid, which is approximately completely densified and emitted from step (c), which mixed and partially evaporated fluid constitutes the cooling fluid of step (c), and

DK 159662 BDK 159662 B

kontakttilstandene gør det muligt at fortsætte fordampningen, der blev påbegyndt ved trinnet (e), og (g) det blandede og fordampede fluid, der kommer fra trinnet (f), sendes tilbage til trinnet (a).the contact states allow the evaporation started at step (e) to continue and (g) the mixed and evaporated fluid coming from step (f) is sent back to step (a).

De følgende eksempler illustrerer realiseringen af de spe-5 cielle fluidblandinger ifølge opfindelsen.The following examples illustrate the realization of the particular fluid mixtures of the invention.

Til eksemplerne er knyttet figurerne, hvoraf fig. 1 viser en udførelsesform for et varmepumpeanlæg, hvori væsken ifølge den foreliggende opfindelse kan anvendes, og 10 fig. 2 viser en anden udførelsesform for et varmepumpeanlæg, ved hjælp af hvilket fremgangsmåden ifølge den foreliggende opfindelse kan udøves.Attached to the examples are the figures, of which fig. 1 shows an embodiment of a heat pump system in which the liquid according to the present invention can be used, and FIG. 2 shows another embodiment of a heat pump system by which the method according to the present invention can be practiced.

Eksempel 1 15Example 1 15

Der betragtes en vand/vand varmepumpe, som skematisk er vist i fig. 1. Denne varmepumpe omfatter en fordamper El, hvor blandingen indføres gennem en ledning 1, og hvor den udtages fordampet gennem en ledning 2, en kompressor Kl, hvor dampblandingen komprimeres, og 20 hvor den udtages gennem en ledning 3 for at sendes ind i en kondensator E2, hvorfra den udtages kondenseret gennem en ledning 4, hvorpå den ekspanderes i en ekspansionsventil Dl og recirkuleres til fordamperen. Fordamperen og kondensatoren udgøres af dobbeltrørsvarmevekslere, hvori de indførte fluider udfører varmeveksling ved 25 en cirkulation i modstrøm.A water / water heat pump is shown schematically in FIG. This heat pump comprises an evaporator E1, wherein the mixture is introduced through a line 1 and is evaporated out through a line 2, a compressor K1 where the vapor mixture is compressed, and 20 where it is taken out through a line 3 to be sent into a capacitor E2, from which it is taken out condensed through a conduit 4, which is then expanded in an expansion valve D1 and recycled to the evaporator. The evaporator and condenser are constituted by double-tube heat exchangers in which the introduced fluids conduct heat exchange at a countercurrent circulation.

Den kolde kilde udgøres af grundvand. Dette vand kommer ind i fordamperen El gennem ledningen 5 ved en temperatur på 12°C og udtages fra fordamperen El gennem ledningen 6 ved en temperatur på 5°C.The cold spring is groundwater. This water enters the evaporator E1 through the conduit 5 at a temperature of 12 ° C and is withdrawn from the evaporator E1 through the conduit 6 at a temperature of 5 ° C.

30 Vandet, som opvarmes af kondensatoren E2, indføres gennem ledningen 7 og evakueres gennem ledningen 8.The water heated by the capacitor E2 is introduced through conduit 7 and evacuated through conduit 8.

Der betragtes to driftstil fæl de ifølge opvarmningssystemets beskaffenhed og returvandets temperatur.Two operating modes are considered according to the nature of the heating system and the temperature of the return water.

A - opvarmning ved hjælp af radiatorer: Returvandets tem-35 peratur ved kondensatoren er 42°C (ledning 7), og fremløbsvandets temperatur er 50°C (ledning 8).A - Heating by radiators: The return water temperature at the capacitor is 42 ° C (line 7) and the temperature of the flow water is 50 ° C (line 8).

B - opvarmning ved hiælp af qulvvarme: Returvandets temperatur ved kondensatoren er 20,5°C, og fremløbsvandets temperatur er 34°C.B - heating by means of underfloor heating: The return water temperature at the capacitor is 20.5 ° C and the temperature of the flow water is 34 ° C.

66

DK 159662 BDK 159662 B

Vandmængderne i fordamperen og i kondensatoren er en funktion af varmepumpens kapacitet svarende til det anvendte arbejds-fluid. I tabel I herunder er der vist sammenlignende resultater i hver af tilfældene A og B mellem: 5 - varmepumpens drift under anvendelse af ren chlordifluor- methan (R22) - varmepumpens drift under anvendelse af en ikke-azeotropisk blanding, som omfatter 85 mol% chlordifluormethan (R22) og 15 mol% trifluormethan (R23).The quantities of water in the evaporator and in the condenser are a function of the heat pump's capacity corresponding to the working fluid used. In Table I below, comparative results are shown in each of cases A and B between: 5 - the operation of the heat pump using pure chlorodifluoromethane (R22) - the operation of the heat pump using a non-azeotropic mixture comprising 85 mole% of chlorodifluoromethane (R22) and 15 mol% trifluoromethane (R23).

10 COP-værdien angiver forholdet mellem den afgivne varmeeffekt og kompressionseffekten, der overføres til fluidet.The COP value indicates the ratio of the heat output delivered to the compression power transmitted to the fluid.

Tabel ITable I

15 Drifttilfælde A B15 Case A B

Fluid R22 blanding R22 blanding R22/R23 R22/R23 20 Varmeeffekt (W) 14260 17101 14820 18376 C0P 3,52 3,48 4,56 4,63Fluid R22 mixture R22 mixture R22 / R23 R22 / R23 Heat effect (W) 14260 17101 14820 18376 COP 3.52 3.48 4.56 4.63

Sugetryk (bar) 4,65 5,72 4,50 5,62 25Suction pressure (bar) 4.65 5.72 4.50 5.62 25

Pumpetryk (bar) 20,64 25,13 15,15 18,42Pump pressure (bar) 20.64 25.13 15.15 18.42

Kompressionsforhold 4,44 4,39 3,37 3,28 30 Den foreslåede blanding vil sammenlignet med ren R22 under identiske temperaturbetingelser ved den kolde og varme kilde gøre det muligt at opnå en forbedret varmeydelse på 20% i tilfælde A og på 24% i tilfælde B, COP-værdien er praktisk talt uforandret i begge tilfælde. Den varmeeffekt og COP-værdien, som er opnået med blan-35 dingen R22/R23, er ligeledes tydeligt større end disse, som kan opnås med den azeotrope blanding R502, hvis denne anvendes alene.Compression Ratio 4.44 4.39 3.37 3.28 30 Compared to pure R22 under identical temperature conditions at the cold and hot spring, the proposed mixture will allow an improved heat output of 20% in Case A and 24% in case B, the COP value is practically unchanged in both cases. The heat effect and COP value obtained with the mixture R22 / R23 are also clearly greater than those obtainable with the azeotropic mixture R502 if used alone.

R502 vil f.eks. i tilfælde A muliggøre en varmeeffekt på 14545W (det er således kun en fremgang på 2% i forhold til ren R22) og en COP-værdi på 3,26. Generelt kan de foreslåede blandinger optimeres 7R502 will e.g. in case A allow a heat output of 14545W (thus only a 2% increase over pure R22) and a COP value of 3.26. In general, the proposed mixtures can be optimized 7

DK 159662 BDK 159662 B

med hensyn til sammensætning for at tilvejebringe en forbedret varmeydelse, som er større end 20% i forhold til et rent fluid, og en COP-værdi som er identisk med den for det rene referencefluid. Sådanne præstationerkan under ingen omstændigheder opnås ved anven-5 del sen af f.eks. R502 i stedet for R22 eller R500 i stedet for R12.in composition to provide an improved heat output greater than 20% over a pure fluid and a COP value identical to that of the pure reference fluid. Such performance can under no circumstances be achieved by the use of e.g. R502 instead of R22 or R500 instead of R12.

I det franske patentskrift nr. 2.474.151 er der fremhævet en blanding sammensat af R22 og chlortrifluormethan R13 (t ^ = -81,4°C). Resultaterne, der er opnået med denne blanding, som omfatter 85 mol% R22 og 15 mol% R13, er i tabel II sammenlignet med 10 de resultater, som er opnået ved anvendelse af den førnævnte blanding R22/R23 (85%/15%).French Patent No. 2,474,151 emphasizes a mixture composed of R22 and chlorotrifluoromethane R13 (t ^ = -81.4 ° C). The results obtained with this mixture, comprising 85 mole% R22 and 15 mole% R13, are compared in Table II with 10 the results obtained using the aforementioned mixture R22 / R23 (85% / 15%) .

Tabel IITable II

15 Driftstilfælde A B15 Operation A B

Blanding R22/R23 R22/R23 R22/R23 R22/R23Mixture R22 / R23 R22 / R23 R22 / R23 R22 / R23

Varmeeffekt (W) 17.101 16.214 18.376 17.488 20 COP 3,48 3,43 4,63 4,55Heat effect (W) 17,101 16,214 18,376 17,488 20 COP 3.48 3.43 4.63 4.55

Sugetryk (bar) 5,72 5,65 5,62 5,54 25 Pumpetryk (bar) 25,13 24,37 18,42 18,01Suction pressure (bar) 5.72 5.65 5.62 5.54 25 Pump pressure (bar) 25.13 24.37 18.42 18.01

Kompressionstryk (bar) 4,39 4,32 3,28 3,25 30 Således vil blandingen R22/R23, for stort set identiske driftstryk, tilvejebringe en varmeeffekt, der er tydeligt større end den for blandingen R22/R13.Compression pressure (bar) 4.39 4.32 3.28 3.25 Thus, the mixture R22 / R23, for substantially identical operating pressures, will provide a heat effect that is clearly greater than that of the mixture R22 / R13.

Opvarmningstemperaturen, som opnås med en varmepumpe af typen vand/vand eller luft/vand under anvendelse af blandingen 35 R22/R23, er mindre ved 55°C og fortrinsvis mindre eller lig med 52°C, hvis det ønskes at pumpetrykket er mindre end 30 bar og fortrinsvis mindre end 28 bar. Den molære andel af R23 i en blanding R22/R23 eller R502/R23 er fortrinsvis mellem 12% og 18%. Temperaturvariationen for vandet til kondensatoren er fortrinsvis mellem 8The heating temperature obtained with a water / water or air / water type heat pump using the mixture R22 / R23 is less at 55 ° C and preferably less or equal to 52 ° C if it is desired that the pump pressure is less than 30 bar and preferably less than 28 bar. The molar proportion of R23 in a mixture R22 / R23 or R502 / R23 is preferably between 12% and 18%. The temperature variation of the water to the capacitor is preferably between 8

DK 159662 BDK 159662 B

5°C og 15°C for at være i nærheden af kondensationsintervallet for de ifølge opfindelsen foreslåede blandinger. I tilfældet med et rent fluid er kondensationstemperaturen ufølsom overfor returvandets temperatur, men den er i princippet større end opvarmningstempera-5 turen. Derimod vil der for de foreslåede ikke-azeotropiske blandinger i tilfældet med en kondensator med vand i modstrømning opnås en temperatur ved afslutningen af kondensationen og et tilsvarende tryk, som er en direkte funktion af vandtemperaturen ved indgangen i kondensatoren. Således vil der i det ovenfor beskrevne drifttilfælde 10 A haves et kondensationsinterval for blandingen på 8°C som variationen af vandtemperaturen (42-50°C).5 ° C and 15 ° C to be in the vicinity of the condensation range of the mixtures proposed according to the invention. In the case of a clean fluid, the condensation temperature is insensitive to the return water temperature, but it is in principle greater than the heating temperature. In contrast, for the proposed non-azeotropic mixtures, in the case of a countercurrent water condenser, a temperature will be obtained at the end of the condensation and a corresponding pressure, which is a direct function of the water temperature at the input of the condenser. Thus, in the above described operating case 10 A, a condensation interval for the mixture of 8 ° C will be observed as the variation of the water temperature (42-50 ° C).

Hvis det af varmepumpen opvarmede vand kan opnå større temperatur, f.eks. større end 60°C, kan dichlordifluormethan (R12) eller den azeotropiske blanding R500 erstattes af chlordifluormethan 15 (R22) for at begrænse det høje tryk i kredsen. Således kan en blan ding ifølge opfindelsen, som omfatter dichlordifluormethan (R12), der er forbundet med trifluormethan (R23) under givne driftstilstande gøre det muligt at opnå en varmeydelse, som er større end den, der opnås med rent RI2. Således giver en blanding omfattende 20 87,5 mol% af R12 og 12,5 mol% molær fraktion af R23 en forøgelse af varmeydelsen på 26% i tilfælde A, og det tryk, der opnås ved kom-pressorenstrykside, er mindre end 17 bar.If the water heated by the heat pump can reach a higher temperature, e.g. greater than 60 ° C, dichlorodifluoromethane (R12) or the azeotropic mixture R500 can be replaced by chlorodifluoromethane (R22) to limit the high pressure in the circuit. Thus, a blend of the invention comprising dichlorodifluoromethane (R12) associated with trifluoromethane (R23) under given operating conditions can enable a heat output greater than that obtained with pure RI2. Thus, a mixture comprising 20 87.5 mole% of R12 and 12.5 mole% molar fraction of R23 gives an increase in heat output of 26% in case A and the pressure obtained at the compressor pressure side is less than 17 bar .

Den molære fraktion af R23 i en blanding af typen R12/R23 eller R500/R23 er fortrinsvis mellem 8% og 18%. I tilfældet med en 25 vandkondensator er opvarmningstemperaturen fortrinsvis mindre end 75°C.The molar fraction of R23 in a mixture of the type R12 / R23 or R500 / R23 is preferably between 8% and 18%. In the case of a water condenser, the heating temperature is preferably less than 75 ° C.

Det driftsdiagram, som er beskrevet i fransk patentskrift nr. 2.497.931, medfører en yderligere fordel i området for varmeydelsen af en givet blanding af ikke-azeotropiske fluider. Dette er 30 emnet for eksempel 2.The operating diagram described in French Patent 2,497,931 provides an additional advantage in the area of heat performance of a given mixture of non-azeotropic fluids. This is the topic of Example 2.

Eksempel 2Example 2

Driftsdiagrammet for varmepumpen er vist i fig. 2.The operating diagram of the heat pump is shown in FIG. 2nd

35 Det blandede arbejdsfluid, der udgår fra en ekspansions ventil gennem ledning 9, fordampes delvis i fordamper E3 gennem nedkølingen af vandet fra den kolde kilde, som cirkulerer i modstrøm med arbejdsfluidet, og som føres ind i fordamperen E3 gennem ledning 11 og udtages gennem ledning 12. Udstrømmende fra fordamperen E3 9The mixed working fluid exiting an expansion valve through conduit 9 is partially evaporated in evaporator E3 through the cooling of the water from the cold source which circulates countercurrent with the working fluid and which is fed into evaporator E3 through conduit 11 and withdrawn through conduit 11 12. Outflow from evaporator E3 9

DK 159662 BDK 159662 B

gennem ledning 10 er arbejdsblandingen helt fordampet og overvarmes eventuelt i varmeveksler E4 ved en modstrømsvarmeveksling med underafkølet kondensat, som kommer ind i E4 gennem en ledning 18, og som udtages gennem en ledning 19.through conduit 10, the working mixture is completely evaporated and optionally heated in heat exchanger E4 by a countercurrent heat exchange with undercooled condensate which enters E4 through a conduit 18 and which is taken out through a conduit 19.

5 Det blandede arbejdsfluid suges i gasformig tilstand ind i kompressor Kl gennem ledning 13 og forskydes ved højt tryk gennem ledning 14. Endelig underafkøles og kondenseres fluidet totalt i kondensator E5, hvor den kommer ind gennem ledning 14, og hvorfra den udtages i en mættet væskeformig tilstand gennem ledning 15. I 10 løbet af kondensationen i E5 afgiver blandingen den nyttige varme-effekt til opvarmningsvandet, som, mellem tilgangsledning 16 og afgangsledning 17, cirkulerer i modstrøm med arbejdsfluidet. Når blandingen er kondenseret i E5, strømmer den gennem ledning 15 ind i en modtagelsesballon Bl og udtages gennem ledning 18; den underaf-15 køles til slut i varmeveksleren E4 og føres til ekspansionsventilen VI gennem ledning 19.5 The mixed working fluid is sucked into gaseous state into compressor K1 through line 13 and is displaced at high pressure through line 14. Finally, the fluid is totally cooled and condensed in capacitor E5, where it enters through line 14, and from which it is withdrawn into a saturated liquid. state through conduit 15. In the course of the condensation in E5, the mixture delivers the useful heat effect to the heating water, which, between inlet conduit 16 and outlet conduit 17, circulates countercurrent with the working fluid. When the mixture is condensed in E5, it flows through line 15 into a receiving balloon B1 and is withdrawn through line 18; the sub-15 is finally cooled in the heat exchanger E4 and fed to the expansion valve VI through line 19.

I kapacitetsområdet medfører dette diagram en forbedring, når arbejdsfluidet er en blanding af ikke-azeotropiske fluider, da varmeveksleren E4, hvor den er tilvejebragt ved fordampningens af-20 slutning, gør det muligt, at blandingen opnår en højere temperatur ved kogningens afslutning og således et kraftigere sugetryk. Denne fremgangsmåde muliggør samtidig en reduktion af det molære volumen ved sugningen og en sænkning af kompressionsforholdet.In the capacity range, this diagram results in an improvement when the working fluid is a mixture of non-azeotropic fluids since the heat exchanger E4, provided at the end of the evaporation, allows the mixture to reach a higher temperature at the end of the boiling and thus a more powerful suction pressure. This method also allows a reduction in the molar volume of the suction and a reduction of the compression ratio.

Tabel III udtrykker de resultater, som er opnået med samme 25 blanding og samme driftsbetingelser som i eksempel 1. Resultaterne, som blev opnået med ren chlordifluormethan (R22) i eksempel 1, er nævnt som reference. Driftsdiagrammet i fig. 2 ændrer faktisk ikke varmepumpens præstationer, når denne drives med et ren fluid. Blandingen, der er specificeret i eksempel 1, har følgende molære 30 sammensætning: Chlordifluormethan (R22): 85% og trifluormethan (R23): 15%. Driftstilfældene A og B er forklaret i eksempel 1.Table III expresses the results obtained with the same mixture and the same operating conditions as in Example 1. The results obtained with pure chlorodifluoromethane (R22) in Example 1 are mentioned by reference. The operating diagram of FIG. 2 does not actually change the performance of the heat pump when operated with a clean fluid. The mixture specified in Example 1 has the following molar composition: Chlorodifluoromethane (R22): 85% and trifluoromethane (R23): 15%. The operating cases A and B are explained in Example 1.

Ifølge det i fig. 1 viste driftsdiagram forøger den valgte blanding varmeydelsen af et apparat, der drives med R22, med 28% i tilfælde A og med 30% i tilfælde B. Desuden vil anvendelsen af 35 blandingen forbedre COP-værdien, som blev opnået med chlordifluormethan med 2,8% i tilfælde A og med 5,2% i tilfælde B.According to FIG. 1, the selected mixture increases the heat output of an apparatus operated with R22 by 28% in case A and by 30% in case B. In addition, the use of the mixture will improve the COP value obtained with chlorodifluoromethane by 2, 8% in case A and 5.2% in case B.

Det i fig. 2 viste diagram nødvendiggør en ekstrainvestering repræsenteret ved varmeveksleren E4, men den er sædvanligvis lille.The FIG. 2 shows an additional investment represented by the heat exchanger E4, but it is usually small.

I det omhandlede eksempel kan denne varmeveksler udgøres afIn the present example, this heat exchanger can be constituted by

DK 159662 BDK 159662 B

10 2 to koncentriske glatte rør, som har en kontaktflade på 0,25 m .10 2 two concentric smooth tubes having a contact surface of 0.25 m.

Tabel IIITable III

5 Driftstilfælde A B5 Case A B

Fluid R22 R22/R23 R22 R22/R23Fluid R22 R22 / R23 R22 R22 / R23

Varmeeffekt (W) 14260 18324 14820 19268 10 COP 3,52 3,62 4,56 4,80Heat effect (W) 14260 18324 14820 19268 COP 3.52 3.62 4.56 4.80

Sugetryk (bar) 4,65 6,10 5,72 5,88 15 Pumpetryk (bar) 20,64 25,09 15,15 18,37Suction pressure (bar) 4.65 6.10 5.72 5.88 15 Pump pressure (bar) 20.64 25.09 15.15 18.37

Kompressionsforhold 4,44 4,11 3,37 3,13 20 Eksempel 3Compression Ratio 4.44 4.11 3.37 3.13 Example 3

Anvendelsen af den azeotropiske blanding R502 i stedet for R22 gør det muligt at opnå en komprimeringstemperatur i kompressoren, som er væsentligt lavere, og det er muligt at undgå en anor-25 mal afkøling af motoren i tilfælde med hermetiske kompressorer.The use of the azeotropic mixture R502 instead of R22 allows a compressor temperature in the compressor which is substantially lower, and it is possible to avoid anomalous cooling of the engine in the case of hermetic compressors.

Denne fordel er væsentlig i tilfælde med luft/vand varmepumper, som virker ved meget lave udetemperaturer.This advantage is significant in the case of air / water heat pumps, which operate at very low outdoor temperatures.

Der opereres med en luft/vand varmepumpe, som anvender R502; o luften, der passerer fordamperen, i en mængde på 6000 m /time, en 30 indgangstemperatur på 7°C og en relativ fugtighed på 86%. Vandet, som cirkulerer i kondensatoren opvarmes til 45°C-50°C. Med en ikke-azeotropisk blanding, som indeholder 14 mol% R503 og 86 mol% R502, opnås resultaterne i tabel IV.An air / water heat pump using R502 is operated; o the air passing through the evaporator, at an amount of 6000 m / h, an inlet temperature of 7 ° C and a relative humidity of 86%. The water circulating in the capacitor is heated to 45 ° C-50 ° C. With a non-azeotropic mixture containing 14 mol% R503 and 86 mol% R502, the results in Table IV are obtained.

35 1135 11

DK 159662 BDK 159662 B

Tabel IVTable IV

Fluid R502 Blanding R502/R503 5Fluid R502 Mixture R502 / R503 5

Varmeeffekt (VI) 11.932 13.531 COP 2,96 2,92 10 Komprimeringstemperatur (°C) 85,2 88,7Heat effect (VI) 11,932 13,531 COP 2.96 2.92 Compression temperature (° C) 85.2 88.7

Sugetryk (bar) 5,53 6,47Suction pressure (bar) 5.53 6.47

Pumpetryk (bar) 21,85 25,20 15Pump pressure (bar) 21.85 25.20 15

Den foreslåede blanding medfører en forbedring af varme-ydelsen på 13,4% i forhold til R502, medens COP-værdien og komprimeringstemperaturen praktisk taget er uforandrede.The proposed blend results in an improvement in heat performance of 13.4% over R502, while the COP value and compression temperature are practically unchanged.

Generelt kan det anføres, at den molære fraktion af R503 i 20 en blanding R502/R503 eller R22/R503 fortrinsvis skal være mellem 8% og 15%; i en blanding R500/R503 eller R12/R503 skal den molære fraktion fortrinsvis være mellem 5% og 15%.In general, it can be stated that the molar fraction of R503 in a mixture R502 / R503 or R22 / R503 should preferably be between 8% and 15%; in a mixture R500 / R503 or R12 / R503, the molar fraction should preferably be between 5% and 15%.

Eksempel 4 25Example 4 25

Der er blevet anvendt andre blandinger i en vand/vand varmepumpe, og de har tilvejebragt en varmeeffekt-til vækst: a) 87 mol% R22 og 13 mol% R503 30 b) 88 mol% R12 og 12 mol% R503 c) 90 mol% R500 og 10 mol% R23 d) 92 mol% R500 og 8 mol% R503 e) 85 mol% R502 og 15 mol% R23 f) 85 mol% R501 og 15 mol% R23 35 g) 87 mol% R501 og 13 mol% R503Other mixtures have been used in a water / water heat pump and have provided a heat-to-growth effect: a) 87 mol% R22 and 13 mol% R503 30 b) 88 mol% R12 and 12 mol% R503 c) 90 mol D) 92 mol% R500 and 8 mol% R503 e) 85 mol% R502 and 15 mol% R23 f) 85 mol% R501 and 15 mol% R23 35 g) 87 mol% R501 and 13 mol % R503

De følgende krav angår blandinger af de to hovedelementer, som er blevet beskrevet i den foreliggende patentansøgning. Det forstås, at opfindelsen også dækker de blandinger, der foruden de førnævnte elementer indeholder mindre mængder (mindre end 5 mol% ogThe following claims relate to mixtures of the two main elements which have been described in the present patent application. It is to be understood that the invention also covers those mixtures which contain, in addition to the aforementioned elements, less amounts (less than 5 mol% and

DK 159662 BDK 159662 B

12 fortrinsvis mindre end 1 mol%) af forureninger, som ikke mærkbart ændrer disse blandingers gode egenskaber, når de anvendes i varmepumper til opvarmning eller til termisk konditionering af lokaler, disse forureninger kan f.eks. være halogenforbindelser af carbon-5 hydriderud over de to krævede, og som udgør underprodukter ved fremstillingen af de krævede halogenforbindelser.12 preferably less than 1 mol%) of contaminants which do not appreciably alter the good properties of these mixtures when used in heat pumps for heating or for thermal conditioning of premises. are halogen compounds of carbon-5 hydrides beyond the two required and which constitute sub-products in the preparation of the required halogen compounds.

10 15 20 25 30 3510 15 20 25 30 35

Claims (6)

1. Væske til en varmepumpe, bestående af en blanding af (a) 95 til 80 mol« R22 eller R502 med 5 (b) 5 til 20 mol« R23 eller R503, hvor R22 er monochlordifluormethan, R23 er trifluormethan, R502 er en blanding af 48,8 vægtprocent monochlordifluormethan med 51,2 vægtprocent chlorpentafluorethan, og R503 er en blanding af 40,1 vægtprocent trifluormethan med 59,9 vægtprocent monochlortrifluor-10 methan, hvor blandingens bestanddel (a) ikke danner azeotrop med den samme blandings bestanddel (b).Liquid for a heat pump consisting of a mixture of (a) 95 to 80 moles «R22 or R502 with 5 (b) 5 to 20 moles« R23 or R503, wherein R22 is monochlorodifluoromethane, R23 is trifluoromethane, R502 is a mixture of 48.8% by weight monochlorodifluoromethane with 51.2% by weight chlorpentafluoroethane, and R503 is a mixture of 40.1% by weight trifluoromethane with 59.9% by weight monochlorotrifluoromethane where the component (a) does not form azeotrope with the same component (b) ). 2. Væske ifølge krav 1 bestående af (a) 88 til 82 mol% R22 eller R502 med (b) 12 til 18 mol« R23.Liquid according to claim 1 consisting of (a) 88 to 82 mole% R22 or R502 with (b) 12 to 18 mole «R23. 3. Fremgangsmåde til opvarmning og/eller termisk klimati se ring af et rum ved hjælp af en kompressionsvarmepumpe ved anvendelse af en blandet arbejdsvæske, hvor denne væske udtager varmen fra en varmekilde med en temperatur fra -15 til +40°C og afgiver varmen til en væske med en temperatur på fra 20 til 75°C, og hvor pumpen 20 arbejder med et kondensationstrin, et ekspansionstrin, et fordampningstrin og et kompressionstrin under anvendelse af denne arbejdsvæske, kendetegnet ved, at arbejdsvæsken har følgende sammensætning: (a) 95 til 80 mol« R12, R22, R500, R501 eller R502 med 25 (b) 5-20 mol« R23 eller R503, hvor R12 er dichlordifluormethan, R500 er en blanding af 73,8% dichlordifluormethan med 26,2% difluorethan, R501 er en blanding af 75% chlordifluormethan med 25% dichlordifluormethan, og hvor R22, R23, R502 og R503 har den i krav 1 angivne betydning, hvorhos 30 bestanddelen (a) af blandingen ikke danner azeotrop med den samme blandings bestanddel (b).3. A method of heating and / or thermal climatization of a room by means of a compression heat pump using a mixed working fluid, said liquid extracting the heat from a heat source with a temperature from -15 to + 40 ° C and delivering the heat to a liquid having a temperature of from 20 to 75 ° C, wherein the pump 20 operates with a condensation step, an expansion step, an evaporation step and a compression step using this working fluid, characterized in that the working fluid has the following composition: (a) 95 to (B) 5-20 moles «R23 or R503, where R12 is dichlorodifluoromethane, R500 is a mixture of 73.8% dichlorodifluoromethane with 26.2% difluoroethane, R501 is 80mol 'R12, R22, R500, R501 or R502. a mixture of 75% chlorodifluoromethane with 25% dichlorodifluoromethane and wherein R22, R23, R502 and R503 are as defined in claim 1, wherein the component (a) of the mixture does not form azeotrope with the same component (b). 4. Fremgangsmåde ifølge krav 3, kendetegnet ved, at der som arbejdsvæske anvendes arbejdsvæsken ifølge krav 2, og at varmepumpen overgiver varmen til en væske, hvis indgangstemperatur 35 ligger over 20*C, og hvis udgangstemperatur er mindre end 55°C og udtager varmen fra en varmekilde, hvis temperatur ligger over -15eC.Process according to claim 3, characterized in that the working fluid according to claim 2 is used as the working fluid and the heat pump transfers the heat to a liquid whose inlet temperature 35 is above 20 ° C and whose outlet temperature is less than 55 ° C and takes out the heat. from a heat source whose temperature is above -15 ° C. 5. Fremgangsmåde ifølge krav 3, kendetegnet ved, at arbejdsvæsken indeholder 92 til 82 mol« R12 eller R500 og 8-18 mol% R23, og at varmepumpen overgiver varmen til en væske, hvis DK 159662 B indgangstemperatur er større end 40eC, og hvis udgangstemperatur er mindre end 75°C og udtager varmen fra en varmekilde, hvis temperatur ligger over 5°C.Process according to claim 3, characterized in that the working fluid contains 92 to 82 moles «R12 or R500 and 8-18 moles% R23 and the heat pump transfers the heat to a liquid whose inlet temperature is greater than 40eC and if outlet temperature is less than 75 ° C and takes the heat from a heat source whose temperature is above 5 ° C. 6. Fremgangsmåde ifølge krav 3-5, kendetegnet 5 ved, at varmepumpen arbejder under sådanne betingelser, at (a) den blandede arbejdsvæske komprimeres i dampfase, (b) den komprimerede blandede væske fra trinet (a) bringes i varmevekslerkontakt med en ydre kølevæske, og at denne kontakt opretholdes, indtil der er sket tilnærmelsesvis fuldstændig kondensation af den blandede væske, (c) 10 at den praktisk taget fuldstændigt kondenserede væskeformede blanding fra trinet (b) bringes i varmevekslingskontakt med en kølevæske, der er defineret i trinet (f), således at den flydende blanding køles endnu mere, (d) at den afkølede flydende blanding fra trinet (c) ekspanderes, (e) at den ekspanderede flydende blanding 15 fra trinet (d) bringes i varmevekslerkontakt med en ydre væske, der udgør en varmekilde, hvorhos kontaktbetingelserne tillader en partiel fordampning af den ekspanderede væskeformede blanding, (f) at den partielt fordampede flydende blanding fra trinet (e) bringes i varmeudvekslerkontakt med den praktisk taget fuldstændigt konden-20 serede blandede væske fra trinet (c), og at denne partielt fordampede blandede væske udgør kølevæsken i trinet (c), og at kontakt-betingelserne er således, at den i trinet (e) begyndte fordampning kan fortsætte, og (g) at den fordampede blanding fra trinet (f) ledes tilbage til trinet (a). 25 30 35Process according to claims 3-5, characterized in that the heat pump operates under conditions such that (a) the mixed working fluid is compressed in the vapor phase, (b) the compressed mixed liquid from the step (a) is brought into heat exchanger contact with an external coolant. and that this contact is maintained until approximately complete condensation of the mixed liquid has occurred, (c) bringing the practically fully condensed liquid mixture of step (b) into heat exchange contact with a coolant defined in step (f) ), so that the liquid mixture is cooled even more, (d) the cooled liquid mixture from step (c) is expanded, (e) the expanded liquid mixture 15 from step (d) is brought into heat exchanger contact with an outer liquid constituting a heat source wherein the contact conditions allow a partial evaporation of the expanded liquid mixture, (f) bringing the partially evaporated liquid mixture from step (e) in heat exchanger contact with the practically fully condensed mixed liquid of step (c), and that this partially evaporated mixed liquid constitutes the coolant of step (c) and that the contact conditions are such that it began in step (e) evaporation may proceed and (g) return the evaporated mixture from step (f) to step (a). 25 30 35
DK461882A 1981-10-19 1982-10-18 LIQUID FOR A HEAT PUMP AND PROCEDURE FOR HEATING AND / OR THERMAL CLIMATIZATION OF A ROOM USING A COMPRESSION HEAT PUMP USING A MIXED WORKING LIQUID DK159662C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8119734 1981-10-19
FR8119734A FR2514875A1 (en) 1981-10-19 1981-10-19 METHOD OF HEATING AND / OR THERMALLY CONDITIONING A LOCAL USING A COMPRESSION HEAT PUMP USING A SPECIFIC MIXTURE OF WORKING FLUIDS
FR8208035 1982-05-06
FR8208035A FR2526529A2 (en) 1981-10-19 1982-05-06 METHOD OF HEATING AND / OR THERMALLY CONDITIONING A LOCAL USING A COMPRESSION HEAT PUMP USING A SPECIFIC MIXTURE OF WORKING FLUIDS

Publications (3)

Publication Number Publication Date
DK461882A DK461882A (en) 1983-04-20
DK159662B true DK159662B (en) 1990-11-12
DK159662C DK159662C (en) 1991-04-08

Family

ID=26222586

Family Applications (1)

Application Number Title Priority Date Filing Date
DK461882A DK159662C (en) 1981-10-19 1982-10-18 LIQUID FOR A HEAT PUMP AND PROCEDURE FOR HEATING AND / OR THERMAL CLIMATIZATION OF A ROOM USING A COMPRESSION HEAT PUMP USING A MIXED WORKING LIQUID

Country Status (6)

Country Link
EP (1) EP0081395B1 (en)
DE (1) DE3264931D1 (en)
DK (1) DK159662C (en)
FI (1) FI73308C (en)
FR (1) FR2526529A2 (en)
NO (1) NO156208C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564955B1 (en) * 1984-05-28 1987-03-20 Inst Francais Du Petrole PROCESS FOR PRODUCING HEAT AND / OR COLD USING A COMPRESSION MACHINE OPERATING WITH A MIXED WORKING FLUID
KR860002704A (en) * 1984-09-06 1986-04-28 야마시다 도시히꼬 Heat pump
FR2578638B1 (en) * 1985-03-08 1989-08-18 Inst Francais Du Petrole METHOD FOR TRANSFERRING HEAT FROM A HOT FLUID TO A COLD FLUID USING A MIXED FLUID AS A HEAT EXCHANGER
FR2607142B1 (en) * 1986-11-21 1989-04-28 Inst Francais Du Petrole MIXTURE OF WORKING FLUIDS FOR USE IN COMPRESSION THERMODYNAMIC CYCLES COMPRISING TRIFLUOROMETHANE AND CHLORODIFLUOROETHANE
CZ296026B6 (en) * 2004-08-23 2005-12-14 Jiří Štreit Heating system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2255585A (en) * 1937-12-27 1941-09-09 Borg Warner Method of and apparatus for heat transfer
DE1419629A1 (en) * 1961-01-12 1968-11-07 Danfoss Werk Offenbach Gmbh Refrigerant-oil mixture
US3487653A (en) * 1968-01-26 1970-01-06 Associated Testing Lab Inc Low temperature environmental test system
JPS5571781A (en) * 1978-11-22 1980-05-30 Daikin Ind Ltd Mixed refrigerant

Also Published As

Publication number Publication date
FI73308C (en) 1987-09-10
FI73308B (en) 1987-05-29
NO156208B (en) 1987-05-04
NO156208C (en) 1987-08-12
FR2526529A2 (en) 1983-11-10
FR2526529B2 (en) 1984-12-28
EP0081395A1 (en) 1983-06-15
FI823548A0 (en) 1982-10-18
FI823548L (en) 1983-04-20
DK159662C (en) 1991-04-08
DK461882A (en) 1983-04-20
EP0081395B1 (en) 1985-07-24
DE3264931D1 (en) 1985-08-29
NO823441L (en) 1983-04-20

Similar Documents

Publication Publication Date Title
US4468337A (en) Process for the heating and/or thermal conditioning of a building by means of a heat pump operated with a specific mixture of working fluids
US4406135A (en) Heating and thermal conditioning process making use of a compression heat pump operating with a mixed working fluid
CN107014015B (en) Recovery type heat evaporating condensation type handpiece Water Chilling Units
WO2017099814A1 (en) Using heat recovered from heat source to obtain high temperature hot water
NO138419B (en) HEATING SYSTEM.
EP1859208A1 (en) Hvac system with powered subcooler
US4344292A (en) Process for heat production by means of a heat pump operated with a specific mixture of fluids as the working agent
US4680939A (en) Process for producing heat and/or cold by means of a compression engine operating with a mixed working fluid
CN107763850A (en) Superelevation temperature heat pump system and method not less than 100 DEG C of boiling water can be produced
US5809791A (en) Remora II refrigeration process
CN104567052A (en) Refrigeration-cycle equipment
AU2012200973B2 (en) Method and system for cascade refrigeration
DK159662B (en) LIQUID FOR A HEAT PUMP AND PROCEDURE FOR HEATING AND / OR THERMAL CLIMATIZATION OF A ROOM USING A COMPRESSION HEAT PUMP USING A MIXED WORKING LIQUID
US4812250A (en) Working fluid mixtures for use in thermodynamic compression cycles comprising trifluoromethane and chlorodifluoroethane
CN106642681A (en) Air-energy water heater circulation system and operating method thereof
US20150047385A1 (en) Partitioned evaporator for a reversible heat pump system operating in the heating mode
CN107676999A (en) Big temperature is across heat pump
CN207610386U (en) The superelevation temperature heat pump system not less than 100 DEG C of boiling water can be produced
CA1220353A (en) Absorption type heat transfer system functioning as a temperature pressure potential amplifier
JPH0655940B2 (en) Mixed refrigerant
CN211552099U (en) Double-cooling double-heating unit
CN109282521A (en) A kind of heat pump
CN103105016A (en) Double working medium cascading directly-heated type heat pump hot water unit
CN107674649A (en) A kind of working medium group for heat pump cycle
CN209147492U (en) Idle total heat recovery heating system